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ABSTRACT

At low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward

and westward, reversing periodically with latitude between 15◦S and 15◦N. These jets are present

from the thermocline to the bottom. The energy sources and the physical mechanisms responsible

for their formation are still debated and poorly understood. This study explores the role of the

destabilization of intra-annual equatorial waves in the jets formation process, as these waves are

known to be an important energy source at low latitudes. The study focuses particularly on the role

of barotropic Rossby waves as a first step towards understanding the relevant physical mechanisms.

It is shown from a set of idealized numerical simulations and analytical solutions that Non-Linear

Triad Interactions (NLTI) play a crucial role in the transfer of energy towards jet-like structures

(long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The

sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the

forced primary wave is analyzed. For realistic amplitudes around 5-20 cm s−1, the primary waves

that produce the most realistic jet-like structures are zonally-propagating intra-annual waves with

periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism

is a first step towards the generation of a permanent jet-structured circulation, and is discussed in

the context of turbulent cascade theories.
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1. Introduction32

The deep equatorial and tropical circulation is organized into systems of alternating eastward and33

westward jets (Firing 1987; Firing et al. 1998; Johnson et al. 2002; Ollitrault et al. 2006; Ascani34

et al. 2010; Cravatte et al. 2012; Ollitrault and Colin de Verdière 2014; Qiu et al. 2013; Cravatte35

et al. 2017). We distinguish in particular: (i) meridionally alternating off-equatorial jets with a36

meridional scale of ∼ 3◦ within the 15◦S-15◦N latitude range, which have a large vertical scale37

(quasi-barotropic), called Extra Equatorial Jets (EEJs); and (ii) vertically alternating equatorial jets38

trapped equatorward of ∼ 2◦, which have a small vertical scale of ∼ 350m, called Equatorial Deep39

Jets (EDJs). These jets are present from below the thermocline down to at least 2000 m, with some40

evidence of jets extending to the ocean bottom (Firing et al. 1998; Delpech et al. 2020a).41

The underlying physical mechanisms generating these systems of jets are still poorly understood.42

Different physical mechanisms have been proposed to explain their formation, relying on a cascade43

of mechanisms transferring energy from a deep energy source (generally generated through the44

propagation at depth of atmospheric variability or currents instabilities) to the mean jet-structured45

circulation (see Fig. 2 of Ménesguen et al. 2019).46

Earlier studies have shown that two-dimensional turbulence induces an inverse cascade, with47

energy transferred towards larger scales. On a rotating planet, this cascade results in the emergence48

of zonal structures due to the anisotropy of the Coriolis parameter (i.e. the beta effect) (Rhines49

1975; Vallis andMaltrud 1993). Most of these studies have however been conducted in a theoretical50

framework and have not addressed the source of the turbulence. The initiation of an inverse cascade51

at depth at low latitude in the oceans would indeed require the presence of strong turbulence which52

has not been documented yet.53
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One of the major energy sources present in the ocean at low latitude is associated with planetary54

waves. It has been shown that in the Atlantic and Pacific ocean, a large source of energy in the55

deep is associated with annual and semi-annual Rossby waves, as well as intra-annual waves:56

30-day, 1000-km mixed Rossby-gravity waves, associated with surface Tropical Instability Waves;57

and short-scale variability, with periods around 70 days and wavelengths around 500 km (Bunge58

et al. 2008; Von Schuckmann et al. 2008; Tuchen et al. 2018; Lyman et al. 2005, 2007; Kessler59

and McCreary 1993; Eriksen and Richman 1988; Farrar and Weller 2006; Farrar 2011; Farrar and60

Durland 2012; Lee et al. 2017; Delpech et al. 2020b) (See Fig. 1 for an overview of the spectral61

characteristics of the observed variability). Equatorial waves, when generated at the surface,62

propagate to depth. In the intra-annual range in particular, waves have steep propagation ray paths63

(Cox 1980) and are thus very efficient at transferring energy to the deep ocean.64

These waves can develop instabilities and the destabilization of some particular planetary waves65

have been shown to be a potential mechanism for the formation of a jet-structured circulation (Gill66

1974; Hua et al. 2008; Connaughton et al. 2010; Qiu et al. 2013; d’Orgeville et al. 2007;Ménesguen67

et al. 2009; Ascani et al. 2010). In an idealized model configuration forced with different intra-68

annual baroclinic Yanai waves (Fig. 1 grey dots), d’Orgeville et al. (2007) and Hua et al. (2008)69

were able to reproduce the EDJs-like structures, whose vertical scale was mainly dependent on70

the initial wave period. In a similar configuration forced with baroclinic Yanai waves and short71

barotropic Rossby waves at 50-day period (Fig. 1 magenta dots), Ménesguen et al. (2009) were72

able to reproduce the EDJs and the first meridionally-alternating EEJs at 2◦S and 2◦N in equatorial73

dedicated experiments. Ascani et al. (2010) were able to reproduce meridionally-alternating EEJs74

in the 5◦S - 5◦N latitude band, with a vertically propagating beam of a Yanai wave with a period of75

30 days and a wavelength of 1000 km (Fig. 1 red dot). Finally, in an idealized reduced gravitymodel76

forced with a baroclinic mode 1 annual Rossby wave (Fig. 1 blue dot), Qiu et al. (2013) were able77
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to reproduce meridionally-alternating EEJs in the 5◦N-40◦N latitude band. The configurations and78

characteristics of the wave forcing as well as the physical interpretation of the processes involved79

in these numerical experiments differ, however, from study to study. A general framework for80

interpreting the effects of planetary waves instability on the mean circulation is still missing. In the81

framework of quasi-geostrophic dynamics, Gill (1974) studied the instability of barotropic Rossby82

waves on a beta plane, focusing on two particular asymptotic cases: the case of very weak non-83

linearities (corresponding to resonant triad interactions) and the case of very strong non-linearities.84

He showed that in the limit of strong non-linearities, Rossby waves can transfer their energy towards85

a zero zonal wavenumber, a non-zero meridional wavenumber and zero frequency mode, the so-86

called zonal jet-like structures. Hua et al. (2008) adapted the barotropic theory of Gill (1974) to87

baroclinic equatorially-trapped waves. They showed that equatorially-trapped baroclinic waves can88

also be destabilized into vertically-alternating and meridionally-alternating jet-like structures, thus89

extending Gill’s results to lower latitudes. Ménesguen et al. (2009) interpreted the destabilization90

of the barotropic Rossby waves into EEJs-like structures in their simulation using the theory of Gill91

(1974) in the strong non-linear limit, while Qiu et al. (2013) interpreted the formation of EEJs in92

their simulations as the destabilization of annual Rossby waves through resonant triad interactions93

(corresponding to the weak non-linear limit of Gill’s theory) and to further non-linear adjustments94

involving potential vorticity fluxes. In addition, all the numerical studies exploring the formation of95

EEJs from waves have focused on a limited set of wave periods. A general continuous framework96

to analyze the potential contribution of all planetary waves in generating the mean jet-structured97

circulation as a function of their characteristics has yet to be formulated.98

In this study, our goal is to provide new insights into the mechanisms that drive the deep99

tropical circulation and its jet-structuring, focusing on the formation of EEJs-like structures by the100

destabilization of planetary waves. In particular, we aim to extend previous numerical experiments101
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to other type of waves, with a focus on the intra-annual waves, and to create a general theoretical102

framework to compare and interpret the different experiments. This study focuses on the early103

stage of jet formation. We thus emphasize the mechanism of energy transfer from a primary104

energy source to EEJs-like structures with quasi-barotropic zonal velocities that reverse over a105

meridional scale of ∼350 km and that have a long temporal coherence. We leave for further106

studies the long-term equilibration of these jet-like structures. We will in particular address the107

following questions: (1) What is the potential for intra-annual waves to create off-equatorial,108

meridionally-alternating, jet-like structures ? (2) Is there a preferential frequency and wavenumber109

of the waves for reproducing realistic jets ? (3) What are the processes responsible for the transfer110

of energy from waves to jet-like structures ?111

112

To answer these questions, we perform idealized numerical experiments of the equatorial ocean113

forced by an oscillating wind-stress that acts as a wave maker and generates waves with predeter-114

mined characteristics. The idealized configuration is designed to evaluate the sensitivity of the115

response of each forced wave to the period and wavenumber of the forcing. As a first step, we will116

study the destabilization of barotropic waves using two-dimensional numerical simulations, leaving117

the generalization to fully three-dimensional dynamics for subsequent work. The barotropic mode118

offers the advantage that it is not equatorially-trapped, which makes the problem invariant with119

latitude. It also radiate energy rapidly away from forcing regions, making it easier to simulate freely120

propagating waves. Evidence for purely barotropic waves in the equatorial oceans are limited to a121

few studies (Farrar 2011; Rohith et al. 2019; Farrar et al. 2020). The approach described in this122

study can however be generalized to baroclinic modes.123

We show that the formation of jet-like structures is triggered by the non-linear terms in the124

momentum equations, which allow for wave-wave interactions. A full description of the non-linear125
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physics is not possible, due to its intrinsic chaotic nature. We thus investigate how the waves can126

destabilize and produce jet-like structures within the framework of a truncated non-linear wave127

interaction theory. This theory, which can be viewed as a generalization of Gill (1974), has been128

fully described and investigated with applications in geophysics and plasma physics (Connaughton129

et al. 2010) and is here adapted to study the instability of planetary waves. It allows for solving130

analytically the non-linearity of the system, assuming a limited number of wave interactions, with131

a continuity from a weakly non-linear regime to a strongly non-linear regime, for any primary wave132

spectral characteristics.133

The remainder of this paper is organized as follows. The numerical model configuration, forcing134

and wavefield used in the experiments is described in Section 2. The spectral method using135

wavelets transform that is used to analyze the waves in the simulations is described in Section 3.136

The results of the numerical experiments are described in Section 4. The instability that develops137

in the non-linear simulations is compared to the prediction from the 3-mode truncation Non-Linear138

Triad Interaction (NLTI) analytical model in Section 5. The sensitivity of the creation of jet-like139

structures to the wavenumber and frequency of the forced wave is investigated in Section 6. We140

end the article with a discussion of how the results support and complement previous studies, and141

summarize the main results and provide perspectives for future work.142

2. Numerical Experiments143

a. Model description144

The idealized simulations performed in this study are run with the Coastal and Regional Com-145

munity model (CROCO). The CROCO model solves the primitive equations (Shchepetkin and146

McWilliams 2005, 2009) with a time splitting method between the fast barotropic mode and147
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the slow baroclinic modes. The model is used in its barotropic configuration, which solves148

the vertically-integrated momentum equations (Shchepetkin and O’Brien 1996; Shchepetkin and149

McWilliams 2009).150

(ℎD)C + (ℎD2)G + (ℎDE)H − 5 ℎE +6ℎ[G = F D +DD (1a)

(ℎE)C + (ℎDE)G + (ℎE2)H + 5 ℎD +6ℎ[H = F E +DE (1b)

ℎC + (ℎD)G + (ℎE)H = 0 (1c)

where (D, E) is the barotropic velocity vector, ℎ(G, H, C) = � +[(G, H, C) is the total water depth, [ is151

the free surface elevation, � is the water depth at rest, 6 is the gravity constant and 5 the Coriolis152

parameter. F and D represent forcing and frictional terms, respectively.153

b. Model configuration154

The basin configuration is meant to represent an idealized ocean at low latitudes. Its size is155

140◦×70◦×5000 m (longitude × latitude × depth) and it is centered on the equator. The horizontal156

resolution is 0.25◦×0.25◦. The Coriolis parameter follows the variations of an equatorial beta-157

plane, 5 = VH where V = 2.3×10−11 (ms)−1 is the planetary vorticity gradient and H the meridional158

position from the equator.159

The model is forced with a surface stress g/d0 = (gG , gH), which is incorporated in the model160

equations (Eq. 1) as a surface momentum flux (SMF) F D = gG/d0, F E = gH/d0. As our objective161

is to generate freely propagating intra-annual waves, the SMF is localized inside a specific region162

and takes the form of a wavemaker (Eq. 2).163

gG = −g0- (G). (H)B8=(k0 ·x−l0C) (:H0/:G0) (2a)

gH = −g0- (G). (H)B8=(k0 ·x−l0C) (2b)
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where - (G) and. (H) are envelope profiles. With this choice of wavemaker, g will generate a plane164

wave of streamfunction k = k02>B(k0 ·x−l0C). Unless specified differently, we take :H0 = 0 for all165

experiments, which leads to gG = 0. The generated waves thus have a strong meridional component166

of the velocity and propagate zonally, as are the characteristics of the observed intra-annual waves.167

The SMF wavenumber :G0, frequency l0 and amplitude g0 differ for each experiment (Table 1).168

The containment of the wavemaker inside a localized forcing region - (G). (H) is essential to have169

an unforced region where the different waves can freely propagate without interference by the170

forcing. It is also more realistic as most intra-annual waves observed in the ocean are found to be171

locally generated and vary spatially (e.g., Tuchen et al. 2018; Delpech et al. 2020b). The envelope172

of this forcing region is defined following Eq. 3, it is similar to a Blackman window of size (GF, HF)173

centered on (G0, H0).174

- (G) = tanh
(
G− G0−0.5GF

GC

)
− tanh

(
G− G0 +0.5GF

GC

)
(3a)

. (H) = tanh
(
H− H0−0.5HF

HC

)
− tanh

(
H− H0 +0.5HF

HC

)
(3b)

where (G0, H0) is the position of the center of the forcing region, GF and HF are the widths of175

the forcing region, and GC and HC are the tapering extent of the forcing region. Unless specified176

differently, the forcing region is centered in the middle of the basin (G0, H0) = (70◦,0◦). The other177

parameters are taken by default as GF = 20◦, HF = 15◦, GC = 5◦, HC = 2◦. Note that the exact location178

of the forcing region does not influence the outcome of the simulations. As the barotropic Rossby179

deformation radius is very large, the propagation of barotropic Rossby waves does not depend on180

latitude and are not subject to beta dispersion (Schopf et al. 1981). Test simulations have been181

conducted with H0 = 15◦, without substantial modifications to the results (not shown). Similarly, the182

conclusions of this study are not sensitive to the extension of the forcing region. Test experiments183

have been conducted with HF = 5◦ and HF = 25◦ (not shown). The size of the forcing region184
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controls the energy input into the ocean and changes the amplitude of the wave response. This185

sensitivity is thus similar to the sensitivity to the SMF amplitude (g0), which is fully investigated186

in Section 6. The characterization of the oceanic response to the forcing is investigated in Section187

2c and examples are given in Section 4 and illustrate that for the range of parameters considered,188

the envelope does not affect the wave response.189

All lateral boundaries are closed with free slip boundary conditions. A sponge layer is im-190

plemented on the northern and southern boundaries to avoid the propagation of artificial coastal191

waves. In the sponge layers, the lateral viscosity is increased towards the northern and southern192

boundaries. The bottom is flat and a linear bottom drag law is applied to balance the energy input193

from the forcing. Therefore, the frictional terms in the equations are: DD = −UD +�0(tanh((H−194

HB)/3HB) + tanh((H + HB)/3HB))/2, DE = −UE + �0(tanh((H − HB)/3HB) + tanh((H + HB)/3HB))/2 ,195

with U = 1.5× 10−4 ms−1 and �0 = 5000 m2s−1, HB = 34◦ and 3HB = 1◦. No explicit horizontal196

viscosity is included in the basin interior. The horizontal momentum equations are discretized197

using a third-order upstream scheme (UP3), which has implicit diffusion.198

The initial condition is a state at rest with zero velocity and no free surface elevation. The model199

is used in non-linear and linear configurations. In the case of linear simulations, the non-linear200

advection terms u · ∇u are discarded from Eq. 1.201

c. Wave generation202

To study the instability of barotropic Rossby waves and their role in the formation of jet-like203

structures, we aim to create freely propagating waves using the surface momentum flux described204

in Eq. 2. Because the direct response to the SMF is not in geostrophic equilibrium, an adjustment205

occurs by radiating many different types of waves. The objective is to ensure that the wave with the206

characteristics of the forcing (i.e. with wavevector k0 and frequency l0) is the wave that contains207
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the most of the energy, which we will call hereafter the primary wave. If the wave vector that208

contains most energy and the forcing frequency l0 satisfy the dispersion relation for barotropic209

Rossby waves210

l =
−V:G

:2
G + :2

H +�
(4)

then this wave will be resonantly forced, where (:G , :H) is the wave vector, l the wave frequency,211

and � the inverse of the Rossby deformation radius squared. In this study, we focus on the barotropic212

mode, � = (1/'2
3,0), with '3,0 the barotropic Rossby deformation radius. In the equatorial regions,213

'3,0 is very large (i.e. '3,0 ∼ 4500km at 20◦, the poleward limit of the domain we are using),214

thus the upper limit of � in this region is ∼ 10−14 m−2, which is smaller than the wavenumbers215

considered (typically |k|2 ∼ 10−10 m−2). In the following, we thus consider � ∼ 0.216

Because the SMFwavemaker is modulated by the envelope, its spatial spectral footprint is spread217

over a range of wavenumber (Fig. 2). Its energy maximum in wavenumber space is however found218

close to k0, and intersects the Rossby wave dispersion relation for the frequency l0, thus satisfying219

the resonant condition. It is ensured that all the experiments conducted in this study (Table 1)220

satisfy this condition.221

In the case of resonant SMF, the primary wave in the simulations is a barotropic wave with the222

characteristics of the forcing function (i.e. wavevector k0 and frequency l0) that propagates along223

the ray paths defined by the integration of the group velocity vector (�6G ,�6H).224

�6G =
V(:2

G − :2
H)

(:2
G + :2

H)2
(5a)

�6H =
2V:G:H
(:2
G + :2

H)2
(5b)

Because the initial state of the simulations is at rest, there is a spin up time which corresponds to225

the time it takes for the forcing to transfer energy to the oceanic response and balance the different226
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dissipation terms. The spin up time and the amplitude of the response can vary for the different227

experiments. It is important to evaluate both quantities to get the best possible description of the228

generated primary wave, since the characteristics of the primary wave determine the properties of229

the secondary waves (Sections 5, 6).230

We define the spin up time for a wave forced at k0 and l0 (Eq. 2) as (k0,l0 the time at which the231

energy reaches 60% of its maximal value.232

(k0,l0 =min
C∈j

(
KE(C) −0.6×KEmax > 0

)
(6)

where KE is the spatial average of the kinetic energy over the spatial domain of the simulation233

(Ω), j is the total duration of the simulation. The spin up time decreases slightly towards higher234

forcing frequencies but the values remain around 100-150 days (Fig. 3a).235

We define the amplitude for a wave forced at k0 and l0 (Eq. 2) as �k,l, the average of the highest236

velocities values in the forcing region.237

�k0,l0 =
1

Ω(k0,l0

∫ (k0 ,l0

0

∬
Ω

Ek0,l0 (G, H, C)� (Ek0,l0 (G, H, C) − E∗k0,l0
)3G3H3C (7)

where Ek0,l0 is the meridional velocity in a simulation forced by k0 and l0 (Eq.2), E∗k0,l0
is the238

95th percentile of the distribution of E in the forcing region - (G). (H) (Eq. 3), � is the Heaviside239

function and Ω the simulation domain. The amplitude of the forced wave varies linearly with the240

magnitude of the SMF (Fig. 3b).241

d. Experimental Design242

Table 1 summarizes all the experiments used and described in this study. The simulations are243

chosen to span the intra-annual period range from 30 to 130 days with primary waves that follow the244

dispersion relation for barotropic Rossby waves with zero meridional wavenumber (experiments a245

to l in Fig. 1). These :H = 0 primary waves are found to be the optimal waves to produce jet-like246
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structures, as will be shown in Section 6b. For this reason, our simulations focus on this particular247

wave type. All experiments (a to l) are run for a nominal SMF amplitude of g0/d0 = 5× 10−5
248

m2s−2 (simulations 1). Experiments a, c, e, g and i are run with for g0/d0 = 5× 10−6 m2s−2
249

(simulations 2), g0/d0 = 2.5×10−5 m2s−2 (simulations 3), g0/d0 = 7.5×10−5 m2s−2 (simulations250

4), g0/d0 = 1.0× 10−4 m2s−2 (simulations 5) and g0/d0 = 1.5× 10−4 m2s−2 (simulations 6). All251

simulations are run with a non-linear physics (NL) and simulations 1a and 1l are repeated using a252

linear physics (L). The simulations are run for 1800 days (5 years) with output every 10 days.253

3. Spectral Analysis Method254

One objective of the analysis of the simulations is to quantify the primary wave destabilization255

and transfer of energy between wave modes by NLTI. Spectral analyses are the ideal tool for this256

task. As the properties of the waves and their spectral content are expected to change in space and257

time, we compute local spectra using wavelet transforms (Graps 1995; Gargour et al. 2009).258

a. Wavelet transform259

A continuous wavelet transform using a complex Morlet wavelet (Lee et al. 2019) is applied to260

the velocity field (D, E). This method results in an estimation of the amplitude of the velocity signal261

contained in each frequency (̃EC (l;G, H, C)) and wavenumber (̃EG (:G;G, H, C), ẼH (:H;G, H, C)) at each262

location (G, H) ∈ Ω of the domain Ω and each time C ∈ j of the simulation, over the time interval j.263

We define the spatialy-averaged one-dimensional spectral kinetic energy as:264

K̃E
x8 (x̂8;G, H, C) =

1
Ω

∬
Ω

(
|D̃x8 (x̂8;G; H; C) |2 + |Ẽx8 (x̂8;G, H, C) |2

)
3G3H (8)

where x8 ∈ {G, H, C} and Ĝ8 is the spectral variable along x8 dimension (including frequency). Note265

that this definition of the one-dimensional spectral kinetic energy differs from the wavelet transform266

of the kinetic energy ((D2 + E2)/2), and has the advantage of retaining the spectral scales of the267
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velocity field. The spectral dimensions and their resolution are chosen as follows: we estimate the268

temporal wavelet transform for periods from 10 days to 350 days with a 3.3 days interval, and the269

spatial wavelet transform for wavelengths from 90 km to 3700 km with a 18.5 km interval. The270

wavelet transform amplitude cannot be accurately estimated for locations close to the boundaries of271

the simulation domain and for times close to the beginning and the end of the simulations (especially272

for long wavelengths and periods). This is known as the edge cone of influence (Torrence and273

Compo 1998). Estimates that lie within the cone of influence are thus discarded.274

b. Two-dimensional spectra from wavelet transform275

A wavelet analysis provides a one-dimensional spectrum as the spectral transform is computed276

on each physical dimension separately. In order to correlate this information, we construct cross-277

product spectra @̂x8x 9 of a quantity @ along the spectral dimension x̂8 x̂ 9 as defined by Eq. 9.278

@̂x8x 9 (x̂8, x̂ 9 ; C) =
1
Ω

∬
Ω

|@̃x8 (x̂8;G, H, C) |2 |@̃x 9 (x̂ 9 ;G, H, C) |23G3H (9)

where x8,x 9 ∈ {G, H, C} and Ĝ8 is the spectral variable along the x8 dimension. Note that @̂x8x 9 is279

equivalent to the two-dimensional Fourier transform, but also varies in time.280

We define the two-dimensional spectral kinetic energy as:281

K̂E
x8x 9 (x̂8, x̂ 9 ; C) = D̂x8x 9 (x̂8, x̂ 9 ; C) + Êx8x 9 (x̂8, x̂ 9 ; C) (10)

4. Numerical solutions282

a. Propagation of the forced waves in the linear simulations283

The linear simulations illustrate the key features of each experiment and help to ensure that the284

dominant signal generated by the SMF is associated with the forced primary wave (Section c).285

In simulations 1d and 1l (Fig. 4), waves with a strong signature in meridional velocity propagate286
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eastward of the forcing region. These waves have the characteristics (i.e. wavenumber and287

frequency) of the forcing (not shown). Their energy propagation follows the theoretical ray288

paths predicted from the dispersion relation. The propagation is much faster for high-frequency,289

long-wavelength forcing (Fig. 4d-f) than for low-frequency, short-wavelength forcing (Fig. 4a-290

c). Note that there is also a slight spreading of the energy in the meridional direction when291

the wave propagates eastward. Barotropic waves are plane waves and are thus invariant in the292

direction perpendicular to their propagation direction (the meridional direction in the case of the293

two examples). The relaxation of the forced solution (which is not an exact plane wave due to the294

non-zero :H associated with the envelope - (G). (H)) towards a free plane wave solution outside295

of the forcing region can thus explain the meridional spread of the wave signature. These linear296

simulations confirm that the SMF excites principally a barotropic Rossby wave with the forcing297

characteristics, as expected from the chosen idealized setup (Section b).298

b. Propagation of the forced wave and secondary waves in non-linear simulations299

When the non-linear terms are taken into account in the model (Eq. 1), the key features of some300

simulations is modified. For example, in simulation 1d, in addition to the eastward propagation301

of energy associated with the forced primary wave (Section a), there is also westward energy302

propagation (Fig. 5a-i). This westward propagation is associated with a wave with quasi-zonal303

phase lines and has a dominant signature in the zonal velocity and sea surface height. This suggests304

that an additional wave (aside from the forced wave) is also present in the simulation. Conversely,305

for other simulations forced by different wavenumbers and frequencies, such as simulation 1l, the306

non-linear response does not differ much from the linear response (Fig. 5j-r and Fig. 4d-f).307
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c. Resulting jet-like mean flows in the non-linear simulations308

The secondary wave that develops in simulation 1d generates zonal velocities that are coherent309

over a large zonal extension (i.e. from 0◦ to 60◦) and that change signs over short meridional310

scales (i.e. every 2.5◦) (Fig.5f). When temporally-averaged, this wave results in a jet-like mean311

flow (Fig. 6). By jet-like mean flow, we specify a circulation that shares common characteristics312

with the observed jet-structured circulation in the equatorial and tropical oceans (e.g., Ollitrault313

et al. 2006; Cravatte et al. 2012; Maximenko et al. 2005), that has meridionally-alternating zonal314

velocities with amplitudes around 0.03 to 0.05 m s−1, sea surface height anomalies of around 2315

to 3 cm that alternate sign on short meridional scales (typically 1 to 2◦) and that have zonal and316

temporal coherence over thousand kilometers and several years respectively (see also Section 1).317

The average over the last three years of the simulations shows that simulation 1d develops jet-like318

mean flow (Fig. 6a), even if its characteristics are not fully realistic (Fig. 6c); namely the meridional319

scale (2◦) is slightly larger than what is observed in the Pacific (1.5◦) and the amplitude (0.01 m320

s−1) is weaker than in the observations (0.06 m s−1). In contrast, simulation 1l does not develop321

a jet-like mean flow (Fig. 6b). The generation of jet-like mean flows and their characteristics322

(meridional scale, amplitude) thus strongly depend on the characteristics of the forced waves.323

The aim of the remainder of this paper is to understand the origin of the secondary wave that324

generates jet-like mean flows, and to understand in what conditions they develop and what are their325

characteristics. We investigate the physical mechanisms in simulation 1d in depth before examining326

the sensitivity of this mechanism to the primary wave characteristics using multiple experiments327

(Section 2d).328
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5. Evidence for non-linear triadic instability in the numerical simulations329

In this section, we focus on one particular experiment, simulation 1d (Table 1), to describe330

the secondary wave and explain it in the framework of a 3-mode truncation NLTI model. An331

analytical solution can be derived for the evolution of the primary wave streamfunction, by limiting332

its non-linear interactions to a single triad, with three waves exchanging energy. The growth rate333

(f) of this instability, which determines the two secondary waves with wavevectors q and p−q334

that interact with the primary wave with wavevector p in a triad (p = q+p−q), is given by Eq. 11335

and is derived analytically in Appendix A, following Connaughton et al. (2010),336

f = Im
(
1
2
(Δ ±

√
Δ2−4|kp |2) (q,p,q−p)) (p−q,p,−q))

)
, (11)

whereΔ =lp−lq−lp−q is the resonant triad condition (the triad is resonant ifΔ = 0),) (k,ki,kj) =337

− (ki×kj)I (:2
8
−:2

9
)

:2 and Im designates the imaginary part. The growth rate depends on the wavevector338

(p), frequency (lp) and amplitude of the streamfunction (|kp |) of the primary wave. Note that the339

triad instability described by this model is more general than the resonant triad instability (e.g.,340

Pedlosky 2013). The approach is very similar to that of Gill (1974). But while Gill (1974) explored341

the weakly non-linear limit |kp |?3/V� 1 (leading to triad resonance) and the strongly non-linear342

limit |kp | |?3/V� 1 as two separate instabilities, the analytical solution used here is a continuous343

function of the primary wave amplitude |kp |. Given the characteristics of the primary wave, Eq. 11344

allows one to determine the secondary waves wavevectors, q and p−q, that yield the maximum345

growth rate. These waves are the ones most likely to emerge from non-linear interactions.346

a. Theoretical prediction for instability growth rate and secondary waves347

We compute the growth rate given by Eq. 11 for the primary wave p of simulation 1d (Fig. 7).348

The secondary waves q and p−q that will develop as predicted by theory are determined by the349
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maxima of this growth rate. The growth rate maximum is found numerically using a wavevector350

grid spanning −5× 10−5 to −5× 10−5 m−1 in both the :G and :H directions with a resolution of351

10−7 m−1. The two secondary waves resulting in the fastest growth have different characteristics.352

The first one has a long zonal wavelength (∼5000 km), a short meridional wavelength (∼430km)353

(Fig. 7a), and a long period (∼1.5 years) (Fig. 7b), called hereafter the long secondary wave. The354

second one has a short zonal wavelength (∼340 km, similar to the one of the primary wave), a355

short meridional wavelength (∼430 km) (Fig. 7a), and a short period (∼4 months) (Fig. 7b), called356

hereafter the short secondary wave. The exact wavenumbers and frequencies associated with each357

of these waves are listed in Table 2. The long secondary wave thus has characteristics similar to358

the jet-like structures.359

The growth rate of the secondary waves is fmax = 0.032 day−1 (Fig. 7). The primary wave is360

very unstable to NLTI because f−1
max is of the same order of magnitude as its period. We define the361

time of emergence of the instability as:362

) 4p =
5

fmax
; such that kq() 4p ) = 45kq(0) ' 102kq(0) (12)

where fmax is the maximum growth rate of the instability (Eq. 11). ) 4p corresponds to the time it363

takes for the amplitude of the secondary wave q (the fastest growing perturbation of the primary364

wave p), which has initially a small amplitude kq(0), to increase by a factor 45 ' 102 since the365

secondary waves grow as 4Cfmax (Appendix A). The factor of 5 that has been chosen will be justified366

a posteriori. We thus expect to detect the secondary waves after 5f−1
max ' 150 days. The group367

velocity, which determines the direction of energy propagation, is also different for the three waves368

(Fig. 8). It is eastward for the primary wave, westward for the long secondary wave and poleward369

for the short secondary wave. We thus expect to detect the signature of the primary wave eastward370

of the forcing region, the signature of the long secondary wave westward of the destabilization371
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region (which corresponds approximately to the forcing region in this case since the primary wave372

has a slow group velocity and the secondary wave has a fast growth rate), and the signature of the373

short secondary wave poleward of the forcing region.374

b. Comparison with the spectral analysis of the non-linear simulation375

We perform spatial and temporal wavelet analyses of the velocity in the simulations to infer the376

spectral content at the time and location where we expect the primary and secondary waves to be377

strongest.378

The primary wave is observable after a few wave periods east of the forcing region (see ray379

tracing Fig. 4 and group velocity Fig. 8). The wavelet transform in this region (red square in380

Fig. 5c) shows a spectral peak at a period of 79 days (Fig. 9a; solid red curve), a zonal wavelength381

of 250 km (Fig. 9b; solid red curve) and a long meridional wavelength of 3000 km (Fig. 9b; dashed382

red curve). This matches the characteristics of the expected forced primary wave (Table 2). The383

long secondary wave is detected west of the forcing region, the spectral characteristics measured384

from the wavelet transforms in this region (green square in Fig. 5f) show a long period and a385

long zonal wavelength (not precisely quantifiable within the spanned spectral range (Fig. 9; solid386

green curve)). The meridional wavelength is around 500 km (Fig. 9b; dashed green curve). This387

wave has spectral characteristics consistent with the prediction from the NLTI theory (Table 2).388

The short secondary wave is difficult to identify in the simulations because its period and zonal389

wavenumber are similar to the primary wave’s (Table 2). It also has a slower group velocity than390

the long secondary wave (Fig. 8), and its energy propagation is directed poleward, in a region where391

the primary wave is also present. There is thus no region where the short secondary wave can be392

observed alone. Its presence can however be identified in the two-dimensional spatial spectrum393

(Fig. 11c).394
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The time at which the instability occurs in this simulation is inferred from the wavelet scalogram,395

which shows the evolution of the mean spectral characteristics averaged in the basin K̃E
C (C),396

K̃E
G (C), K̃EH (C) (Fig. 10). The instability occurs when there is a shift in the spectral characteristics397

from the forced frequency and wavelengths to the emerging secondary wave, which is around398

C = 275 days in the simulation (dashed white line in Fig. 10). The shift is particularly visible399

for K̃E
H (C) (Fig. 10c) where the energy goes from a large to small meridional wavelength. The400

energy in the forced, small period and small zonal wavelength is concurrently strongly attenuated401

(Fig. 10a,b). The theoretical growth rate corresponds to an instability emergence time of ∼ 150402

days (Section a). Based on Fig. 10, the spin up period, which corresponds to the time before the403

detection of the spectral characteristics of the primary wave, is around 130 days. The instability404

emergence time in the simulation (275 days) corresponds thus approximately to the sum of the405

spin up period and theoretical instability emergence time. The spatially-averaged two-dimensional406

spectral kinetic energy shows that basin wide, the velocity field is dominated by the forced wave407

before the instability occurs (Fig. 11 a,b) and by the two secondary waves after the instability occurs408

(Fig. 11 c,d). Note that the two-dimensional spectrum K̂E
GH
allows one to separate the contribution409

of the short secondary wave (Fig. 11 c), and reveals that it is less energetic than the long secondary410

wave that is dominant in both K̂E
GH

and K̂E
GC
.411

We have thus shown that the secondary waves that develop in the non-linear simulations are412

consistent with a non-linear triad instability. The growth rate and wavenumbers of the instability413

are well predicted using a non-linear truncated theory. In the example shown, the long secondary414

wave has jet-like characteristics.415
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6. Application to the generation of jet-like structures416

The objective of this section is to explore the sensitivity of the formation of jet-like long secondary417

waves to the characteristics of the primary wave (i.e. the frequency, wavevector and amplitude).418

From the simulations that have been performed, it appears that not all primary waves are able to419

trigger instability, nor to create waves that resemble jet-like structures.420

a. Instability threshold and emergence time421

Some non-linear simulations are not subject to instability, like for example simulation 1l, in422

which the forced primary wave propagates without spectral modification (Fig. 5j-r). Theoretically,423

all primary waves are subject to triad instability (Appendix A). But the growth rate can be close to424

zero, in which case it would take a very long time for the instability to develop, and thus it might425

not be realizable in numerical simulations. To determine whether a wave will be readily unstable426

or not, we define an instability emergence ratio (Eq. 13) following Qiu et al. (2013), which is a427

combination of the instability growth rate and the primary wave energy propagation velocity. We428

define the instability emergence ratio as:429

'4p =
)0p

) 4p
; with )0k =

2c
|k| |Cgk |

(for any wave k) (13)

where |k| is themodulus of thewavevector (|k| =
√
:2
G + :2

H) and |Cgk | themodulus of thewave group430

velocity vector (|Cgk | =
√
�2
6G +�2

6H). Following Qiu et al. (2013), )0p represents the propagation431

time scale of the primarywave p (i.e. the time needed for awavepacket to transit of onewavelength).432

'4p corresponds thus to the ratio of the propagation time scale to the instability emergence time.433

The instability emergence time depends on the primary wavenumber, frequency and amplitude434

(Fig. 12a). As predicted by the theoretical instability emergence ratio (Eq. 13), simulations 1a,435

1d and 1f, should undergo triad instability (Fig. 12a). These simulations have a primary wave436
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amplitude around 0.07 m s−1 (see Fig. 3b for the relation between the forcing strength and the437

primary wave amplitude). The emergence of the instability in these simulations is visible from438

the switch of spectral properties in K̃E
H (C) (Fig. 12b-d). In contrast, the primary wave in the439

simulation 1h remains stable and K̃E
H (C) shows a dominant meridional scale that is constant in440

time (Fig. 12e). This shows that the truncated NLTI theory describes well what happens in the441

different simulations and can be used to predict the stability or instability of the different barotropic442

waves in the ocean. It is interesting to note that some waves will not destabilize unless they have443

an unrealistic amplitude (Fig. 13). This is the case for barotropic waves with a long wavelength.444

For example, a wave with a TIW-like spectral signature, with a 30-day period and a 1000-km zonal445

wavelength destabilizes only for amplitude greater than 75 cm s−1 (Fig. 13). For other waves, and446

in particular short wavelength primary waves, the amplitude threshold needed to reach '4p > 1 is447

very low.448

The time at which the instability occurs in the simulation can be approximated by the time at449

which the energy in the forced spectral range reaches a maximum and starts to decrease. For450

all unstable simulations ('4p > 1) this time is found to be inversely proportional to the theoretical451

growth rate expected from the 3-mode truncation triad interaction theory (Fig. 14). Primary452

waves with a larger amplitude (big dots in Fig. 14) have a higher instability growth rate and453

thus a lower instability emergence time than primary waves with a smaller amplitude. Similarly,454

simulations with a higher primary wave number (blue dots in Fig. 14) have a higher growth rate455

and lower instability emergence time than simulations with lower primary wavenumber (orange456

dots in Fig. 14). The coefficient of proportionality between the inverse of the growth rate and the457

emergence time is approximately equal to 5, which justifies the definition of the emergence time458

(Eq. 12).459
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b. Selection for the secondary waves’ spatial and temporal scales460

The non-linear simulations show that the secondary waves resulting from the triad instability461

differ from one simulation to another, for example, in their meridional wavelengths (Fig. 12b-d).462

The characteristics of the long secondary wave depend on the forced primary wave’s wavenumbers463

and frequency, as inferred from the growth rate computation at a fixed amplitude (Fig. 15). The464

correspondence between the scale for the long secondary wave in the numerical simulations and465

the theoretical prediction in Fig. 15 shows that the dominant instabilities in the simulations are466

consistent with NLTI theory.467

The long secondary wave meridional wavelength varies with the period of the primary wave468

(2c/lp). It is shorter (∼ 100-300 km) for long periods (2c/lp > 75 days) and much longer469

(up to 1000-3000 km) for shorter periods (2c/lp < 50 days). At fixed lp, the secondary wave470

meridional wavelength also increases with decreasing ?G (Fig. 15a). The long secondary wave471

zonal wavelength varies non-monotonically with along the primary wave’s spectral characteristics.472

At fixed lp, it is large for short and long primary waves. It reaches a maximum for short473

intra-annual primary waves, with periods between 50 and 145 days, along the dispersion relation474

curves corresponding to low meridional wavenumbers (Fig. 15b). The long secondary wave’s475

period is longer for short primary waves (large ?G) and shorter for long primary waves (small476

?G). Similar to the zonal wavelength, the secondary wave’s period reaches a maximum for short477

intra-annual primary waves with periods comprised between 50 and 145 days, along the dispersion478

relation curves for low meridional wavenumbers (Fig. 15c). The emergence time of the instability479

(defined by Eq. 12) increases from about a hundred days to several years from high to low ?G480

respectively. Short primary waves are thus much more unstable. The short intra-annual waves481
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described in the paragraphs above in particular have very short emergence times (Fig. 15d).482

483

Realistic jet-like structures have a meridional wavelength of about 350 km, a long zonal484

wavelength (greater than 8000 km) and a long period (more than 10 years). Given the dependence485

of the secondary wave’s properties on the primary wave’s characteristics (Fig. 15a-c), the486

"optimal" primary waves that yield realistic jet-like secondary waves have periods between487

70 and 90 days, zonal wavelengths from 200 to 300 km, and low meridional wavenumber488

(as indicated by the squared box in Fig. 15). From the simulations that have been performed,489

simulation 1c seems to have themost realistic jet-like secondarywave. This is consistent with Fig. 6.490

491

The analysis of the dependence of the scales of the long secondary wave to the primary wave’s492

properties described above assumed a constant primary wave amplitude of 0.07 m s−1, correspond-493

ing to the amplitude of the primary wave used in the numerical simulations. The optimal primary494

wave spectral characteristics shown in Fig. 15 are fairly robust, regardless of the primary wave’s495

amplitude. Indeed, Fig. 16a shows that the long secondary wave’s meridional wavelength is not496

very sensitive to the amplitude of the primary wave, in particular for the range of simulations that497

have been performed here. The variation coefficient, defined as the ratio of the standard deviation498

of the secondary wave’s properties across an amplitude range to the mean of these properties, is499

close to zero for most of primary waves, except for waves with very high meridional wavenum-500

bers (Fig. 16d). The secondary wave zonal wavelength varies with the amplitude of the primary501

wave (Fig. 16 b,e). These variations are however not very large with respect to the values of the502

wavelengths: even if they vary by one or two thousands of kilometers, they are still long waves503

(i.e. with wavelengths larger than 3000 km). The variation coefficient remains less than 0.5 almost504

everywhere in the spectrum (Fig. 16e). The period of the long secondary wave is the most sensitive505
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to the amplitude of the primary wave. Especially along the first barotropic dispersion relation506

(:H = 0), where the variation coefficient is close to 0.8 (Fig. 16f) and the secondary waves’ period507

can go from 200 days to a few years (Fig. 16c). In the simulations, the secondary wave meridional508

wavelength is also found to be not sensitive to the primary wave amplitude (Fig. 16a), illustrating509

again the similarity between the numerical simulations and the NLTI theory in complement of510

Fig. 15a.511

7. Discussion, Summary and Perspectives512

a. Beyond the 3-mode truncation theory513

This study shows that NLTI theory can predict the instabilities that can form jet-like structures in514

the equatorial oceans. The theoretical frameworkwas however developed under strong assumptions,515

in particular non-linear interactions were limited to three waves. In the model, the dynamics is not516

truncated and the non-linear interactions may involve additional triads of waves. However, it is517

interesting to note that the 3-mode truncation captures the early stages of the simulations well and518

provides a simple description of the instability process. However, on longer time scales, secondary519

instabilities may arise, which involve additional waves. The spectra show evidence of this (e.g.,520

Fig. 11d) as they indicate that more than 3 waves are clearly present in the simulations. Spectral521

analysis of the simulation 1d on long time scales shows that energy is present at various scales522

and is exchanged through a broad continuum of waves, similar to a turbulent cascade, rather than523

being contained in a few discrete waves (Fig. 17). Energy tends however to accumulate in regions524

where :G = 0, which correspond to jet-like structures. This might be explained by the stability525

of jet-like waves to NLTI. Namely, the growth rate for any jet-like primary wave, p = (0, ?H), is526

identically equal to zero (Fig. 18), such that jet-like secondary waves are very stable and will likely527
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not undergo further triad interactions. The jet-like waves thus act as an attractor of this "wave528

cascade", and every wave undergoing NLTI might eventually cascade towards jet-like structures.529

This is analogous to turbulent cascades on a beta plane, where the energy cascades from being530

isotropically distributed in spectral space towards accumulation zones at low frequencies and small531

zonal wavenumbers, which correspond to zonal jets (Rhines 1975; Vallis and Maltrud 1993).532

b. Beyond barotropic dynamics533

Because we are only considering a two-dimensional dynamics, we neglect the possible in-534

teractions between different vertical modes. A full description of the non-linear dynamics of535

equatorial waves should consider baroclinic modes and their possible non-linear interactions. The536

two-dimensional problem investigated in this paper is well posed for the barotropic mode only.537

Non-linear interactions of barotropic waves indeed remain barotropic (not shown). In this case538

the two-dimensional reduction of the problem is a good approximation and 2D simulations are a539

good tool to study the NLTI. This is not the case for baroclinic waves. Non-linear interactions of540

baroclinic modes project mainly on the barotropic mode (not shown). The barotropic mode thus541

acts also as an attractor in the "wave cascade".542

c. Towards a realistic mean circulation543

Intra-annual waves with large wavenumbers such as the ones described in this study are not544

unrealistic as they have been observed in the tropical ocean (Farrar 2011; Tuchen et al. 2018;545

Delpech et al. 2020b). Farrar (2011) evidenced barotropic intra-annual waves in the northern546

tropical Pacific ocean, radiating away from the Tropical Instablity Waves with a 30-day period and547

a 1000-km wavelength. Tuchen et al. (2018) described evidence of 50-day Yanai waves with a548

baroclinic structure at the equator. Delpech et al. (2020b) described observations of waves at 1000549
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m in the northern tropical Pacific with a 70-day period and a 500-km wavelength with properties550

consistent with barotropic Rossby waves. It is interesting to note that the waves observed by551

Farrar (2011) are found to be stable to NTLI (e.g., Fig. 13). This could explain why they are552

seen propagating away from their generation site. On the contrary, waves unstable to NLTI have553

only sporadically been observed, their small wavelengths make them challenging to capture with554

in-situ data and as they are associated with a weak signature in sea surface height (typically555

less than 2 cm at low latitudes), it is also difficult to capture them with the current generation556

Nadir altimetry. The new generation swath satellite altimeter designed to observe submesoscale557

features (e.g., SWOT Fu and Ubelmann (2014)) may open new opportunities in this regard. The558

jet-like structures produced by the unstable intra-annual waves through NLTI are long waves with559

zonal wavelengths that can reach several thousands of kilometers (Fig. 16b) and with periods of560

several years (Fig. 16c). However, their time averaged velocities generally result in a weak mean561

circulation (e.g., Fig. 6a). This mechanism is therefore not sufficient to explain the observed mean562

deep circulation. Other mechanisms may intervene in the long term equilibration of these jet-like563

structures to produce the jet-structuredmean circulation as has been observed in 10-year averages of564

Argo float displacements (Ollitrault et al. 2006; Cravatte et al. 2012). Equilibration processes may565

involve modification of the potential vorticity by the zonal jets combined with positive feedback566

mechanisms such as eddy-driven jet-sharpening (Dritschel and Scott 2011; Greatbatch et al. 2018;567

Ménesguen et al. 2019). In addition, the observed zonal jets are not purely barotropic and have a568

complex vertical structure (Qiu et al. 2013; Cravatte et al. 2017). Therefore baroclinic dynamics569

could come into play and should be considered in future studies. Finally, bottom topography570

could have an influence on the dynamics of barotropic Rossby waves (such as causing scattering,571

refraction and trapping) through the topographic beta effect (e.g., Wang and Koblinsky 1994;572

Durland and Farrar 2020) and the modification of classical vertical modes (Lacasce 2017). The573
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topographic beta effect scales as the Coriolis parameter and the bottom slope. We therefore expect574

it to be of lesser importance at low latitudes, away from steep continental margins or seamounts. It575

is however interesting to note that the influence of topography could transform a stable large scale576

long period Rossby wave forced by the atmosphere, into a small scale long period Rossby wave,577

subject to NLTI (Rhines and Bretherton 1973).578

d. Summary and Perspectives579

Deep intra-annual waves, which have been frequently observed at low latitudes in the ocean are580

prone to instability. Focusing on the barotropic mode, we demonstrated that the energy transfer581

mechanism of this instability is well described by a 3-mode truncation NLTI theory. The growth582

rate and characteristics of the instability are a function of the wavenumber, frequency and amplitude583

of the primary wave. In particular cases, the secondary waves have jet-like structures. In this study,584

we showed that intra-annual waves can destabilize into jet-like structures using idealized barotropic585

numerical simulations of an equatorial basin forced by an oscillatory wind-stress. We determined586

that the primary waves that are optimal to reproduce realistic jet-like structures are intra-annual587

zonally-propagating waves with period between 60 to 130 days, zonal wavelengths between 200588

to 300 km and amplitude from 2 to 10 cm s−1. The jet-like structures produced in the simulations589

and predicted by the theory do not capture all the properties of the time-mean deep circulation as it590

has been observed in low-latitude oceans (in particular the jets are too weak). Future work should591

address the potential role of three-dimensional dynamics in the generation of these jets and include592

baroclinic modes into NLTI theory. The effects of bottom topography and variable stratification593

should be investigated as they can modify the properties and propagation of Rossby waves. Future594

work will also involve running realistic numerical simulations to study the role of NLTI and other595
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equilibration processes in the formation of the jet-structured mean circulation within a realistic596

equatorial wave field.597
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APPENDIX606

Analytical solutions for waves non-linear triad interactions607

The aim of this section is to understand the dynamics of the forced wave and in particular its608

stability. We describe its stability (or instability) using a theoretical truncated non-linear model609

which allows to resolve analytically the first order of non linearity. We derive this problem in a610

quasi-geostrophic framework, which corresponds to the limit of the primitive equation model for611

small amplitudes (a reasonable assumption when working with waves).612

The two dimensional quasi-geostrophic equation for the stream function k is:613

m

mC
(∇2k−�k) + Vmk

mG
+ � (k,∇2k) = 0 (A1)

where � is the Jacobian operator and � is the inverse of the squared deformation radius. The614

deformation radius are defined as !',0 for the barotropic deformation radius and !',= for the =th615
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baroclinic deformation radius.616

!',0 =

√
6�

50
; !',= =

#�

=c 50
(A2)

A plane monochromatic wave, k = k04
8(:GG+:HH−lC) , is solution of the equations if it satisfies the617

relation.618

l =
−V:G

:2
G + :2

H +�
(A3)

which is known as the Rossby wave dispersion relation. Plane monochromatic Rossby waves are619

thus exact solutions of the non-linear quasi-geostrophic equation (Eq. A1).620

However, a superposition of waves, k =
∑
=k= =

∑
=k0= (C)48(:G=G+:H=H) , is not an exact solution621

of the Eq. A1.622

m

mC
(
∑
=

−(:2
G= + :2

H= +�)k=) + V
∑
=

8:G=k= +
1
2

∑
8, 9

(:G8:H 9 − :G 9 :H8) (:2
8 − :2

9 )k8k 9 = 0 (A4)

Because of the quadratic nature of non linear Jacobian term in Eq. A1, the waves interaction is623

triadic: the waves i, j and n interact together and their amplitude k0 depend on time.624

The equation for the evolution of a wave of streamfunction kk and wavenumber k is then given625

by:626

m

mC
kk + 8lk +

1
2

∑
8, 9 |ki+kj=k

) (k,ki,kj)kk8
kk 9

= 0 (A5)

where627

lk = −
V:G

:2
G + :2

H +�
; ) (k,ki,kj) = −

(ki×kj)I (:2
8
− :2

9
)

:2 +�
(A6)

) is the triadic interaction term.628

For simplicity and in order to keep the problem analytically solvable, we consider in a first time629

a reduced problem for which only one triad (three waves) is retained. We note p, q and p−q the630

wave vectors of these three waves, such that p = q+p−q. Following Eq. A5, we can derive an631
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equation for each of these waves.632 

mCk0p + 8lpk0p +) (p,q,p−)k0qk0p− = 0

mCk0q + 8lqk0q +) (q,p,−p−)k0pk
∗
0p− = 0

mCk0p− + 8lp−k0p− +) (p−,p,−q)k0pk
∗
0q = 0

(A7)

where the star denotes the conjugate of a complex. k∗0k = k0−k. Introducing kk(C) = k0k(C)4−8lkC633

Eq. A7 becomes:634 

mCkp +) (p,q,p−)kqkp−4
8ΔC = 0

mCkq +) (q,p,−p−)kpk
∗
p−4
−8ΔC = 0

mCkp− +) (p−,p,−q)kpk
∗
q4
−8ΔC = 0

(A8)

where Δ = lp−lq−lp−.635

The process we want to study in the framework of our numerical simulations is the instability636

of a primary wave of wavevector p. We linearize the Eq. A8 around the basic state kp, with the637

perturbations k̃q and k̃p− .638 
mCk̃q +) (q,p,−p−)kpk̃

∗
p−4
−8ΔC = 0

mCk̃
∗
p− +) (p−,p,−q)k∗pk̃q4

8ΔC = 0
(A9)

Solutions of these equations are harmonics:639 
k̃q(C) = �@4−8f@C

k̃p− (C) = �?−4−8f?− C

(A10)

The instability occurs if Im(f@) > 0 and Im(f?−) > 0. Im(f) is the growth rate of the instability.640

The secondary waves q and p− are determined as the waves that give the maximum growth rate of641

instability.642
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The linear system in Eq. A9 then becomes, using f@ +f∗?−−Δ = 0643

©­­­­­­«
−8f@ ) (q,p,−p−)kp

) (p−,p,−q)k∗p 8f∗?−

ª®®®®®®¬
©­­­­­­«
�@

�∗?−

ª®®®®®®¬
= 0 (A11)

Non trivial solutions exist if the determinant of the matrix is equal to 0.644

f2
@ −Δf@ +) (q,p,−p−)) (p−,p,−q) |kp |2 = 0 (A12)

Which gives solutions for the growth rate:645

f@ =
1
2
(Δ ±

√
Δ2−4|kp |2) (q,p,q−p)) (p−q,p,−q)) (A13)

Note that the two secondary waves q and p− have the same growth rate as Im(f@) = Im(f?−).646
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Table 1. Experiment Table. Summary of all numerical experiments used for this study, where )0, l0, _G0,

:G0, and g0 are the period, frequency, zonal wavelength, zonal wavenumber and amplitude of the forcing (Eq. 2).

The experiments are 2D and are either linear (L) or non-linear (NL). The letter of the experiment label indicates

its position on the wavenumber-frequency spectrum (Fig. 1), and the number indicates the forcing amplitude.

769

770

771

772

Exp. )0 (days) l0 (B−1) _G0 (km) :G0 (<−1) g0 (m2s−2) Physics

1a 132 5.49e-7 150 4.19e-5 5e-5 2D NL

1b 114 6.41e-7 175 3.59e-5 5e-5 2D NL

1c 99 7.32e-7 200 3.14e-5 5e-5 2D NL

1d 79 9.15e-7 250 2.51e-5 5e-5 2D NL

1e 66 1.10e-6 300 2.09e-5 5e-5 2D NL

1f 57 1.28e-6 350 1.80e-5 5e-5 2D NL

1g 50 1.46e-6 400 1.57e-5 5e-5 2D NL

1h 44 1.65e-6 450 1.40e-6 5e-5 2D NL

1i 40 1.83e-6 500 1.26e-5 5e-5 2D NL

1j 36 2.01e-6 550 1.14e-5 5e-5 2D NL

1k 33 2.2e-6 600 1.0e-5 5e-5 2D NL

1l 30 2.4e-6 650 9.7e-6 5e-5 2D NL

2a 132 5.49e-7 150 4.19e-5 5e-6 2D NL

2c 99 7.32e-7 200 3.14e-5 5e-6 2D NL

2e 66 1.10e-6 300 2.09e-5 5e-6 2D NL

2g 50 1.46e-6 400 1.57e-5 5e-6 2D NL

2i 40 1.83e-6 500 1.26e-5 5e-6 2D NL

3a 132 5.49e-7 150 4.19e-5 2.5e-5 2D NL

3c 99 7.32e-7 200 3.14e-5 2.5e-5 2D NL

3e 66 1.10e-6 300 2.09e-5 2.5e-5 2D NL

3g 50 1.46e-6 400 1.57e-5 2.5e-5 2D NL

3i 40 1.83e-6 500 1.26e-5 2.5e-5 2D NL
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Exp. )0 (days) l0 (B−1) _G0 (km) :G0 (<−1) g0 (m2s−2) Physics

4a 132 5.49e-7 150 4.19e-5 7.5e-5 2D NL

4c 99 7.32e-7 200 3.14e-5 7.5e-5 2D NL

4e 66 1.10e-6 300 2.09e-5 7.5e-5 2D NL

4g 50 1.46e-6 400 1.57e-5 7.5e-5 2D NL

4i 40 1.83e-6 500 1.26e-5 7.5e-5 2D NL

5a 132 5.49e-7 150 4.19e-5 1e-4 2D NL

5c 99 7.32e-7 200 3.14e-5 1e-4 2D NL

5e 66 1.10e-6 300 2.09e-5 1e-4 2D NL

5g 50 1.46e-6 400 1.57e-5 1e-4 2D NL

5i 40 1.83e-6 500 1.26e-5 1e-4 2D NL

6a 132 5.49e-7 150 4.19e-5 1.5e-4 2D NL

6c 99 7.32e-7 200 3.14e-5 1.5e-4 2D NL

6e 66 1.10e-6 300 2.09e-5 1.5e-4 2D NL

6g 50 1.46e-6 400 1.57e-5 1.5e-4 2D NL

6i 40 1.83e-6 500 1.26e-5 1.5e-4 2D NL

1d-L 79 9.15e-7 250 2.51e-5 5e-5 2D L

1l-L 30 2.4e-6 650 9.7e-6 5e-5 2D L
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Table 2. The waves involved in non-linear triad interactions. The primary wave is the forced wave, lp, ?G ,

?H thus are fixed by the forcing. As the experiment are resonantly forced for the barotropic mode, they satisfy

the barotropic Rossby wave dispersion relation. The properties of the two secondary waves (q and p− = p−q)

are determined from where the growth rate is maximum in spectral space (Eq. 11).

773

774

775

776

Forced wave (primary wave) Long secondary wave Short secondary wave

:G (m−1) ?G = −2.3×10−5 @G = −2.1×10−6 ?−G = −2.0×10−5

_G (km) _pG = 250 km _qG = 4958 km _p−G = 238 km

:H (m−1) ?H = 0 @H = 1.4×10−5 ?−H = 1.7×10−5

_H (km) _pH ∼∞ _qH = 429 km _p−H = 429 km

l (s−1) lp = 9.8×10−7 lq = 2.6×10−7 lp− = 7.2×10−7

T (days) )p = 79 days )q = 540 days )p− = 110 days
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LIST OF FIGURES777

Fig. 1. Wavenumber frequency diagram with the dispersion relations for equatorial Kelvin waves778

(green), Yanai waves (red), and baroclinic Rossby waves (blue). Only the first baroclinic779

mode is represented. The dispersion relation for barotropic Rossby waves with different780

meridional wavenumbers (0, 1× 10−6, 2× 10−6, 4× 10−6 m−1 from top to bottom) are in781

black. The frequency and wavenumbers of the forcing used in the experiments conducted782

in this study are represented by the yellow dots. Wave instability simulations conducted783

in previous studies are indicated with colored dots along with their references. The square784

boxes represent the spectral range of waves that have been observed at the surface (solid785

lines) and at depth (dashed lines). . . . . . . . . . . . . . . . . . 45786

Fig. 2. Two-dimensional spectrum of the wind stress function � (G, H, C) = - (G). (H)B8=(:G0G +787

:H0H −l0C) (grey) for simulation 1d (see Table 1). Black straight lines correspond to788

the forced wavenumber ±:G0 and :H0 = 0. Black circles correspond to the barotropic Rossby789

wave dispersion relation for the forced frequency l0 (T=79 days) and a non-resonant fre-790

quency (T=180 days). If the dispersion relation intersects a location in wavenumbers space791

where there is a maximum in energy, the forced wave is resonantly forced. The example792

shows that only the period corresponding to the barotropic Rossby wave dispersion relation793

for :G0 and :H0 satisfies the resonant condition. . . . . . . . . . . . . . 46794

Fig. 3. (a) Experiment spin-up time (computed as in Eq. 6) as a function of the forcing frequency795

(l0). (b) Amplitude of the wave response (computed as in Eq. 7) as a function of the strength796

of the forcing (g0) for experiments a-l (Fig. 1). The best linear fit (line) corresponds to a line797

H = 0G + 1 and A is the correlation coefficient. . . . . . . . . . . . . . . 47798

Fig. 4. Evolution of the meridional barotropic velocity (E) in the linear simulations (a-c) 1d-L and799

(d-f) 1l-L at times (a,d) t = 100 days, (b,e) t = 400 days, (c,f) t = 800 days. Black lines800

indicate the ray path originating from 70◦ longitude (the center of the forcing region) and801

-5◦, 0◦ and 5◦ latitude respectively and integrated from the initial time of the simulation to802

the time of the snapshot (Eq. 5). Position of the ray at each wave period is indicated by the803

dots. The zonal barotropic velocity (D) is almost zero in the whole basin and is not shown. . . 48804

Fig. 5. Evolution of the velocity and sea surface height (ssh) in the non-linear simulations (a-i) 1d805

and (j-r) 1l, at times: (a,d,g,j) t = 100 days, (b,e,h,k) t = 400 days and (c,f,i,l) t = 800 days for806

(a-c, j-l) E (meridional velocity); (d-f, m-o) D (zonal velocity); (g-i, p-r). The red and green807

squares correspond to the locations where the one-dimensional spectra are computed (Fig. 9). . 49808

Fig. 6. D averaged over years 2 to 5 of the simulations from 10◦ to 40◦ of longitude (i.e. west of the809

forcing region) for simulations (a) 1d (b) 1l (c) and simulation with optimal primary wave810

characteristics, corresponding to experiment 1c from Table 1, but with a shifted wind-stress811

position (H0=3◦S) (d) Observed zonal velocity at 1000 m depth in the tropical Pacific from812

Argo floats YoMaHA database (Lebedev et al. 2007) reproduced after (Delpech et al. 2020b). . 50813

Fig. 7. The growth rate for the 3-mode truncated non-linear triad interaction (Eq. 11) (a) as a function814

of the secondary wavenumbers @G and @H . The red arrow indicates the primary wave p and815

the green arrows the most unstable secondary waves q and p−q. The circles represent816

the magnitude of the wavevectors. (b) The growth rate as a function of the secondary817

wavenumber @G and period lq. The red dot indicates the position of the primary wave and818

the green dots the position of the secondary waves in l− @G space. Black lines indicate the819

dispersion relations for barotropic Rossby waves with :H = 0 and :H = 2× 10−6 m−1. The820

two secondary waves have the same growth rate. Note that we use the convention of positive821
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frequency for waves, such that the wavevector with @G > 0 (and thus a theoretical negative822

frequency) in panel (a) is represented with a @G < 0 and a positive frequency in panel (b). . . 51823

Fig. 8. Primary and secondary waves’ phase lines orientation (dashed lines) and group velocity824

vectors (arrows) in a polar diagram. 0◦ represents the eastward direction, and the radial axis825

indicates the magnitude of the group velocity in m s−1. The zonal wavelength and period of826

the wave is indicated in the legend. . . . . . . . . . . . . . . . . . 52827

Fig. 9. (red curves) Spectrum of the meridional velocity at the location where the primary wave p828

is expected (red marker in Fig. 5c) and (green curves) Spectrum of the zonal velocity at the829

location where the long secondary wave q is expected (green marker in Fig. 5f). (a) The time830

wavelet transform and (b) the space wavelet transform in the zonal direction (solid line) and831

in the meridional direction (dashed line). The wavelet transforms are averaged over a 2◦×2◦832

horizontal domain and a 20 day time interval. Vertical lines indicate the characteristics that833

are predicted for the primary and secondary waves (Table 2). . . . . . . . . . . 53834

Fig. 10. Wavelet scalogram averaged in the interior of the domain (i.e the region away from 5◦ of the835

boundary) as a function of (a) time and period K̃E
C
(Eq. 8); (b) time and zonal wavelength836

K̃E
G
; (c) time and meridional wavelength K̃E

H
. The spin up period is indicated by the arrow.837

The time when the instability occurs is indicated with the dashed line, and corresponds to a838

shift in the spectra. . . . . . . . . . . . . . . . . . . . . . 54839

Fig. 11. Two-dimensional spectra computed from the wavelet transforms following the method de-840

scribed in Section 3. (a,c) K̂E
GH
; (b,d) K̂E

GC
; (a,b) before the instability emerges (C = 150841

days); and (c,d) after the instability emerges (C = 680 days). The red (green) dots and ar-842

rows indicate the theoretical frequency and wavenumbers of the primary (secondary) waves843

respectively. White lines (b,d) indicate the dispersion relation for barotropic Rossby waves844

with :H = 0 and :H = 2×10−6 . . . . . . . . . . . . . . . . . . 55845

Fig. 12. (a) Theoretical instability emergence ratio as a function of the amplitude of the primary wave846

p for four waves with periods and zonal wavelengths indicated in the legend. The instability847

emergence ratio (Eq. 13) is defined as the ratio between the time it takes a wavepacket to848

travel one wavelength and the emergence time of the secondary wave, illustrating how the849

instability is triggered in the simulations when this ratio exceeds 1 (i.e. for times to the right850

of the dashed line). (right panels) K̃E
H (C) for simulations (b) 1a; (c) 1d; (d) 1f and (e) 1h. . . 56851

Fig. 13. Theoretical amplitude threshold to reach '4
p = 1 (Eq. 13) as a function of the primary wave852

zonal wavenumber (:G) and frequency l. Above this amplitude, barotropic Rossby primary853

waves are unstable to NLTI. . . . . . . . . . . . . . . . . . . . 57854

Fig. 14. The emergence time of the instability in the simulations as a function of the theoretical growth855

rate for the primary waves of the different simulations. Each dot represents one simulation,856

with size and color indicating the amplitude and zonal wavenumber of the primary wave857

respectively. The black curve is proportional to the inverse of the growth rate, with a858

proportionality constant of 5.5. . . . . . . . . . . . . . . . . . . 58859

Fig. 15. Properties of the long secondary wave as a function of the primary wave’s wavelength and860

period with a fixed amplitude of 0.07 m/s. (a) _H , (b) _G , (c) period, (d) time of emergence of861

the secondary wave. The dispersion relation for barotropic Rossby waves with different :H862

is indicated by solid lines. The hatched regions correspond to regions where no instabilities863

grow. . . . . . . . . . . . . . . . . . . . . . . . . . 59864
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Fig. 16. (upper panel) Sensitivity of the long secondary waves’ properties: (a) meridional wavelength865

_H , (b) zonal wavelength _G , (c) period, to the amplitude of the primary wave. The sensitivity866

is computed for primary waves with zonal wavelengths 150 km, 200 km, 300 km, and 400867

km and for amplitudes ranging from 0.01 m s−1 to 0.3 m s−1 with a 0.01 m s−1 increment.868

The corresponding experiments and the secondary waves’ meridional wavelengths computed869

using awavelet analysis are indicated by the stars with their labels referring to Table 1. (lower870

panel) The variation coefficient, namely the ratio of the standard deviation of the properties871

for the different amplitude to the mean of this propreties are computed for the secondary872

wave meridional wavelength _H (d), zonal wavelength _G (e), and period (f). . . . . . . 60873

Fig. 17. Evolution of the energy spectrum in wavenumber space for simulation 1d at times (a) C = 120874

days, (b) C = 1000 days, (c) C = 1200 days. . . . . . . . . . . . . . . . 61875

Fig. 18. The maximum growth rate (Eq. 11) for |?G | ranging between 0 and 5e-5 m−1 for different876

meridional primary wavenumbers ?H (line styles) and amplitude k0 |?G | (line widths). Jet-877

like waves correspond to ?G = 0 and always have a growth rate equals to zero, illustrating878

their particular stability. . . . . . . . . . . . . . . . . . . . . 62879
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eg. Kessler and 
McCreary (1993)

Fig. 1. Wavenumber frequency diagram with the dispersion relations for equatorial Kelvin waves (green),

Yanai waves (red), and baroclinic Rossby waves (blue). Only the first baroclinic mode is represented. The

dispersion relation for barotropic Rossby waves with different meridional wavenumbers (0, 1× 10−6, 2× 10−6,

4× 10−6 m−1 from top to bottom) are in black. The frequency and wavenumbers of the forcing used in the

experiments conducted in this study are represented by the yellow dots. Wave instability simulations conducted

in previous studies are indicated with colored dots along with their references. The square boxes represent the

spectral range of waves that have been observed at the surface (solid lines) and at depth (dashed lines).
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T=79 days

T=180 days

Fig. 2. Two-dimensional spectrum of the wind stress function � (G, H, C) = - (G). (H)B8=(:G0G + :H0H −l0C)

(grey) for simulation 1d (see Table 1). Black straight lines correspond to the forced wavenumber ±:G0 and

:H0 = 0. Black circles correspond to the barotropic Rossby wave dispersion relation for the forced frequency

l0 (T=79 days) and a non-resonant frequency (T=180 days). If the dispersion relation intersects a location in

wavenumbers space where there is a maximum in energy, the forced wave is resonantly forced. The example

shows that only the period corresponding to the barotropic Rossby wave dispersion relation for :G0 and :H0

satisfies the resonant condition.
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a) b)

Fig. 3. (a) Experiment spin-up time (computed as in Eq. 6) as a function of the forcing frequency (l0).

(b) Amplitude of the wave response (computed as in Eq. 7) as a function of the strength of the forcing (g0)

for experiments a-l (Fig. 1). The best linear fit (line) corresponds to a line H = 0G + 1 and A is the correlation

coefficient.
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Fig. 4. Evolution of the meridional barotropic velocity (E) in the linear simulations (a-c) 1d-L and (d-f) 1l-L

at times (a,d) t = 100 days, (b,e) t = 400 days, (c,f) t = 800 days. Black lines indicate the ray path originating

from 70◦ longitude (the center of the forcing region) and -5◦, 0◦ and 5◦ latitude respectively and integrated from

the initial time of the simulation to the time of the snapshot (Eq. 5). Position of the ray at each wave period is

indicated by the dots. The zonal barotropic velocity (D) is almost zero in the whole basin and is not shown.

898

899

900

901

902

48



Fig. 5. Evolution of the velocity and sea surface height (ssh) in the non-linear simulations (a-i) 1d and (j-r)

1l, at times: (a,d,g,j) t = 100 days, (b,e,h,k) t = 400 days and (c,f,i,l) t = 800 days for (a-c, j-l) E (meridional

velocity); (d-f, m-o) D (zonal velocity); (g-i, p-r). The red and green squares correspond to the locations where

the one-dimensional spectra are computed (Fig. 9).
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a) b) c) d)

Fig. 6. D averaged over years 2 to 5 of the simulations from 10◦ to 40◦ of longitude (i.e. west of the forcing

region) for simulations (a) 1d (b) 1l (c) and simulation with optimal primary wave characteristics, corresponding

to experiment 1c from Table 1, but with a shifted wind-stress position (H0=3◦S) (d) Observed zonal velocity at

1000 m depth in the tropical Pacific from Argo floats YoMaHA database (Lebedev et al. 2007) reproduced after

(Delpech et al. 2020b).
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a) b)

Fig. 7. The growth rate for the 3-mode truncated non-linear triad interaction (Eq. 11) (a) as a function of

the secondary wavenumbers @G and @H . The red arrow indicates the primary wave p and the green arrows the

most unstable secondary waves q and p−q. The circles represent the magnitude of the wavevectors. (b) The

growth rate as a function of the secondary wavenumber @G and period lq. The red dot indicates the position of

the primary wave and the green dots the position of the secondary waves in l− @G space. Black lines indicate

the dispersion relations for barotropic Rossby waves with :H = 0 and :H = 2× 10−6 m−1. The two secondary

waves have the same growth rate. Note that we use the convention of positive frequency for waves, such that the

wavevector with @G > 0 (and thus a theoretical negative frequency) in panel (a) is represented with a @G < 0 and

a positive frequency in panel (b).
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primary 
wave

long secondary 
wave short secondary 

wave

Waves Characteristics

Lx = 250 km, T = 79 days 

Lx = 4958 km, T = 540 days 

Lx = 238 km, T = 110 days 

[m/s]

Fig. 8. Primary and secondary waves’ phase lines orientation (dashed lines) and group velocity vectors

(arrows) in a polar diagram. 0◦ represents the eastward direction, and the radial axis indicates the magnitude of

the group velocity in m s−1. The zonal wavelength and period of the wave is indicated in the legend.
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a)

b)

Fig. 9. (red curves) Spectrum of the meridional velocity at the location where the primary wave p is expected

(red marker in Fig. 5c) and (green curves) Spectrum of the zonal velocity at the location where the long secondary

wave q is expected (green marker in Fig. 5f). (a) The time wavelet transform and (b) the space wavelet transform

in the zonal direction (solid line) and in the meridional direction (dashed line). The wavelet transforms are

averaged over a 2◦ ×2◦ horizontal domain and a 20 day time interval. Vertical lines indicate the characteristics

that are predicted for the primary and secondary waves (Table 2).
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a)

b)

c)

spin up

instability

Fig. 10. Wavelet scalogram averaged in the interior of the domain (i.e the region away from 5◦ of the boundary)

as a function of (a) time and period K̃E
C
(Eq. 8); (b) time and zonal wavelength K̃E

G
; (c) time and meridional

wavelength K̃E
H
. The spin up period is indicated by the arrow. The time when the instability occurs is indicated

with the dashed line, and corresponds to a shift in the spectra.
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a)

c)

b)

d)

Fig. 11. Two-dimensional spectra computed from the wavelet transforms following the method described in

Section 3. (a,c) K̂E
GH
; (b,d) K̂E

GC
; (a,b) before the instability emerges (C = 150 days); and (c,d) after the instability

emerges (C = 680 days). The red (green) dots and arrows indicate the theoretical frequency and wavenumbers

of the primary (secondary) waves respectively. White lines (b,d) indicate the dispersion relation for barotropic

Rossby waves with :H = 0 and :H = 2×10−6
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a)
b)

c)

d)

e)
no instability

simulations 
amplitudes

Fig. 12. (a) Theoretical instability emergence ratio as a function of the amplitude of the primary wave p for

four waves with periods and zonal wavelengths indicated in the legend. The instability emergence ratio (Eq. 13)

is defined as the ratio between the time it takes a wavepacket to travel one wavelength and the emergence time of

the secondary wave, illustrating how the instability is triggered in the simulations when this ratio exceeds 1 (i.e.

for times to the right of the dashed line). (right panels) K̃E
H (C) for simulations (b) 1a; (c) 1d; (d) 1f and (e) 1h.
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Fig. 13. Theoretical amplitude threshold to reach '4
p = 1 (Eq. 13) as a function of the primary wave zonal

wavenumber (:G) and frequency l. Above this amplitude, barotropic Rossby primary waves are unstable to

NLTI.
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Fig. 14. The emergence time of the instability in the simulations as a function of the theoretical growth rate for

the primary waves of the different simulations. Each dot represents one simulation, with size and color indicating

the amplitude and zonal wavenumber of the primary wave respectively. The black curve is proportional to the

inverse of the growth rate, with a proportionality constant of 5.5.
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a) b)

d)c)

1a 1b 1c
1d

1e
1f
1g

Fig. 15. Properties of the long secondary wave as a function of the primary wave’s wavelength and period

with a fixed amplitude of 0.07 m/s. (a) _H , (b) _G , (c) period, (d) time of emergence of the secondary wave. The

dispersion relation for barotropic Rossby waves with different :H is indicated by solid lines. The hatched regions

correspond to regions where no instabilities grow.
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3c 1c 4c
5c

3e
1e 4e 5e

1g

4g
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a) b) c)

d) e) f)

Fig. 16. (upper panel) Sensitivity of the long secondary waves’ properties: (a) meridional wavelength _H , (b)

zonal wavelength _G , (c) period, to the amplitude of the primary wave. The sensitivity is computed for primary

waves with zonal wavelengths 150 km, 200 km, 300 km, and 400 km and for amplitudes ranging from 0.01 m s−1

to 0.3 m s−1 with a 0.01 m s−1 increment. The corresponding experiments and the secondary waves’ meridional

wavelengths computed using a wavelet analysis are indicated by the stars with their labels referring to Table

1. (lower panel) The variation coefficient, namely the ratio of the standard deviation of the properties for the

different amplitude to the mean of this propreties are computed for the secondary wave meridional wavelength

_H (d), zonal wavelength _G (e), and period (f).
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a) b) c)

Fig. 17. Evolution of the energy spectrum in wavenumber space for simulation 1d at times (a) C = 120 days,

(b) C = 1000 days, (c) C = 1200 days.
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Fig. 18. The maximum growth rate (Eq. 11) for |?G | ranging between 0 and 5e-5 m−1 for different meridional

primary wavenumbers ?H (line styles) and amplitude k0 |?G | (line widths). Jet-like waves correspond to ?G = 0

and always have a growth rate equals to zero, illustrating their particular stability.
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