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ABSTRACT
In this paper, we carry out simulations of radial velocity (RV) measurements of the mass of
the 8–11 Myr Neptune-sized planet K2-33b using high-precision near-infrared velocimeters
like SPIRou at the Canada–France–Hawaii Telescope. We generate an RV curve containing
a planet signature and a realistic stellar activity signal, computed for a central wavelength
of 1.8 μm and statistically compatible with the light curve obtained with K2. The modelled
activity signal includes the effect of time-evolving dark and bright surface features hosting a
2 kG radial magnetic field, resulting in an RV signal of semi-amplitude ∼30 m s−1. Assuming
a 3-month visibility window, we build RV time series including Gaussian white noise from
which we retrieve the planet mass while filtering the stellar activity signal using Gaussian
process regression. We find that 35/50 visits spread over three consecutive bright-time runs
on K2-33 allow one to reliably detect planet RV signatures of, respectively, 10 and 5 m s−1 at
precisions >3σ . We also show that 30 visits may end up being insufficient in some cases to
provide a good coverage of the stellar rotation cycle, with the result that the planet signature
can go undetected or the mass estimation be plagued by large errors.

Key words: methods: statistical – techniques: radial velocities – stars: activity – stars: indi-
vidual: K2-33 – planetary systems.

1 IN T RO D U C T I O N

Planet formation and evolution models critically need observational
constraints on how planet bulk densities vary with time in the early
stages of their lives (e.g. Mordasini et al. 2012; Alibert et al. 2013).
This requires to measure radii of transiting planets through the
relative depths of their photometric transits on the one hand, and
masses through the semi-amplitudes of their radial velocity (RV)
curves, on the other hand. Both measurements are challenging for
pre-main-sequence (PMS) stars known to exhibit intense magnetic
activity (e.g. Bouvier & Bertout 1989) inducing photometric and
RV fluctuations that largely overshadow the planet signatures (e.g.
Crockett et al. 2012). As a result, only a handful of candidate close-in
giant planets younger than 20 Myr have been unveiled so far, either
using RV observations (Donati et al. 2016; Johns-Krull et al. 2016;
Yu et al. 2017) or transit photometry (David et al. 2016; Mann et al.
2016; David et al. 2019a,b). None of them have a well-measured
bulk density.

Observing PMS stars in the near-infrared (nIR) rather than in the
V band should make it easier to separate the planet signature from
the stellar activity signal as the latter is expected to be weaker in
this domain (Mahmud et al. 2011) and the stars are significantly
reddened. High-precision nIR velocimeters like SPIRou (Donati
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et al. 2018), CARMENES (Quirrenbach et al. 2014), GIARPS
(Claudi et al. 2017), or NIRPS (Wildi et al. 2017) are thus the most
promising instruments worldwide to carry out mass measurements
of close-in transiting planets orbiting PMS stars. Magnetic fields
are however expected to affect stellar RV activity signals (Reiners
et al. 2013; Hébrard et al. 2014), making the problem non-trivial and
worth a detailed simulation study. This is especially relevant given
that 300 nights of Canada-France-Hawaii Telescope (CFHT) time
are already allocated to the SPIRou Legacy Survey (SLS), some of
them being dedicated to the RV follow-up of stars hosting transiting
planets, with the goal of measuring the planet masses.

K2-33 is an 8–11 Myr M3 PMS star located in Upper Scorpius
that was shown to host a 5-R⊕ close-in transiting planet (David
et al. 2016; Mann et al. 2016, hereafter D16 and M16, respectively)
from the 80-d continuous light curve obtained during campaign 2 of
the K2 mission (Howell et al. 2014). K2-33 will be observed with
SPIRou as part of the SLS in an attempt to measure the mass of its
close-in planet through RV observations. In this study, we propose
to use K2-33 as a representative of the PMS stars to be observed
within the SLS. We simulate SPIRou RV observations of this star
and attempt retrieving the RV signature of the Neptune-sized planet
assuming various planet masses, sampling schemes and levels of
white noise. In Section 2, we outline how we generate the realistic
synthetic time series for K2-33 and, in Section 3, their modelling
in order to filter the stellar activity signal while estimating the
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Simulated mass measurement of K2-33b L93

Table 1. Main stellar properties used to generate stellar activity
photometric and RV curves for K2-33.

Parameter Value Notes

Prot 6.35 d Main peak in ACF (see Fig. 2)
vsin i 8.2 km s−1 From M16
Teff 3475 K Average between M16 and D16
i 88◦ Average between M16 and D16
pr 0.3 per cent –
log10sr N (−2.6, 0.1) –
tr 18.0 Prot Rescaled by a factor ∝ sr

planet parameters. We finally summarize our results and discuss
their implications in Section 4.

2 SYN THETIC RV DATA SETS

Our method to simulate RV observations of K2-33 with SPIRou is
similar to that described in Klein & Donati (2019, hereafter K19).
We first generate a densely sampled RV curve, containing a planet
signature and a stellar activity signal whose statistical properties are
consistent with that of the K2 light curve which encloses information
about the evolution properties of the features at the surface of the
star. We then create RV time series by selecting observation dates
using different schemes and adding noise to account for the various
sources that may affect the data.

2.1 Stellar activity RV curve

Using the method described in K19, we model the stellar surface into
a dense grid of 100 000 cells and generate 80 d densely sampled
photometric and RV curves. This model includes time-evolving
bright/dark features whose effective temperatures are scaled from
Berdyugina (2005) and whose brightnesses are inferred using
Planck’s law at K2 and SPIRou central wavelengths, respectively,
for the photometric and RV curves. Each feature is also assumed to
host a radial magnetic field of 2 kG to account for the significant
Zeeman splitting of the line profiles at SPIRou’s central wavelength
(e.g. Reiners et al. 2013).

We tune the appearance probability pr of activity features at the
surface of the star at each time-step as well as their lifetimes tr

and maximum relative areas sr so as the autocorrelation function
(ACF) of the synthetic photometric curve is similar to that of the K2
light curve detrended with the EVEREST software (Luger et al. 2016,
2018). The stellar parameters adopted to generate the stellar activity
curves are shown in Table 1. Note that we rescaled the total lifetime
of each injected feature by a factor ∝ sr so that the larger the feature,
the longer its lifetime, in agreement with what is observed on the
K2 light curve. The photometry and RV curves resulting from our
activity model are shown in Fig. 1. Their ACFs are superimposed
to that of the detrended K2 light curve in Fig. 2, showing a good
overall agreement.

We then compare the statistical properties of the newly synthe-
sized photometric and RV curves to that of the K2 light curve
by independently modelling the rotationally modulated component
within each curve using Gaussian process regression (GPR; Ras-
mussen & Williams 2006). The K2 light curve being affected by
short-lived phenomena like flares and planetary transits, we use a
specific process to extract the signal produced by inhomogeneities
at the surface of the star. We first build a reduced photometric data
set by dividing the K2 light curve into 200 consecutive time intervals

Figure 1. Synthetic photometry and RV curves of K2-33. From top to bot-
tom: synthetic relative brightness curve in K2 spectral band; corresponding
stellar activity RV curve at SPIRou’s central wavelength; expected planet
RV signatures for semi-amplitudes of 10 and 20 m s−1 (blue solid line and
black dashed line, respectively); resulting RV curves.

Figure 2. ACFs of the EVEREST-detrended K2 light curve (black dashed
line), synthetic photometric curve (red solid line), and synthetic stellar
activity RV curve (blue solid line). The stellar rotation period is indicated
by the vertical dashed line.

of equal duration and then by computing the median of all the points
within each interval. We then model the resulting 200-point light
curve using GPR assuming a quasi-periodic covariance kernel (e.g.
Haywood et al. 2014), k, which relies on a vector of four so-called
hyperparameters, θ , such that

k(ti , tj ) = θ2
1 exp

[
− (ti − tj )2

θ2
2

−
sin2 π(ti−tj )

θ3

θ2
4

]
, (1)

where ti and tj are the times associated with observations i and j, and
θ1 to θ4, respectively, stand for the amplitude, evolution time-scale,
recurrence period, and smoothing factor of the Gaussian Process
(GP). θ is estimated by maximizing its posterior density sampled
using a Bayesian Markov Chain Monte Carlo (MCMC) process.
We then use the trained GP to predict the values of the rotationally
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L94 B. Klein and J.-F. Donati

Table 2. Prior densities (π; columns 2 and 3), and best estimates of θ (columns 4–6) obtained when modelling
the stellar activity photometry (Yk and Ys for K2 and synthetic curves respectively) and RV (Vs) curves. U
stands for the uniform distribution. Note that we use the Gaussian distribution N (6.35d, 0.04d) as a prior
density law for θ3 when modelling the RV time series described in Section 3.

Param. π(θ |Yk), π(θ |Ys) π(θ |Vs) Yk Ys Vs

ln θ1 U (−10, 1) U (−2, 7) − 4.6 ± 0.2 − 4.9 ± 0.2 2.9 ± 0.2 [ln m s−1]
ln (θ2[d]) U (1.0, 7.0) U (1.0, 7.0) 2.94 ± 0.04 3.27 ± 0.08 3.58 ± 0.10
θ3 [d] U (5.5, 7.5) U (6.25, 6.65) 6.35 ± 0.04 6.36 ± 0.02 6.35 ± 0.01
θ4 U (0.1, 5.0) U (0.1, 4.0) 1.01 ± 0.1 0.71 ± 0.06 0.33 ± 0.02

modulated photometric signal at the times of K2 observations and
reject the points deviating from the GPR prediction by more than 3σ ,
then repeat the process until no point is rejected. The prior densities
used for the hyperparameters as well as their best estimates are
shown in Table 2.

We select 250 evenly sampled data points from the densely
sampled synthetic photometric and RV curves, add a Gaussian
white noise of respectively ∼300 ppm and 2 m s−1 and use GPR
to independently model the two data sets (called Ys and Vs,
respectively) in order to estimate their statistical properties. The
outcome of the fit as well as the adopted prior densities are given
in Table 2 (rms of the residuals of 300 ppm and 1.8 m s−1 for Ys

and Vs, respectively). The significantly larger θ2 in the RV time
series comes from the fact that the RV activity signal is dominated
by the larger, slowly evolving features, whereas the signatures of
the smaller, rapidly evolving features are partly drowned in the
Gaussian white noise. Conversely, we note that θ4 is roughly twice
as large in photometry than in RV, which is expected given that a
feature at the stellar surface produces an RV signature that evolves
roughly twice as fast as its photometric counterpart (see Aigrain,
Pont & Zucker 2012). We also observe notable variations of θ2 and
θ4between the two photometric time series (Yk and Ys), indicating
(i) slightly longer evolution time-scales for the modelled features
and (ii) a lower smoothing factor for the synthetic light curve.

2.2 Planet RV curve

Consistently with the modelled planet transit curves of M16, we
assume that K2-33b’s orbit is circular, and thus that the expected
RV signal that the planet induces in the spectrum of its host star is
given by

Vr (t) = Kp cos

(
2π

Porb
t + φp

)
, (2)

where Kp, Porb and φp are respectively the semi-amplitude, orbital
period, and phase of the signal. Since the planet mass is the
main parameter we aim at characterizing, and as such is not well
known, we consider different values for Kp listed along with the
corresponding planet mass (computed using the parameters reported
in D16 or M16) in Table 3. In what follows, we assume that the
planet orbital period and phase are given by the average of the values
measured by D16 and M16.

2.3 Creating the time series

From the densely sampled stellar activity and planet curves de-
scribed above, we generate RV time series assuming that observa-
tions are carried out from the CFHT during three consecutive 15
d-bright time periods centred on full moons. Among the potentially
observable nights included in our visibility window, we build data

Table 3. Summary of K2-33b parameters reported in D16 and M16
(columns 3 and 4, respectively). The planet masses, Mp, are computed
by means of Kepler’s third law using the stellar mass and planet orbital
period reported in each article ( standing for Neptune mass).

Source David et al. (2016) Mann et al. (2016)

Kp 5 m s−1 Mp = 0.37 Mp = 0.54
10 m s−1 Mp = 0.73 Mp = 1.09
20 m s−1 Mp = 1.47 Mp = 2.18

Porb 5.42513 d 5.424865 d
φp 0.374 rad 0.375 rad

sets with N = 30, 35, 40 randomly selected data points at airmass
�1.8. We also consider a more optimistic case with data sets of
N = 50 data points randomly selected on three consecutive CFHT
bright time periods of 20 d each. For each value of N, we build 8 sets
of 10 RV time series with different realizations of white noise, each
set being drawn using a different distribution of observing epochs.
We deal with the various sources of noise expected to pollute the RV
time series (e.g. photon and instrument noises) by adding a centred
Gaussian white noise with standard deviations, σ n, of 2 m s−1 for an
optimistic case, or 5 m s−1 for a more conservative case achievable
for velocimeters like SPIRou on as faint a target as K2-33.

3 MODELLI NG THE TI ME SERI ES

3.1 Method

We model the synthetic RV time series using the method detailed
in K19. Assuming that Porb is known from photometry, the planet
RV signature described by equation (2) can be expressed as a linear
function of parameters depending on Km and φm, i.e. respectively
the semi-amplitude and orbital phase of the RV signal induced by
the planet on the stellar spectrum to recover. The stellar activity
RV signal is modelled using GPR assuming the four-parameter
quasi-periodic covariance kernel defined in equation (1). We use
the EMCEE affine invariant sampler (Foreman-Mackey et al. 2013,
5000 iterations of 100 walkers) to sample the posterior density
of the model marginalized over the planet parameters. The prior
densities adopted for θ are given in Table 2. The median and 1σ

error bars on θ are computed from the posterior densities after
removing a burn-in period of ∼100 000 steps (i.e. 1000 iterations
of 100 walkers), while the planet parameters are estimated using a
least-squares estimator computed at the value of θ that maximizes
the likelihood of the model (hereafter θb). The resulting Gaussian
posterior density for Km is convolved with the distribution of the
semi-amplitudes of the planetary signal obtained by applying the
aforementioned least-squares estimator to ∼50 000 samples θ (i.e.
500 iterations of 100 walkers), in order to account for correlations
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Table 4. Results of the fit to RV time series for various N and Kp at σ n = 2 m s−1. τ c and τ b stand for the fractions of data sets rejected due to an
unrealistic θb and a too low value for BF, respectively. The values shown in each line are averaged over all the remaining RV data sets of given N and
Kp.

Kp Npts τ c τ b ln θ1 ln θ2 θ3 θ4 Km rms ln Lmax ln BF

(m s−1)
(per
cent)

(per
cent) (ln m s−1) (ln d) (d) (m s−1) (m s−1)

5 30 23 1 2.52 ± 0.18 3.79 ± 0.70 6.37 ± 0.03 0.24 ± 0.07 8.9 ± 2.7 0.46 −106.9 ± 0.9 10.2 ± 0.9
5 35 3 3 2.52 ± 0.17 3.71 ± 0.55 6.35 ± 0.03 0.23 ± 0.06 7.4 ± 2.1 0.53 −124.5 ± 1.4 9.1 ± 1.0
5 40 0 3 2.56 ± 0.17 3.68 ± 0.32 6.36 ± 0.02 0.27 ± 0.05 5.9 ± 1.8 0.55 −140.8 ± 1.6 8.0 ± 1.2
5 50 0 0 2.67 ± 0.18 3.59 ± 0.17 6.35 ± 0.02 0.27 ± 0.04 6.0 ± 1.1 0.64 −175.4 ± 2.0 13.9 ± 1.9

10 30 21 1 2.51 ± 0.18 3.96 ± 0.76 6.38 ± 0.03 0.25 ± 0.07 13.5 ± 2.6 0.45 −107.2 ± 1.2 14.2 ± 0.8
10 35 4 0 2.52 ± 0.17 3.70 ± 0.53 6.35 ± 0.03 0.23 ± 0.06 11.4 ± 1.9 0.53 −123.2 ± 1.1 14.9 ± 1.1
10 40 0 0 2.55 ± 0.17 3.68 ± 0.33 6.36 ± 0.02 0.26 ± 0.05 10.6 ± 1.7 0.54 −141.3 ± 1.5 15.6 ± 1.4
10 50 0 0 2.67 ± 0.17 3.59 ± 0.17 6.35 ± 0.02 0.28 ± 0.04 10.8 ± 1.1 0.66 −175.8 ± 2.1 23.0 ± 1.7

20 30 18 0 2.52 ± 0.18 3.90 ± 0.77 6.38 ± 0.03 0.23 ± 0.07 23.2 ± 2.6 0.47 −106.7 ± 1.1 22.1 ± 0.8
20 35 1 0 2.52 ± 0.17 3.66 ± 0.54 6.35 ± 0.03 0.23 ± 0.06 20.6 ± 1.9 0.53 −124.7 ± 1.4 25.3 ± 1.4
20 40 0 0 2.56 ± 0.17 3.63 ± 0.32 6.36 ± 0.03 0.27 ± 0.05 20.4 ± 1.8 0.55 −141.3 ± 1.7 26.9 ± 1.6
20 50 0 0 2.67 ± 0.17 3.59 ± 0.17 6.35 ± 0.02 0.27 ± 0.04 20.8 ± 1.0 0.65 −175.0 ± 1.7 37.0 ± 1.4

Table 5. Same as Table 4 for σ n = 5 m s−1.

Kp N τ c τ b ln θ1 ln θ2 θ3 θ4 Km rms ln Lmax ln BF

(m s−1)
(per
cent)

(per
cent) (ln m s−1) (ln d) (d) (m s−1) (m s−1)

5 30 33 1 2.52 ± 0.21 3.76 ± 0.95 6.37 ± 0.03 0.25 ± 0.09 10.0 ± 3.0 2.27 −109.7 ± 2.3 8.5 ± 1.4
5 35 9 1 2.50 ± 0.20 3.85 ± 0.81 6.36 ± 0.03 0.23 ± 0.08 8.5 ± 2.5 2.49 −128.2 ± 2.1 8.4 ± 1.5
5 40 1 8 2.56 ± 0.19 3.75 ± 0.50 6.36 ± 0.03 0.25 ± 0.06 7.1 ± 2.6 2.53 −147.5 ± 2.6 7.1 ± 1.4
5 50 1 0 2.60 ± 0.18 3.68 ± 0.29 6.36 ± 0.02 0.25 ± 0.06 6.3 ± 1.6 2.73 −184.7 ± 2.7 10.8 ± 2.2

10 30 28 0 2.55 ± 0.21 3.88 ± 0.90 6.37 ± 0.03 0.25 ± 0.08 14.0 ± 3.0 2.32 −110.1 ± 2.0 12.3 ± 1.4
10 35 10 0 2.52 ± 0.20 3.90 ± 0.88 6.36 ± 0.03 0.23 ± 0.08 12.1 ± 2.6 2.50 −128.6 ± 2.5 13.1 ± 1.9
10 40 3 0 2.58 ± 0.19 3.83 ± 0.54 6.36 ± 0.03 0.25 ± 0.06 11.3 ± 2.5 2.55 −147.9 ± 1.9 12.6 ± 1.6
10 50 0 0 2.62 ± 0.18 3.66 ± 0.30 6.36 ± 0.02 0.24 ± 0.05 11.6 ± 1.6 2.69 −185.5 ± 2.4 18.7 ± 2.0

20 30 25 0 2.49 ± 0.22 3.85 ± 1.02 6.37 ± 0.03 0.24 ± 0.09 24.0 ± 2.8 2.32 −108.8 ± 2.2 19.1 ± 2.0
20 35 4 0 2.54 ± 0.20 3.84 ± 0.90 6.35 ± 0.03 0.23 ± 0.08 22.2 ± 2.6 2.47 −127.6 ± 2.1 21.9 ± 2.1
20 40 0 0 2.55 ± 0.19 3.83 ± 0.53 6.37 ± 0.03 0.25 ± 0.06 20.8 ± 2.4 2.51 −147.4 ± 2.0 23.4 ± 2.1
20 50 0 0 2.61 ± 0.18 3.63 ± 0.29 6.36 ± 0.02 0.24 ± 0.05 21.3 ± 1.6 2.69 −184.9 ± 2.7 30.2 ± 2.4

between planet and stellar activity parameters when computing the
error bars. This process results in increasing the error bars on Km

by typically a few per cent.
The quality of the planet detection within the RV time series is

assessed using the so-called Bayes factor (BF, see equation 2 from
Dı́az et al. 2014, for a proper definition) to compare the marginal
likelihoods of models assuming 0 (i.e. stellar activity and white
noise only) and 1 planet signature in the data sets. The resulting BF,
computed using the method introduced in Chib & Jeliazkov (2001),
allows to derive the posterior odds ratio which gives an estimation
of the significance of the retrieved planet signal in each data set.
Following Jeffreys (1961), we take BF >150 (5 in log) to be the
criterion to diagnose a fair detection of K2-33b.

3.2 Results

We independently model the mock RV time series described in
Section 2.3 using the process described in Section 3.1 and reject
those for which (i) the MCMC process did not converge (e.g.
posterior density presenting multiple local minima or stuck on one
of the prior boundaries) or (ii) BF lies below the planet detection
threshold.

The outcomes for each value of N and Kp, averaged over all the
8 sets of 10 RV time series, are given in Tables 4 and 5 for σ n of 2
and 5 m s−1, respectively. We note that respectively 18–24 per cent
and 25–33 per cent of data sets with N = 30 are rejected for the two
cases of considered white noises, mainly due to the fact the MCMC
process tends to minimize θ4, resulting in strongly overfitting the
data. Moreover, Km is strongly overestimated in the remaining RV
time series, consistently with Damasso et al. (2019) for similar
cases with too few observational constraints. BF is also affected by
this overestimation, as evidenced by its surprisingly high values,
especially for the lowest Kp considered in this study. This shows
that most data sets with N = 30 are too sparse to provide a dense-
enough coverage of the rotation cycle, leading to excess flexibility
for the GP and resulting in erroneous estimates for Km.

The reconstruction of the data sets is considerably improved
for N ≥ 35, as evidenced by (i) the good agreement between the
statistical properties of the RV curve (see Table 2) and the output GP
parameters and (ii) the more accurate retrieval of Km (see also the
illustration given in Fig. 3). The overestimation noted for Km at N =
30 strongly decreases at N = 35 and is no longer significant at N �
40. We find that planet signatures of Kp � 10 m s−1 are reliably
recovered at precisions of 5σ and 4σ for σ n of 2 and 5 m s−1,
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L96 B. Klein and J.-F. Donati

Figure 3. Best fit to one of our synthetic RV data sets containing N = 40
data points and assuming Kp = 10 m s−1 and σ n = 2 m s−1 rms. From
top to bottom: RV data set, stellar activity RV signal, planet signature, and
residuals. In each panel, the true RV signal is shown in red dotted lines,
while the best predictions from the model are shown in green dashed lines
and grey solid lines (resp. 1σ error bands for panel 2), respectively, when
imposing the orbital phase of the planet RV signal to be that derived from the
photometry and when regarding it as a free parameter. Curves and data points
in the two middle panels are obtained by subtracting from the synthetic data
all the modelled components except that displayed in the panel.

respectively. Finally, Kp = 5 m s−1 is fairly detected at 3σ for
N = 50 data points while it remains marginally recovered for lower
number of visits.

Imposing the planet orbital phase to be that derived from photom-
etry barely improves the precision of Km and does not significantly
impact the detectability of the planet. Moreover, we find that low-
to-moderate elliptical planet signatures with eccentricities �0.2
marginally impacts Km as well as its error bars. We thus expect our
algorithm to yield accurate estimates of the mass of K2-33b whose
orbit is unlikely to be strongly elliptical (see Mann et al. 2016).
Constraining the eccentricity of moderately elliptical planet orbits
will require significantly more measurements that what we propose
in this study, as assessed by preliminary simulations showing that
uncertainties of the order of 0.15 on the eccentricity of the planet
orbit require typically 100 visits to be achieved.

Finally, as already discussed in K19, in the specific case where
the amplitude of the stellar activity signal is significantly larger than
σ n and the RV time series contain a low number of data points, the
GP tends to adapt by slightly adjusting θb to partly reconstruct the
noise. Note that this trend decreases when σ n and/or N increase in
our simulations (see Tables 4 and 5).

4 C O N C L U S I O N S

In this work, we simulated mass measurements of the young planet
K2-33b, using synthetic RV time series assuming different sampling
schemes, levels of white noise and semi-amplitudes of the planet
signal. We found that 35/50 SPIRou visits spread on a 3-month
visibility window are enough to reliably detect planet signatures
of 10/5 m s−1 at precisions >3σ at a white noise level �5 m s−1.
Conversely, 30 visits over the same time span often yield synthetic
data sets that can be inconclusive about the presence of the planet
or lead to large errors in the estimated mass.

As suggested in M16, the substantial decrease in the stellar
activity RV signal from visible wavelengths to the nIR makes
K2-33 ideally suited for RV observations with high-precision nIR
velocimeters like SPIRou. Our simulations demonstrate that the
RV signature of the close-in Neptune-like planet K2-33b can be
detected at a 3σ level for a planet mass of �0.5 , provided that
the observational sampling is dense enough.

K2-33b being significantly younger than all the planets with well-
measured masses and radii, its nature is still unclear. Measuring the
planet mass and hence probing its inner structure and composition
will help unveiling its nature as well as constraining the evolution
of its bulk density throughout the formation stage (see the review
from Baruteau et al. 2016).

Consistently with K19, this study demonstrates the crucial need
for RV follow-ups of stars hosting transiting planets to densely
cover both the planet orbital period and stellar rotation cycles,
on time-scales that are of the same order of the one on which
stellar activity changes. Stars with activity features evolving on
time-scales of tens of days, and rotation periods of only a few
days, are therefore the most suited targets for RV follow-ups
with high-precision velocimeters, as the mass of their transiting
companions can be accurately measured in a single ∼90-d window.
NIR RV observations with sampling schemes similar to that we
propose, as those being currently carried out in the framework of
the SPIRou Legacy Survey, are thus likely to provide soon reliable
mass measurements of transiting PMS planets such as K2-33 and
V1298 Tau (David et al. 2016, 2019a, b).
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