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 2 

Abstract 26 

Adrenocortical tumors (ACTs) frequently cause steroid excess and present cell-cycle 27 

dysregulation. cAMP/PKA signaling is involved in steroid synthesis and play a role in cell-28 

cycle regulation. We investigated, by cell synchronization in the different phases of the cell-29 

cycle, the control of steroidogenesis and the contribution of PKA in adrenocortical cells 30 

(H295R and culture of primary pigmented nodular adrenocortical disease cells). Cells showed 31 

increased steroidogenesis and a maximal PKA activity at G2 phase, and a reduction at G1 32 

phase. PRKACA overexpression, or cAMP stimulation, enhanced PKA activity and induced 33 

steroidogenesis in all synchronized groups but is not sufficient to drive cell-cycle progression. 34 

PRKAR1A inactivation enhanced PKA activity and induced STAR gene expression, only in 35 

cells in G1, and triggered cell-cycle progression in all groups.  36 

These findings provide evidence for a tight association between steroidogenesis and cell-cycle 37 

in ACTs. Moreover, PRKAR1A is essential for mediating the function of PKA activity on both 38 

steroidogenesis and cell-cycle progression in adrenocortical cells.  39 

 40 
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1. Introduction  51 

Adrenocortical tumors (ACTs) are often associated with increased steroid secretion, which 52 

contributes to morbidity. This has been observed for benign tumors, such as those of primary 53 

pigmented nodular adrenocortical disease (PPNAD) (Espiard et al., 2014), macronodular 54 

hyperplasia (Louiset et al., 2013), adrenocortical adenomas (Bassett et al., 2005), and 55 

malignant adrenal cortical carcinoma (ACC) (Nakamura et al., 2015;Abiven et al., 2006). 56 

Even ACCs, which are classified as endocrine-inactive based on routine hormonal 57 

assessment, are often responsible for abnormal steroid secretion, as demonstrated by mass 58 

spectrometry analysis (Arlt et al., 2011). ACT cells also frequently display cell-cycle control 59 

defects (Ragazzon et al., 2011;Stratakis, 2009;Assie et al., 2014). Consistent with this 60 

observation, amplifications and deletions of genes encoding key regulators of the cell cycle 61 

(CDK4, CCNE1, RB1, CDKN2A) have been described in several studies and are more 62 

frequent in ACCs (Assie et al., 2014;De Martino et al., 2013;Ross et al., 2014;Pereira et al., 63 

2018).  64 

It is well established that the effects of steroid hormones, such as glucocorticoids, androgens, 65 

and estrogens, on cell proliferation and differentiation are mediated by the regulation of key 66 

events in the control of cell-cycle progression or arrest (Kullmann et al., 2013;Heisler et al., 67 

1997;Amanatullah et al., 2002), but little is known concerning steroid-hormone secretion 68 

during the cell cycle in the adrenal gland. The adrenolytic drug mitotane (op’DDD),  used in 69 

ACC treatment, decreases cortisol secretion and induces the destruction of the zona 70 

fasciculata and zona reticularis of the adrenal cortex (Cerquetti et al., 2008). Its use has been 71 

shown to be associated with cell-cycle arrest at the G2/M phase and apoptosis (Doghman et 72 

al., 2013;Hescot et al., 2013).  73 
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Genetic alterations leading to constitutive activation of the cAMP/PKA pathway in various 74 

types of ACTs, such as cortisol secreting adenomas (ACA) or PPNAD, result in steroid over-75 

secretion (Lodish et al., 2016). The best examples are inactivating mutations of the regulatory 76 

subunit R1A of PKA (PRKAR1A), which is mutated in the germline DNA of patients with 77 

PPNAD and Carney complex or tumor DNA in a subset of secreting ACAs and ACCs 78 

(Kirschner et al., 2000;Bertherat et al., 2003;Zheng et al., 2016). In benign adrenal tumors 79 

associated with Cushing syndrome, PRKACA somatic mutations also result in constitutive 80 

PKA activity by disrupting the interaction between PRKACA and the regulatory subunits of 81 

PKA, including PRKAR1A (Beuschlein et al., 2014;Goh et al., 2014;Calebiro et al., 2014;Cao 82 

et al., 2014;Sato et al., 2014). Changes in cAMP signal transduction also play a role in 83 

regulating the cell cycle (Massimi et al., 2017;Gupta et al., 2017;Sun et al., 2009). Activation 84 

of the cAMP/PKA pathway in many cell types inhibits proliferation by preventing cells from 85 

entering the S phase and arresting cells in G1 (Duncan et al., 2006;Hewer et al., 2011). In 86 

contrast, stimulation of the cAMP/PKA pathway may facilitate cell proliferation, such as in 87 

thyroid and pituitary tumors (Medri et al., 1994;Spada et al., 1992). 88 

Cyclic AMP exerts its actions primarily through the activation of protein kinase A (PKA). 89 

PKA is composed of two types of regulatory and four types of catalytic subunits. The PKA 90 

regulatory subunits have been studied for their role in tumor formation (Taylor et al., 2013). 91 

In vivo and in vitro studies have shown that inactivating PRKAR1A leads to tumorigenesis 92 

(Kirschner et al., 2005;Nadella et al., 2005). These studies showed that the lack of Prkar1a 93 

protein in primary mouse cells in vitro causes constitutive PKA activation and 94 

immortalization of primary mouse embryonic fibroblasts (MEFs). At the molecular level, 95 

knocking out Prkar1a led to the upregulation of D-type cyclins (Kirschner et al., 2005). 96 

Similarly, we showed that inactivation of PRKAR1A confers resistance to apoptosis and 97 

enhances proliferation in the adrenocortical cell line H295R (Basso et al., 2014). PRKAR1A 98 
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inactivation disrupted the cell-cycle checkpoint and cells accumulated at the G2 phase with an 99 

increase in cyclin D and PKA CA activity. These results suggested that there may be a link 100 

between the increase in steroid secretion and cell-cycle dysregulation, which are 101 

concomitantly observed in adrenal tumors. 102 

Here, we investigated the cell-cycle-dependent control of adrenal-steroid oversecretion and 103 

the contribution of cAMP/PKA in two cell lines synchronized by pharmacological drugs: 104 

H295R, a human adrenal cortex cell line derived from an ACC (Gazdar et al., 1990) that does 105 

not harbor any mutations in the cAMP/PKA pathway, and primary cultured PPNAD cells, 106 

with inactivating mutations of PKAR1A. We mimicked the constitutive activation of PKA that 107 

is observed in adrenal tumors with PRKAR1A inactivating (Kirschner et al., 2000;Bertherat et 108 

al., 2003) or PRKACA activating (Beuschlein et al., 2014;Calebiro et al., 2014;Weigand et al., 109 

2017) mutations using either cAMP treatment, transient silencing of PRKAR1A by 110 

transfection with an siRNA, or overexpression of one of the catalytic subunits of PKA, 111 

concomitant with the pharmacological drugs.  112 

Overall, our data show that the hypersecretion of steroids by the H295R ACC cell line and 113 

PPNAD is controlled by the phase of the cell cycle and that PKA activity plays a role in such 114 

coordination. 115 

116 

grabin
PDF Creator Trial

grabin
PDF Creator Trial

grabin
PDF Creator Trial



 6 

2. Materials and methods  117 

2.1 Cell culture 118 

Human H295R adrenocortical carcinoma cells, purchased from the ATCC, were grown as 119 

previously described (Bouizar et al., 2010;Ragazzon et al., 2009;Groussin et al., 2000), in 120 

DMEM Ham/F12 medium (Sigma, St. Quentin Fallavier France) supplemented with 50 121 

units/ml penicillin, 50 mg/ml streptomycin, 2 mmol/L glutamine, 2% Ultroser G2 (Biosepra, 122 

Fremont, CA), and ITS (5 µg/ml insulin, 5 µg/ml transferrin, and 5 ng/ml selenium) (Sigma) 123 

at 37°C in an atmosphere of 5% carbon dioxide/95% air. Cells were allowed to attach for 24 h 124 

before use.  125 

2.2 Primary cell culture of PPNAD 126 

Human adrenals were obtained after informed consent from two CNC patients undergoing 127 

surgery for PPNAD. Adrenal tissue collection was approved by the ethics committee of 128 

Cochin Hospital. PPNAD adrenal tissues were obtained during surgery and immediately 129 

immersed in culture medium. Briefly, adrenocortical explants were enzymatically dispersed 130 

as previously described (Cazabat et al., 2014;Bram et al., 2016). Adrenocortical cells were 131 

cultured at 37°C in 5% CO2 and allowed to attach for four days before use. Cells were 132 

incubated with various pharmacological inhibitors to synchronize the cell-cycle for 24 h with 133 

fresh DMEM medium, as for the H295R cell line.  134 

2.3 Western blotting  135 

Whole-cell protein lysates were obtained by extraction with RIPA lysis buffer containing 50 136 

mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 0.1% v/v Nonidet P-40 (NP40), anti-137 

phosphatase, and anti-protease (Roche, Boulogne Billancourt, France) as previously described 138 

(Basso et al., 2014). Western blotting was performed with primary mouse antibodies for R1A 139 

(1/500, BD Laboratories, Rungis, France), R2B (1/1000), PKA catalytic subunits (1/1000) 140 
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(Santa Cruz Biotechnology, Nanterre, France), and Star (1/1000) (Cell Signaling, St Quentin 141 

en Yvelines, France).We used anti- -actin (1/2500) (Sigma) or GAPDH antibodies (1/1000) 142 

(Santa Cruz Biotechnology) as loading controls. The antigen-antibody complexes were 143 

visualized with appropriate secondary antibodies (Santa Cruz Biotechnology) by 144 

chemiluminescence detection (ECLTM kit, Thermo scientific, Saint Herblan France). The 145 

signals were digitized with the Syngene/Gene Tool analysis system. (Ozyme, Montigny Le 146 

Bretonneux, France)   147 

2.4 Cell-cycle distribution 148 

Cell cultures were harvested, rinsed with PBS, fixed in 500 l 70% ethanol, and frozen (-149 

20°C). Fixed cells were centrifuged, rinsed in PBS, suspended in 500 l PBS containing 50 150 

g/ml propidium iodide (Sigma) and 100 g/ml RNase A (Sigma), and examined by flow 151 

cytometry (FACscan, EPICS XL Coulter, Villepinte France). Data were analyzed using 152 

Multicycle software. All experiments were carried out three times. Each histogram was 153 

constructed from at least 10,000 cells (Rizk-Rabin et al., 2008). 154 

2.5 Cell-cycle synchronization   155 

We used three different inhibitors, each specific for a cell-cycle check point: L mimosine for 156 

G1 (Vackova et al., 2003), aphidicolin for G1/S (Sorscher et al., 1991), and nocodazole for 157 

G2 (Ho et al., 2001) (Sigma). The cell-cycle phases of H295R cells arrested at a specific point 158 

in the cell cycle were well defined in a previous report (Bouizar et al., 2010). Cells were 159 

cultured in 12-well plates at a density of 150 x 103 cells/well and then treated for 24 h with L-160 

mimosine (400 µM) or aphidicolin (10 µM) or for 24 h or 48 h with nocodazole (10 µM). For 161 

cell-cycle release of the H295R cells, following 24 or 48 h of synchronization, cells were 162 

washed three times with PBS and cultured in medium without drugs for 6, 12, 24, 36, or 48 h. 163 

For PKA activation or inhibition, cells were transiently transfected with an siRNA for 164 
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PRKAR1A, the control scramble RNA (siS), PKACA (in the PCDNA3+ vector, a gift from Dr 165 

D. Calebiro), or the empty vector, or incubated with the PKA inhibitor PKI 14-22 166 

(Calbiochem, Fontenay sous-Bois France ) and cultured with the different drugs for 24 h.  167 

2.6 Transfection and co-transfection  168 

H295R cells cultured in six-well plates were transfected with 100 pmol siRNA PRKAR1A 169 

(UGAAUGGGCAACCAGUGUUdTdT), the siRNA negative control (siS) 170 

(CAGUCGCGUUUGCGACUGGdTdT), 500 ng PKACA or PCDNA3+, as empty vector, 171 

using the Effectene reagent (Promega, Charbonnières les Bains, France). Cells were analyzed 172 

24 h after transfection. For luciferase assays, 24-well plates were used. Cells were co-173 

transfected with the siRNAs or vectors and a luciferase reporter gene driven by Star 174 

promoters. Firefly and Renilla luciferase activities (Promega) were measured as previously 175 

described (Basso et al., 2014;Ragazzon et al., 2009).  176 

2.7 Steroid measurement.  177 

Cortisol and aldosterone levels in cell medium were measured by competitive immunoassays 178 

and revealed by chemiluminescence assays (Laboratory of Hormonology at Cochin Hospital, 179 

France ).  180 

2.8 Protein kinase A assay  181 

The PepTag nonradioactive protein kinase assay kit (Promega) was used to measure PKA 182 

activity, according to the manufacturer’s instructions, as described in (Rizk-Rabin et al., 183 

2008)  184 

2.9 Analysis of RNA by quantitative PCR  185 

Total RNA, extracted from the cell lines, was treated with DNase and further purified using 186 

the RNeasy Mini kit and RNase-free DNase Set (Promega), according to the manufacturer’s 187 

instructions. Purified RNA was reverse transcribed with high-capacity cDNA reverse 188 
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transcriptase (Applied Biosystems, Illkirch France) and expression levels of the target genes 189 

analyzed by quantitative PCR using a LightCycler Fast Start SyberGreen kit (Roche 190 

Diagnostics, Meylan France), according to the manufacturer’s instructions. The PCR 191 

conditions for all target steroidogenic and cyclin genes are shown in Table 1. Relative 192 

quantification of target cDNA was determined by calculating the difference in cross-threshold 193 

(CT) values after normalization to PPIA (CYCLO) signals (DDCT method). 194 

2.10 Statistical analysis 195 

Data were analysed by ANOVA, Student’s t-test, o regression analysis with Fisher’s projected 196 

least significant difference or Scheffe’s F test for comparison of the means (StatView 5.0, 197 

SAS Institute, Cary, NC, USA). Data are expressed as the means ± S.E.M. Values of P = 0.05 198 

were considered significant. The number of experiments is indicated in each figure legend. 199 

Results of all data for which statistical analysis was performed represent the quantification of 200 

at least three duplicate experiments. Control conditions were set as 1. Significance was set at 201 

p < 0.05(*), p < 0.01 (**), and p < 0.001 (***). 202 

203 
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3. Results  204 

3.1 Cell-cycle synchronization of H295R and PPNAD cells 205 

We synchronized the cells by treatment with L-mimosine, aphidicolin, or nocodazole, 206 

assessed by propidium iodide staining and cytometry analysis (Figure 1). We obtained similar 207 

results for both cell types. Asynchronous cells treated with vehicle (DMSO) displayed a 208 

typical profile, with a higher percentage of cells in G1 (Figure 1A I,II) . Treatment of the cells 209 

with L-mimosine resulted in the accumulation of cells in G1 and decreased the percentage of 210 

cells in G2 (Figure 1B I,II). Aphidicolin treatment resulted in the accumulation of cells in late 211 

G1, with fewer cells in S and G2 than for the control (Figure 1C I,II) as demonstrated in 212 

(Bouizar et al., 2010). Nocodazole treatment resulted in a decrease in the number of cells in 213 

G1 and the accumulation of cells in G2 (Figure1D I,II) as assessed in (Bouizar et al., 2010). 214 

All phases of the cell cycle were verified by analyzing the expression of various cyclins to 215 

distinguish between the different check points of the cell cycle (Supplemental Figure 1). 216 

Cyclin D1 mRNA levels increase substantially in cells blocked with L-mimosine and this 217 

increase serves as a marker of initiation of the G1 phase, the level of Cyclin E increases in 218 

Aphidicolin-treated cells and serves as a marker of late G1/S, and increases in cyclin B and D 219 

levels serve as markers of the G2 Phase (Pereira et al., 2018).  220 

3.2 Steroidogenesis is higher in the G2 phase in synchronized H295R and PPNAD cells 221 

H295R cells secrete both glucocorticoids and mineralocorticoids, whereas PPNAD secretes 222 

only glucocorticoids. The analysis of steroid secretion showed significantly greater cortisol 223 

secretion by both H295R and PPNAD cells at G2 (Figure 1D III, IV). In H295R cells, 224 

aldosterone secretion was also higher at G2 (Figure 1D III). In contrast, cortisol and 225 

aldosterone secretion was lower in H295R at G1 (p < 0.01), whereas there was no difference 226 

for PPNAD (Figure 1A III, IV). Finally, we observed no differences for either cell type at 227 

G1/S (Figure 1C III, IV).  228 
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We analyzed the impact of cell-cycle synchronization on the expression of genes responsible 229 

for steroidogenesis by real-time RT-PCR. Cells synchronized with nocodazole accumulated at 230 

G2 and showed a significant increase in mRNA levels for all studied steroidogenic enzyme 231 

genes, both in H295R and PPNAD, except for CYP11A1 in H295R and CYP17A in PPNAD 232 

(Figure 2C I, II). In contrast, we only observed a significant increase in CYP17A (p < 0.05) 233 

and decrease in CYP21A2 mRNA levels in H295R in cells synchronized in G1 (Figure 2B I), 234 

whereas we observed a decrease in CYP11A1 and CYP21A2 mRNA levels in PPNAD cells 235 

(Figure 2A II). H295R cells at the early G1/S transition also showed a significant decrease in 236 

CYP11A1 mRNA levels (Figure 2B I). Star protein expression only increased in cells at G2 in 237 

H295R (Figure 2 III). The increase in Star protein levels at G2 correlated with an increase in 238 

mRNA expression in cultured the H295R and PPNAD cells (Supplemental Figure 2).  239 

We verified that the changes in steroidogenesis during the cell cycle resulted from 240 

physiological regulation and were not due to side effects of the drugs by performing similar 241 

analyses on H295R cells that were released from synchronization and cultured in normal 242 

medium to follow their progression through the cell cycle from 0 to 6, 12, 24, 36, and 48 h 243 

after release. The release of cells synchronized at G1 (53.2% G1, 37% S, and 9.7% G2) by L-244 

mimosine treatment, resulted in an increase in the percentage of cells in S at 12 h after release, 245 

followed by an increase in cells in G2 at 36 and 48 h (Figure 3A I). The expression of 246 

steroidogenic enzyme genes by RT/PCR at various times after release is presented as the fold 247 

change with respect to asynchronous cells at time 0, set to one. There was a progressive 248 

increase of CYP11B1, CYP11B2, CYP11A1, NR5A1 (SF1), and STAR mRNA levels from 6 to 249 

12 h, followed by a peak of expression after 36 h, concomitant with entry into G2 (Figure 3B 250 

I and C I ). 251 
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The release of cells blocked in G2 (11.7% G1, 16.8% S, and 71.5% G2) with nocodazole (48 252 

h of treatment) resulted in their progression through the cell cycle (Figure 3A, right). They 253 

then re-entered G2 phase from 36 to 48 h after release (Figure 3A II). There was a progressive 254 

decrease in CYP11B2 mRNA levels from 0 to 24 h, coinciding with the decrease in the 255 

percentage of cells in G2, followed by a distinct increase from 36 h that reached the initial 256 

level observed at time 0 of the release (Figure 3B II). The expression of CYP11B1 and 257 

CYP11A1 mRNA levels did not change from 0 to 24 h and then increased (Figure 3B II). 258 

NR5A1 (SF1) and STAR mRNA levels increased at 36 h (Figure 3C II). 259 

These data confirm that steroidogenic enzyme mRNA levels change during cell-cycle 260 

progression. 261 

3.3 PKA and MAP kinase activity in synchronized H295R cells  262 

Cell-cycle progression is often associated with the modulation of PKA and MAP kinase 263 

activity. Thus, we next assessed PKA and MAP kinase activity in synchronized cells. ERK1/2 264 

phosphorylation, reflecting MAP kinase pathway activity, was significantly higher in all 265 

synchronized groups than in asynchronous cells (Figure 4A-C I and Supplemental Figure 3). 266 

MEK phosphorylation was also significantly higher in cells in G2 (Figure 4C I). Moreover, 267 

there was significantly less PKA activity in cells in G1 (Figure 4A II), whereas it was 268 

significantly higher in cells in G2 (Figure 4C II) than in asynchronous cells. 269 

Under the same conditions, PKA R1A protein levels were markedly lower in cells at G2 270 

(Figure 4C III), whereas those of PKA R2B and PKA CA were not significantly altered in any 271 

of the studied groups (Figure 4A-C).  272 

 273 

3.4 The effect of PKA activation on the control of the cell cycle and steroidogenesis in 274 

synchronized H295R cells  275 
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The overexpression of steroidogenic enzyme genes at G2 is associated with an increase in the 276 

level of PKA activity. We next investigated whether increased PKA activity effects the phases 277 

of the cell cycle and steroidogenesis in synchronized cells. We thus increased PKA activity by 278 

overexpressing PRKACA (Ca) or silencing PRKAR1A (Figure 5 I-II). PKA Ca was 279 

overexpressed in transfected cells of the asynchronous control and all synchronized groups. 280 

However, it was less highly overexpressed in the nocodazole group, for which the basal level 281 

was much higher than that of the control asynchronous cells (Supplemental Figure 4A). The 282 

expression of the PKA RI protein was reduced in all depleted PRKAR1A synchronized groups 283 

(Supplemental Figure 4 B). However, the magnitude of the increase in Ca protein levels and 284 

decrease in RIa protein levels depended on the phase of arrest.  285 

 Overexpression of PRKACA (Ca) for 24h in H295R cells had no effect on the cell cycle 286 

(Figure 5A I) but increased both the activity of PKA and a luciferase reporter construct driven 287 

by the STAR promoter (STAR-Luc) in all groups, independently of the phase of cell-cycle 288 

arrest (Figure 5B and C I). STAR-Luc activity was the highest in cells in G2 (Figure 5C I). 289 

Similarly, PKA activation by cAMP had no effect on the cell cycle (Supplemental Figure 5). 290 

Transient depletion of PRKAR1A for 24 h was sufficient to increase the percentage/number of 291 

cells in G2 in the asynchronous group and decreased the percentage of cells in G1 relative to 292 

the control (siS, asynchronous cells; Figure 5A II). In L-mimosine treated cells, the 293 

invalidation of PRKAR1A shifted the cells toward the S and G2 phases and decreased the 294 

percentage of cells in G1 (p ≤ 0.02 siR1A vs siS). Simultaneous transfection with siR1A and 295 

aphidicolin treatment for 24 h decreased the percentage/number of cells in G1 (p < 0.001 296 

siR1A vs siS) and subsequently increased those in S (p < 0.05 siR1A vs siS). Simultaneous 297 

nocodazole treatment and R1A silencing increased the percentage of cells in S and decreased 298 

the percentage of those in G2 (p ≤ 0.05) (Figure 5A II). As expected, PRKAR1A silencing 299 
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enhanced PKA activity in all groups (Figure 5B II). Under the same conditions, PRKAR1A 300 

silencing led to increased activity of the STAR-Luc reporter in the asynchronous group (p < 301 

0.05) and L-mimosine treated cells (p < 0.05), whereas its activity remained unchanged in the 302 

aphidicolin and nocodazole-treated cells (Figure 5C II).  303 

3.5 Effect of PKA inhibition on control of the cell cycle in synchronized H295R cells  304 

We confirmed the above data with the pharmacological inhibition of PKA activity by 305 

treatment with the cell-permeable specific inhibitor Myr-PKI (14-22), which contains a PKA 306 

substrate consensus sequence with the serine replaced by alanine (Wiley et al., 1999). The 307 

major effect of PKA inhibition was observed in nocodazole treated cells (G2), for which there 308 

was a decrease in the percentage of cells in G2 (p < 0.001) and an increase in the percentage 309 

of those in S (p < 0.02) (Figure 6A). This effect was paralleled by a marked and significant 310 

decrease in STAR-Luc activity in the nocodazole-treated cells (p < 0.001) (Figure 6B). 311 

Overall, our results show that the PKA R1A subunit mediates the effect of PKA activity on 312 

cell-cycle progression and the activation of steroidogenesis, depending on the phase of the 313 

cell cycle. 314 

315 
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4. Discussion.  316 

Excess adrenal-steroid secretion can be explained by mutations of various key components of 317 

the cAMP pathway that are also likely to be involved in adrenal tumorigenesis (Bertherat et 318 

al., 2003;Beuschlein et al., 2014;Calebiro et al., 2014;Horvath et al., 2006;Horvath et al., 319 

2008). Here, we demonstrate that steroidogenesis is modulated according to specific cell-320 

cycle phases in both an established human adrenal cortical carcinoma cell line, H295R, and a 321 

primary cell culture of PPNAD (harboring PKARIA inactivating mutations) from patients with 322 

cortisol excess.  323 

Major actors of steroidogenesis (NR5A, Star, and enzymes) were preferentially induced 324 

during G2 (Figures 1, 2 and 3), leading to peak steroidogenesis during the same phase.  325 

It is well known that cAMP/PKA and the MAP kinase activity vary during the cell cycle and 326 

that MAP kinase activity is higher during the G2 phase in most cells (Philipova et al., 1998). 327 

However, in most cells, cAMP levels and PKA activity are low during G2 and mitosis and 328 

then become high in G1 (Bolte et al., 2003;Kurokawa et al., 1998;Yu et al., 2008). This 329 

variation is cell-type specific, as the elevation of intracellular cyclic AMP (cAMP) is 330 

considered to be a potent mitogenic signal for a number of cell types, including Swiss 3T3 331 

cells, thyroid epithelial cells, and somatotroph cells of the anterior pituitary (Withers, 1997).  332 

Here, we demonstrated that only the level of PKA activity varied notably according to the 333 

stage of the cell cycle in the adrenocortical cell line H295R. PKA activity was high in G2 334 

(Figure 4C II) and lower in G1 (Figure 4A II). Thus, both PKA and MAP kinase were 335 

activated in G2 (Figure 4C, I, II). The change of PKA activity in H295R cells at G2 is a 336 

molecular mechanism in which the cAMP/PKA pathway is specifically involved in the 337 

control of mitosis, as it phosphorylates several substrates involved in its progression. The in 338 

vivo dynamics of PKA activity during mitosis was highlighted by the study of Vandame P et 339 
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al. (Vandame et al., 2014) using FRET-based biosensors in single living Hela cells. They 340 

showed that PKA activity is required for the maintenance of chromosome condensation and 341 

that it may also be required during mitosis, because it phosphorylates histone H1.4, resulting 342 

in the dissociation of this protein from the chromatin during mitosis. Moreover, Aurora A 343 

kinase, a key protein for the progression of mitosis, is also a target of PKA. The high PKA 344 

activity in G2 corresponded with a decrease in the level of the regulatory subunit R1A of 345 

PKA (Figure 4C III). One explanation for the decrease in the level of PKA RIA protein is that 346 

the increase in PKA activity at G2 liberates the PKA R1A protein from PKA CA, making it 347 

more accessible to degradation. Another possibility is the consequence of the association of 348 

PKA R1A with the cytoskeleton or microtubules through either low-affinity or highly 349 

dynamic interactions, as shown in BW1J hepatoma cells (Imaizumi-Scherrer et al., 2001). 350 

Mutations of PKA signaling components (GNAS, PRKAR1A, PRKACA, and 351 

phosphodiesterase genes) in adrenal tumors activate the pathway (Nakajima et al., 2016;Mete 352 

et al., 2018;Drougat et al., 2015). Although these mutations are associated with the 353 

pathogenesis of benign tumors, we tested whether PKA may regulate the cell cycle and 354 

steroidogenesis in a coordinated fashion by activating PKA in the adrenocortical cell line 355 

H295R through overexpression of the PKA catalytic subunit alpha, stimulating the cells with 356 

Bu2cAMP, or silencing PRKAR1A in combination with cell synchronization. The responses 357 

of the cells to the activation of PKA were different depending on the PKA subunits used. 358 

PRKACA overexpression stimulated the activity of a PKA-dependent construct (STAR-Luc) in 359 

all groups but did not alter the phase of the cell cycle (Figure 5 A and C, I). The activation of 360 

PKA by wild type PRKACA overexpression may not mimic the effect of PRKACA mutations, 361 

as Bathon et al (Bathon et al., 2019) recently showed that transfection of HEK293 cells with 362 

various PRKACA mutant constructs for 48 h highly increased PKA activity over that of wild 363 

type levels and increased the phosphorylation of the specific PKA substrate histone H1.4, 364 
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involved in proliferation, relative to that by wild type PRKACA. Our result represents the 365 

early effect of PKA activation (24-h transfection of H295R) by wild type PRKACA, which 366 

indiscriminately activates substrates and not selected ones. Similarly, 24-h activation of PKA 367 

by Bu2 cAMP did not alter the cell cycle profile, neither of asynchronous nor synchronized 368 

cells. Our results are consistent with those of the study of Liu et al (Liu et al., 2004), in which 369 

the effect of Bu2cAMP on proliferation and apoptosis was not observed at an early time point, 370 

one to two days of incubation, but later, after three days to one week of incubation.  371 

As expected and described by Basso et al. (Basso et al., 2014), inactivation of PRKAR1A in 372 

asynchronous cells for 24 h increased both PKA and STAR-Luc reporter activity (Figure 5B 373 

and C II) and led to the accumulation of the cells in G2 and a decrease in the number of cells 374 

in G1 (Figure 5A II). In synchronized cells, PKA activity increased after PRKAR1A depletion. 375 

The increase was greater in cells treated for G1 arrest than those treated for G1/S and G2 376 

phase arrest. In contrast, the effects of the increase in PKA activity on steroidogenesis were 377 

restricted to the cells treated for G1 arrest. In addition, the depletion of PRKAR1A induced 378 

cell-cycle progression in all synchronized groups, as demonstrated by a significant decrease in 379 

the percentage/number of cells in G1 reflecting progression to the S and then G2 phases 380 

(Figure 5A II).  381 

Moreover, PKA controlled progression of the cells through the cell cycle, as the inhibition of 382 

PKA activity by PKI slowed the progression of cells with a high level of PKA activation and 383 

those in G2 (Figure 6).  384 

Thus, in our model, the essential and the early determinant of PKA activity as a regulator of 385 

cell-cycle progression is the level of PKA R1A. However, our findings on malignant 386 

adrenocortical cells that harbor different mutations (Tissier et al., 2005;Ragazzon et al., 2010) 387 
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might not apply to normal adrenocortical cells or benign adrenocortical tumors carrying 388 

alterations in PKA signaling (Bathon et al., 2019).  389 

PKA R1A can also interact directly with other specific proteins and modulates a number of 390 

other signaling pathways. It has been demonstrated that PKA and PKA R1A are important for 391 

regulation of the meiotic spindle in mammalian oocytes, in which increased PKA activity is 392 

responsible for maintaining meiotic arrest. On the other hand, the knockdown of PRKAR1A, 393 

as expected, increased PKA activity but the meiotic arrest of mouse oocytes was not 394 

maintained (Duncan et al., 2006). PKA R1A is also associated with the second subunit of 395 

replication factor C (RFC40) and functions as a nuclear transporter for RFC40, causing G1 396 

arrest of MCF7 cells (Gupte et al., 2005). In the absence of PKA R1A, RFC40 may remain in 397 

the cytoplasm and cells progress toward the G2 and M phases.  398 

The role of PKA R1A on the control of cell-cycle progression can be explained by the spatial 399 

regulation of PKA activity by A-kinase anchor proteins (AKAPs). AKAPs serve as scaffold 400 

proteins to tether PKA in close proximity to its substrate, thereby locally regulating its 401 

activity and PKA subunit specificity (Pidoux et al., 2010;Day et al., 2011). Recently, R1A 402 

was shown to be associated with AKAPs, which form a complex with the ribosomal S6 403 

protein kinase RSK1 kinase (Chaturvedi et al., 2009;Chaturvedi et al., 2006). Prkar1a 404 

silencing in mouse lung fibroblasts (B82L) decreased the nuclear accumulation of active 405 

RSK1 and increased its cytoplasmic localization. The resulting increase in active cytosolic 406 

RSK1 levels is accompanied by increased phosphorylation of its cytosolic substrate tuberous 407 

sclerosis complex 2 (TSC-2) and the anti-apoptotic factor BAD. As RSK1 shares common 408 

phosphorylation sites with PKA on certain substrates, such as CREB, BAD, and Nur77, part 409 

of the cell response in the absence of PKA R1A may not be due to increased PKA activity 410 

(Chaturvedi et al., 2009) 411 
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In conclusion, we have provided evidence of a tight association between the phase of the cell 412 

cycle and steroidogenesis in two adrenal tumors, PPNAD and the malignant H295R cell line. 413 

Enhancing PKA activity clearly appears to be critical for steroid excess, whereas the PKA 414 

R1A subunit is essential for triggering the cell cycle. 415 
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Figure legends  710 

Figure 1. The effect of cell-cycle synchronization of the H295R cell line and primary PPNAD 711 

cell culture for 24 h on the cell-cycle profile and steroid secretion.  712 

Flowcytometry analysis of DNA content by propidium iodide incorporation in synchronized 713 

H295R cells and PPNAD primary culture for A) control cultures without treatment and 714 

cultures treated with B) L-mimosine, C) aphidicolin, or D) nocodazole. Histograms of cortisol 715 

and aldosterone content secreted into the cell medium after cell-cycle synchronization are 716 

shown to the right. The results are presented as the means ± SEM of three duplicate 717 

independent experiments for H295R and one representative example of two duplicate 718 

experiments for PPNAD. *p < 0.05, ** p< 0.01, ***p < 0.001.  719 

Figure 2. The effect of cell synchronization on steroidogenic enzyme and Star protein 720 

expression, mRNA expression by RT/PCR of steroidogenic enzymes in H295R cells and 721 

PPNAD primary cultures in the A) G1, B) G1/S, and C) G2 phases of the cell cycle. Each 722 

studied steroidogneic enzyme is normalized to the corresponding results in the control 723 

asynchronous cells, which is set to one. For Star protein expression, the results are normalized 724 

against those of control cells and a histogram of the western blot in synchronized H295R cells 725 

and PPNAD primary cultures are shown on the right. The results are presented as the means ± 726 

SEM of three duplicate independent experiments for H295R and one representative example 727 

of two duplicate experiments for PPNAD. *p < 0.05, **p < 0.01, ***p < 0.001.  728 

Figure 3. Cell-cycle profile and the kinetics of steroidogenic enzyme expression after cell-729 

cycle arrest and release of H295R cells. 0 h represents the profile at the end of 730 

synchronization after 24 h of treatment with L-mimosine (I) or 48 h with nocodazole (II). 731 

Each time point is normalized to asynchronous control cells at 0 h of release. A) Histogram 732 

showing the percentage of cells in each phase of the cell cycle at each time point, analyzed by 733 
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flow cytometry, showing the progression in the cell cycle. RT/PCR analysis of B) 734 

steroidogenic enzyme and C) SF-1 and Star mRNA levels for each time point. The results are 735 

presented as the means ± SEM of three duplicate independent experiments. The level of 736 

significance is indicated at the top of each figure.  737 

Figure 4. Effect of the different drugs on cell signaling pathways and PKA subunit regulation 738 

in H295R cells. The effects are shown for A) L-mimosine, B) aphidicolin, and C) nocodazole. 739 

MAP Kinase activity is shown by histograms of western blots of pERK/total ERK, and 740 

pMEK/total MEK protein levels normalized to the control, set to one. We spliced the original 741 

full gel images of ERK and MEK, presented in Supplementary Figure 3, to re-order the 742 

samples in a more logical manner. PKA activity was measured by a nonradioactive PKA 743 

assay and is presented as the ratio of free PKA/total PKA. Protein levels of the PKA subunits 744 

R1A, R2B, and Ca in cells treated with the different drugs are shown by histograms of 745 

western blots. The results of the histograms are expressed as the percentage relative band 746 

density/the band density of GaPDH, normalized to the corresponding controls (arbitrarily set 747 

to one) in H295R-treated cells. The results are presented as the means ± SEM of three 748 

duplicate independent experiments. *p < 0.05, **p < 0.01.  749 

Figure 5. Effect of PKA activation, by the over expression of PRKACA or PRKAR1A 750 

depletion, on the regulation of the cell cycle, PKA activity, and steroidogenic response 751 

(Star/luc-reporter gene activity) simultaneously with the synchronization of H295R cells. A) 752 

Cell-cycle distribution analyzed by flow cytometry. B) PKA activity measured by a non-753 

radioactive assay and presented as the ratio of free phosphorylated PKA/total PKA. C) STAR 754 

reporter gene activity measured by Luciferase/Renilla. The results are presented as the means 755 

± SEM of three duplicate independent experiments normalized to the control of each group, 756 

grabin
PDF Creator Trial

grabin
PDF Creator Trial

grabin
PDF Creator Trial



 28 

set to one. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 for the over expression of 757 

PKA CA.  758 

Figure 6. Inhibition of PKA activity by the PKA inhibitor PKI (5 µM) throughout cell cycle 759 

synchronization (24 h) showing that mostly the nocodazole-treated cells were affected. A) 760 

Cell-cycle phase distribution. B) Star/luc reporter gene activity. The measurement of the PKA 761 

activity is not presented because PKA activity was inhibited and thus no PKA 762 

phosphorylation. The results are presented as the means ± SEM of three duplicate 763 

independent experiments. * p < 0.05, **p < 0.01, ***p < 0.001.  764 

 765 

Supplementary Figures: 766 

Supplementary Figure 1. Distribution of cyclin mRNA expression in in H295R cells arrested 767 

at various phases of the cell cycle. A) Arrested in early G1 by L-mimosine treatment. B) 768 

Arrested in late G1/S by aphidicolin treatment. C) Arrested in G2 by nocodazole treatment. 769 

The results are presented as the means ± SEM of three duplicate independent experiments 770 

normalized to the control of each group, set to one. *p < 0.05, **p < 0.01, ***p < 0.001.  771 

Supplementary Figure 2. Star mRNA expression by RT/PCR in H295R cells and PPNAD 772 

primary cultures in the G1, G1/S, and G2 phases of the cell cycle. The results are presented as 773 

the means ± SEM of three duplicate independent experiments for H295R and one 774 

representative example of two duplicate experiments for PPNAD. *p < 0.05, **p < 0.01,***p 775 

< 0.001. 776 

Supplementary Figure 3. Image of the full western blot of MAPKinase cell signaling used for 777 

Figure 4. A) Image of the full western blot. B) The corresponding Histogram, as in Figure 4.  778 

 779 
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Supplementary Figure 4. PKA CA and PKA R1A protein expression in simultaneous A) 780 

overexpression of wildtype PRKACA or B) depleted PRKAR1A and cell-cycle 781 

synchronization. Results are normalized to the control vector or sis, set to one. The 782 

comparison is inter group (Vector vs Ca or SiS vs siRI ) for each group. The results are 783 

presented as the means ± SEM of three duplicate independent experiments normalized to the 784 

control of each group, set to one. *p < 0.05, **p < 0.01, ***p < 0.001.  785 

Supplementary Figure 5. Effects of cAMP stimulation on cell-cycle synchronization. The 786 

distribution of the phases resulting from cell-cycle arrest were not affected by stimulation 787 

with the cAMP analogue (dibutyryl adenosine 3’-5’ cyclic monophosphate). The 788 

measurement of PKA activity and Star Luc reporter gene activity are not presented because 789 

they are equally fullyl saturated in all of the synchronized groups.  790 
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cAMP

Activation of PKA by cAMP
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Supplementary Figure 3

MAPKinase Cell signaling: full western blot image 
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PKA catalytic protein level after Over expression of PRKACA
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Highlights 
 
Modulation of steroidogenesis by specific cell cycle phases in adrenal cell tumors. 
 
PKA activity varied notably according to the stage of cell cycle in the H295R cells. 
 
Early effect of enhancing PKA activity appears to be critical for steroid excess.  
 
PRKAR1A mediated the function of PKA activity on both steroidogenesis and cell cycle.   
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