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Summary - Antithrombin Ill is a plasma glycoprotein responsib!e for thrombin inhibition in the blood coagulation cascade. The X-ray structure 
of its cleaved form has been determined and refined to 3.2 A resolution. The overall topology is similar to that of 6,rantitrypsin, anothe ~. member 
of the serpin (serine protease inhibitor) superfamily. The biological activity of antithrombin III is mediated by a polysaccharide, heparir. The 
binding site of this effector is described. A possible structural transition from the native to the cleaved structure is discussed. 

antithrombin !I1 / X.ray structure / heparin / serpin superfamily 

Introduction 

Antithrombin III (ATIII) is a single chain glycoprotein 
involved in the coagulation process. It is synthesized 
primarily in the liver with a signal peptide of 32 amino 
acids necessary for its intracellular transport through the 
endoplasmatic reticulum; the peptide is then cleaved 
prior to secretion [1]. Antithrombin III has a normal 
plasma concentration of ~ 2/zM [2]. 

ATIII inhibits serine proteases of the intrinsic coag- 
ulation pathway such as Factor IXa, Xa and Xla and 
thrombin [3] which is its principal physiological target 
considering the relative rates of inactivation [4]. Thus, 
functional deficiency of antithrombin !!! results in a 
predisposition towards thrombosis and pulmonary 
embolism. Inhibition of thrombin by ATIII occurs 
through the formation of a stable equimolar complex 
between inhibitor and protease [3, 5] involving the 
formation of a possible covalent bond between 2 resi- 
dues. This tight complex can only be dissociated by 
nucleophilic agents or at alkaline pH and the releas,~d 
antithrombin III is cleaved at the reactive center site 
Arg393-Ser394 (sequence numbering of human anti- 
thrombin lII unless otherwise stated) [6]. This 
modified inhibitor has lost all or most of its ability to 
inhibit thrombin and is made up of 2 polypeptide 
fragments held together by a disulfide bridge [7]. 

The rate of thrombin inactivation is enhanced by 
catalytic amounts of a polysaccharide, heparin, without 
affecting the stoichiometry of the enzyme-inhibitor 
reaction [8, 9]. A unique pentasaccharide sequence of 

heparin is required for the specific interaction with 
antithrombin III [10]. Furthermore, this pentasaccha- 
ride, which presents the same activity as heparin for the 
inhibition of Factor Xa, has been chemically synthetized 
[11, 12]. However, the size of the oligosaccharide that 
can enhance thrombin inhibition by ATIII is at least 18 
monosaccharide units long [13]. 

The primary structure of human ATIII (MW 58000 Da) 
was elucidated both by protein and eDNA sequencing 
[14, 15]. Based on the close similarity between their 
primary structures, several proteins have been classi- 
fied in the so-called serpin (serine protease inhibitor) 
superfamily [16]. This includes inhibitors of serine 
pr,~t,~o~ like . . . . .  +;+ . . . .  ;" as we!! + . . . . . . . .  t,~ . . . . . . . . .  I . . . . . . .  J l  ' + + ~ ' ' ' '  a s  s . v ~  ~ . . j q + + , . , , , , . r ,  

ovalbumin, of no known anti-protease activity [17] and 
some hormone carriers. Sequence alignment within 
this family led to the hypothesis that all its members 
had evolved from a common ancestor [18]. The crystal 
structure of the cleaved arantitrypsin was determicmd 
at 3.0 A resolution [19]. 

The binding site of heparin in ATIII is located in the 
N-terminal domain of the protein. Some residues 
which are essential for heparin binding to ATIII were 
identified using chemical affinity labeling techniques, 
others through genetic studies of natural variants 
unable to bind heparin. Many antithrombin III variants 
with functional deficiency are known and have been 
classified [201. 

The reaction of heparin with antithrombin is of clear 
clinical importance. The X-ray structure determination 
of bovine ATIII was undertaken in order to stud2r such 

*Correspondence and reprints 
Abbreviations: ATIII, antithrombin Ill; t~t-AT, al-antitrypsin 
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interaction at the molecular level, and to provide 
structural information for the design of chemical 
analogs of heparin. On the other hand, knowledge of 
the thrombin binding site would allow rational site 
directed mutagenesis experiments to be carried out. 
ATIII is thus an exemplary system for drug design and 
genetic engineering. We describe the preliminary 
refinement of the structure as determined by X-ray, 
and review issues concerning the structure-function 
relationships of ATIII. 

Crystallization and data collection 

Bovine antithrombin III (MW 56 kDa) was purified 
from plasma by affinity chromatography on heparin-  
sepharose [21]. Activity assays of the purified protein 
against thrombin were normal. ATIII crystals were 
obtained by the microdialysis method at 4°C with 
ammonium sulphate as a precipitating agent, and in the 
presence of divalent cations [22]. The crystalline 
material was characterized by SDS-polyacrylamide 
gel electrophoresis and N-terminal amino acid 
sequencing. The protein in the crystal appeared to be 
cleaved at residue Leu395, one amino acid away from 
the known reactive site (Arg393-Ser394). 

The large unit cell necessitated the use of X-ray 
synchrotron radiation (fig 1). Data were collected on 

oscillation photographs at Lure (Orsay, France) and 
Chess (Coraell Universit)b Ithaca, NY, USA). The 
diffraction limit was 3.0 A. One platinum derivative 
isomorphous to 4.5/~ resolution to the native data was 
prepared. The crystal and intensity data are presented 
in table IA and IB. 

Table IA. Crystal data. The diffraction limit is 3.0 A. 

SpacegroupP43212 

a =  91.3(~) a = 90 ° 
b = 91.3(6 ) fl = 90 ° 
c=383.1(A) y =  90 ° 
2 molecules / asymmetric unit 
V= 3.1c~3 106(A a) 

Table lB. Intensity data statistics. 

Derivative Native PtCP 

Resolution (/~) 3.2 3.5 

Independent reflections 23 500 14 500 

Independent reflections 20300 14500 
at 3.5 A 

Ratio of measured 0.94 0.70 
to possible reflections 

R 0.092 0.076 

aNative crystals soaked with a 2 mM solution of PtCI4 z- for 
3 days. 

Structure determination 

F'g 1. 2 ° Oscillation photograph of native crystal of ATIII. 
The crystal was oriented with the long axis (c axis) perpendi- 
cular to the incident beam. An enlargrnent of the central 
zone is shown. 

From the 33% amino acid sequence homology between 
ATIII and aI-AT, the assumption was made that the 
core of these 2 serpins might have a homologous 3- 
dimensional structure. The molecular replacement 
method using t~I-AT structure as a model turned out to 
be successful [23]. Briefly, the rotation function was 
determined for each of the 2 independent molecules of 
the asymmetric unit using the fast rotation function [24] 
with a wide range of conditions tested. The Crowther 
and Blow translation function [25] proved to be very 
discriminative for the different possible orientations. 
The correct solution was refined by rigid body using the 
Corels program [26]. The 2 molecules were related by 
a screw axis (K = 123 o, t = 42.2 A). The phases calculated 
from this model were used to compute a Fourier differ- 
ence map of the platinum derivative (PTCL in table IB). 
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This revealed 3 platinum sites which satisfied the Patter- 
son function. The heavy atom positions were located 
near cysteine residues at the surface of the protein. 
Phasing was improved by solvent flattening and non 
crystallographic symmetry averaging. 

Further real space density modification combined 
with phase extension is now under investigation to 
provide a map which is free of any bias introduced by 
the initiM model. 

Table !1. Results of energy minimization and molecular 
dynamics in crystallographic refinement of bovine ATIII. 

Step Resolution (fl) t (ps) R-factor (%) 

EMX a 20-3.6 - start 52 
final 42 

MDX b 20-3.6 I 32 

Model building and crystallographic refinement 

The starting model for crystallographic refinement was 
the CORELS solution with the oq-AT molecular fold 
[19]. The bovine protein sequence was under determin- 
ation at that time, but very high sequence homology 
was suggested between human and bovine ATIII [6, 
271. We thus used the human ATIII sequence without 
tal~ing into account insertions-deletions, which were 
all located in loop regions. Forty-four residues in the 
N-terminal part of ATIII were model-built, taking 
advantage of the presence of 2 disulfide bridges in that 
region and taking into account secondary structure 
prediction, d'stance constraints and molecular compact- 
ness. X-Ray refinement using energy minimization and 
1 ps molecular dynamics simulation with the GROMOS 
program [28] led to an R-factor of 32% at 3.6 A, resolu- 
tion [23]. This model was inspected on an Evans and 
Sutherland PS390 graphics system with the FRODO 
program [29] using an OMIT Fourier map [30]. At that 
time, most of the amino acid sequence of bovine ATIII 
(90% complete) was introduced*. Further crystallogra- 
phic refinement ,, ;"-  c,.~c~r, Ac~ . . . . . . .  a ~h~ ,.,Sl,,~ ._,..-.~,.J._-,., w a s  HU~au~,u o n  t,z~.. 
VP200 at CIRCE (Paris, France), which led to an 
R-factor of 28% between 8 - 3 . 2 / ~  (table II and fig 2). 
A detailed description of the refinement will be published 
later. 

Antithrombin !11 and the serpin superfamily 

The sequence of bovine ATIII displays very high 
homology (~  90%) with the human protein. Thus, the 
structure description of the former can be applied to 
the human protein. The secreted human ATIII 
contains 432 amino acids, 6 of which are cysteines that 
form 3 disulfide bridges which are conserved in the 
bovine protein: Cys8-Cys128, Cys21-Cys95, Cys247- 
Cys430. 

Sequence alignments of human ATIII with 3 other 
members of the serpin family are shown in table III. 
Human or bovine ATIII and at-AT can be aligned with 

*Reinbolt J, Medjoub A (1990) personal communication 

Construction with 90% of the bovine sequence: 

EMX 8-3.6 start 48 
final 35 

MDX 8-3.6 2.5 27 

MDX 8-3.2 4.0 28 

aEMX, energy minimization; MDX, molecular dynamics 
simulation (both using a crystallographic potential), bThe 
time step for all molecular dynamic rounds was 0.002 ps. 

few insertions-deletions: 14 insertions and 1 deletion 
have to be made when comparing aI-AT to ATIII. 
Almost all of them occur in connecting loops between 
secondary structural elements, except for the insertions 
of Arg399, Val400 and Thr401 which occur inside 
strand 1C. The overall topology of ATIII (fig 3) 
resembles that of oq-antitrypsin with helices, mainly 
located in the N-terminal domain (1-200), and 3 13 
sheets. The ATIII specific N-terminal extension (44 
residues) contains helices and loops. Both structures 
represent cleaved molecules, a~-AT was intentionally 
modified for X-ray structure determination at the 
reactive site peptide bond Met358-Ser359 (at-AT 
numbering) while ATIII appeared to be cleaved a~er 
characterization of the crystals [22] one residue away 
(Leu395) from the known reactive site. Nevertheless, 
and as in the structure of a~-AT, the 2 residues (ie 
Arg394 and Leu395) are separated by = 60A and are 
at opposite ends of the molecule. After the cleavage 
site, the C-terminal part Leu395-Lys432 of ATIII is 
linked to the core of the molecule by a disulfide bridge. 

Two other proteins are shown in table III: ovalbumin 
and corticosteroid binding globulin. Ovalbumin, which 
has no known anti-protease activity, has 28% sequence 
homology to ATIII. The X-ray structure determination 
of its native form is currently being investigated [31]. 
In the crystal structure of plakalbumin (the nicked 
form of ovalbumin), a folding similar to that of cq-AT 
is found, except for the topology of the central 13 sheet, 
where strand 4A is lost and 2 adjacent strands are dis- 
placed [32]. A 3-dimensional model of corticosteroid 
binding globulin (26% sequence homology to ATIII), 
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Table !!i .  Alignment of amino acid sequences of 4 members of the serpin family after Huber and Carrell [62]. 
Abbreviations: hATIll ,  human antithrombin III; hA1PI, human al-proteinase inhibitor (arantitrypsin); cOVAL, chicken 
ovalbumin; hCBG, human corticosteroid binding globulin. Numbering is that of human antithrombin III and the secondary 
structural elements of t~,-antitrypsin [19] are indicated in the bottom line. On the top line: * ATIII variant with functional 
abnormality limited to the bepadn binding site; El ATIII variant with functional abnormality limited to the reactive site or a 
variant that affects the integrity of the overall structure; # residue which has been mapped by chemical affinity labeling tech- 
niques or predicted to be located in the heparin binding site. The reactive centre P1 residue is also indicated. 

hATI II 1. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

1 10 20 

mysnvigtvtsgkrkvyllsllligfwdcvtcHGSPVDICTAKPRDIPMNPMCIY 
mpssvswgilllaglcclvpvs 

mplllytcllw 

hATIII i. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

30 40 50 60 70 
. . # 

RSPEKKATEDE GS EQK I PEATNRRVWELSKANSRFAT TFYQHLAD SKNDNDN IFL 
i aEDPQGDAAQKTDT S HHDQDHP TFNK I TPNLAEFAF SLYRQLAHQSNS- TNIFF 

MGS I GAASMEF CFDVFKELKVHHAN- EN I FY 
ipt s gl wt vqaMDP NAAYVNMSNHHRGLASANVDFAF S LYKHLVAL SP K- KN I F I 

<-- hA > <s6B> 

hATIII i. 
hAIPI 2. 
COVAL 3. 
hCBG 4. 
sec. struc. 

80 90 I00 Ii0 120 
# # 

SPLSISTAFAMTKLGACNDTLQQLMEVFKFDTIS EKTS~QIHFFFA 
SPVSIATAFAMLSLGTKADTHDEILEGLNFN-LT-- EIPEAQIHEGFQ 
CPIAIMS~LGAKDSTRTQINXVVRFDKLPGFGDSIEAQCGTSVNVHSSLR 
SPVSISMALAMLSLGTCGHTRAQLLQGLGFN-LT-- ERSETEIHQGFQ 
< ..... hB ..... > < .... hC .... > < ...... hD--- 

hATIII I. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

130 140 150 160 170 
# # 
KLNCRLYRKANKSSKLVSANRLFGDKSLTFNETYQDISELVYGAKLQPLDFKENA 
ELLRTLNQPDS-QLQLTTDGGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDT- 
DILNQITKPND-VYSFSLASRLYAEERYPILPEYLQCVKELYRGGLEPINF~TAA 
HLHQLFAKSDT-SLEMTMGNALFLDGSLELLESFSADIKHYYESEVLAMNFQDW- 

--> < .... s2A---> < ..... hE .... ><-SlA-> < 

180 190 200 210 220 230 

hATIII I. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

EQSRAAINKWVSNKTEGRITDVIPSEAINEL~VLVLVNTIYFKGLWKSKFSPENT 
EEAKKQINDYVEKGTQGKIVDLV--KELDRDTVFALVNYIFFKGKWERPFEVKDT 
DQARELINSWVESQTNGIIRNVLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDT 
ATASRQINSYVKNKTQGKIVDLF--SGLDSPAILVLVNYIFFKGTWTQPFDLAST 

-hF ...... > < ..... s3A .... > 

hATIII I. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

240 250 260 270 280 

RKELFYKADGESCSASMMYQEGKFRYRRVAE-GTQVLELPFKGDDITMVLILPKP 
EEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLG-NATAIFFLPD- 
QAMPFRVTEQESKPVQMMYQIGLFRVASMASEKMKILELPFASGTMSMLVLLPDE 
REENFYVDETTVVKVPMMLQSSTISYLHDSELPCQLVQMNYVG-NGTVFFILPD- 

< .... s3C---> <-slB-> <--s2B--> <--s3B--> 
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hATIII i. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

hATI II 1. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

hATIII i. 
hAIPI 2. 
cOVAL 3. 
hCBG 4. 
sec. struc. 

290 300 310 320 330 340 
# # # 

EKSLAKVEKELTPEVLQEWLDEL--EEMMLWHMPRFRIEDGFSLKEQLQDMGLV 
EGKLQHLENELTHDIITKFLENE--DRRSASLHLPKLSITGTYDLKSVLGQLGIT 
VSGLEQLESIINFEKLTEWTSSNVMEERKIKVYLPRMKMEEKYNLTSVLMAMGIT 
KGKMNTVIAALSRDTINRWSAGL--TSSQVDLYIPKVTISGVYDLGDVLEEMGIA 

<-hG-> <---hH--> <--s2C--><-s6A-><--hl--> 

350 360 370 380 390 P1 

DLFSPEKSKLPGIVAEGRDDLYVSDAFHKAFLEVNEEGSEAAASTAWIAGRSLN 
KVFSNG-ADLSGVTEEA--PLKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIP 
DVFSSS-ANLSGISSAE--SLKISQAVHAAHAEINEAGREVVGSAEAGVDAASVS 
DLFTNQ-ANFSRITQDA--QLKSSKVVHKAVLQLNEEGVDTAGSTGVTLNLTSKP 

< ..... s5A ..... >< ..... s4A .... > 

400 410 420 430 

PNRVTFKANRPFLVFIREVPLNTIIFMGRVANPCVK 
PE---VKFNKPFVFLMIEQNTKSPLFMGK~4NPTQK 
EE---FRADHPFLFCIKHIATNAVLFFGRCVSP 
II---LRFNQPFIIMIFDHFTWSSLFI2kRVMNPV 
<--slC--> <--s4B--> <---s5B---> 

a plasma corticosteroid carrier protein,  has been 
proposed on the basis of the known a,-AT structure 
[33]. 

Carbohydrate 

There are 4 glycosylation sites in human ATIII. Three 
of them, Asn96, 155 and 192, have been identified in 
the bovine ATIII sequence. They are located at the 
surface of the protein, their side-chain pointing 
towards the solvent. Asn96 is located in a loop between 
2 helices. Asn155 lies in the N-terminal part of a helix 
and Asn192 is located at the C-terminal part of another 
helix. The fourth (Asn135) belongs to a region of the 
polypeptide chain which has not yet been sequenced. 
In 2 cases (Asn155 and Asn192), there is electron 
density at the expected locations that might account for 
the carbohydrate chains (fig 4). 

The location of the carbohydrate chains are of clear 
importance concerning the structure-function 
relationships in antithrombin III. There is experimen- 
tal evidence concerning ATIII variants of increased or 
decreased heparin affinity: one of them, antithrombin 
13, is deprived of its carbohydrate side chain at position 
Asn135 and has been shown to display a higher affinity 
to heparin [34]. On the contrary, the mutation at 

position 7 from Ile to Asn, which is then subject to 
glycosylation, leads to a decreased affinity for heparin 
[35]. It is clear that these carbohydrate chains are in 
the neighborhood of the heparin binding site in 
antithrombin III. The description of their conformations 
and interactions will be of interest with respect to 
functional and crystal packing effects. We observed 
during the crystallization assays that the results were 
dependent upon the protein batches and the micro- 
heterogeneity of the carbohydrate contents. 

Antithrombin pathology 

Three goals might be aimed at in the design of site- 
directed mutagenesis experiments on ATIII: i) to stabi- 
lize the native structure; ii) identify the residues involved 
in thrombin and heparin recognition and binding; 
iii) characterize the essential functional amino acids. 
Important information is already provided by natural 
mutants characterized by protein or cDNA sequencing. 
They all show single amino acid substitution. 

ATIII deficiency can be classified as follows into 2 
types and 5 subtypes [1, 20]: 
Type I: low functional and immunological antithrombin 
- -  subtype Ia: reduced synthesis and /o r  increased turn- 

over of a normal molecule; 
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subt3.19c la: reduced synthesis and /o r  increased turn- 
over of a nomlal molecule; 
subtype Ib: reduced synthesis and /o r  turnover of 
antithrombin with abnormal heparin binding proper- 
ties. 

Type If: low functional, but normal immunological 
antithrombin 

subtype Ila: functional abnormalities affecting both 
the reactive site and the heparin binding site; 
subtype lib: functional abnormalities limited to the 
reactive site; 
subtype IIc: functional abnormalities limited to the 
heparin binding site. 

- -  antithrombin Northwick Park, Arg393 to Cys [36]; 
--antithrombin Glasgow, Arg393 to His [37]; 

antithrombin Denver, Ser394 to Leu [38]; 
- -  antithrombin Utah, Pro407 to Leu [39]; 

antithrombin Hamilton, Ala382 to Thr [40]. 

Three of these mutations occur at the P1 and PI '  posi- 
tions (PI, P! '  define the ATIII reactive site Arg393- 
Ser394). Interestingly, it was shown for aI-AT that the 
protease selectivity could be changed by a single 
mutation: a genetically engineered oq-AT, where the 
Met to Arg mutation at P1 position was made, trans- 
formed the anti-elastase inhibitor to an anti-thrombin 
inhibitor [41]. 

Thrombin binding deficiency Heparin binding deficiency 

The following mutations, resulting in ATIII deprived of 
thrombin inhibition, have been characterized: 

The rate of association of ATIII with thrombin and 
factor Xa is increased by 3 - 4  orders of magnitude 

Fig 2. Electron density (OMIT map) of a helical portion of bovine ATIII. The model results from molecular dynamics refine- 
ment at 3.2 A. (R-factor = 28%). 
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Fig 3. Schematic representation of ATIII using the RIBBON 
program [64]. Residues 394 and 395 (the cleavage site) are 
respectively found at the C-terminal end of strand 4A and 
at the N-terminal part of strand !C. Strands 4A and !C are 
labelled according to the structural element classification of 
aI-AT. The 3 disulfide bridges, C8-C128, C21-C95 and 
C247-C430, and the 4 glyeosylation sites (N96, N135, N155 
and N192) are visible in this orientation. 

upon binding of heparin [8, 42]. The single penta- 
saccharide sequence responsible for the specific 
heparin binding to ATIII was determined [10, 11]. 
Some ATIII amino acids involved in the binding site 
site of heparin were identified in congenital variants of 
ATIII with decreased heparin affinity (subtype IIc; 
after Finazzi et al [20]): 

antithrombin Toyama, Arg47 to cys [43]; 
antithrombin Rouen I, Arg47 to His [44]; 

- -ant i thrombin Rouen II, Arg47 to Ser [45]; 
antithrombin Basel, Pro41 to Leu [46]; 
antithrombin Rouen III, Ile7 to Asn [35]. 

The binding of heparin to ATIII is mediated through 
the interaction of some specific sulphate groups of 
heparin with basic amino acids of ATIII. Indeed, 
several of these residues were identified as essential for 

heparin binding: Lysl07 [47], Lys114 [48], Lys125 [49] 
and Lys136 [47]. Three other lysine residues, Lys290, 
294 and 297, were predicted as also being close to the 
heparin binding site [50]. It has been shown by chemical 
modification studies that tryptophan 49 is also involved 
[51]. These essential residues for heparin binding are 
displayed on the 3-dimensional structure of ATIII in 
figure 5. They form a large contact area, wrapped 
around the molecule from lie7 to Lys297. 

Kinetically, heparin binding to ATIII occurs as a 
2-step reaction with a dissociation constant of 4.3 10 -5 M 
for the initial binding step. Complexed ATIII then 
undergoes a conformational change which leads to a 
300-fold increase in affinity of heparin for ATIII [52]. 
Furthermore, it has been shown that the binding cons- 
tant for the low affinity state is the same as that for 
cleaved antithrombin [53]. Thus, it is postulated that 
the cleaved molecule cannot undergo the conformational 
change which leads to the high affinity state. This 
conformational change of ATIII might also modify the 
reactive site. Another explanation for the heparin 
accelerating effect of ATIII-thrombin formation arises 
from the hypothesis that a ternary complex thrombin- 
heparin-ATIII is formed [54], in which heparin behaves 
as a template in order to bring the active site of the pro- 
tease into close contact to the reactive site of ATIII 
[55]. However, such a mechanism cannot account for 
factor Xa activation, which is known to be due to a 
conformational change. 

Discussion and Conclusion 

The structure-function relationships in antithrombin 
III mainly concern 2 aspects: the double specificity of 
the molecule; and its relationships to the serpin family. 

Obviously, the full molecular recognition process 
between ATIII and heparin requires knowledge of the 
native structure of the inhibitor. Thus 2 questions to be 
answered are: what does the native structure look like; 
and how can the drastic conformational change that 
occurs upon cleavage be explained? 

It has been shown from denaturation experiments 
that some members of the serpin superfamily (eg ATIII 
and at-AT) undergo an increase in heat stability upon 
cleavage [18, 56-58], while others such as ovaibumin 
and angiotensinogen do not [59]. Further experiments 
on the intact and proteolyticaily modified forms of 
these inhibitors have been performed using circular 
dichroism and fluorescence spectra [60] and tH NMR 
spectroscopy [61]. When heat stability of the cleaved 
form has been observed, the hypothesis of a native 
stressed (S) and cleaved relaxed (R) structures has 
been postulated [18, 56, 57]. The corresponding struc- 
tural hypothesis was that in their native form, these 
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IFlg 4. Electron density in the vicinity of Asn192 side chain. The density which clearly extends towards the solvent corresponds 
to the carbohydrate chain. 

Kl14 

Fig 5. Ribbon schematic representation of ATIII. The 
amino acids involved in heparin binding are shown (ATIII 
sequence numbering and one letter code amino acid sym- 
bols). 

proteins possess an accessible loop built up after 
extraction of strand 4A from the main pleated sheet 
[!9, 62] (see fig 2). This loop would fold in sheet A in 
the (R) structure. However, the nature of the structural 
transition proposed and the fact that it cannot explain 
some punctual mutations (eg Ala382 to Thr, Pro407 to 
Leu) justify the fact that alternative models should not 
be underestimated. Toma et al [63] proposed a model 
of the native structure of protein C inhibitor, a member 
of the serpin family which inhibits activated protein C. 
The reconstruction, based on the cleaved al-AT struc- 
ture, involves a movement of serine 359 together with 
strand 1C towards Met358 (oq-AT numbering). An 
approach based on small modifications of the cleaved 
structure of ATIII was performed and led to a model 
of native ATIII which does not alter the overall topology 
of the molecule and allows explanation of biochemical 
data and mutants with functional deficiency (unpublished 
results). 
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In conclusion, we believe that the structural nature of 
the native state of ATIII and other members of the ser- 
pin family remains an open question. 
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