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T  cells express TCRs on their surface, through which they 
detect antigens. The initiation of TCR signals relies on the 
LCK and ZAP70 protein tyrosine kinases (PTKs) and gener-

ates protein assemblages of considerable complexity1–3. Most previ-
ous approaches aiming at disentangling such complexity addressed 
one protein at a time, with limited quantitative insight. As a result, 
it remains difficult to understand how the TCR signal-transduction 
network processes signals and to predict the effects resulting from 
a mutation or a drug.

Affinity purification of a protein of interest (the ‘bait’) with its 
interacting partners (the ‘preys’), coupled with mass spectrometry 
(AP–MS), permits the definition of the composition of the corre-
sponding protein complex as a set of binary bait–prey interactions, 
termed an ‘interactome’. We provided proof-of-concept for interac-
tomics in primary CD4+ T  cells by determining the composition 
of the multiprotein complexes that formed around ZAP70 and the 
adaptors LAT and SLP-76 (ref. 4). However, that pilot study was lim-
ited to three baits and relied on pervanadate-based T cell activation, 
a stimulation condition that is less physiological than that result-
ing from engagement of the TCR in combination with CD4 or CD8 
coreceptors. Here, we extended our interactomics approach to sig-
naling complexes (‘signalosomes’) that assemble around 15 canoni-
cal proteins used by the proximal TCR signal-transduction network. 
We avoided the pitfalls associated with transformed T cells5 by using 
primary CD4+ T cells, and we captured signaling dynamics by ana-
lyzing each of the 15 signalosomes before and at four different time 

points after anti-TCR plus anti-CD4 stimulation. A total of 277 
unique proteins involved in 366 high-confidence protein–protein 
interactions (PPIs) were identified within the proximal TCR signal-
transduction network, a complexity that led us to revisit the mode 
of action of several signalosomes used by the TCR.

TCR signals are classically described as proceeding from the 
TCR to the inside of T cells via the LAT transmembrane adaptor, 
which is thought to serve as the earliest and often sole point of sig-
nal diversification downstream of the TCR2. In our original interac-
tomics study, we showed that the transmembrane receptor CD6 was 
also able to nucleate its own signalosome in response to TCR signal-
ing, and independently of LAT4. However, the lack of information 
on the numbers of complexes nucleating around LAT and CD6 pre-
cluded assessing their respective quantitative contribution to early 
TCR signal propagation and diversification. Here, by capitalizing on 
the recent possibilities to measure both the numbers of copies per 
cell (cellular protein abundance) of each interacting protein, and 
the quantitative relationship existing between a bait and a prey in a 
given complex (interaction stoichiometry)6, we succeeded in iden-
tifying and quantifying the TCR-inducible signalosomes that form 
at the inner face of the plasma membrane. Unexpectedly, the CD5 
and CD6 transmembrane receptors assembled signalosomes with 
kinetics and in numbers comparable to those nucleated by the LAT 
adaptor, demonstrating that the breadth of early TCR signal diversi-
fication is larger than expected. Finally, to decipher the function of 
the poorly characterized interacting proteins identified within the 
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Fig. 1 | Composition of the protein–protein network assembling around 15 canonical proteins of the TCR-signaling pathway over 600 s of stimulation. 
a, Workflow schematic for mapping the composition, stoichiometry and dynamics of the signaling complexes assembling around 15 canonical proteins of 
the TCR-signaling network of primary CD4+ T cells before and after TCR activation for 30, 120, 300 and 600 s. b, High-confidence interactome forming 
around the 15 baits. High-confidence bait–prey interactions were defined as having an FDR value ≤3% for two consecutive time points of stimulation (see 
‘Statistics and data reproducibility’ in Methods). OST-tagged baits and preys are represented in red and blue, respectively. Interactions already reported 
in databases are highlighted using orange arrows. In most interactomes, several preys associate to a given bait and might contact it directly or indirectly 
through intermediary proteins. c, Evolution over the course of TCR stimulation of the number of high-confidence bait–prey interactions, a value termed 
Nint(t) with ‘t’ corresponding to the time of stimulation. The proportion of these already reported in public databases is shown in orange. d, In the dot plot 
(left), the Nint(t) values corresponding to each bait have been row-normalized to the maximum value it reached over the course of stimulation (see key). 
Also shown (right) using a log10 scale is the number of high-confidence bait–prey interactions corresponding to each bait, and the proportion of these that 
has been reported already. e, Annotation terms from Uniprot-Keywords and Uniprot-Protein families enriched in at least one of the 15 interactomes.
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TCR-signaling network, we developed a CRISPR/Cas9-based pipe-
line that requires no mouse breeding and permits us to analyze in 
4 months and, at organismal levels, the immune phenotype of mice 
deprived of select interacting proteins.

Results
Mapping the TCR signal-transduction network of primary 
T  cells. To make the TCR signal-transduction network of pri-
mary T cells amenable to quantitative AP–MS analysis, we devel-
oped 15 lines of gene-targeted mice, each containing a canonical  
protein of the TCR-signaling network tagged at its amino (N) or  
carboxy (C) terminus with an affinity Twin-Strep-tag (OST) (Fig. 1a).  
Mice expressing the OST-tagged version of the cytosolic adaptors 
SLP-76 (LCP2) and GRB2, of the guanine nucleotide exchange  
factor VAV1 and of the evolutionarily related E3 ubiquitin-protein 
ligases CBL and CBLB have been described4,7–9. Here, we intro-
duced ten additional OST-tagged mouse lines corresponding to the 
phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 SHIP1 
(INPP5D), the PTKs LCK and ITK, the phospholipase PLC-γ1, the 
cytosolic adaptors NCK1, THEMIS and FYB (ADAP), the PTPases 
SHP1 (PTPN6) and PTPN22, and the NFATc2 transcription factor 
(Supplementary Fig. 1a and Methods). Analysis of mice homozy-
gous for each of the OST-tagged alleles showed that their T  cells 
developed properly (Supplementary Fig. 1b), yielding normal num-
bers of mature CD4+ and CD8+ T cells (Supplementary Fig. 1c) that 
had no defect in proliferation (Supplementary Fig. 1d), cytokine 
production (Supplementary Fig. 1e) and tyrosine phosphoryla-
tion (Supplementary Fig. 2) in response to TCR stimulation. T cells 
expressed the bait proteins at physiological levels (Supplementary 
Fig. 3a), and, after lysing them with the nonionic detergent 
n-dodecyl-β-d-maltoside, bait proteins were efficiently purified 
using Sepharose beads coupled to Strep–Tactin (Supplementary 
Fig. 3b,c), obviating potential variations resulting from the use of 
antibody specific for each bait.

Purified primary CD4+ T  cells were briefly expanded in  vitro 
to reach the substantial cell numbers required for AP–MS (see 
Methods). Our results thus reflect the composition of the TCR-
signaling network of antigen-experienced conventional CD4+ 
T  cells. To capture signaling dynamics, we defined, by AP–MS, 
the preys assembling around each bait before or after stimulation 
through cross-linkage of the TCR and CD4 for 30, 120, 300 and 600 s 
(Fig. 1a). For each time point, three independent biological repli-
cates were performed and each biological replicate was analyzed in 
duplicate or triplicate by MS (technical replicates). To distinguish 
truly interacting proteins from nonspecific contaminants, we com-
pared our data with control AP–MS experiments involving wild-
type CD4+ T cells (Supplementary Fig. 4a,b). Data corresponding 

to 449 affinity purifications and 933 MS runs were analyzed using 
the MaxQuant software, and high-confidence interactors identified 
using a data-driven, false discovery rate (FDR)-controlled approach 
(ref. 6 and Methods). FDR values were used to evaluate the statistical 
significance of the enrichment observed at a given time point for a 
considered bait–protein interaction between CD4+ T cells isolated 
from OST-tagged and wild-type (control) mice (Supplementary 
Fig. 4c–e). High-confidence bait–prey interactions were defined as 
having FDR ≤ 3% for two consecutive time points of stimulation. 
We also measured the stoichiometry of bait–prey interactions using 
intensity-based absolute quantification (iBAQ)10, and determined 
their changes after TCR engagement. The composition, stoichi-
ometry and dynamics of the 15 interactomes are summarized in 
Supplementary Dataset 1.

Global analysis of the TCR signal-transduction network. Analysis 
of the interactomes assembling around each of the 15 baits revealed 
a bait–prey network composed of 277 unique proteins connected 
via 366 high-confidence interactions (Fig. 1b). Among them, 162 
interactions have already been reported in human and mouse PPI 
databases that compile several cell types (Fig. 1c). As expected for 
a ligand-inducible signal-transduction PPI network, most of the 15 
interactomes reached their highest complexity after TCR triggering 
(Fig. 1d). Such complexity peaked between 30 and 300 s in the case 
of the CBLB, GRB2, SLP-76, VAV1 and PLC-γ1 interactomes, and 
persisted up to 600 s of stimulation for the CBL and SHIP1 interac-
tomes. Conversely, several of the preys found in the LCK and FYB 
interactomes were quickly released on TCR triggering.

The numbers of high-confidence bait–prey interactions varied 
widely across the analyzed baits, ranging from 1 (NCK1 bait) to 117 
(LCK bait) (Fig. 1d). Only 20% of the identified preys were found in 
more than one interactome, suggesting that each of the selected baits 
exerts specific functions within the TCR-signaling network. In line 
with this, annotation enrichment analysis showed that several inter-
actomes were enriched for unique biological processes, molecular 
functions, interacting protein domains and families (Fig. 1e). The 
annotations ‘SH2 domain’ and ‘SH3 domain’ were, however, shared 
by 9 and 10 of the 15 interactomes, respectively, reflecting the key 
role both domains play in shaping the TCR PPI network. Therefore, 
by identifying 366 high-confidence PPI within the proximal TCR 
signal-transduction network our approach revealed a complexity 
that was higher than expected.

Bait–prey interaction stoichiometries over the course of TCR stim-
ulation. The median value of the distribution of the stoichiometries 
observed for all the documented bait–prey interactions increased 
following TCR activation (Fig. 2a), reflecting formation of protein  

Fig. 2 | Evolution over 600 s of TCR stimulation of bait–prey interaction stoichiometry among the 15 interactomes. a, Distribution of the interaction 
stoichiometries of the 366 high-confidence bait–prey interactions observed for the 15 baits at each of the analyzed time points. Horizontal red lines 
correspond to median values and previously reported interactions are highlighted in orange. Note that 100 = 1. b, Each dot plot corresponds to a given 
bait (denoted in red) and shows its interaction stoichiometry over the course of TCR stimulation with its 16 highest confidence preys (denoted in black 
and ranked according to their FDR value and maximum enrichment; see key for FDR color code). The total number of high-confidence interactions (n) 
established by a given bait is shown at the top of each dot plot (for instance n = 87 in the case of the CBL bait, and the full list of the 87 interactions 
can be found in the worksheet tab labeled ‘CBL’ of Supplementary Dataset 1). For a given bait–prey interaction, the interaction stoichiometry has been 
row-normalized to its maximum value observed over the course of TCR stimulation (Normal. stoichiometry). For instance, the FYB and LAT preys show 
a maximal binding to SLP-76 before and after 30 s of activation, respectively. Also shown on the right side of each dot plot is the maximal interaction 
stoichiometry (Maximum stoichiometry) reached by each of the documented bait–prey interactions over the course of TCR stimulation (dot size 
is commensurate with the value of the maximal interaction stoichiometry; see key). Orange and gray dots correspond to previously reported and 
undocumented interactors, respectively. In the case of a ‘rich’ interactome, as exemplified by the CBL interactome, all the 16 represented preys qualify 
as high-confidence preys, in that they all show FDR ≤ 3% at two consecutive time points of stimulation. In contrast, in the case of a ‘sparse’ interactome, 
as exemplified by the NCK1 interactome, a single prey (ARAP1) fulfills our stringent high-confidence criteria. The ACTBL2, PLBD1 and TMED10 preys 
interacted with NCK1 with an FDR ≤ 3% at a single condition of stimulation (t30s), whereas preys such as WAS and TTN have FDR ≤ 6%. Such bait–prey 
interactions of lower confidence are listed in the tab ‘bait–prey interactions’ of Supplementary Dataset 1. Note that an FDR of 100% means that the prey 
does not interact with the bait at the considered time point.
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assemblages of increasing complexity. The maximal interaction 
stoichiometries reached by the 366 documented bait–prey inter-
actions over the course of TCR stimulation covered five orders of 
magnitude, ranging from 10–5 to 1.6, with a median value close 
to 10–3. Among the PPIs described in the present study, those  

not reported in public databases showed a bias toward lower  
stoichiometry (Fig. 2a), highlighting the increased analytical  
depth afforded by the sensitivity of AP–MS compared with con-
ventional biochemical approaches. Therefore, low-stoichiometry  
PPIs play a central role in the organization of the TCR-signaling 
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network, making them prone to disruption in experiments relying 
on bait overexpression.

Dot plots were used to depict the normalized interaction stoichi-
ometry of each bait with its 16 most-enriched preys over the course 
of TCR stimulation (Fig. 2b). The maximum interaction stoichiom-
etry value reached over the course of stimulation was also shown. 
Note that interaction stoichiometry values can be stoichiometric 
(the bait and the prey interact with a 1:1 ratio), superstoichiomet-
ric (the bait and the prey interact with a greater than stoichiomet-
ric ratio) or substoichiometric (only a fraction of the bait interacts  
with a given prey). For instance, a bait such as VAV1 established 
transient and substoichiometric interactions with most of its  
preys. In contrast, SLP-76 interacted with GRAP2 (GADS) in a 
superstoichiometric and constitutive manner, whereas SLP-76 
interactions with LAT, VAV1 and PLC-γ1 were transient and sub-
stoichiometric (Fig. 2b).

Integrating cellular protein abundances and interaction stoichi-
ometries. CD4+ T cells isolated from the 15 OST-tagged mice and 
from wild-type mice were briefly expanded, as for AP–MS analysis, 
and the copy numbers per T cell (cellular protein abundance) of the 
distinct proteins they expressed were determined using whole-cell 
proteome analysis11. We were able to quantify 6,343 proteins that 
corresponded to 92% of the high-confidence preys identified here 
(Supplementary Dataset 2). The cellular abundances of the proteins 
used as baits were spread over two orders of magnitude, ranging 
from 1.3 × 103 for ITK to 2.6 × 105 for SHP1 (Fig. 3a). Consistent 
with immunoblot analysis (Supplementary Fig. 3a), the OST-tagged 

proteins showed cellular abundances comparable to those of their 
wild-type counterparts (Supplementary Fig. 5).

By combining cellular protein abundances and interaction 
stoichiometries, each of the 15 signalosomes was organized into a 
‘stoichiometry plot’6. Accordingly, for each documented bait–prey 
interaction the ratio of the bait to prey cellular abundance was plot-
ted as a function of the maximal interaction stoichiometry reached 
by the considered bait–prey interaction over the course of TCR stim-
ulation (Fig. 3b). This showed that a few (7%) of the identified high-
confidence bait–prey interactions fell within a confined zone that is 
denoted as the ‘core interactions area’ and encompasses most of the 
permanent mammalian protein complexes collated in the CORUM 
database12 (Fig. 3b). Among these are the FYB–SKAP1 (ref. 13) and 
the SLP-76–GRAP2 (ref. 14) permanent complexes, as well as TCR-
inducible complexes that remained stable for several minutes after 
TCR stimulation as illustrated by phosphoserine-based complexes 
involving SLP-76 and three members of the 14-3-3 protein family 
(YWHAG, YWHAB and YWHAQ), and a complex involving CBLB 
and the PTPases UBASH3A and UBASH3B (Fig. 3c).

A region corresponding to bait–prey interactions involving 
at least 10% of the bait or prey expressed in a given T cell is also 
highlighted (Fig. 3b,c; light gray). The functional relevance of such 
interactions can be illustrated by the interaction observed between 
SHIP1 and its close relative SHIP2 (INPPL1) (Fig. 4), a PPI pre-
viously reported in platelets15. By catalyzing the hydrolysis of the 
phosphatidylinositol 3-kinase (PI3K) product, PtdIns(3,4,5)P3, 
into PtdIns(3,4)P2, SHIP1 and SHIP2 regulate effectors contain-
ing PtdIns(3,4,5)P3- or PtdIns(3,4)P2-selective pleckstrin homology 
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(PH) domains. Up to 1.3% of SHIP1 molecules were found associ-
ated with SHIP2 (Fig. 4), and such low interaction stoichiometry 
can be viewed as functionally inconsequential. However, consider-
ing that SHIP2 is 31-fold less abundant than SHIP1 in CD4+ T cells, 
41% of the SHIP2 molecules available in a CD4+ T cell are thus asso-
ciated with SHIP1 (Fig. 4). Accordingly, a SHIP1 deficiency will not 
only ablate a key enzymatic activity, but also free approximately half 
of the SHIP2 molecules present in CD4+ T cells from their interac-
tion with SHIP1, allowing them to engage in rival interactions that 
might be beneficial or detrimental. Therefore, the possibility of inte-
grating interaction stoichiometries and cellular abundances permits 
us to anticipate whether genetic or pharmacological perturbation of 
a single PPI can result in global network rewiring.

Accounting for the distinct function of the CBL and CBLB E3 
ubiquitin-protein ligases. Our quantitative approach also per-
mitted a high-resolution comparison of the signalosomes that 
form around CBL and CBLB (Fig. 4). Both comprised a receptor 
expressed at the plasma membrane (CD5), molecules involved in 
endocytosis (ITSN2, EPS15L1), adaptors (GRB2, GRAP, CRKL) 
and proteins (UBASH3A and the PTK CSK) that concur to the neg-
ative regulatory role of CBL and CBLB. Consistent with the distinct 
phenotypes of T  cells deprived of CBL or CBLB, only CBL asso-
ciated with FYN, six 14-3-3 protein family members, SH3KBP1, 
SHIP1 and several catalytic and regulatory subunits of PI3K. The 
co-recruitment of PI3K and SHIP1 by CBL likely sets in action pro-
teins containing PH domains selective for PtdIns(3,4)P2 (refs. 16,17). 
Conversely, CBLB was the sole protein capable of sustained inter-
action with the UBASH3B PTPase. Importantly, 120 s after TCR 
engagement, CBLB associated with 58% of the available UBASH3B 
molecules, suggesting that the CD5–CBLB–UBASH3B axis pro-
vides a major quantitative contribution to TCR signal termination 
through ZAP70 dephosphorylation18.

Accurate ab initio prediction of the GRB2 signalosome. The 
stoichiometry of a few bait–prey interactions identified here have 
been previously reported (FYB–SKAP1 (ref. 13), SLP-76–GRAP2 
(ref. 14) and THEMIS–GRB2 (ref. 19)). Although our AP–MS-based 
stoichiometric calculations agreed with those reported values  
(Fig. 4), we further challenged their accuracy by testing their predic-
tive power. Considering that the GRB2 adaptor constitutes a high-
confidence prey in 9 of the 15 analyzed interactomes, we attempted  
to predict, ab initio, the stoichiometry of a simulated GRB2 inter-
actome in which the nine baits binding to GRB2 play the role of 
preys. By combining the experimentally determined interaction 
stoichiometry of the nine baits with the GRB2 prey with their  
corresponding cellular abundances, we calculated the stoichiom-
etry of ‘reciprocal’ interactions in which GRB2 constituted the bait  
(Fig. 5a and Methods). The resulting GRB2 interactome showed 
interaction stoichiometries that were in good agreement with 
those of the actual GRB2 interactome over all time points (Fig. 5b). 
Similar analysis of all the high-confidence interactions involving 
protein pairs corresponding to the 15 baits further supported the 
accuracy of our measurements (Fig. 5c). Such accuracy allowed us 

to quantify the numbers of TCR-inducible complexes involved in 
TCR signal propagation and diversification.

Extensive TCR signal diversification occurs at the level of LAT. 
By combining interaction stoichiometries and cellular protein 
abundances, we enumerated the maximum number of copies of 
each high-confidence bait–prey interaction that forms per T  cell 
over the course of TCR stimulation. Since TCR signals are initiated 
at the plasma membrane, we specifically focused on those high-
confidence interactions that form at the inner face of the plasma 
membrane and constitute seeds for signal propagation (Fig. 6a). 
Consistent with the view that LAT serves as an early point of signal 
diversification downstream of the TCR2,20, constitutive binary com-
plexes made of GRAP2–SLP-76, GRB2–SHIP1 and GRB2–THEMIS 
docked onto LAT following TCR engagement and nucleated the 
assembly of SLP-76-, SHIP1- and THEMIS-based signalosomes 
(Fig. 6b). Such seeds reached maximal numbers of copies per T cell 
30 s after TCR engagement, ranging from about a hundred (LAT–
GRB2–THEMIS) to several hundred (LAT–GRAP2–SLP-76 and 
LAT–GRB2–SHIP1) (Fig. 6b).

The signalosome assembling around the LAT–GRAP2–SLP-
76 seed comprised PLC-γ1, the serine–threonine protein kinase 
MAP4K1 (HPK1), the FYB–SKAP1 binary complex, UBASH3A, 
GRB2, GRAP, six members of the 14-3-3 protein family, NCK1 
and VAV1 (Fig. 7). The SLP-76–NCK1 interaction was of low stoi-
chiometry and led to recruitment of the ARAP1 RHO-GAP with 
high confidence, of the WASp actin nucleation-promoting factor 
(WAS; FDR value of 4.7% at t600 s), and of the beta-actin-like pro-
tein 2 (ACTBL2; FDR ≤ 3% at t30s). VAV1 recruited the SRC-like 
adaptor protein 1 (SLAP-1), two RHO GDP-dissociation inhibitors 
(ARHGDIA and ARHGDIB; both with FDR ≤ 3% at t30s) and the 
small GTPase RHOA (FDR ≤ 3% at t30s) (Supplementary Dataset 1). 
Therefore, when probed by AP–MS under physiological conditions, 
the signalosome nucleating around the LAT–GRAP2–SLP-76 seed 
couples the TCR to the production of inositol trisphosphate and 
diacylglycerol and to F-actin dynamics, a finding consistent with 
recent imaging studies21,22.

The signalosome that forms around the LAT–GRB2–THEMIS 
seed is thought to play a key role during T cell development, in part 
due to its association with SHP1 (refs. 23–25). SHP1 was, however, 
lacking in the THEMIS interactome of mature CD4+ T cells (Fig. 7 
and Supplementary Dataset 1). To confirm such an unanticipated 
finding, we analyzed whether THEMIS was present in the SHP1 
interactome of mature CD4+ T cells. As expected, the B and T lym-
phocyte attenuator (BTLA26,27) was found among the SHP1 preys, 
but THEMIS was still absent (Fig. 7). Along the same lines, the 
GRB2 interactome of mature CD4+ T cells contained THEMIS but 
lacked SHP1 (Fig. 7), suggesting that THEMIS–GRB2–SHP1 ter-
nary complexes primarily form in developing thymic T cells.

Consistent with the compound enzymatic and scaffolding role  
of SHIP1, the signalosome assembling around the LAT–GRB2–
SHIP1 seed comprised several adaptors (GRB2, GRAP, SH3KBP1 
(CIN85), SHC1 and DOK2), and associated with a lower inter-
action stoichiometry to molecules such as UBASH3A, DBNL  

Fig. 4 | Stoichiometry plots of the 15 baits. For each bait, the 20 bait–prey interactions with the largest enrichment and FDR ≤ 6% for at least one 
condition of stimulation are shown, and each stoichiometry plot is ‘zoomed’ on the area that includes them. Baits are shown as yellow dots. Red and 
blue dots correspond to preys that show an increased or decreased binding to the bait following TCR engagement. Gray dots correspond to preys whose 
association with the bait were not regulated by TCR stimulation. The size of the dots is commensurate with the maximal protein enrichment observed in 
OST-tagged CD4+ T cell samples compared with wild-type control CD4+ T cell samples. For instance, the SLP-76 stoichiometry plot shows that GRAP2 
is more abundant than SLP-76 and that it binds to SLP-76 in a constitutive and superstoichiometric manner. The six documented 14-3-3 family members 
(YWHAB, YWHAE, YWHAG, YWHAH, YWHAQ and YWHAZ) are more abundant than SLP-76 and interact with it in a TCR-induced manner and a 
stoichiometry in the range 1.5–0.2. Cytosolic effectors, such as VAV1 and PLC-γ1, are slightly less abundant than SLP-76, and interact with it in a TCR-
induced manner and a stoichiometry in the 0.008 range. Preys for which it was not possible to determine the cellular abundance are shown at the bottom 
of each stoichiometry plot. See Fig. 3b for a definition of the specified stoichiometry plot areas.
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(an adaptor protein that binds F-actin), FYN and SHIP2 (Fig. 7  
and Supplementary Dataset 1). Therefore, our quantitative and 
qualitative analyses of the SLP-76-, SHIP1- and THEMIS-based 
signalosomes emphasizes the unique contribution of LAT to TCR 

signal diversification, the breadth of which should be even greater 
when taking in account that the guanine nucleotide exchange fac-
tors SOS1 and SOS2 are also recruited via GRB2 to phosphorylated 
LAT molecules4.
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CD5, CD6 and LAX1 contribute to TCR signal diversification at 
the plasma membrane. Akin to LAT, several receptors and adap-
tors embedded in the T  cell plasma membrane contain tyrosine 
residues that are capable of recruiting intracytoplasmic proteins fol-
lowing TCR-induced phosphorylation. Congruent with that view, 
CD6 was found in the SLP-76 and VAV interactomes, whereas CD5 
was present in the CBL and CBLB interactomes (Fig. 7). The LAX1 
transmembrane adaptor and CD6 were also found in the CBLB 
interactome, however with lower stoichiometries than CD5. The 
role of CD6 in T cell activation continues to be debated, whereas 
CD5 and LAX1 negatively regulate TCR signaling. The numbers of 
copies per T cell of CD5–CBL (198), CD5–CBLB (329), CD6–SLP-
76 (484) and CD6–VAV1 (214) complexes induced on TCR activa-
tion were commensurate with those of LAT–SLP-76, LAT–SHIP1 
and LAT–THEMIS complexes, unveiling their important quantita-
tive contribution to TCR signal diversification. Moreover, the hun-
dreds of copies of CBL- and CBLB-based signalosomes assembling 
around CD5 after 120 s of stimulation strengthened the view that 
CD5 constitutes a major mediator of TCR-induced ubiquitylation9.

Assessment of the function of novel interacting proteins at organ-
ismal levels. Genomic editing by CRISPR/Cas9-based approaches 
permits the study of gene function in ex vivo primary T  cells28. 
However, the role of genes involved in organismal function—such 
as lymphoid cell migration—cannot be assessed using ex vivo assays 
and requires development of mouse lines with homozygous loss-of-
function mutations. To bypass such a fastidious approach, we used 
CRISPR/Cas9 to establish F0 mice with biallelic deletions of a criti-
cal exon of genes coding for five poorly characterized preys iden-
tified in our interactomics dataset (see Methods). For each of the 
five tested genes (AI467606, Arap1, Arhgap45, Cep85l and Nap1l4), 
three single-guide RNAs were coinjected into zygotes and tail DNA 
from the five resulting F0 mouse cohorts were genotyped by PCR. 
Of the resulting F0 mice, 74% showed the expected biallelic DNA 
deletions and their blood was subjected to quantitative multipara-
metric analysis of myeloid and lymphoid cells (Fig. 8a). For instance, 
biallelic inactivation of the Arghap45 gene, which codes for a func-
tionally uncharacterized RHO GTPase-activating protein29 found 
in the LCK interactome (Supplementary Dataset 1), produced the 
strongest phenotype among the five analyzed genes. Arghap45  
inactivation resulted in a severe reduction in blood CD45+ cell  

numbers (Fig. 8a). Consistent with the pattern of Arghap45 expres-
sion (http://www.immgen.org/databrowser/index.html), lympho
cytes found in the blood were primarily affected by Arghap45 
inactivation (Fig. 8b). Analysis of the progeny of F0 mice with bial-
lelic Arghap45 gene inactivation showed that their thymus and 
spleen were normal in terms of composition and absolute numbers, 
suggesting that ARGHAP45 has no detectable role during T and  
B cell development (Fig. 8c). In contrast, their lymph nodes showed 
a reduction in T and B cell numbers similar to that of F0 mice  
(Fig. 8c,d). Considering that ARGHAP45 regulates actin cytoskel-
eton and cell spreading in transfected HeLa cells29, our data suggest 
that in the absence of ARGHAP45, T and B cells have a reduced 
ability to enter into lymph nodes via diapedesis. Therefore, our 
reverse genetics approach constitutes a decision support tool per-
mitting identification, in 4 months and without mouse breeding, of 
preys where ablation results in T cell phenotypes of interest when 
analyzed at organismal levels.

Discussion
We assessed the dynamics of the signalosomes assembling around 
15 canonical proteins used by the TCR signal-transduction network 
in primary CD4+ T cells. The unique possibility of integrating inter-
action stoichiometries and cellular abundances over the course of 
TCR stimulation allowed us to obtain key parameters for systems-
level understanding of TCR signal propagation and diversification. 
For instance, we enumerated the number of signaling complexes 
that are used per T  cell to convey TCR signals, and determined 
whether a fraction of the documented interacting proteins is left 
free to engage in alternative signalosomes over the course of stimu-
lation. We also demonstrated that TCR signals divide into multiple 
branches at the level of the plasma membrane, resulting in the for-
mation of CD5-, CD6-, BTLA- and LAX1-based signalosomes that 
assemble with kinetics comparable to the canonical LAT signalo-
some, and that contribute to TCR signal diversification due to their 
unique composition in adaptor and effector molecules.

Our time-resolved analysis also illustrated the speed at which 
signalosomes assemble and disassemble following TCR triggering. 
For instance, full-blown LAT–SLP-76 signalosomes were already 
present 30 s after TCR triggering. A finding that is consistent with 
the view that TCR signals are transmitted in a rapid manner, result-
ing in phosphorylation of TCR proximal components in 4 s, and 
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production of intracellular second messengers such as Ca2+ in 6–7 s 
(ref. 30). Binding of MAP4K1 to SLP-76 peaked 30 s after TCR trig-
gering. This led to serine–threonine phosphorylation of SLP-76 
and GRAP2 (ref. 31), and, as documented here, to the interaction 
of six 14-3-3 family members with SLP-76. These interactions were 
of high stoichiometry and correlated with dismantling of the LAT 
signalosome 120 s after TCR triggering, a finding that is consistent 
with the view that SLP-76 dissipates from TCR microclusters during 
their transport toward the center of the immunological synapse32. 
We showed that the CD5–CBL and CD5–CBLB signalosomes that 
formed following TCR engagement, in numbers comparable to the 
LAT signalosome, are primarily endowed with a negative regula-
tory role, likely contributing to the short temporal persistence of the 
LAT signalosome33. Smaller numbers of LAX1–CBLB complexes 
assembled, probably accounting for the milder negative regulation 
of TCR signals by LAX1.

Models accounting for the function of ITK, LCK, FYB and 
PTPN22 need to be revisited on the basis of the present quantita-
tive interactomics study. On production of PtdIns(3,4,5)P3, ITK is 
recruited to the plasma membrane through its PH domain and, 
after associating to the LAT–GRAP2–SLP-76 signalosome, it phos-
phorylates and activates PLC-γ1 (ref. 34). We found that LCK was 
70-fold more abundant than ITK in CD4+ T cells, and that the LCK 
interactome was 60-fold larger than that of ITK. A reason for this 
last difference stems from the association of LCK with multiple 

transmembrane receptors and adaptors, among which we identified 
CD4, the TCR–CD3 complex, ZAP70, LAT, CD2, CD6, CD28, CD45 
(PTPRC), the interleukin 2 receptor α and β subunits and LIME1. In 
contrast to ITK, which modulates the magnitude of calcium flux34, 
LCK is responsible for initiating the entire TCR-signaling cascade 
and has T  cell cancer-promoting activities. Accordingly, several 
of the molecules unique to the LCK interactome are likely to be 
devoted to controlling its high activity state and degradation. They 
corresponded to chaperones (CDC37, DNAJA1 and 2, FKBP5 and 
8, HSP90AA1, HSP90AB1, ST13), several 26S proteasome subunits 
and CAND1, a member of the SCF E3 ubiquitin ligase complex. 
Moreover, the presence of RAB11B and of several GTP-binding pro-
teins (IFI47, IRGM1, IFGGD) in the LCK interactome, likely fixes 
the activation threshold of naive T cells by controlling LCK subcel-
lular localization35. The LCK interactome further differed from that 
of ITK by the presence of several proteins involved in nuclear export 
and import, suggesting unidentified roles for LCK.

FYB is rather unique among the analyzed baits in that it inter-
acted with a large number of preys before TCR activation. Some 
of them, including FYB–SKAP1 and FYB–SKAP2, persisted after 
TCR activation, whereas others involving FYN, LCK and SLP-76 
decreased on TCR activation. Analysis of the LCK and SLP-76 inter-
actomes confirmed that the FYB–LCK and FYB–SLP-76 interactions 
diminished after TCR engagement, a finding that contrasted with 
results that suggest that FYB binds to SLP-76 in a TCR-inducible 
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manner36. Unexpectedly, FYB constitutively interacted with several 
proteins involved in pre-messenger RNA splicing (corresponding 
to the SNW1–PPIL1 complex, PRPF3 and PRRC2A), nuclear RNA 
export (corresponding to DDX3X3 and the NXF1 and NXT1 com-
plexes) and mRNA stability (KHDRBS1–SAM68), a finding that is 
consistent with the presence of two nuclear localization sequences 
in FYB and its cytoplasmic and nuclear distribution37. Therefore, 
the composition and dynamics of the FYB interactome point to as-
yet-unidentified roles of FYB in T cells.

Genetic variants of PTPN22 are among the strongest genetic 
risk factors for several human autoimmune diseases, the reasons for 
which remain unknown. We confirmed here that the constitutive 
interaction between PTPN22 and the adaptor proline–serine–thre-
onine phosphatase-interacting protein 1 (PSTPIP1)38. Moreover, 
7% of the PTPN22 molecules were associated to CSK before TCR 
stimulation. UBASH3A was found among the low-stoichiometry 
PTPN22 interactors, an observation that can be related to genome-
wide association studies in which UBASH3A variants were linked 
to autoimmunity39. Moreover, after slightly relaxing the cutoff val-
ues (FDR ≤ 3% for one condition of stimulation), the structural A 
(PPP2R1A), regulatory B (PP2R2A) and catalytic C (PP2CB) sub-
units of the serine–threonine–protein phosphatase 2A (PP2A) were 
found constitutively associated to PTPN22. PP2A has recently been 
implicated in several autoimmune disorders40, suggesting that PP2A 
contributes to the negative regulatory function of PTPN22 and its 
involvement in autoimmunity.

In conclusion, our study provides the most comprehensive 
analysis yet on the composition, stoichiometry and dynamics of the 
proximal TCR signal-transduction network in primary T  cells. It 
illustrates the power of systems-level approaches to retrieve quan-
titative information on how TCR signals propagate and diversify 
at the level of the T cell plasma membrane for successful initiation 
and termination of T  cell activation. Moreover, the possibility of 
integrating the cellular abundance of the interacting proteins and 
their interaction stoichiometry provides a quantitative and con-
textual picture of each documented PPI that supersedes the view 
resulting from conventional coimmunoprecipitation approaches. 
Importantly, it constitutes a framework that should help in rational-
izing the phenotypic effect of genetic variations or drug treatments 
intended to block T cell activation, and in charting the redundant 
routes of signal propagation that a T  cell might use to bypass a 
drug-targeted component, both of which constitute central issues in 
immune systems biology.
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Methods
Mice. Mice were on C57BL/6 background, sex matched and 9 weeks old. They 
were maintained in specific pathogen-free conditions and used in accordance 
with institutional committee and European (Marseille) and Chinese (Xinxiang) 
guidelines for animal care. CBLOST mice (B6-Cbltm1Mal), CBLBOST mice (B6-
Cblbtm1Ciphe), GRB2OST mice (B6-Grb2tm1Mal), SLP-76OST (B6-Lcp2tm2Mal) and VAV1OST 
mice (B6-Vav1tm1Mal) have been described4,7–9. Generation of FYBOST (B6-Fybtm1Ciphe), 
SHIP1OST (B6-Inpp5dtm1Mal), ITKOST (B6-Itktm1Ciphe), LCKOST (B6-Lcktm4Mal), NCK1OST 
(B6-Nck1tm1Mal), NFATC2OST (B6-Nfatc2tm1Ciphe), PLC-γ1OST (B6-Plcg1tm1Ciphe), SHP1OST 
(B6-Ptpn6tm1Mal), PTPN22OST (B6-Ptpn22tm2Ciphe) and THEMISOST (B6-Themistm1Ciphe) 
mice is described in Supplementary Note 1. Identification of OST-targeted alleles 
was performed by PCR using the pair of primers specified in Supplementary Table 1.  
Generation of F0 mice with biallelic null mutations in the Nap1l4, Arhgap45, 
AI467606, Cep85l and Arap1 genes is described in Supplementary Note 2, and their 
analysis by flow cytometry is described in Supplementary Note 3.

Biochemical validation of OST-tagged mice. CD4+ T cells from wild-type mice 
and from each of the OST-tagged mice reported here were lysed in buffer (50 mM 
Tris, pH 7.5, 135 mM NaCl, 0.5 mM EDTA, 10% glycerol, 0.2% n-dodecyl-β-d-
maltoside) supplemented with protease and phosphatase inhibitors. After 10 min 
of incubation on ice, cell lysates were centrifuged at 21,000g for 5 min at 4 °C. 
Postnuclear lysates were used either as whole-cell lysates or immunopurified 
on Strep–Tactin (see section on ‘Affinity purification of OST-tagged protein 
complexes’). Samples eluted from Strep–Tactin and whole-cell lysates were loaded 
on 8% SDS–PAGE gel and subsequently analyzed by immunoblot with specific 
antibodies: anti-ITK (sc-23902), anti-PTPN6 (sc-287), anti-SHIP1 (sc-8425) 
and anti-NFATc2 (sc-7296) were from Santa Cruz Biotechnology, anti-PLC-γ1 
(2822), anti-VAV1 (2502), anti-SLP-76 (4958), anti-ZAP70 (2705) and anti-LCK 
(2752) were from Cell Signaling Technology, anti-THEMIS (PA5-19288) was 
from Thermo Scientific, anti-NCK1 (610100) was from BD Biosciences, anti-
FYB (07-546) was from Millipore and anti-PTPN22 was a gift from Genentech. 
Addition of the OST sequence had no effect on the expression of most tagged 
protein polypeptides (Supplementary Fig. 3a), with the exception of SHP1-
OST polypeptides that were twofold reduced compared with their wild-type 
counterparts (see Supplementary Note 4).

Flow cytometry analysis of T cells from OST-tagged mice. Stained cells 
were analyzed using an LSRII system (BD Biosciences) and Diva software (BD 
Biosciences). Cell viability was evaluated using SYTOX Blue (Life Technologies). 
The following antibodies were used: anti-CD5 (53-7.3), anti-CD4 (RM45) and 
anti-CD44 (Im7) from BD Biosciences, anti-CD8 (53-6.7), anti-CD25 (PC61),  
anti-TCRβ (H57-597), anti-TCRγδ (GL3) and anti-CD19 (6D5) from BioLegend.

Functional analysis of CD4+ T cells from OST-tagged mice. For proliferation 
and IL-2 secretion assay, purified CD4+ T cells were stimulated with plate-bound 
anti-CD3 (145-2C11; Exbio) and soluble anti-CD28 (37-51; Exbio). After 48 h 
of culture, T cell proliferation was assessed with CellTiter-Glo Luminescent 
(Promega). The resulting luminescence, which is proportional to the ATP  
content of the culture, was measured with a Victor 2 luminometer (Wallac, Perkin 
Elmer Life Science). IL-2 production was measured with a DuoSet ELISA test 
(R&D Systems).

CD4+ T cell isolation and short-term expansion for AP–MS analysis. CD4+ 
T cells were purified (>95%) from pooled lymph nodes and spleens with 
Dynabeads Untouched Mouse CD4+ T Cell Kit (Life Technologies). Purified CD4+ 
T cells were expanded for 48 h with plate-bound anti-CD3 (145-2C11; 5 μg ml−1) 
and soluble anti-CD28 (37-51; 1 μg ml−1), both from Exbio. After 48 h of culture, 
CD4+ T cells were collected and grown in the presence of IL-2 (10 U ml−1) for 48 h 
before AP–MS analysis.

Stimulation and lysis of CD4+ T cells before AP–MS analysis. Short-term 
expanded CD4+ T cells (100 × 106) from wild-type mice and OST-tagged mice 
were incubated with anti-CD3 (0.2 μg per 106 cells; 145-2C11, Exbio) and anti-
CD4 (0.2 μg per 106 cells; GK1.5, Exbio) on ice for 15 min, followed by one 
round of washing at 4 °C. Cells were then incubated at 37 °C for 5 min and then 
stimulated at 37 °C with a purified rabbit anti-rat Ig (0.4 μg per 106 cells; Jackson 
ImmunoResearch) for 30, 120, 300 and 600 s, or left unstimulated. Stimulation 
was stopped by the addition of a twice-concentrated lysis buffer (100 mM Tris, 
pH 7.5, 270 mM NaCl, 1 mM EDTA, 20% glycerol, 0.4% n-dodecyl-β-d-maltoside) 
supplemented with protease and phosphatase inhibitors. After 10 min of incubation 
on ice, cell lysates were centrifuged at 21,000g for 5 min at 4 °C. Postnuclear lysates 
were then used for affinity purification.

Affinity purification of OST-tagged protein complexes. Equal amounts of 
postnuclear lysates from wild-type mice and OST-tagged mice were incubated with 
Strep–Tactin Sepharose beads (IBA) for 1.5 h at 4 °C on a rotary wheel. Beads were 
then washed five times with 1 ml of lysis buffer in the absence of detergent and of 
protease and phosphatase inhibitors. Proteins were eluted from the Strep–Tactin 
Sepharose beads with 2.5 mM d-biotin.

Tandem MS analysis. Following affinity purification, protein samples were 
partially air dried in a SpeedVac concentrator, reconstituted in Laemmli buffer 
containing dithiothreitol (25 mM) and heated at 95 °C for 5 min. Cysteines were 
alkylated for 30 min at room temperature by the addition of iodoacetamide 
(90 mM). Protein samples were loaded on an SDS–PAGE gel (0.15 × 3 × 8 cm3) and 
subjected to electrophoresis. Migration was stopped as soon as the protein sample 
entered the gel. The gel was briefly stained with Coomassie blue, and a single 
slice containing the whole protein sample was excised. The gel slice was washed 
twice with 100 mM ammonium bicarbonate and once with 100 mM ammonium 
bicarbonate–acetonitrile (1:1). Proteins were digested in-gel overnight at 37 °C 
using 0.6 µg modified sequencing grade trypsin (Promega) in 50 mM ammonium 
bicarbonate. The resulting peptides were extracted from the gel by one round of 
incubation (15 min, 37 °C) in 50 mM ammonium bicarbonate and two rounds of 
incubation (15 min each, 37 °C) in 10% formic acid–acetonitrile (1:1). The three 
extracted fractions were pooled and air dried. Peptides were further purified on 
a C18 ZipTip (Millipore) and dried again. Tryptic peptides were resuspended in 
20 µl of 2% acetonitrile and 0.05% trifluoroacetic acid and analyzed by MS. A mix 
of standard synthetic peptides (iRT Kit; Biognosys) was spiked in all samples to 
monitor the stability of the nano-liquid chromatography (LC)–MS system during 
the analytical sequence. Peptides were analyzed by nano-LC coupled to tandem 
MS, using an UltiMate 3000 system (NCS-3500RS Nano/Cap System; Dionex) 
coupled to an Orbitrap Velos Pro mass spectrometer (ThermoFisher Scientific). For 
each sample, 5 μl was loaded on a C18 precolumn (300 µm inner diameter × 5 mm; 
Dionex) in a solvent made of 2% acetonitrile and 0.05% trifluoroacetic acid, at 
a flow rate of 20 µl min−1. After 5 min of desalting, the precolumn was switched 
online with the analytical C18 column (75 µm inner diameter × 50 cm, in-house 
packed with Reprosil C18) equilibrated in 95% solvent A (5% acetonitrile, 0.2% 
formic acid) and 5% solvent B (80% acetonitrile, 0.2% formic acid). Peptides 
were eluted using a 5–50% gradient of solvent B over 105 min and a flow rate of 
300 nl min−1. The LTQ Orbitrap Velos was operated in data-dependent acquisition 
mode with Xcalibur software. Survey scan MS was acquired in the Orbitrap in 
the 350–2,000 m/z range, with the resolution set to a value of 60,000. The survey 
scans of the 20 most intense ions were selected for fragmentation by collision-
induced dissociation, and the resulting fragments were analyzed in the linear trap. 
Dynamic exclusion was used within 60 s to prevent repetitive selection of the same 
peptide. Technical LC–MS measurement replicates were performed for each sample 
(duplicate or triplicate runs depending on the series).

Protein identification and quantification for interaction proteomics. Raw 
MS files were processed with MaxQuant software (v.1.5.2.8) for database search 
with the Andromeda search engine and quantitative analysis. Data were searched 
against Mus musculus entries of the UniProtKB protein database (release 
UniProtKB/Swiss-Prot + TrEMBL 2017_01, 89,297 entries including isoforms), 
the Biognosys iRT peptides, the One-Strep-tag peptide sequence and the set 
of common contaminants provided by MaxQuant. Carbamidomethylation of 
cysteines was set as a fixed modification, whereas oxidation of methionine, protein 
N-terminal acetylation and phosphorylation of serine, threonine and tyrosine were 
set as variable modifications. Specificity of trypsin digestion was set for cleavage 
after K or R residues, and two missed trypsin cleavage sites were allowed. The 
precursor mass tolerance was set to 20 ppm for the first search and 4.5 ppm for the 
main Andromeda database search. The mass tolerance in tandem MS mode was set 
to 0.5 Da. Minimum peptide length was set to seven amino acids, and minimum 
number of unique or razor peptides was set to 1 for validation. The I = L option 
of MaxQuant was enabled to avoid erroneous assignation of undistinguishable 
peptides belonging to very homologous proteins. Andromeda results were 
validated by the target decoy approach using a reverse database, with a FDR value 
set at 1% at both peptide sequence match and protein level. For label-free relative 
quantification of the samples, the match between runs option of MaxQuant was 
enabled with a match time window of 1 min, to allow cross-assignment of MS 
features detected in the different runs, after alignment of the runs with a time 
window of 20 min. Protein quantification was based on unique and razor peptides. 
The minimum ratio count was set to 1 for label-free quantification calculation, and 
computation of the iBAQ metric was also enabled.

Statistics and data reproducibility. From the ‘proteinGroups.txt’ files generated 
by MaxQuant with the options described above, protein groups with negative 
identification scores were filtered, as well as proteins identified as contaminants. 
Because protein groups were mapped using a redundant database (combining 
TrEMBL and Swiss-Prot), some protein groups corresponded to the same gene 
name. In such situations, protein intensities in a given sample were summed over 
the redundant protein groups. Protein intensities were log transformed before 
being normalized across all conditions (condition of stimulation, biological and 
technical replicates) by the median intensity. Normalized intensities corresponding 
to different technical replicates were averaged and missing values were replaced 
after estimating background binding from wild-type intensities. For each bait 
and each condition of stimulation, we used a two-tailed Welch’s t-test to compare 
normalized protein intensities detected in OST-tagged samples across all biological 
replicates with wild-type intensities pooled from all conditions of stimulation. 
Logarithmized fold change and corresponding P values were used to generate a 
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global volcano plot representing interactions from all baits and all conditions of 
stimulation (Supplementary Fig. 4c). Asymmetry of this global volcano plot was 
used to define regions corresponding to different FDR values6. Briefly, the volcano 
plot was divided into different regions by a line of equation f(x) = c/(|x| − x0). For a 
given set of parameters (c, x0), the FDR is computed using the number of proteins 
falling in the upper left and right regions, denoted as nleft and nright respectively, 
according to the formula:

FDR c; x0ð Þ ¼ nleft = nleft þ nright
� �

The FDR value of a given bait–prey interaction at a given stimulation time is 
then taken as the maximum FDR value calculated across all (c, x0) parameters. 
Bait–prey interactions with an FDR value ≤3% for two consecutive stimulation 
times were identified and referred to as high-confidence interactions.

Calculation of interaction stoichiometries. For a given condition of stimulation 
(represented by the time of stimulation t, with t = 0 corresponding to the 
unstimulated condition), the stoichiometry of the interaction between a given bait 
and a prey x (denoted bait < x) was calculated using:

Sbait<x tð Þ ¼ hIOST;x tð Þi=hIOST;bait tð Þi ´Npep;bait=Npep;x

Npep corresponds to the number of tryptic peptides theoretically observables 
and brackets represent averages across all biological replicates. We also computed 
stoichiometries independently for each biological replicate, denoted Sbait < x(t; rep), 
and those values were used to quantify correlation in recruitment between different 
preys (see section on ‘Co-recruitment analysis’).

High-resolution MS characterization of the CD4+ T cell proteome. For proteome 
analysis, CD4+ T cells from wild-type and from OST-tagged mice were briefly 
expanded in vitro as described for AP–MS experiments. Cell pellets (5 × 106 cells) 
were incubated with 150 μl of lysis buffer containing Tris 50 mM, pH 7.5, EDTA 
0.5 mM, NaCl 135 mM, SDS 1% for 10 min on ice and subjected to sonication with a 
Bioruptor ultrasonicator. Protein concentration was determined using a detergent-
compatible assay (DC assay, Bio-Rad) and total protein amounts were adjusted across 
samples. Each protein sample was migrated briefly on SDS–PAGE gel and processed 
for in-gel digestion as described for AP–MS. Resulting peptide mixtures were 
analyzed with a fast-sequencing QExactivePlus Orbitrap mass spectrometer (Thermo 
Scientific), using long gradient runs (5–50% gradient of solvent B over 240 min). 
Survey MS scans were acquired in the Orbitrap in the 350–2000 m/z range with 
a resolution of 70,000, the ten most intense ions per survey scan were selected for 
higher energy collisional dissociation fragmentation and the resulting fragments were 
analyzed at a resolution of 17,500 in the Orbitrap. Raw MS files were processed with 
MaxQuant as described in the section ‘Protein identification and quantification for 
interaction proteomics’, with a search against Mus musculus entries of the UniProtKB/
Swiss-Prot protein database, using a tolerance of 20 ppm for MS/MS in the Orbitrap.

Calculation of cellular protein abundance. Analysis of the proteome of CD4+ 
T cells from 14 mice lines (corresponding to 1 wild-type and 13 distinct OST-
tagged genetic backgrounds) identified 4,643 protein groups. Protein entries from 
the MaxQuant ‘proteinGroups.txt’ output were first filtered to eliminate entries 
from reverse and contaminant databases. Cellular protein abundances were 
determined from raw intensities using the protein ruler methodology11, using the 
following relationship: protein copies per cell = (protein MS signal × NA × DNA 
mass)/(M × histone MS signal), where NA is Avogadro’s constant, M is the molar 
mass of the protein and the DNA mass of a diploid mouse cell is estimated to 
be 5.5209 pg. Cellular protein abundances were log transformed and averaged 
sequentially over technical replicates, and biological replicates for all genetic 
backgrounds. Overall, the cellular protein abundance could be estimated for 4,148 
protein groups and averaged across 14 different backgrounds.

Peptide fractionation was further used to increase the depth of the CD4+ T cell 
proteome before and after stimulation through the TCR and CD4. This led to 
the identification of 6,388 protein groups. Cellular protein abundances for 6,104 
protein groups were determined as described and averaged across all conditions 
of stimulation. To merge our two proteomes, the median averaged cellular protein 
abundance of the second proteome was adjusted to that of the first proteome. A 
total of 6,343 unique majority protein identities (which contained at least half of 

a protein groups razor + unique peptides) were then identified across all protein 
groups (Supplementary Dataset 2). In the case where a majority protein identity 
was identified in both proteomes, the cellular protein abundance value was taken 
from the proteome where the highest number of razor + unique peptides was 
associated to this protein identity.

Calculation of reciprocal stoichiometries. For all bait A–prey B interactions  
A < B, the stoichiometry of the reciprocal interaction B < A was calculated using 
the following relationship:

SB<A ¼ SA<B ´NA=NB

where NA and NB are cellular protein abundances of A and B, respectively. Note that 
reciprocal stoichiometries could only be computed when the cellular abundances 
of both proteins were available. Comparison between experimentally determined 
stoichiometries and stoichiometries predicted from the reciprocal interaction was 
performed in all cases where both A and B were protein baits and both A < B and 
B < A interaction stoichiometries were quantified.

Co-recruitment analysis. We previously demonstrated that the occurrence 
of temporal correlations in the recruitment of two preys to a given bait can be 
used to infer functional or physical relationships between these preys and to 
construct a co-recruitment network9. The rationale behind this reasoning is that 
physically interacting preys, or preys cooperating toward a peculiar function, 
should have similar profiles of recruitment to a given bait as a function of time of 
TCR stimulation. Here, we extended this approach to the analysis of recruitment 
correlations within the 15 interactomes. Within each interactome we quantified 
correlations in interaction stoichiometries for all pairs of high-confidence preys 
and selected strongly correlated pairs (Pearson R ≥ 0.8 with an associated P ≤ 0.05). 
To limit the maximum degree of the resulting correlation network, we only kept 
the two preys that were the most strongly correlated with a given prey. Correlation 
networks from individual interactomes were then merged to form a single global 
co-recruitment network, the finer structure of which was divided into protein 
communities using a modularity optimization algorithm41.

Comparison with PPIs reported in databases. Bait–prey interactions identified 
in this study were compared to PPIs previously reported between human or mouse 
proteins in the publicly available BioGrid (https://thebiogrid.org), IntAct (https://
www.ebi.ac.uk/intact/), MINT (https://mint.bio.uniroma2.it) and HPRD (http://
www.hprd.org/) databases.

Annotation enrichment analysis. We annotated the different identified proteins 
using Uniprot-Protein families and Uniprot-Keywords. We used a hypergeometric 
test to determine whether an annotation term was statistically enriched in a given 
interactome compared with a background composed of all proteins identified in 
this interactome (without any filtering based on the FDR). Annotations that were 
represented by at least two high-confidence preys (FDR ≤ 3% for two consecutive 
stimulation times) and had an enrichment greater than twofold with a P value 
lower than 0.05 were selected as enriched terms. We used the same procedure to 
analyze annotation enrichment within functional communities identified in the 
co-recruitment network, with the background corresponding to the set of high-
confidence preys.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon request. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via the PRIDE partner 
repository (http://www.ebi.ac.uk/pride) with the dataset identifiers PXD012826, 
PXD007660 and PXD003972.
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