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Abstract: During the last decades, the Nonequilibrium Green’s function (NEGF) formalism has
been proposed to develop nano-scaled device-simulation tools since it is especially convenient to
deal with open device systems on a quantum-mechanical base and allows the treatment of inelastic
scattering. In particular, it is able to account for inelastic effects on the electronic and thermal
current, originating from the interactions of electron–phonon and phonon–phonon, respectively.
However, the treatment of inelastic mechanisms within the NEGF framework usually relies on
a numerically expensive scheme, implementing the self-consistent Born approximation (SCBA).
In this article, we review an alternative approach, the so-called Lowest Order Approximation (LOA),
which is realized by a rescaling technique and coupled with Padé approximants, to efficiently model
inelastic scattering in nanostructures. Its main advantage is to provide a numerically efficient and
physically meaningful quantum treatment of scattering processes. This approach is successfully
applied to the three-dimensional (3D) atomistic quantum transport OMEN code to study the impact
of electron–phonon and anharmonic phonon–phonon scattering in nanowire field-effect transistors.
A reduction of the computational time by about ×6 for the electronic current and ×2 for the thermal
current calculation is obtained. We also review the possibility to apply the first-order Richardson
extrapolation to the Padé N/N − 1 sequence in order to accelerate the convergence of divergent
LOA series. More in general, the reviewed approach shows the potentiality to significantly and
systematically lighten the computational burden associated to the atomistic quantum simulations of
dissipative transport in realistic 3D systems.

Keywords: quantum modeling; nonequilibrium Green’s function; nanowire transistor;
electron–phonon interaction; phonon–phonon interaction; self-consistent Born approximation; lowest
order approximation; Padé approximants; Richardson extrapolation

1. Introduction

Recent advances in the nanostructure engineering have led to a vast variety of nano-scale material
applications in different areas, e.g., electronics [1], photonics [2], and thermoelectric devices [3].
Among them, nanowire (NW) field-effect transistor (FET) represents the most promising architecture
for the next generation logic switches capable to reach sub-10-nm gate lengths in mass production [4].
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The versatility of this architecture resides mostly in the fact that it can provide an excellent electrostatic
control thanks to the gate-all-around (GAA) configuration [5] and can incorporate novel materials
exhibiting high mobilities and/or high band gap [6–11].

In order to move forward in the development of NW FETs, various quantum mechanical effects
inside NWs should be theoretically investigated. In line with that purpose, there have been abundant
theoretical achievements and discussions to shed light on quantum physics underlying electrical
transport. Wigner function-based quantum transport approach [12–14], considered as a quantum
counterpart of Boltzmann transport equation, is one of such achievements. Pauli master equation was
also proposed to treat inelastic scattering processes by using the concept of scattering states based on
Fermi’s Golden rule [15,16]. Meanwhile, Bohmian mechanics has been applied to develop a many-body
quantum transport simulator [17,18].

Along with all the methods aforementioned, the Nonequilibrium Green’s function (NEGF)
formalism, first developed by Gordon Baym, Leo P. Kadanoff [19,20], and Leonid V. Keldysh [21] in
the 1960s, has attracted intensive interests due to its capability to address various quantum effects
taking place in nanostructures [22–24]. In particular, during the last decade there have been significant
attempts to apply NEGF formalism for describing quantum mechanical effects inside nano-scaled
devices such as quantum confinement [25], tunneling [26,27], surface roughness scattering [28], and
electron–phonon interactions [29]. Among those effects, the treatment of inelastic interactions within
this formalism, based on the concept of scattering self-energy, has become widespread.

From a numerical point of view, however, a challenge still remains in treating self-energies, which
is particularly evident in applying NEGF to three-dimensional (3D) realistic structures. The main
bottleneck usually comes from the conventional treatment of the nonlinear Dyson’s equation, within the
self-consistent Born approximation (SCBA). Indeed, the SCBA satisfies the current conservation law
via a Φ-derivable self-energy, that is, Σ[G] = δΦ/δG, but it requires a huge number of iterations to
meet this condition. This is due, in part, to the innate characteristics of the SCBA algorithm, that works
by including in the approximate solution higher-order Feynman diagrams at each iteration, regardless
of if they are or not current conserving. The SCBA iteration process stops when the conservation law is
satisfied, that is, when conserving diagrams are dominant over non-conserving ones. As a consequence,
the implementation of the SCBA algorithm in atomistic 3D NEGF codes is usually only manageable
with the help of supercomputer environments comprising several hundreds of CPUs/GPUs.

In this article, we review a highly efficient method [30–34], the so-called lowest order
approximation (LOA) analytically continued by Padé approximants, to treat inelastic interactions
within the NEGF framework. The main idea behind the method is to collect only the low-order
scattering diagrams that guarantee the conservation of the current. Several analytic continuation
techniques (e.g., Shanks transformation [35], Borel-Padé resummation [36], and hyper geometric
resummation technique [37]) can be applied to the LOA series in order to reconstruct physical
observables when the series is divergent. Here, we only focus on a rescaling technique [33,34]
in combination with the Padé approximants [36,38], since it is very simple to implement in conventional
NEGF codes. In the case of strongly divergent LOA series, we also show the application of the
first-order Richardon extrapolation to the Padé N/N − 1 approximants. The main advantage of this
approach is that it avoids a large number of iterations while obtaining a relatively high degree of
accuracy with respect to SCBA results.

To benchmark our method against the conventional SCBA scheme, we show its efficiency
and accuracy in the calculation of electronic (including electron–phonon scattering) and phonon
thermal (including anharmonic phonon–phonon scattering) currents flowing through a GAA
NW-FET. Our investigation focuses on an n-type square cross-sectional silicon (Si) GAA NW-FET
crystallographically oriented in 〈100〉 transport direction. As key findings, we show that the third-order
LOA electronic currents analytically continued by Padé approximants can reproduce SCBA results
within an error 610%. A similar accuracy is found by applying the first-order Richardson extrapolation
to the sequence of Padé approximants of the thermal current.
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The rest of the paper is organized as follows: Section 2 describes the theory of the LOA analytically
continued by Padé approximants and compares it to the conventional SCBA iterative scheme. A simple
rescaling technique to calculate the LOA series directly from the SCBA algorithm will also be explained.
In Section 3, we will show that the approach can be advantageously applied to the computation of the
electron and phonon currents of GAA NW-FETs. Finally, Section 4 will conclude the article with the
key findings and the outlook of the method.

2. General Theoretical Framework

In this section, we theoretically detail the LOA approach for the treatment of inelastic interactions
within the NEGF framework [29,39–41] and we compare it to the conventional SCBA. We then present
a simple rescaling technique, computationally most efficient and applicable to 3D realistic structures,
to calculate the LOA expectation values from the conventional SCBA method. A matrix form of Padé
approximants and the first-order Richardson extrapolation technique are also discussed.

2.1. Dyson Equation

In the NEGF theory, the Dyson equation links the noninteracting Green’s function g0 to the fully
interacting Green’s function G via the scattering self-energy Σ, which describes all the interactions.
In a simplified matrix notation, we have

G = g0 + g0Σ[G]G, (1)

with the abbreviations i = (ri, ti), g0Σ[G]G =
∫

d2
∫

d2′ g0(1; 2)Σ(2; 2′)G(2′; 1′). The Feynman
diagrams corresponding to electron–phonon scattering are shown in Figure 1. Since the scattering
self-energy is a functional of G, i.e., Σ = Σ[G], the Dyson equation is nonlinear and suitable
approximations are required for the self-energy. The Φ-derivable approximation in the Luttinger–Ward
picture [42,43] is a prescription to construct a self-energy satisfying the current conservation law.
Proper resolutions of the Dyson equation should then be handled with a Φ-derivable self-energy.
While both the conventional SCBA and the LOA provide a Φ-derivable self-energy, they solve the
Dyson equation by using two different kind of algorithms, iterative and direct, respectively.

G

=

g0

+

g0Σ[G]G

Figure 1. Feynman diagrams for the Dyson equation showing the relation between the noninteracting
electron Green’s function g0 (thin lines with an arrow) and fully interacting one G (thick lines with an
arrow): The dashed line denotes the free phonon propagator.

2.2. Self-Consistent Born Approximation

The nonlinearity of the Dyson equation leads itself naturally to an iterative scheme to obtain
solutions. This inspiration then led to the application of the Born approximation in the concept of
self-consistency, i.e., SCBA, which is commonly considered essential for Φ-derivability. By assuming
GN ' GN−1 with very large N, Equation (1) can be rewritten as

GN = [g−1
0 − Σ[GN−1]]

−1, (2)
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or in a Taylor series expansion form

GN = g0 + g0Σ[GN−1]g0 + g0Σ[GN−1]g0Σ[GN−1]g0 + · · · . (3)

where GN stands for the Green’s function at the Nth iteration step. The SCBA Green’s functions G1

and G2 are then defined from Equation (3) as

G1 = g0 + g0Σ[g0]g0 + g0Σ[g0]g0Σ[g0]g0 + · · · . (4)

and

G2 = g0 + g0Σ[G1]g0 + g0Σ[G1]g0Σ[G1]g0 + · · · ,

= g0 + g0Σ[g0]g0 + (g0Σ[g0]g0Σ[g0]g0 + g0Σ [g0Σ [g0] g0] g0)

+g0Σ[g0]g0Σ[g0]g0Σ[g0]g0 + · · · ,

(5)

respectively. As shown in Figure 2a,b, each SCBA Green’s function includes an infinite number
of diagrams. Therefore, G1 and G2 do not necessarily preserve the conservation law since there
are non-conserving higher-order diagrams, according to the corresponding scattering order [31].
This character of the SCBA scheme allows only an asymptotic approach to the conservation law, that is,
a large number of iterations with specified convergence criteria depending on the scattering strength
of the system.

(a) G1= + +

Conserving terms

+ + · · ·

Non-conserving higher-order terms to 1st order

(b) G2= + + +

Conserving terms

+ + + + · · ·

Non-conserving higher-order terms to 2nd order

Figure 2. Feynman diagrams for self-consistent Born approximation (SCBA) Green’s functions, (a) G1

(at first iteration) and (b) G2 (at second iteration): Conserving (red-underlined) and non-conserving
(black-underlined) terms are arranged according to ascending interaction order. Noninteracting
electron Green’s functions are described by thin lines with an arrow while free phonon propagators are
represented by dashed lines.

2.3. Lowest Order Approximation

The fact that the SCBA Green’s functions include non-conserving diagrams has inspired the
concept of the LOA method, i.e., calculating only the conserving diagrams based on the Φ-derivability
at each scattering order, as shown in Figure 3a,b. The first-order LOA in the case of electron–phonon
scattering has been suggested in Reference [30] by treating the term g0Σ[G]G from Equation (1) as a
perturbation δG and by applying a Taylor series expansion to the corresponding self-energy to obtain
the first-order LOA Green’s function g1LOA as

g1LOA = g0 + g0Σ[g0]g0, (6)

where the interaction self-energy is constructed only by the noninteracting Green’s function g0 and is
Φ-derivable since Σ[g0] = δΦ[g0]/δg0. The work in Reference [30] showed that, in the weak-scattering
regime, the expectation value constructed from the first-order LOA Green’s function (therein, 1st LOA
current) is very similar to the one from the SCBA. However, it was also shown that the spectral currents
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built by the 1st LOA Green’s function are very far from the SCBA results since only the first order in
the interaction was included.

(a) g1LOA= +

Conserving terms

(b) g2LOA= + + +

Conserving terms

Figure 3. Feynman diagrams for Lowest Order Approximation (LOA) Green’s functions: (a) g1LOA at
the first order and (b) g2LOA at the second order in interactions. Conserving terms are red-underlined.
Noninteracting electron Green’s functions are described by thin lines with an arrow while free phonon
propagators are represented by dashed lines.

In References [31,32], it was shown that, by using the term ∆g1 = g0Σ[g0]g0 from Equation (6) as
a basic building block, the generalized LOA expansion series can be built as

gN = g0 +
N

∑
n=1

∆gn, (7)

where gN(N > 1) is the LOA Green’s function at Nth-order in the interaction and ∆gn is the
perturbation term of order n in the interaction. Since the Dyson equation has a recursion relation
g0Σ[G]G, the general expression of gN can be obtained by injecting Equation (7) into Equation (1)
such that

g0 + g0Σ[gN−1]gN−1 = g0 + g0Σ[g0 +
N−1

∑
n=1

∆gn] (g0 +
N−1

∑
n=1

∆gn), (8)

and then by discarding all higher-order terms to include only N-order interactions for gN . For example,
by following the previous process, g2 and g3 are constructed as

g2 = g1 + g0Σ1∆g1 + g0Σ2∆g0 = g1 + ∆g2, (9)

g3 = g2 + g0Σ1∆g2 + g0Σ2∆g1 + g0Σ3∆g0 = g2 + ∆g3, (10)

where the corresponding self-energy is defined such that Σn depends on the n − 1 order
perturbation term

Σn = Σ [∆gn−1] . (11)

As a result, the perturbation term for N > 1 is as follows:

∆gN = g0

N−1

∑
n=0

ΣN−n∆gn, (12)

with
∆g1 = g0Σ[g0]g0, (13)

and
gN = gN−1 + ∆gN . (14)

The overall schematic of practical calculations for the LOA Green’s function gN , which was
explained in Reference [32] in detail, is summarized in Algorithm 1 below.
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Algorithm 1 Nth-order LOA calculation.

N ← <the order of LOA>
for i← 0 to N do

if i = 0 then
gr

0 ←
[
EI − H − Σr

C
]
, E (Energy), H (Hamiltonian), and ΣC (Contact self-energy)

g≶0 ← gr
0Σ≶

C ga
0, the superscript r (Retarded), a (Advanced), and ≶ (Lesser/Greater)

∆g≶0 ← g≶0 , ∆gr
0 ← gr

0
else

for n← 0 to i− 1 do
: interacting self energy calculation
Σ≶

int, i and Σr
int, i

: perturbation term calculation
temp(∆gr

i )← gr
0Σr

int, i−n∆gr
n

⇓ applying Langreth Theorem
temp(∆g≶i )← gr

0Σr
int, i−n∆g≶n + gr

0Σ≶
int, i−n∆ga

n + g≶0 Σa
int, i−n∆ga

n
∆gr

i ← ∆gr
i + temp(∆gr

i )

∆g≶i ← ∆g≶i + temp(∆g≶i )
end for
gr

i ← gr
i−1 + ∆gr

i
g≶i ← g≶i−1 + ∆g≶i

end if
end for

Equations (12)–(14) show that, by construction, each LOA Green’s function gN includes only
N-order interactions, meaning that it can generate the corresponding expectation value ON = O(gN).
We then obtain the LOA series for any expectation value. For example, in this article, electronic current
series (including electron–phonon scattering) and thermal current series (including phonon–phonon
scattering) are defined as IN = I (gN) and QN = Q (gN), respectively, to any order in the interaction:

IN = I0 +
N

∑
n=1

∆In, QN = Q0 +
N

∑
n=1

∆Qn, (15)

where ∆In = In − In−1 and ∆Qn = Qn −Qn−1 represent the difference between the expectation
values of the nth and (n− 1)th orders and where I0 and Q0 are the expectation values from the
noninteracting Green’s function g0 (here, the ballistic one).

Indeed, with Algorithm 1, one can compute the exact LOA Green’s function at any order within
the considered interaction. However, the Langreth theorem, involved in transforming the contour
integration into real-time integration, leads to a large number of matrix inversions and multiplications
for higher-order LOA calculations, which restricts the applicability of the method. Therefore, in the
next section, we present a simple rescaling technique to directly calculate the LOA expectation values
from the SCBA results.

2.4. Rescaling Technique

The rescaling technique has been developed in Reference [33] to overcome the limitation of
Algorithm 1 in the spirit of preserving the conventional SCBA algorithm since the latter algorithm is
computationally cheap as long as a small number of iterations is needed. The method was applied to the
case of electron–phonon scattering inside GAA NW-FETs, described by using an sp3d5s∗ tight-binding
(TB) model, as implemented in the atomistic code OMEN [29,44]. Later on, Lee et al. [34] have shown
that the method is also applicable to describe anharmonic phonon–phonon scattering in which the
anharmonic self-energy Π is a function of the square of phonon Green’s functions D.
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The basic idea of the rescaling technique is that, by multiplying a properly chosen factor 1/λ

to any scattering self-energy (e.g., Σ[G]/λ for electron–phonon and Π[DD]/λ for phonon–phonon),
infinite non-conserving diagrams in SCBA Green’s functions can be eliminated. The reason behind this
is based on the fact that conserving and non-conserving diagrams in the SCBA are arranged according
to ascending order in interactions, as shown in Figure 2.

For example, let us rewrite Equation (3), which is a Taylor expansion series of the SCBA Green’s
function, in a general form applicable to any Green’s function (Z = G for electron and Z = D for
phonon), as

ZN = z0 + z0Φ[(ZN−1)
l ]z0

+ z0Φ[(ZN−1)
l ]z0Φ[(ZN−1)

l ]z0 + · · · , l > 1,
(16)

where z0 is the noninteracting Green’s function and l denotes the dependence of the self-energy
on the Green’s function to the lth power (Φ[ZN−1] = Σ[GN−1] with l = 1 for electron–phonon
and Φ[ZN−1ZN−1] = Π[DN−1DN−1] with l = 2 for phonon–phonon). By introducing a scaling
parameter λ1 into the scattering self-energy and by proceeding to the first SCBA iteration, higher-order
non-conserving diagrams vanish [33] since each term is scaled by (1/λ1)

n in the interaction order n.
We then express the first-order LOA Green’s function rescaled by λ1 as

Zλ1
1 = z0 +

1
λ1

∆z1 (= z0Φ1z0) , Φ1 = Φ
[
(z0)

l
]

, (17)

where the nth-order (n > 1) non-conserving terms are suppressed thanks to the factors (1/λ1)
n.

The first-order LOA expectation value (O1) is then calculated by using λ1 such as O1 = O0 + ∆O1 =

O0(z0) +O(z0Φ[(z0)
l ]z0) = O0(z0) + λ1[O(Zλ1

1 )−O(z0)].
For the second-order calculation, let us assume that we have the first-order LOA Green’s function

rescaled by λ2 as Zλ2
1 = z0 +

1
λ2

∆z1. The second SCBA iteration with a properly chosen scaling factor
λ2 then produces the self-energy Φ2 as

Φ2 = Φ

[
(Zλ2

1 )l

λ2

]
= Φ

[
1

λ2
(z0 +

1
λ2

∆z1)
l
]

,

=Φ

[
(z0)

l

λ2
+

zl−1
0 ∆z1

λ2
2

+ · · ·+
z0∆zl−1

1

λl
2

+
(∆z1)

l

λl+1
2

]
.

(18)

In Equation (18), only the terms related to (1/λ2) and (1/λ2)
2 are retained while the other terms

are omitted. Therefore, the second-order LOA Green’s function Zλ2
2 rescaled by λ2 also does not

include all the terms related to (1/λ2)
N (N > 2). Reconstructing the second-order LOA expectation

value then follows the way explained in Reference [33]. This process can be generalized to any order
LOA Green’s function. Given an exact Green’s function at the (N− 1)th order with the rescaling factor
λN as

ZλN
N−1 = z0 +

1
λN

∆z1 + · · ·+
1

λN−1
N

∆zN−1, (19)

an exact self-energy at the Nth-order can be obtained since the scaling factor λN automatically
cancels out all the higher-order interactions (> Nth-order): if ZN−1 is correct to the (N − 1)th order,
ΦN

[
(ZN−1)

l
]

is also correct to the Nth-order [34]. By using the proposed method, any-order LOA
expectation values can then be easily obtained from the SCBA iterations.

2.5. Matrix Form of the Padé Approximants

The LOA Green’s function, computed either by the direct algorithm or by the rescaling
technique, consists of finite conserving diagrams up to the Nth-order, i.e., forms a truncated
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perturbation-expansion series. This series depends on an interaction parameter U, always associated
to two vertices in the electron–phonon and phonon–phonon scattering diagrams:

z0 + ∆z1(U) + · · ·+ ∆zN(UN). (20)

As in the general case of perturbation series, the LOA series has a radius of convergence Ur, then
being convergent (U < Ur) or divergent (U > Ur), depending on U [36,38,45]. Therefore, in order to
obtain meaningful values for the physical observables, the application of resummation techniques
(e.g., Padé approximants [31–34,46,47], hypergeometric resummation [37], and Padé + Richardson
extrapolation [34]) is generally required. Here, we review a matrix form of Padé approximants [48]
since it has been already proved to be very efficient with a relatively high accuracy in the previous
works [32–34].

The Padé approximant transforms a power series function FN(x) into a fractional function
including two polynomials, Pp(x) as the numerator and Mm(x) as the denominator [49] such as

FN(x) = ∑
p+m
k=0 fkxk = f0 + f1x + f2x2 + · · ·+ fp+mxp+m =

p0+p1x+p2x2+···+ppxp

1+m1x+m2x2+···+mmxm = Fp/m(x). (21)

By matching coefficients at the same order between two functions, l + m + 1 linear homogeneous
equations can be obtained as

p0 = f0,

p1 − f0m1 = f1,

p2 − f0m2 − f1m1 = f2,
...

pp − f0mp − f1mp−1 − · · · − fp−1m1 = fp, (22)

− fp−m+1mm − fp−m+2mm−1 − · · · − fpm1 = fp+1,

− fp−m+2mm − fp−m+3mm−1 − · · · − fp+1m1 = fp+2,
...

− fpmm − fp+1mm−1 − · · · − fp+m−1m1 = fp+m.

We then obtain a matrix form Ax = b to calculate Padé coefficients p0, . . . , pp and m1, . . . , mm as

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 − f0 0 · · · 0
...

. . .
...

...
. . .

...
0 0 · · · 1 − fp−1 − fp−2 · · · 0
0 0 · · · 0 − fp − fp−1 · · · − fp−m+1

0 0 · · · 0 − fp+1 − fp · · · − fp−m+2
...

. . .
...

...
. . .

...
0 0 · · · 0 − fp+m−1 − fp+m−2 · · · − fp





p0

p1
...

pp

m1

m2
...

mm


=



f0

f1
...
fp

fp+1

fp+2
...

fp+m


. (23)

By solving Equation (23), a power series-transformed fractional function can be determined as

Fp/m(x) = p0+p1x+p2x2+···+ppxp

1+m1x+m2x2+···+mmxm . By appling this technique to the Nth-order LOA expectation values
ON , Padé analytically continued expectation values Op/m with N = p + m are obtained.
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2.6. Richardson Extrapolation

In this subsection, we introduce the first-order Richardson extrapolation technique, applicable
to accelerate the convergence of divergent LOA expectation values analytically continuated by Padé
N − 1/N approximants toward SCBA values [34].

Let us assume that the LOA + Padé sequence is a monotone series SN approaching the SCBA
result S. We then write SN in an asymptotic form as [50]

SN ≈ S +
c1

N
+

c2

N2 +
c3

N3 + · · · , (24)

with unknown coefficients c1, c2, · · · . By considering the first-order approximation of S based on two
consecutive terms SN and SN+1,

N(SN − S) = c1, (N + 1)(SN+1 − S) = c1, (25)

the first-order Richardson extrapolation can be obtained as

S[1]
N = (N + 1)SN+1 − NSN . (26)

This technique can be applied to the sequence of LOA expectation values analytically continuated
by the Padé N− 1/N approximants (ON−1/N). For example, the expectation values obtained from Padé
0/1(O0/1) and Padé 1/2 (O1/2) become the first and second elements of the sequence, i.e., S1 = O0/1
and S2 = O1/2, respectively (in general, SN = ON−1/N). By using Equation (26) with O0/1 and O1/2,
we can then predict SCBA values as

S[1]
1 = 2S2 − S1 = 2O1/2 −O0/1 ≈ OSCBA. (27)

3. Applications to Electron and Phonon Transports in a Nanowire Transistor

In this section, we benchmark the performance of the LOA + Padé approach against the SCBA
scheme in the description of electron–phonon and anharmonic phonon–phonon scattering inside a
3D nano-device. The investigated device is a Si GAA NW-FET with a 3 nm × 3 nm square cross
section where electron or phonon transport occurs along the 〈100〉 crystallographic direction (Figure 4).
In such a small cross-sectional NW, the transport is dominated by quantum confinement effects.
The corresponding electronic band-structure and phonon dispersion relation are shown in Figure 5a,b,
respectively.

The coupling effects between electronic and anharmonic thermal currents are not considered
since the aim of the benchmarking is only to test the efficiency and accuracy of the method for
each scattering mechanism. The electronic and thermal currents are then separately calculated in
different configurations as follows. (i) For electron transport, the gate length is LG = 13 nm while
the source and drain extension lengths are LS/D = 10 nm, with a doping concentration of donors
NS/D = 1× 1020 cm−3. A 1-nm-thick silicon dioxide layer surrounds the NW structure. (ii) In the
case of phonon transport, an ungated 60-nm-long NW structure without oxide layers is considered.
All atoms on the NW surface are free to move. For the sake of clarity, only undoped NWs are
considered. Under this condition, a very small number of electrons participate in the thermal
conduction. This allows us to safely neglect the impact of eletron–phonon scattering [51].

In order to validate the LOA + Padé approach, we use the 3D atomistic NEGF code
OMEN [29,44,51–53] in which a sp3d5s∗ TB model for electrons and a modified valence-force-field
(VFF) method for phonons are implemented. OMEN is among the most sophisticated atomistic
simulators of quantum transport of nano-devices. Indeed, the latest version of OMEN also includes
density-functional theory (DFT)-based Hamiltonian expressed in a maximally localized Wannier
function basis [10]. However, it requires considerable computational resources, especially when the
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SCBA loop is brought into play. In the following Sections 3.1 and 3.2, the LOA approach within the
rescaling technique formulation is used to calculate the electronic and thermal current. These results
are benchmarked against the values obtained by running the full SCBA loop in OMEN until the current
is conserved within a tolerance of 1%.

Figure 4. Schematic view of a Si gate-all-around (GAA) nanowire (NW) field-effect transistor (FET)
crystallographically oriented along the 〈100〉 direction with a HNW(3 nm)×WNW(3 nm) square cross
section: (Electron transport) The gate length is LG = 13 nm, and the length of source/drain region
measures LS/D = 10 nm. The NW structure is surrounded by a 1-nm-thick silicon dioxide layer.
The concentration of donors in the source and drain regions is NS/D = 1 × 1020 cm−3. (Phonon
transport) The NW total length (LG + LS + LD) is 60 nm. The NW is undoped, ungated, and free of the
oxide layer.

(a) (b)

Figure 5. (a) Electronic conduction band-structure of the Si NW sketched in Figure 4, obtained with
a full band tight-binding sp3d5s∗ model without spin-orbit coupling. (b) Phonon dispersion relation
obtained with a modified valence-force-field method. Lx is a slab length.

3.1. Electron–Phonon Scattering in a Nanowire Transistor

Here, we investigate steady-state electron transport in which electrons are coupled with the
equilibrium phonon bath at room temperature. A full band sp3d5s∗ TB model without spin-orbit
coupling [54,55] is employed to describe the electronic states while a modified VFF method including
four bond-interaction terms (harmonic approximations) [56,57] is used for the description of the NW
phonon bath. The diagonal lesser self-energy for electron-phonon scattering is

Σ<
nn(E) = i ∑

l
∑
λ,q

∫ ∞

−∞

d(E′)
2π

Mλ
nl(q)d

<
0,λ(q, E− E′)G<

ll (E′)Mλ∗
ln (q), (28)

with

Mλ
nl(q) =

√
h̄

2ωλ(q)
∑

i
∇i Hnl

[
f i
λ(Rl , q)
√

ml
−

f i
λ(Rn, q)
√

mn

]
, (29)
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and
d<0,λ(q, h̄ω) = −2πi [〈nλ(q)〉 δ(h̄ω∓ h̄ωλ(q)) + (〈nλ(q)〉+ 1)δ(h̄ω± h̄ωλ(q))] , (30)

where h̄ is the reduced Planck constant, E is the electron energy, R is the position vector, m is the
atomic mass, f is the phonon displacement, and ω is the phonon frequency. The indices n and l
denote the atomic positions, while λ and q represent the phonon mode λ with momentum q. 〈nλ(q)〉
is the expectation value of the phonon occupation in the mode λ and momentum q in thermal
equilibrium. In the scattering self-energy Equation (28), the lesser Green’s function G< is coupled
via the nearest-neighbor matrix elements M to the lesser phonon Green’s function d<0 . The coupling
matrix elements are obtained from the first derivative of the TB Hamiltonian matrix ∇i Hnl between
atoms n and l along the ith direction (x, y, or z). The real part of the self-energy, as commonly assumed
in quantum transport nano-device modeling [58], is neglected.

By introducing three different scaling factors λ1, λ2, and λ3 into Equation (28), as explained in
Section 2.4, the LOA expectation values for electronic currents up to the third order can be obtained
over a wide range of gate biases. The Padé approximant is then applied to analytically continue
the LOA results. Figure 6 shows the drain current (ID) vs. gate voltage (VG) transfer characteristics
obtained in the ballistic regime and by the SCBA, the 1st LOA, and the LOA + Padé 0/1 and 1/2
technique. It is clearly shown that 1st- and 3rd-order LOA currents combined with Padé 0/1 and
1/2, respectively, provide a fair evaluation of the SCBA result over the whole applied bias. The 1st
LOA current is also very similar to the SCBA current except at high bias (i.e., VG = 0.6 V), due to the
particularly strong electron–phonon scattering in this regime [29]. For this strong scattering regime,
the Richardson extrapolation has been applied, thereby obtaining an accelerated convergence of the
strongly divergent LOA series. More precisely, the accuracies at VG = 0.6 V are 89%, 93%, and 98% for
the Padé 0/1, Padé 1/2, and Richardson, respectively. The values of the current at VG = 0.6 V obtained
within the different approximations are reported in Table 1, along with the required computational
burden in terms of number of SCBA iterations. These values show that the LOA approach combined
with the Padé analytical continuation and the Richardson extrapolation is able to approximate the
SCBA results within an error of 2% in 6 SCBA iterations, while the full SCBA loop needs 35 iterations
to converge.
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Figure 6. ID − VG transfer characteristics of the n-type 3 nm × 3 nm square cross-sectional Si GAA
NW-FET obtained for ballistic regime and by SCBA, 1st-order LOA, Padé 0/1, and Padé 1/2.



Materials 2020, 13, 60 12 of 16

In a previous work, this approach has been applied to n- and p-type circular Si and Ge GAA
NW FETs along the three main crystallographic orientations (<100>,<110>,<111>). A general similar
conclusion about the efficiency of the LOA + Padé 1/2 has been reported, with a warning signal
concerning the accuracy of the present approach for the situation where the 1st LOA current is larger
than the ballistic one. Please refer to Reference [33] for the details.

Table 1. Accuracy (ε = 100× |ISCBA − I|/ISCBA where I is ballistic, LOA, Padé, or Richardson
current) and efficiency (# of iterations) comparisons of 1st and 3rd LOA, Padé 0/1 and 1/2, and the
corresponding Richardson currents with ballistic and SCBA currents at VG = 0.6 V.

Ballistic LOA1 LOA3 Padé 0/1 Padé 1/2 Richardson SCBA

Current [A] 8.9 × 10−6 3.57 × 10−6 −2.616 5.6 × 10−6 5.9 × 10−6 6.1 × 10−6 6.3 × 10−6

ε [%] 42.1 42.0 4.2e7 10.8 6.4 2.0 0.0

Number
of iterations 0 1 6 1 6 6 35

3.2. Anharmonic Phonon–Phonon Scattering in A Nanowire

In this subseciton, we apply the LOA method to the steady-state anharmonic phonon transport.
As described in Reference [51], a modified VFF method with harmonic bond interactions is used to
construct the dynamical matrix, by which phonon frequencies are calculated. The noninteracting
Green’s function (here, the ballistic Green’s function) is then calculated from the dynamical matrix and
corresponding phonon frequency with the open boundary self-energy. Anharmonic effects, usually
attributed to the third- and fourth-order contributions of the quantized atomic displacement [22,59]
are described by a perturbative approach, that is, by solving the Dyson equation with the scattering
self-energy in which VFF anharmonic interactions are included.

In this work, we focus on a single second-order perturbation effect based on the third-order
anharmonicity, which models the anharmonic decay of a high-energy phonon (ω + ω′) into two
lower energy phonons (ω and ω′) or vice versa [51,59]. According to the contribution of the
corresponding order, the greater/lesser anharmonic phonon–phonon scattering self-energy can be
written as follows [51]:

Π≷S, l2l3
νσ (ω) = 2ih̄ ∑

l1,l′1,l′′1 ,l′′′1

∑
µ ,µ′ ,µ′′ ,µ′′′

∫ ∞

−∞

dω′

2π
dV(3)l2l1l

′
1

νµµ′ D≷, l1l
′′
1

µµ′′
(
ω + ω′

)
×D≶, l

′′′
1 l
′
1

µ′′′µ′
(
ω′
)

dV(3)l
′′
1 l
′′′
1 l3

µ′′µ′′′σ ,

(31)

with

dV(3)l2l1l
′
1

νµµ′ =
∂3

∂Rl2
ν ∂R

l1
µ ∂R

l′1
µ′

Vanh, (32)

where the indices µ, ν, and σ designate atomic positions and dV(3)l2l1l
′
1

νµµ′ is a simplified notation for the
third derivative of the VFF anharmonic potential energy Vanh with respect to the νth atomic position in
the l2 direction (x, y, or z) to the µth atomic position in the l1 direction and to the µ′ th atomic position
in the l

′
1 direction. This term couples together the greater/lesser Green’s functions D≷(ω + ω′) and

D≷(ω′), associated to the high-energy and low-energy phonons, respectively.
Like in the previous case, we restrict ourselves to the diagonal approximation with the

anharmonic-force parameters calibrated to experimental data [51] and neglect the real part of the
scattering self-energy since it mainly contributes to an energy renormalization [39,40,60]. In order



Materials 2020, 13, 60 13 of 16

to calculate the third-order expectation values of the thermal currents, three rescaling factors are
injected into Equation (31). Without temperature difference between the left and right ends of the NW,
the structure of interest is in equilibrium at room temperature. We then apply a small temperature
difference (∆T = 0.1 K) between both extremities of the NW to make the phonon thermal current flow.

First, we calculate the ballistic thermal current flowing through the NW structure in which the
anharmonic phonon–phonon scattering is “turned off”. Then, to include the anharmonic effects, we
compute the thermal currents through the conventional SCBA scheme, LOA + Padé, and LOA + Padé
+ Richardson. Figure 7 shows a comparison between the three methods. It is shown that all the LOA +
Padé currents satisfy the current conservation law since the non-conserving diagrams are removed by
the rescaling technique. However, the LOA currents diverge far from the SCBA value (not shown),
testifying the importance of the anharmonic scattering even at room temperature. The application
of Padé 0/1, 1/1, and 1/2 approximants results in the convergent behavior of the results, with 65%,
80%, and 87% accuracy with respect to SCBA, respectively. By applying the first-order Richardson
extrapolation to the LOA + Pade 0/1 and 1/2 values, we improve the result, obtaining an accuracy
higher than 90% without any loss in the numerical efficiency, compared to the SCBA result. Particularly,
the LOA + Padé 1/2 + Richardson approximation requires 6 SCBA iterations, while the full SCBA loop
requires 13 iterations to achieve the convergence. More exhaustive investigations of the calculation
of anharmonic thermal currents in circular Si and GeNWs at several temperatures are reported in
Reference [34].
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Figure 7. Thermal currents at room temperature in the 3 nm × 3 nm square cross-sectional Si NW of
Figure 4 obtained for the ballistic regime and within the SCBA, Padé 0/1, Padé 1/1, Padé 1/2, and the
first-order Richardson extrapolation.

4. Conclusions

In this work, we reviewed the theory, the so-called LOA approach combined with Padé
approximants, developed within the NEGF formalism for the treatment of inelastic scattering.
We benchmarked the method against the conventional SCBA approach by using an atomistic quantum
transport code.

Differently from the SCBA, the LOA only includes current-conserving Feynman diagrams.
This can results in a faster approximation of a current-conserving self-energy fulfilling the Dyson
equation. We have demonstrated this case by investigating electron–phonon and anharmonic
phonon–phonon scattering in a square Si GAA NW-FET. In the calculation of electronic and thermal
currents, the LOA + Padé or the LOA + Padé + Richardson, implemented by a simple rescaling
technique, successfully reproduced the SCBA values with a high accuracy (>90%) and computational
efficiency (×6 faster for electronic currents and ×2 for thermal currents).

The main drawback of the approach is that the scaling factors used to calculate the higher-order
perturbation terms (for both electron–phonon and phonon–phonon interactions) are determined via a
rather pragmatic approach. Further work might be required to improve the choice of those scaling
factors based on a more physically sound method.
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Moreover, the method can be particularly advantageous (and thus worth to be investigated) in
systems including localized states weakly coupled to the contacts, as for a deep quantum well. In these
cases, the SCBA can take several thousands of iterations to converge and the use of LOA + Padé might
be even more relevant.

Finally, it is worth noting that the reviewed method is also applicable to computationally more
expensive codes such as a DFT-NEGF quantum transport simulator. In particular, it is expected that
the LOA + Padé approach can provide more efficient results for device configurations where complex
materials, e.g., transition-metal dichalcogenides, are involved, since the materials need an ab initio
level of accuracy to describe their electronics properties and is, thus, costly. The approach should
then faithfully broaden the accessibility of atomistic quantum transport codes based on the NEGF
framework to investigate 3D realistic systems without the need for heavy computational resources.
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