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Staking layered materials revealed to be a very powerful method to tailor their electronic properties. It has
indeed been theoretically and experimentally shown that twisted bilayers of graphene (tBLG) with a rotation
angle θ , forming Moiré pattern, confine electrons in a tunable way as a function of θ . Here, we study electronic
structure and transport in tBLG by using tight-binding numerical calculations in commensurate twisted bilayer
structures and a pertubative continuous theory, which is valid for not too small angles (θ >∼ 2◦). This two
approaches allow to understand the effect of θ on the local density of states, the electron lifetime due to disorder,
the dc-conducitivity and the quantum correction of the conductivity due to multiple scattering effects. We
distinguished the cases where disorder is equaly distributed in the two layer or only in one layer. When only
one layer is disordered, diffusion properties depends strongly on θ , showing thus the effect of Moiré electronic
localisation at intermediate angles, ∼ 2◦ < θ <∼ 20◦.

I. INTRODUCTION

Staking layered materials is a very powerful method to tai-
lor their electronic properties.1 The properties not only depend
on the choice of materials to be stacked but also on the de-
tails of the relative arrangement of the layers. It has thus been
theoretically2–7 and experimentally8–11 shown that twisted bi-
layers of graphene, forming Moiré pattern, confine conduc-
tion electrons in a tunable way as a function of the angle of
rotation of one layer with respect to the other. Recently, it
has been experimentally proven that this electronic localiza-
tion by geometry can induce strong electronic correlations12

and a superconducting state13 for certain angles called magic
angles.6 Despite numerous studies of the electronic structure
of these systems,2–11,14–24 the consequences of the electronic
localization by a Moiré on electrical transport properties are
still very poorly known.

Graphene can be formed in multilayers on SiC25–33 but also
on metal surfaces such as Ni9 and in exfoliated flakes,8 where
interactions between successive layers play a crucial role.
While on the Si face of SiC, multilayers have an AB Bernal
stacking and do not show graphene properties,25–27,34–38 on
the C-face multilayers are twisted multilayers of graphene
with various angles of rotation between two layers. For
large twisted angle θ between two layers, multilayers present
graphene like properties even when they involve a large num-
ber of graphene planes. Indeed, as shown by ARPES,30–33

STM,39 transport40 and optical transitions,41 they show prop-
erties characteristic of a linear graphene like dispersion.
Therefore, in twisted bilayer graphene (tBLG) interlayer in-
teraction does not systematically destroy graphene like prop-
erties, but it can lead to the emergence of very peculiar and
new behaviors induced by the Moiré patterns that is accen-
tuated for θ smaller than ∼ 20◦. Theoretical studies have

predicted2–7,15 the existence of three domains: (1) for large
rotation angles (θ > 20◦) the layers are decoupled and behave
as a collection of isolated graphene layers. (2) For intermedi-
ate angles ∼ 2◦ < θ < 20◦ the dispersion, around Fermi en-
ergy EF , remains linear but the velocity is renormalized. Con-
sequently, the energies of the two van Hove singularities E−
and E+ are shifted to Dirac energy ED when θ decreases, as
it has been shown experimentally.9,10,42,43 (3) For the lowest
θ , θ <∼ 2◦, almost flat bands appear and result in electronic
localization: states of similar energies, belonging to the Dirac
cones of the two layers interact strongly. In this regime, the
velocity of states at Dirac point goes to almost zero for spe-
cific angle so-called magic angles.3,6,7

In this paper, we study the consequence of the tunable ef-
fective coupling between layers by angle θ with intermediate
values, ∼ 2◦ < θ <∼ 20◦, on local density of states (LDOS)
and transport properties. We combine tight-binding numerical
calculations for commensurate tBLG and a perturbative con-
tinuous theory (see Appendix) that gives us deeper insight on
θ effect. To analyze transport properties numerically in bulk
2D systems, we consider local defects,44,45 such as adsorbates
or vacancies, that are resonant scatters. Local defects tend to
scatter electrons in an isotropic way for each valley and lead
also to strong intervalley scattering. The adsorbate is simu-
lated by a simple vacancy in the plane of pz orbital as usually
done.46–48 Indeed the covalent bonding between the adsorbate
and the carbon atom of graphene to which it is linked, elimi-
nates the pz orbital from the relevant energy window. We con-
sider here that the up and down spins are degenerate, i.e. we
deal with a paramagnetic state. Indeed the existence and the
effect of a magnetic state for various adsorbates or vacancies
is still debated.49,50 In the case of a magnetic state the up and
down spins give two different contributions to the conductiv-
ity but the individual contribution of each spin can be analyzed
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TABLE I. Studied (n,m) bilayer structures. N is the number of
atoms, θ the rotation angle.

(n,m) θ [deg.] N

(12,13) 2.656 1876
(10,11) 3.150 1324
(8,9) 3.890 868
(6,7) 5.086 508
(5,6) 6.009 364
(4,5) 7.341 244
(7,9) 8.256 772
(10,13) 8.613 1596
(3,4) 9.430 148
(8,11) 10.417 1092
(2,3) 13.174 76
(5,9) 18.734 604

from the results discussed here. We considerthe case (i) where
defects are located in the two layers with respect to the case
(ii) where defects are located on one layer (layer 2) only.

In Sec. II, tight-binding (TB) local Density of states
(LDOS) in pristine tBLG and the effect of disorder on to-
tal DOS (TDOS) are analyzed with respect to our analytical
model for commensurate tBLG. The spatial modulation of the
DOS shows an increase of the DOS in AA region of the Moiré.
This is a precursor of the localization in the AA region for very
low angles less than ∼ 2◦.3,7 The electrical dc-conductivity at
high temperature (microscopic conductivity) is studied Sec.
III A, and quantum corrections of conductivity (low tempera-
ture limit) are presented Sec III B. The method to compute de
conductivity is given in the appendix A. Numerical resuts of
the paper are analyzed using the analytical continous model
presented in appendix B and C. This pertubative theory re-
covers known results for the velocity renormalization,2,15 but
provides new analytical results concerning LDOS and state
lifetime versus θ values.

The method to built commensurate tBLG is well known and
explained in many articles. Here we use the notations used in
our previous papers3,7,16 where each tBLG is built from two
index n and m (table I). For |m−n|= 1 the cell of the bilayer
contains one Moiré cell, whereas for |m− n| > 1 the cell of
the bilayer contains several Moiré cells.

II. DENSITY OF STATES

A. Without defect

We first analyze the local density of states (LDOS) in pris-
tine twisted bilayer graphene (tBLG) computed with the TB
Hamiltonian detailed in the Refs 7. It is now well known
theoretically7,10,15,16 and experimentally10,43 that the energies
E− and E+ of Van Hove singularities vary linearly with the
angle θ for θ >∼ 2◦. This is clearly seen in the LDOS on pz
orbital of atom located at the center of AA area of the Moiré
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FIG. 1. (color online) Local density of states (LDOS) at the center
of a AA zone in pristine tBLG listed table I for tBLG with different
rotation angle θ [Deg.]. Some LDOS are taken from Ref. 7. ED = 0.

(Fig. 1). Since our TB Hamiltonian includes coupling beyond
the first neighboring atoms, the electron / hole symmetry is
slightly broken and E− is not strictly equal to −E+.

The LDOS in one layer of the bilayer as a function of posi-
tion~r in the Moiré structure is

ρ(E,~r) = 〈~r|δ (E−H)|~r〉 . (1)

To compare LDOS in bilayer with LDOS in monolayer we
compute the relative variation of the LDOS due to inter-
layer interaction ∆ρ(E,~r)/ρm(E), with ∆ρ(E,~r) = ρ(E,~r)−
ρm(E), where ρm(E) is the LDOS in monolayer that does not
depend on the position~r.

  

(a.1)           (12,13) tBLG, TB (b.1)            (6,7) tBLG, TB

(b.2)   (6,7) tBLG, analytical model(a.2)  (12,13) tBLG, analytical model
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FIG. 2. (Color online) Relative variation of the LDOS on top layer
at energy E = ED + 0.05 eV, close to the Dirac energy ED, in (a)
(12,13) tBLG and (b) (6,7) tBLG: (a.1) (b.1) TB results and (a.2)
(b.2) analytic results from equation (2). To be compared with analitic
results the TB plots are made by a continuous extrapolation of LDOS
on atomic orbitals. The same arbitrary unit are used for all the 4
LDOS. ED = 0.

The LDOS on each carbon atoms of Moiré has been calcu-
lated using TB. So that density map ρ(E,~r) where ~r are the
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positions of Carbon atoms can be drawn for an energy E. Fig-
ures 2(a.1) and 2(b.1) show relative TB LDOS in (12,13) and
(6,7) bilayers at the energy E = ED + 0.05 eV. The strong in-
crease of LDOS in AA areas with respect to the AB zone are
clearly seen. As expected this difference between LDOS in
AA area and AB area decreases as θ increases. Moreover our
numerical TB calculation recovers the difference in the LDOS
of the two inequivalent atoms in AB area. Indeed in AB area,
as in AB Bernal stacking, C atoms lying above an C atom of
the other layer have a lower LDOS than C atom that do not
lied with a C atom of the other layer. That leads to a triangu-
lar contrast in the density map that has been observed in STM
images? in AB Bernard bilayer. Laurence as-tu une ref? je
n’ai pas réussi à lire le nom de ce phénomènes dans des notes

According to the perturbative analytical model presented in
Appendix (Sec. C 5), the relative variation of the LDOS is
independant of E for small E and it can be estimated by the
simple formula,

∆ρ(E,~r)
ρ(E)

'
(

θ1

θ

)2 6

∑
j=1

cos(~G j ·~r), (2)

where ~G j are 6 equivalent vectors of the reciprocal space of
the Moiré lattice. The constant θ1 is given by,

θ1 =

√
2t

(h̄cKD)
, (3)

where KD is the modulus of the wave-vector in Dirac point
of graphene. Using the interlayer coupling value t ' 0.12 eV
(Appendix Sec. B 1), one finds that the value of θ1 is close to
θ1 ' 1◦. Equation (2) does not depend on the type of atom ε

(ε =A or B atom), it oscillates with ~G j as expected. As it is
clear the maximum value is obtained for~r = 0 which is at the
center of AA area, and relative variation of the LDOS varies
as θ−2. As shown in Fig. 2 the overall agreement between TB
numerical calculation and TB analytical model is very good.
We just note a small triangular contrast in AB zone which is
not reproduced by the analytical model (see Appendix for a
discussion) [verifier qu’on en parle dans l’annexe]. We ob-
serve in particular a reinforcement of the DOS in the AA re-
gion and a lowering in the AB regions. This behavior is a
precursor of the electronic localization in AA region which is
observed in the very low angle limit θ < 2◦.3,7,11

B. With resonant adsorbates

To study the effect of static defects on the electronic con-
finement by the Moiré we include atomic vacancies (va-
cant atoms) that simulate resonnant adsorbates atoms or
molecules.47,48,51–56 For each vacancies concentrations c with
respect to the total number of Carbon atoms in tBLG, we con-
sider two cases:

(i) vacancies are randomly distibuted in both layers,

(ii) vacancies are randomly distibuted in layer 2 only.

-0.8 -0.4 0 0.4 0.8
E  (eV)

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

D
O

S
 (

st
a
te

s 
/ 

e
V

 a
to

m
s)

(a)
c = 0

c = 0.1

c = 0.2

c = 0.5

c = 0.05

c = 1

c = 2

-0.8 -0.4 0 0.4 0.8
E  (eV)

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

D
O

S
 (

st
a
te

s 
/ 

e
V

 a
to

m
s)

(b)
c = 0

c = 0.1

c = 0.2

c = 0.5

c = 0.05

c = 1

c = 2

FIG. 3. (color online) Total DOS in (a) (12,13) tBLG and (b) (6,7)
tBLG, for various concentrations c (%) of vacancies with respect to
the total number of atom in tBLG: (Dashed line) with vacancies in
both layers and (full line) with vacancies in layer 2. (Dotted line) is
the DOS in pristine monolayer graphene (MLG). ED = 0.
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FIG. 4. (color online) Average LDOS in each layer: (a) (12,13) tBLG
and (b) (6,7) tBLG, for various concentrations c (%) of vacancies in
layer 2. (empty symbol) average LDOS in layer 1, (full symbol) aver-
age LDOS in layer 2. (Dotted line) is the DOS in pristine monolayer
graphene (MLG). c is the concentration of vacancies with respect to
the total number of atom in tBLG. ED = 0.

Total DOSs (tDOSs) in (12,13) tBLG and (6,7) tBLG are
drawn Fig. 3 for different concentrations of vacancies in cases
(i) and (ii). For small c values, the Van Hove singularities are
still clearly seen but they are enlarged by disorder. This shows
that static disorder destroys the confinement by Moiré in AA
areas. For c >∼ 0.5 % peaks of the Van Hove singularities
are destroyed by vacancy states. With TB Hamiltonian in-
cluding only first neighbor hopping terms, the vacancy states
are midgap states at Dirac energy.51,52 But, as in monolayer
graphene54 and Bernal bilayer graphene,48 the TB hoppings
beyond first neighbor enlarges the midgap states and shift it to
the negative energies, typically around −0.2 eV. As shown in
Fig. 4, when vacancies are located on layer 2 only (case (ii)),
the vacancy states is appear only on LDOS pz orbitals of layer
2. Note that average DOS in layer 1 is slightly modified by
the vacancies located in layer 2 (Fig. 4). This effect seems
similar to modification du to nonresonant scatters.47 Figs. 3
and 4 show that, as far as the DOS is concerned, the rotated
angle θ does not change the effect of vacancies. As we will
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FIG. 5. (color online) Microscopic conductivity σM in (a) (12,13)
tBLG, (b) (6,7) tBLG, (c) (3,4) tBLG, for the two cases: (Full line)
with vacancies in layer 2 and (dashed line) with vacancies in both
layers. c is the concentration of vacancies with respect to the total
number of atom in tBLG. Inserts: σM around the Dirac energy ED =
0.

see in next section, the effect of θ is more pronounced on
wave-packet quantum diffusion and thus on transport proper-
ties. D’AUTRES COMMENTAIRES ????

III. QUANTUM TRANSPORT

Within the Kubo-Greenwood formalism we compute the
conductivity σ(EF) versus the Fermi energy EF using the
real space method developped by Mayou, Khanna, Roche and
Triozon,57–61 in the famework of the Relaxation Time Ap-
proximation (RTA) to account47 effects of inelastic scatters
due to electron-phonon interactions (see Appendix A). Elas-
tic scattering events due to local defects (vacant atoms) are
included in the Hamiltonian itself in a large unit cell contain-
ing more than 107 atoms with boundary periodic conditions.

0 20 40 60 80

θ
2
  (deg.

2
)

1

2

3

4

5

6

σ
M

  
(G

0
)

c = 0.5%
c = 1%
c = 2%

E = −0.3 eV

0 20 40 60 80

θ
2
  (deg.

2
)

1

2

3

σ
M

  
(G

0
)

c = 0.5%
c = 1%
c = 2%

E = −0.2 eV

0 20 40 60 80

θ
2
  (deg.

2
)

1

2

3

σ
M

  
(G

0
)

c = 0.5%
c = 1%
c = 2%

E = −0.1 eV

0 20 40 60 80

θ
2
  (deg.

2
)

1

2

σ
M

  
(G

0
)

c = 0.5%
c = 1%
c = 2%

E = 0

0 20 40 60 80

θ
2
  (deg.

2
)

2

4

6

8

σ
M

  
(G

0
)

c = 0.5%
c = 1%
c = 2%

E = 0.1 eV

0 20 40 60 80

θ
2
  (deg.

2
)

0

5

10

15

20

25

σ
M

  
(G

0
)

c = 0.5%
c = 1%
c = 2%

E = 0.2 eV

FIG. 6. (color online) Microscopic conductivity σM in tBLG versus
rotated angle θ 2 for energy values E: (Full line) with vacancies in
layer 2, (Dashed line) with vacancies in both layers. c is the con-
centration of vacancies with respect to the total number of atom in
tBLG. ED = 0.

A. High temperature conductivity

We first consider the high temperature case (or room tem-
perature case) where the inelastic scattering time τi is close
to the elastic scattering time τe due to static defects. In that
case, the conductivity is called microscopic conductivity, σM ,
because it takes into account quantum interference effects ac-
curing during time less or equal to τe' τi. σM is close to semi-
classical conductivity that does not take into account the quan-
tum corrections due to multiple scattering effects. Typically,
this quantity represents a room temperature conductivity when
multiple scattering effects are destroyed by dephasing due to
the electron-phonon interactions. In Fig. 5, σM(E) is shown
for three tBLG with rotated angle θ equal to 2.656◦, 5.086◦

and 9.430◦, respectively, and in Fig. 6, σM(θ 2) is shown for
different energy values close to the Dirac energy ED.

For vacancies distribution (i) –ie vacancies randomly dis-
truted in the two layers–, σM(E) is almost independent of
θ value. When vacancies concentration c is large (Fig. 6,
c = 1% and 2%) behavior is similar to that of MLG and
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σM ' 2σM,MLG, where σM,MLG is the conductivity for MLG.47

σM,MLG reaches to the well known universal minimum of the
conductivity so-called conductivity “plateau” –independent of
defect concentration– at energies arroud ED.46 For smaller
concentration (Fig. 6, c = 0.5%), σM increases when the con-
centration c increases. These two regims, are similar to that
found in AB Bernal bilayer graphene.48 Roughly speaking,
for large c values, the elastric mean free path Le in MLG (see
Fig. 4(a) in Ref. 48) is smaller than the average traveling
distance48 l1 in a layer between two interlayer hoppings of
the charge carriers, and thus carriers behaves like in MLG.
Whereas for small c values, Le > l1 and thus interlayer hop-
ping are involved in the diffusive regim and BLG conductivity
properties are different that MLG ones.

For vacancies distribution (ii) –ie vacancies randomly dis-
tributed in layer 2–, and large rotated angle (Fig. 5(c)), con-
ductivity is larger than in the first case (i). Indeed for large θ ,
typically θ > 10◦, eigenstates are located mainly in one layer
(“decoupled” layers)3,16 and thus conductivity of the bilayer is
the sum of the conductivity of two almost independent layers,

σM ' σM,1 +σM,2, (4)

corresponding to conductivity of layer 1 and 2, respectively.
Conductivity of layer with defects is close to MLG conductiv-
ity σM,2 ' σM,MLG and conductivity of layer without defects
σM,1 is affected by the presence of defects in layer 2. With in-
creasing θ , the eigenstates are more and more located on one
layer, thus layers are more and more decoupled, and the σM,1
increases as layer 1 becomes more and more like a pristine
MLG. Consequently the conductivity of the tBLG increases
when θ increases. In theses cases numerical results (Figs. 6)
show that σM increases like θ 2.

For small angles (Fig. 5(a) and Fig. 6), eigenstates are
located almost equally on both layer for all energies around
Dirac energy;16 therefore they are affected in a similar way by
the two kinds of vacancies distributions (i) and (ii). Conduc-
tivity is thus very similar in the two cases.

The analytical model presented in Appendix Sec. C 4, al-
lows to understand why σM increases as θ 2 increases when
defects are located only in layer 2 (cases (ii)). From Einstein
conductivity formula, conductivity in layer p, p = 1, 2, is

σM,p(E) = e2np(E)V 2
τp, (5)

where ρp and τp are the average DOS in layer p and the aver-
age elastic scattering time in layer p, respectively. For energy
values in the plateau of conductivity arround ED, the layer 2
–with defects– has conductivity close to universal minimum
of MLG,47 σM,2(E) ' σM,MLG, thus from equations (4) and
(5), the conductivity in the bilayer is

σM(E)' σM,MLG

(
1+

ρ1(E)
ρ2(E)

τ1

τ2

)
, (6)

where the ratio between scattering times can be estimated
from the formula (C17) obtained in the Appendix. Thus,

σM(E)' σM,MLG

(
1+

ρ1(E)
ρ2(E)

θ 2

θ 2
0

)
, (7)
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FIG. 7. (color online) Conductivity in bilayer versus inelastic scat-
tering Li, at the energies E, for concentration c = 2% of vacancies
with respect to the total number of atom in bilayer: (θ1 = 2.656o)
(12,13) tBLG, (θ2 = 5.086o) (6,7) tBLG, (θ3 = 9.430o) (3,4) tBLG.
(line) with vacancies in layer 2, (dashed line) with vacancies in both
layers. For (3,4) tBLG (θ3 = 9.430o) the localization regim appears
at very large times for which very time consuming calculations are
necessary; that is why this regime is only roughly estimated by ex-
trapolation.

with θ0 related to θ1 (Appendix equation (C2)),

θ0 =
√

3θ1, (8)

i.e. θ0 ' 2◦ (Appendix Sec. C 3). Since ρ1(E) and ρ2(E)
are different (Fig. 4) and depend on the energy values and the
defect concentration c, the slope of σM versus θ 2 also depends
on E and c (Fig. 6).

B. Low temperature conductivity

In the low temperature limit, inelastic scattering time τi is
larger than elastic scattering time τe, and multiple scattering
effects may reduced the conductivity with respect to micro-
scopic conductivity σm. The average inelastic length Li thus
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FIG. 8. (color online) Localization length versus angle θ , at the ener-
gies E, for concentration c= 2% of vacancies with respect to the total
number of atom in bilayer: (line) with vacancies in layer 2, (dashed
line) with vacancies in both layers.

satisfies Li � Le and Li � l1. τi and Li increase when tem-
perature increases. To evaluate this effect we compute47,48 the
conductivity σ versus Li at every energy E (Fig. 7) for the
two vacancy distribution cases ((i) in layer 1 or (ii) in the two
layers). As expected in disordered 2D systems,62 for large
Li, σ(Li) follows a linear variation with the logarithm of Li,
like in the case of monolayer graphene47,63 and Bernal bilayer
graphene,48

σ(E,Li) = K−αG0 log(Li), (9)

where K is a constant depending on σM and Le, and the slope
α is almost independent on energy E, the defect concentration
and the repartition of the defects (in on layer or in both layers).
From numerical results one obtains α '??? [Ahmed: valeur
de alpha ?] which is close to monolayer value47 and Bernal
bilayer value.48

Localization length ξ can be estimated from the equation
σ(Li = ξ ) = 0 and the linear extrapolation of σ versus logLi
at large Li (see dashed lines Fig. 7). ξ versus θ for various
energies in the plateau of conductivity are shown in Fig. 8. As
σM , ξ is almost independent of θ when defects are located in
both layers, but ξ increases strongly when defects are located
in one layer only.

Commentaires ? conclusion sur conductivity a basse tem-
perature

CONCLUSION

We have presented a numerical study of the local electronic
density of states (LDOS) and the conductivity in pristine and
covalently functionalized twisted graphene bilayers (tBLG),
with an angle of rotation θ > 2◦. Those results are under-
stood using a perturbative analytical model described in the
Appendix. The atomic structure in Moiré induces a strong
modulation in the LDOS between AA stacking areas and AB
stacking areas, which varies as θ−2 following a simple ana-
lytic expression. We show that disorder breaks the interlayer

effective coupling due to Moiré pattern. Therefore when de-
fects are randomly distributed in both layer, the conductivity
σM is almost independent of θ , whereas σM ∼ θ 2 when de-
fects are randomly distributed in one layer only. Such a non-
symmetric distribution of defects may often occur in experi-
mental situation because of the effect of substrate, adatoms or
admolecules. Finally the quantum correction to the conductiv-
ity are computed and localization length is calculated versus
θ .
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Appendix A: Kubo-Greenwood conductivity

In Kubo-Greenwood approach for transport properties, the
quantum diffusion D, is computed by using the polynomial
expansion of the average square spreading, ∆X2, for charge
carriers. This method, developed by Mayou, Khanna, Roche
and Triozon,57–61 allows very efficient numerical calculations
by recursion in real-space that take into account all quantum
effects. Static defects are included directly in the structural
modelisation of the system and they are randomly distributed
on a supercell containing up to 107 Carbon atoms. Inelastic
scattering is computed47 within the Relaxation Time Approx-
imation (RTA). An inelastic scattering time τi beyond which
the propagation becomes diffusive due to the destruction of
coherence by inelastic process. One finally get the Einstein
conductivity formula,47

σ(EF ,τi) = e2n(EF)D(EF ,τi), (A1)

where EF is the Fermi level, D(E,τi) is the diffusivity (diffu-
sion coefficient at energy E and inelastic scattering time τi),

D(E,τi) =
L2

i (E,τi)

2τi
, (A2)

n(E) is the density of states (DOS) and Li(E,τi) is the inelastic
mean-free path. Li(E,τi) is the typical distance of propagation
during the time interval τi for electrons at energy E,

L2
i (E,τi) =

1
τi

∫
∞

0
∆X2(E, t)e−t/τi . (A3)

Without static defects (static disorder) the Li and D goes to
infinity when τi diverges. With statics defects, at every energy
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E, σ(τi) reaches a maximum value,

σM(EF ,τi) = e2n(EF)Maxτi {D(EF ,τi)} , (A4)

called microscopic conductivity. σM corresponds to the usual
semi-classical approximation (semi-classical conductivity).
This conductivity is typically the conductivity at room tem-
perature, when inelastic scattering τi (inelastic mean free path
Li) is close to elastic scattering τe (elastic mean free path
Le), τe(E) = Le(E)/v(E) and Le(E) = DM(E)/2v(E), where
DM(E) is the maximum value of D(τi) at energy E and v(E)
the velocity at very small times (slope of ∆X(t)).

For larger τi and Li, τe � τi and Le � Li, quantum inter-
ferences may result in a diffusive state, D(τi)' DM , or a sub-
diffusive state where D decreases when τi and Li increase. For
very large Li, Li close to localization length ξ , the conductiv-
ity goes to zero.

Appendix B: Tight-Binding Model

1. Real space couplings

In the tight-binding (TB) scheme only pz orbitals are
taken into account since we are interested in electronic states
close to the Fermi level. The TB model used in this pa-
per is the same as in our previous work on twisted bilayers
graphene3,7,16 and in AB Bernal bilayer graphene.48,56 The
Hamiltonian has the form,

H = ∑
i

εi|i〉〈i|+ ∑
(i, j)

ti j|i〉〈 j|, (B1)

where i is the pz orbital located at~ri the on-site energy εi, and
the sum runs over all neighboring i, j sites. ti j is the hopping
element matrix between site i and site j, computed from the
usual Slater-Koster parameters as given in Ref 7. Since the
layers are rotated, interlayer neighbors are not on top of each
other (as is the case of the Bernal AB stacking). Therefore,
the interlayer interactions are then not restricted to ppσ terms
but ppπ terms have also to be introduced.3,7 Moreover interac-
tions are not restricted to first neighbouring orbitals and they
decrease exponentially with the interatomic distance. A cut-
off distance rc is introduced which should be as large which
must be large enough so that the results do not depend on it.
We have check that rc = 0.6 nm is enough. Note that if rc
is to small non-physical small gap may appeared at the Dirac
energy as shown in Fig. 9.

The matrix element of the interlayer Hamiltonian Hc be-
tween one orbital at~r in plane 1 and one orbital at~r ′ in plane
2 is given by

〈~r′|Hc|~r〉= Hc(|~r−~r ′|). (B2)

Note that Hc(~r−~r ′) is real and depends only on the modu-
lus |~r−~r ′|. Hc(|~r|) is maximum at zero distance i.e. when
the two orbitals are aligned perpendicularly to the two planes.
The hopping integral between the two orbitals decreases when
their distance increases. The Fourier transform which will be
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FIG. 9. (color on line) Band dispersion E(~k): (red points) DFT cal-
culation using VASP code (for details on the calculation see Ref. 7),
and (red lines) TB calculation, for (a) (1,3) tBLG (θ = 32.20o), (b)
(1,4) tBLG (θ = 38.21o), calculated with a large interlayer cutoff dis-
tance rc = 0.60 nm, whereas Bleu dashed line is TB bands with a too
small rc, rc = 0.34 nm. In the latter case a non-physical gap appears
at energy ED = 0. Dot black line is MLG. Insert: Bands arround the
K point. ED = 0.

essential in the following is also real and depends only on the
modulus of the wave vector. From Fourier transformation we
write

Hc(~r) =
∫

H̃c(~k) ei~k·~r d2~k , (B3)

and

H̃c(~k) =
1

(2π)2

∫
Hc(~r)e−i~k·~r d2~r. (B4)

Here also the coupling H̃c(~k) decreases when |~k| increases.
We shall see below that the important value of H̃c(~k) is for |~k|
close to the modulus of a Dirac point which is represented by
KD in Fig. 10.

2. Interlayer Coupling between Bloch states

We want to compute the coupling between two Bloch states
of layer 1 and layer 2. Each graphene layer are honeycomb
lattice with two atoms, atoms A and atoms B, in a unit cell.
Let us consider normalized Bloch states made of atomic pz
orbitals A or B in layer α , α = 1 or 2,

|A~k〉
α
=

1√
N ∑

~R

ei~k· ~RA |A~R〉
α
, (B5)
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FIG. 10. Modulus of the interlayer coupling t versus in-layer dis-
tance r and modulus k of the wave-vector, calculated from the Tight-
binding model described in Ref. 7.

|B~k〉
α
=

1√
N ∑

~R

ei~k· ~RB |B~R〉
α
, (B6)

where N is the number of unit cells of the crystal and the sum-
mation is performed on all cells of crystal (~R). In the following
A or B are indicated by ε according to the following conven-
tion,

ε =

{
A for A atom
B for B atom

(B7)

α =

{
1 lower layer
2 upper layer

(B8)

The positions of the atoms in layer 1 are,{
~r

ε~R = ~R if ε = A
~r

ε~R = ~R+~u if ε = B
(B9)

and in layer 2, {
~r ′

ε ′~R ′
= ~R ′ if ε ′ = A

~r′
ε ′~R ′ =

~R′+~u ′ if ε ′ = B
(B10)

where ~u and ~u ′ are vectors connecting the two atoms in the
unit cells, i.e. A and B atoms in upper and A′ and B′ atoms in
down layers respectively. Writing

Hc|ε~k〉2 = ∑
i

t(εi~ki ,ε~k) |εi~ki〉1, (B11)

where t(εi~ki ,ε~k) ≡ ti is the transfer matrix element. We find
a selection rule such that

~k+~Kr =~k ′+~K ′r. (B12)

Which means that interlayer coupling Hamiltonian Hc couples
the upper state |ε~k〉2 to lower state |ε~k〉1 only if the selection
rule equation (B12) is obeyed.

Finally for ~ki =~k + ~Kr =~k ′ (mod ~K′r), we derive formula
for coupling matrix after some calculations64 we switch to the
following expression of the Hamiltonian, where ~Kr and ~K′r are
vectors of reciprocal lattices,

ti(~k+ ~Kr) =
4π2

S
H̃c(~k+ ~Kr)ei(~k+~Kr)·(ε ′~u′−ε~u+~∆). (B13)

S is area of unit cell, ~∆ is translation between the two layers.
However this translation of the two layers just translate the
overall Moiré pattern and can be set to zero without loss of
generality.

By symmetry of interaction between two orbitals, coupling
depends only on the modulus of ~k + ~Kr i.e H̃c(~k + ~Kr) '
H̃c(|~KD + ~Kr|). The modulus of ti is represented in Fig. 10.
One sees that the most important value of |ti| is one corre-
sponding to the smallest possible value of~k+ ~Kr. By careful
examination it can be shown that for electronic states close
to the Dirac point this minimum corresponds to the modu-
lus of wave-vector in Dirac point (KD = ||~KD|| ' 17.2 nm−1).
From Fig. 10, it is easy to compute coupling value close Dirac
is around t1 ' 0.12 eV. All the other contributions are much
smaller and will be neglected here.

Selecting only this contribution means that ~Kr is such that
~k+ ~Kr belongs to one of three equivalent valleys. Therefore
a set of two Bloch states with a given wave vector (equations
(B5) and (B6)) in one plane will be coupled to three sets of
two Bloch states in other plane corresponding to three differ-
ent wave vectors. This simplifies much the structure of Hamil-
tonian and the analytical calculations presented here.

In the following we shall count the vectors~k and~k′ from
their respective Dirac point ~KD1 and ~K′D1. ~K′D1 is obtained
from ~KD1 by a rotation of an angle θ around the vector ~ζ
which is perpendicular to the planes 1 and 2. Therefore one
has

~k = δ~k+~KD1, (B14)

~k ′ = δ~k ′+~K′D1. (B15)

Finally one get for the selection rule

δ~k ′ ' δ~k−θ~ζ ×~KDi, (B16)

where the indice i takes the values i = 1,2,3. ~KDi and ~K′Di
are the three equivalent Dirac point in plane 1 and 2. ~K′Di
is obtained from ~KDi by a rotation of an angle θ around the
vector ~ζ which is perpendicular to the planes 1 and 2.

Appendix C: Effect of interlayer coupling

We consider a plane 1 coupled to plane 2 which is rotated
by an angle θ with respect to plane 1. If one considers the
time evolution within plane 1 or more generally the restric-
tion of the total Green’s function to plane 1 the coupling to
plane 2 amounts to the addition of an effective Hamiltonian
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or self-energy. From this effective Hamiltonian we shall get
the velocity renormalization, the electron lifetime in plane 1
due to disorder in plane 2 and the modulation of the density
of states close the charge neutrality point. The theory that is
developed here is perturbative and assumes that the rotation
angle θ is not too small. In particular we emphasize that the
perturbation theory is valid for

z, t,∆� h̄cKDθ , (C1)

where KD = || ~KD||, z is the energy of calculation, t is the inter-
layer coupling (t ' t1 ' 0.12 eV, Sec. B 1) and ∆ is a possible
difference in on-site energy between the two layers. The con-
dition on t implies that θ > θ1 where

θ1 =

√
2t

(h̄cKD)
. (C2)

The value of θ1 is close to θ1 ' 1◦. The condition on z implies
that the current energy at which the quantities are calculated is
smaller than the typical energy of the Van Hove Singularities
(VHS) which depends linearly on θ . The difference in energy
∆ of the two layers must also be smaller than the energy of
the VHS.Note that the VHS have been clearly observed with
STM experiments on twisted graphene bilayer.

1. Effective one-plan Hamiltonian

We consider first a Bloch state in plane 1 with wave vector
δ~k0. It can be coupled to a Bloch state δ~k′ in plane 2 then
propagates freely in plane 2 and is scattered again to a Bloch
state in plane 1 with a wave vector δ ~k f . Applying the selection
rule (B16) to each interplane interaction we find that ~δk f and
~δk0 are related by

δ ~k f ' δ~k0−θ~ζ × (~KDi−~KD j). (C3)

Therefore the coupling between planes 1 and 2 induces an ef-
fective coupling between Bloch states of plane 1 with the se-
lection rule (C3). Note that the indices i and j take the values
i = 1,2,3.

When i = j a Bloch state with δ~k0 is coupled only to the
Bloch states with the same wave-vector δ ~k f = δ~k0. This pro-
cess gives a self-energy which renormalizes the energy of the
state of the single plane 1 (see below).

When i and j are different then δ ~k f and δ~k0 are different,

δ ~k f ' δ~k0 + ~Gk. (C4)

~Gk = θ~ζ × (~KDi − ~KD j) is a reciprocal lattice vector of the
Moiré lattice, where ~KDi−~KD j is a reciprocal lattice vector of
graphene. These vectors takes six possible values named ~Gk
in the main text. These are vectors of the reciprocal lattice of
the Moiré pattern. As we show below this coupling between
Bloch states of different wave vector will create eigenstates
with mixing of different oscillating components which leads

to oscillations in the DOS with wave-vectors components ~Gk
(see below). We note also that the coupling introduces only
small spatial frequencies and in particular it does not connect
states of the two non equivalent Dirac cones.

2. Self-energy

We are interested in the self-energy of coupling of states in
upper plane due to the coupling with states of lower plane. In-
deed the real-part of self-energy ℜσ(z) is associated to mod-
ification of dispersion relation and will allow us to discuss
velocity renormalization. The imaginary part of self-energy is
associated to the electron lifetime. It will allow us to discuss
lifetime of the electron in one plane when there is disorder in
other plane.

Using matrix notations defined in Appendix B we have

Σ̃1(z) = ∑
~Kr

T+(~Kr) G2 ( ~KD + ~Kr) T−(~Kr), (C5)

where ~Kr is the vector of reciprocal lattice which has three
values that connect one Dirac point to itself or to the two other
equivalent Dirac points. T describes the coupling between two
plane and Green operator at wave vector θ ~ζ × ~Kdµ is

G2 (z,θ ~ζ × ~Kdµ) =
1

z−H−(θ ~ζ × ~Kdµ)
, (C6)

where ~Kdµ counts the three equivalent Dirac points. And for
the Hamiltonian

H2θ ~ζ× ~Kdµ)=

(
∆ −γ0 f (θ ~ζ × ~Kdµ)

−γ0 f ∗ (θ ~ζ × ~Kdµ) ∆

)
,

(C7)
where ∆ is potential difference between two layers (plane 1 is
in potential 0 and plane 2 is in potential ∆). Note that this ma-
trix is evaluated at θ ~ζ × ~Kdµ . Indeed for~k sufficiently close
to Dirac point~k, because h̄3(|~k−~Kd |)� γ0| f (θ ~ζ× ~Kdµ)| and
we can neglect the dependence on the~k in H2, G2 and Σ̃2(z).
This corresponds to the general conditions of validity of the
presnet perturbation theory (see above the introduction of ap-
pendix C).

So now after some calculations we get for the self-energy

Σ̃0(z) = σ(z)I, (C8)

with

σ(z)'
θ 2

0
θ 2

[
∆− z

]
, (C9)

where we have introduced θ0,

θ0 =
3√
2π

t
γ0
. (C10)

Using the values of t ' t1 ' 0.12 eV (Sec. B 1) and γ0 ' 2.7
eV one finds that the value of the angle θ0 is θ0 ' 1.7◦.
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3. Velocity renormalization

The eigenvalues are the poles of the Green’s function.
Therefore the energy E(~k) is given by

E−σ(E) =±h̄v|~k|. (C11)

For |~k|= 0, we have solution E = E0 such that

E0−σ(E0) = 0. (C12)

For small~k, we can write E(~k) = E0 +δE(~k). Eventually we
have a nice formula:

δE =
±h̄v|~k|

1−σ ′(E0)
. (C13)

Finally the renormalized velocity 3r is

3r

3
=

1
1+θ 2

0 /θ 2 . (C14)
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FIG. 11. Velocity ratio 3bi/3mono for commensurate (n,m) bilayer
cell versus rotation angle θ , computed from equation(C10) with var-
ius θ0 values. Circle, DFT calculation using VASP code; cross, TB
calculations, from Ref. 3.

Therefore using a well established tight-binding model, we
recover velocity renormalization consistent with that of Ref. 2.
In addition we find that this velocity renormalization is inde-
pendent of the difference in potential of two planes. As it is
shown in Fig.11, a systematic study of the renormalization of
the velocity close to the Dirac point is done3, compared to its
value in a monolayer graphene, for rotation angles θ varying
between 0◦ and 60◦ (Fig. 11 ). The renormalization of the
velocity varies symmetrically around θ = 30◦. Indeed, the
two limit cases θ = 0◦ (AA stacking) and θ = 60◦ (AB stack-
ing) are different, but Moiré patterns when θ → 0◦ and when
θ → 60◦ are similar because a simple translation by a vector
transforms an AA zone to an AB zone.

Focusing on angles smaller than 30◦, it is defined3 three
regimes as a function of the rotation angle θ (Fig. 11). For
large θ(20◦ ≤ θ ≤ 30◦) the Fermi velocity is very close to
that of graphene. For intermediate values of θ(3◦ ≤ θ ≤ 20◦)

the perturbative theory of Lopez dos Santos et al. predicts cor-
rectly the velocity renormalization which is also in accordance
to the above formula equation(C14). For the small rotation an-
gles (θ < 3◦) a new regime occurs where the velocity tends to
zero and perturbation theory can’t be applied.

4. Electron lifetime

The two planes of the bilayer can have very different
amount of disorder due to their different exposure to environ-
ment . For example the lower plane will be in contact with a
substrate and the upper plane is exposed either to vacuum or
to a gas (sensor application). Therefore it is of high interest to
consider the limit case where defects are present in one plane
and absent from the other plane. In the following we con-
sider that defects are present only in the lower plane. If the
two planes were decoupled, defects in one plane would affect
electron lifetime in that plane but not in other one. Since the
planes are coupled defects in one plane will also affect elec-
tronic lifetime in the other plane. In this chapter we discuss
how such a repartition of defects impacts the electron lifetime.
In chapter III based the present results we shall discuss how
electron lifetime affects the overall electronic conduction of
the bilayer.

If there is disorder in the lower layer (layer 1) the Bloch
states of this layer will have a contribution to their self-energy
which is imaginary. This can be represented in the simple pos-
sible model by a purey imaginary part of the potential evergy
∆,

∆ =−i
h̄
τ1

, (C15)

where τ1 is the lifetime in the layer 1 due to disorder in the
layer 1. Using formula (C9) we see that electrons in the upper
plane 2 acquire an imaginary self-energy

ℑσ(z) =− ih̄
τ2

=− ih̄
τ1

θ 2
0

θ 2 . (C16)

Therefore the lifetimes τ1 and τ2 in the layer 1 and layer 2 are
related through:

τ2

τ1
=

(
θ

θ0

)2

, (C17)

where θ0 is given by equation (C10), and is same quantity as
in the velocity renormalization expression (C14).

5. Spatial variation of density of states

As explained above the coupling between Bloch states of
different wave-vectors in plane 1 (due to interlayer coupling
with plane 2) corresponds to the selection rule

δ ~k f ' δ~k0 + ~Gk, (C18)
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where the vector ~Gk such that ~Gk = θ~ζ × (~KDi − ~KD j) is a
reciprocal lattice vector of the Moiré lattice. The typical dif-
ference in energy between Bloch states of ~δk f and of ~δk0 is
∆E ' h̄cθ |KDi|. This difference is nearly independent of ~δk0
provided that it is sufficiently close to zero. The typical cou-
pling is te f f ' t2/(h̄cθ |KDi|).

Then the mixing between states of wave vector close to
(~KDi) and wave vector close to ~KDi + ~Gk will be of order
te f f /∆E i.e. of order (θ1/θ)2. We note that the mixing is in-
dependent of δ~k0 provided that it is sufficiently close to zero.
Therefore the relative variation of the DOS of a state is inde-
pendent of this state and then the relative variation of the DOS
is constant sufficiently close to the Dirac point and depends
only on the position in the Moiré pattern. After a lengthy cal-
culation the precise calculation provides the expression given
in the main text (equation (2)),

∆ρ(E,~r)
ρ(E)

'
(

θ1

θ

)2 6

∑
j=1

cos(~G j ·~r), (C19)

where ~G j are 6 equivalent vectors of the reciprocal space of

the Moiré lattice and where the rotation angle θ1 is given by

θ1 =

√
2t

(h̄cKD)
=

θ0√
3
. (C20)

Using the interlayer coupling value t ' 0.12 eV (Appendix
Sec. B 1) one finds that θ1 is close to one degree.

We emphasize that the present theory is perturbative in the
coupling t. This perturbation theory is valid for sufficiently
large values of θ as explained in the introduction of appendix
(C).The other assumption is to neglect Fourier components
of the interlayer Hamiltonian that couple a Bloch state with
other states having wave vectors away from the Dirac cones.
This approximation can lead to the under estimation of mod-
ulations of the DOS at spatial frequencies high with respect
to the Moiré period. This could explain why the DOS mod-
ulation on sub lattices A and B can differ by about ±15% as
compared to averaged DOS whereas the present perturbative
theory does not predict this difference. Note that the average
DOS of two neighboring A and B atoms is well reproduced
by the analytical model.
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Ibrahimi, F. Bertran, P. Le Fèvre, W. A. de Heer, C. Berger, and
E. H. Conrad, “Symmetry breaking in commensurate graphene
rotational stacking: Comparison of theory and experiment,” Phys.
Rev. B 83, 205403 (2011).

34 Sylvain Latil and Luc Henrard, “Charge carriers in few-layer
graphene films,” Phys. Rev. Lett. 97, 036803 (2006).

35 F. Varchon, P. Mallet, J.-Y. Veuillen, and L. Magaud, “Ripples in
epitaxial graphene on the si-terminated sic(0001) surface,” Phys.
Rev. B 77, 235412 (2008).

36 Fan Zhang, Bhagawan Sahu, Hongki Min, and A. H. MacDonald,
“Band structure of abc-stacked graphene trilayers,” Phys. Rev. B
82, 035409 (2010).

37 Edward McCann and Mikito Koshino, “The electronic properties
of bilayer graphene,” Reports on Progress in Physics 76, 056503
(2013).

38 A. V. Rozhkov, A. O. Sboychakov, A.L. Rakhmanov, and Franco
Nori, “Electronic properties of graphene-based bilayer systems,”
Physics Reports 648, 1–104 (2016).

39 David L. Miller, Kevin D. Kubista, Gregory M. Rutter,
Ming Ruan, Walt A. de Heer, Phillip N. First, and
Joseph A. Stroscio, “Observing the quantization of zero
mass carriers in graphene,” Science 324, 924–927 (2009),
http://science.sciencemag.org/content/324/5929/924.full.pdf.

40 Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate
Brown, Cécile Naud, Didier Mayou, Tianbo Li, Joanna Hass,
Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First,
and Walt A. de Heer, “Electronic confinement and coherence in
patterned epitaxial graphene,” Science 312, 1191–1196 (2006),
http://science.sciencemag.org/content/312/5777/1191.full.pdf.

41 M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A.
de Heer, “Landau level spectroscopy of ultrathin graphite layers,”
Phys. Rev. Lett. 97, 266405 (2006).

42 Taisuke Ohta, Jeremy T. Robinson, Peter J. Feibelman, Aaron
Bostwick, Eli Rotenberg, and Thomas E. Beechem, “Evidence
for interlayer coupling and moiré periodic potentials in twisted
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