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Abstract &( "

Genetic variation is the fuel of evolution, with standing genetic variation especially important for &) "

short-term evolution and local adaptation. To date, studies of spatio-temporal patterns of genetic &*"

variation in natural populations have been challenging, as comprehensive sampling is logistically '+ "

difficult, and sequencing of entire populations costly. Here, we address these issues using a '! "

collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the '# "

first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our '$ "

analyses uncover longitudinal population structure, provide evidence for continent-wide selective '%"

sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal '& "

inversion and transposable element frequencies. We also characterise variation among populations in '' "

the composition of the fly microbiome, and identify five new DNA viruses in our samples.  '( "

 ') "

Introduction  '* "

Understanding processes that influence genetic variation in natural populations is fundamental to (+ "

understanding the process of evolution (Dobzhansky 1970; Lewontin 1974; Kreitman 1983; Kimura (! "

1984; Hudson et al. 1987; McDonald & Kreitman 1991; Adrian & Comeron 2013). Until recently, (# "

technological constraints have limited studies of natural genetic variation to small regions of the ($ "

genome and small numbers of individuals. With the development of population genomics, we can (%"

now analyse patterns of genetic variation for large numbers of individuals genome-wide, with samples (&"

structured across space and time. As a result, we have new insight into the evolutionary dynamics of (' "

genetic variation in natural populations (e.g., Hohenlohe et al. 2010; Cheng et al. 2012; Begun et al. (( "

2007; Pool et al. 2012; Harpur et al. 2014; Zanini et al. 2015). But, despite this technological () "

progress, extensive large-scale sampling and genome sequencing of populations remains prohibitively (* "

expensive and too labor-intensive for most individual research groups.  )+ "

 Here, we present the first comprehensive, continent-wide genomic analysis of genetic variation of )! "

European Drosophila melanogaster, based on 48 pool-sequencing samples from 32 localities )# "

collected in 2014 (fig. 1) by the European Drosophila Population Genomics Consortium (DrosEU; )$ "
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https://droseu.net). D. melanogaster offers several advantages for genomic studies of evolution in )%"

space and time. It boasts a relatively small genome, a broad geographic range, a multivoltine life )&"

history which allows sampling across generations on short timescales, simple standard techniques for )' "

collecting wild samples, and a well-developed context for population genomic analysis (e.g., Powell )( "

1997; Keller 2007; Hales et al. 2015). Importantly, this species is studied by an extensive )) "

international research community, with a long history of developing shared resources (Larracuente & )* "

Roberts 2015; Bilder & Irvine 2017; Haudry et al. 2020).  *+ "

Our study complements and extends previous studies of genetic variation in D. melanogaster, both *! "

from its native range in sub-Saharan Africa and from its world-wide expansion as a human *# "

commensal. The expansion into Europe is thought to have occurred approximately 4,100 - 19,000 *$ "

years ago and into North America and Australia in the last few centuries (e.g., Lachaise et al. 1988; *%"

David & Capy 1988; Li & Stephan 2006; Keller 2007; Sprengelmeyer et al 2018; Kapopoulou et al. *&"

2018a; Arguello et al. 2019). The colonization of novel habitats and climate zones on multiple *' "

continents makes D. melanogaster especially useful for studying parallel local adaptation, with *( "

previous studies finding pervasive latitudinal clines in allele frequencies (e.g., Schmidt & Paaby 2008; *) "

Turner et al. 2008; Kolaczkowski et al. 2011; Fabian et al. 2012; Bergland et al. 2014; Machado et al. ** "

2016; Kapun et al. 2016a), structural variants such as chromosomal inversions (reviewed in Kapun & !++ "

Flatt 2019), transposable elements (TEs) (Boussy et al. 1998; Gonz‡lez et al. 2008; 2010), and !+! "

complex phenotypes (de Jong & Bochdanovits 2003; Schmidt & Paaby 2008; Schmidt et al. 2008; !+# "

Kapun et al. 2016b; Behrman et al. 2018), especially along the North American and Australian east !+$ "

coasts. In addition to parallel local adaptation, these latitudinal clines are, however, also affected by !+%"

admixture with flies from Africa and Europe (Caracristi & Schlštterer 2003; Yukilevich & True !+& "

2008a; b; Duchen et al. 2013; Kao et al. 2015; Bergland et al. 2016).  !+' "

 In contrast, the population genomics of D. melanogaster on the European continent remains !+( "

largely unstudied (Bo! i"evi# et al. 2016; Pool et al. 2016; Mateo et al. 2018). Because Eurasia was !+) "

the first continent colonized by D. melanogaster as they migrated out of Africa, we sought to !+* "

understand how this species has adapted to new habitats and climate zones in Europe, where it has !!+ "
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been established the longest (Lachaise et al. 1988; David & Capy 1988). We analyse our data at three !!! "

levels: (1) variation at single-nucleotide polymorphisms (SNPs) in nuclear and mitochondrial !!# "

(mtDNA) genomes (~5.5 x 106 SNPs in total); (2) structural variation, including TE insertions and !!$ "

chromosomal inversion polymorphisms; and (3) variation in the microbiota associated with flies, !!% "

including bacteria, fungi, protists, and viruses. !!& "

 !!' "

Results and Discussion !!( "

As part of the DrosEU consortium, we collected 48 population samples of D. melanogaster from 32 !!) "

geographical locations across Europe in 2014 (table 1; fig. 1). We performed pooled sequencing !!* "

(Pool-Seq) of all 48 samples, with an average autosomal coverage $50x (supplementary table S1, !#+ "

Supplementary Material online). Of the 32 locations, 10 were sampled at least once in summer and !#! "

once in fall (fig. 1), allowing a preliminary analysis of seasonal change in allele frequencies on a !## "

genome-wide scale.  !#$ "

A description of the basic patterns of genetic variation of these European D. melanogaster !#%"

population samples, based on SNPs, is provided in the supplement (see supplementary results, !#& "

supplementary table S1, Supplementary Material online). For each sample, we estimated genome-!#' "

wide levels of ! , WattersonÕs "  and TajimaÕs D (corrected for pooling; Futschik & Schlštterer 2010; !#( "

Kofler et al. 2011). In brief, patterns of genetic variability and TajimaÕs D were largely consistent !#) "

with what has been previously observed on other continents (e.g., Fabian et al. 2012; Langley et al. !#* "

2012; Lack et al. 2015, 2016), and genetic diversity across the genome varies mainly with !$+ "

recombination rate (Langley et al. 2012). We also found little spatio-temporal variation among !$! "

European populations in overall levels of sequence variability (table 2). !$# "

Below we focus on the identification of selective sweeps, previously unknown longitudinal !$$ "

population structure across the European continent, patterns of local adaptation and clines, and !$%"

microbiota. !$& "

 !$' "
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Several genomic regions show signatures of continent-wide selective sweeps !$( "

To identify genomic regions that have likely undergone selective sweeps in European populations of !$) "

D. melanogaster, we used Pool-hmm (Boitard et al. 2013; see supplementary table S2A, !$* "

Supplementary Material online), which identifies candidate sweep regions via distortions in the allele !%+"

frequency spectrum. We ran Pool-hmm independently for each sample and identified several genomic !%! "

regions that coincide with previously identified, well-supported sweeps in the proximity of Hen1 !%#"

(Kolaczkowski et al. 2011), Cyp6g1 (Daborn et al. 2002), wapl (Beisswanger et al. 2006), and around !%$"

the chimeric gene CR18217 (Rogers & Hartl 2012), among others (supplementary table S2B, !%%"

Supplementary Material online). These regions also showed local reductions in !  and TajimaÕs D, !%&"

consistent with selective sweeps (fig. 2; fig. S1 and fig. S2; Supplementary Material online). The !%' "

putative sweep regions that we identified in the European populations included 145 of the 232 genes !%( "

previously identified using Pool-hmm in an Austrian population (Boitard et al. 2012; supplementary !%) "

table S2C, Supplementary Material online). We also identified other regions which have not !%*"

previously been described as targets of selective sweeps (supplementary table S2A, Supplementary !&+ "

Material online). Of the regions analysed, 64 showed signatures of selection across all European !&! "

populations (supplementary table S2D, Supplementary Material online). Of these, 52 were located in !&# "

the 10% of regions with the lowest values of TajimaÕs D (SuperExactTest; p < 0.001). These may !&$ "

represent continent-wide sweeps that predate the colonization of Europe (e.g., Beisswanger et al. !&%"

2006) or which have recently swept across the majority of European populations (supplementary table !&&"

S2D). Interestingly, 43 of the 64 genes (67%) that showed signatures of selection across all European !&' "

populations were located in regions with reduced TajimaÕs D in African populations, suggesting that !&( "

selective sweeps in these genes might predate the out-of-Africa expansion (Table S2D). !&) "

We then asked if there was any indication of selective sweeps particular to a certain habitat. To !&* "

this end, we classified the populations according to the Kšppen-Geiger climate classification (Peel et !'+ "

al. 2007) and identified several putative sweeps exclusive to arid, temperate and cold regions !'! "

(supplementary table S2A, Supplementary Material online). To shed light on potential phenotypes !'# "

affected by the potential sweeps we performed a gene ontology (GO) analysis. For temperate !'$ "
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climates, this analysis showed enrichment for functions such as Ôresponse to stimulusÕ, ÔtransportÕ, !'% "

and Ônervous system developmentÕ. For cold climates, it showed enrichment for Ôvitamin and co-!'& "

factor metabolic processesÕ (supplementary table S2E, Supplementary Material online). There was no !'' "

enrichment of any GO category for sweeps associated with arid regions.   !'( "

Thus, we identified several new candidate selective sweeps in European populations of D. !') "

melanogaster, many of which occur in the majority of European populations and which merit future !'* "

study, using sequencing of individual flies and functional genetic experiments. !(+ "

 !(! "

European populations are structured along an east-west gradient !(# "

We next investigated whether patterns of genetic differentiation might be due to demographic sub-!($ "

structuring. Overall, pairwise differentiation as measured by FST was relatively low, particularly for !(% "

the autosomes (autosomal FST 0.013Ð0.059; X-chromosome FST: 0.043Ð0.076; Mann-Whitney U test; !(& "

p < 0.001; supplementary table S1, Supplementary Material online). The X chromosome is expected !(' "

to have higher FST than the autosomes, given its relatively smaller effective population size (Mann-!(( "

Whitney U test; p < 0.001; Hutter et al. 2007). One population, from Sheffield (UK), was unusually !() "

differentiated from the others (average pairwise FST = 0.027; SE= 0.00043 vs. FST = 0.04; SE= !(* "

0.00055 for comparisons without this population and with this population only; supplementary table !)+ "

S1, Supplementary Material online). Including this sample in the analysis could potentially lead to !)! "

exaggerated patterns of geographic differentiation, as it is both highly differentiated and the furthest !)# "

west. We therefore excluded it from the following analyses of geographic differentiation, as this !)$ "

approach is conservative. (For details see the Supplementary Material online; including or excluding !)% "

this population did not qualitatively change our results and their interpretation.) !)& "

 Despite low overall levels of among-population differentiation, we found that European !)' "

populations exhibit clear evidence of geographic sub-structuring. For this analysis, we focused on !)( "

SNPs located within short introns, with a length % 60 bp and which most likely reflect neutral !)) "

population structure (Haddrill et al. 2005; Singh et al. 2009; Parsch et al. 2010; Clemente & Vogl !)* "

2012; Lawrie et al. 2013). We restricted our analyses to polymorphisms in regions of high !*+ "
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recombination (r > 3 cM/Mb; Comeron et al. 2011) and to SNPs at least 1 Mb away from the !*! "

breakpoints of common inversions (and excluding the inversion bodies themselves), resulting in 4,034 !*# "

SNPs used for demographic analysis. Focusing on high-recombination regions is important because !*$ "

reduced rates of crossing over in low recombination regions might make the identification of putative !*%"

targets of selection difficult (cf. Kolaczkowski et al. 2011; Fabian et al. 2012). !*& "

 We found two signatures of geographic differentiation using these putatively neutral SNPs. First, !*' "

we identified a weak but significant correlation between pairwise FST and geographic distance, !*( "

consistent with isolation by distance (IBD; Mantel test; p < 0.001; R2=0.12, max. FST ~ 0.045; fig. !*) "

3A). Second, a principal components analysis (PCA) on allele frequencies showed that the three most !** "

important PC axes explain >25% of the total variance (PC1: 16.71%, PC2: 5.83%, PC3: 4.6%, #++"

eigenvalues = 159.8, 55.7, and 44, respectively; fig 3B). The first axis, PC1, was strongly correlated #+! "

with longitude (F1,42 = 118.08, p < 0.001; table 2). Again, this pattern is consistent with IBD, as the #+#"

European continent extends further in longitude than latitude. We repeated the above PCA using #+$"

SNPs in four-fold degenerate sites, as these are also assumed to be relatively unaffected by selection #+%"

(Akashi 1995; Halligan & Keightley 2006; supplementary fig. S3, Supplementary Material online), #+&"

and found highly consistent results. #+' "

 Because there was a significant spatial autocorrelation between samples (as indicated by MoranÕs #+( "

test on residuals from linear regressions with PC1; p < 0.001; table 2), we repeated the analysis with #+) "

an explicit spatial error model; the association between PC1 and longitude remained significant. To a #+* "

lesser extent PC2 was likewise correlated with longitude (F1,42 = 7.15, p < 0.05), but also with altitude #!+ "

(F1,42 = 11.77, p < 0.01) and latitude (F1,42 = 4.69, p < 0.05; table 2). Similar to PC2, PC3 was strongly #!! "

correlated with altitude (F1,42 = 19.91, p < 0.001; table 2). We also examined these data for signatures #!# "

of genetic differentiation between samples collected at different times of the year. For the dataset as a #!$ "

whole, no major PC axes were correlated with season, indicating that there were no strong differences #!%"

in allele frequencies shared between all our summer and fall samples (p > 0.05 for all analyses; table #!& "

2). For the 10 locations sampled in both summer and fall, we performed separate PC analyses for #!' "

summer and fall. Summer and fall values of PC1 (adjusted R2: 0.98; p < 0.001), PC2 (R2: 0.74; p < #!( "
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0.001) and PC3 (R2: 0.81; p < 0.001) were strongly correlated across seasons. This indicates a high #!) "

degree of seasonal stability in local genetic variation.  #!* "

 Next, we attempted to determine if populations could be statistically classified into clusters of ##+"

similar populations. Using hierarchical model fitting based on the first four PC axes from the PCA ##! "

mentioned above, we found two distinct clusters (fig. 3B) separated along PC1, supporting the notion ###"

of strong longitudinal differentiation among European populations. Similarly, model-based spatial ##$"

clustering also showed that populations were separated mainly by longitude (fig. 3C; using ConStruct, ##%"

with K=3 spatial layers chosen based on model selection procedure via cross-validation). We also ##&"

inferred levels of admixture among populations from this analysis, based on the relationship between ##' "

FST and migration rate (Wright et al. 1951) and using recent estimates of Ne in European populations ##( "

(Ne ~ 3.1 x 106; Duchen et al. 2011; for pairwise migration rates see supplementary table S3, ##) "

Supplementary Material online). Within the Western European cluster and between the clusters, 4Nem ##* "

was similar (4Nem-WE = 43.76, 4Nem-between = 45.97); in Eastern Europe, estimates of 4Nem #$+"

indicate significantly higher levels of admixture, despite the larger geographic range covered by these #$! "

samples (4Nem = 74.17; Mann Whitney U-Test; p < 0.001).  This result suggests that the longitudinal #$#"

differentiation in Europe might be partly driven by high levels of genetic exchange in Eastern Europe, #$$"

perhaps due to migration and recolonization after harsh winters in that region. However, these #$%"

estimates of gene flow must be interpreted with caution, as unknown demographic events can #$&"

confound estimates of migration rates from FST (Whitlock & MacCauley 1999). #$' "

In addition to restricted gene flow between geographic areas, local adaptation may explain #$( "

population sub-structure, even at neutral sites, if nearby and closely related populations are #$) "

responding to similar selective pressures. We investigated whether any of 19 climatic variables, #$* "

obtained from the WorldClim database (Hijmans et al. 2005), were associated with the genetic #%+"

structure in our samples. These climatic variables represent interpolated averages across 30 years of #%!"

observation at the geographic coordinates corresponding to our sampling locations. Since many of #%#"

these variables are highly intercorrelated, we analysed their joint effects on genetic variation, by using #%$"

PCA to summarize the information they capture. The first three climatic PC axes capture more than #%%"



!

!

10 

77% of the variance in the 19 climatic variables (supplementary table S4, Supplementary Material #%&"

online). PC1 explained 36% of the variance and was strongly correlated (r >0.75 or r <-0.75) with #%'"

climatic variables differentiating Ôhot and dryÕ from Ôcold and wetÕ climates (e.g., maximum #%("

temperature of the warmest month, r = 0.84; mean temperature of warmest quarter, r = 0.86; annual #%)"

mean temperature, r = 0.85; precipitation during the warmest quarter, r = -0.87). Conversely, PC2 #%*"

(27.3% of variance explained) distinguished climates with low and high differences between seasons #&+"

(e.g., isothermality, r = 0.83; temperature seasonality, r = 0.88; temperature annual range, r =-0.78; #&! "

precipitation in coldest quarter, r = 0.79). PC1 was strongly correlated with latitude (linear regression: #&#"

R2 = 0.48, p < 0.001), whereas PC2 was strongly correlated with longitude (R2 = 0.58, p < 0.001). PC2 #&$"

was also correlated with latitude (R2 = 0.11, p < 0.05) and with altitude (R2 = 0.12, p < 0.01). #&%"

 We next asked whether any of these climate PCs explained any of the genetic structure uncovered #&&"

above. Pairwise linear regressions of the first three PC axes based on allele frequencies of intronic #&' "

SNPs against the first three climatic PCs revealed that only one significant correlation after #&("

Bonferroni correction: between climatic PC2 (ÔseasonalityÕ) vs. genetic PC1 (longitude; adjusted # = #&)"

0.017; R2 = 0.49, P<0.001). This suggests that longitudinal differentiation along the European #&*"

continent might be partly driven by the transition from oceanic to continental climate, possibly #'+ "

leading to local adaptation to gradual changes in temperature seasonality and the severity of winter #'! "

conditions.  #'# "

Interestingly, the central European division into an eastern and a western clade of D. melanogaster #'$ "

closely resembles known hybrid zones of organisms which form closely related pairs of sister taxa. #'%"

These biogeographic patterns have been associated with long-term reductions of gene flow between #'& "

eastern and western population during the last glacial maximum, followed by postglacial #'' "

recolonization of the continent from southern refugia (Hewitt 1999). However, in contrast to many of #'( "

these taxa, which often exhibit pronounced pre- and postzygotic isolation (Szymura & Barton 1986; #') "

Haas & Brodin 2005; Machol‡n et al. 2008, Knief et al. 2019), we found low genome-wide #'* "

differentiation among eastern and western populations (average max. FST ~ 0.045), perhaps indicating #(+ "

that the longitudinal division of European D. melanogaster is not the result of postglacial secondary #(! "
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contact.  #(# "

 #($ "

Climatic predictors identify genomic signatures of local climate adaptation #(%"

To further explore climatic patterns, and to identify signatures of local adaptation caused by climatic #(&"

differences among populations independent of neutral demographic effects, we tested for associations #(' "

of SNP alleles with climatic PC1 and PC2 using BayeScEnv (de Villemereuil & Gaggiotti 2015). The #(( "

total number of SNPs tested and the number of Òtop SNPsÓ (q-value < 0.05) are given in #() "

supplementary table S5A (Supplementary Material online). A large proportion of the top SNPs were #(* "

intergenic (PC1: 33.5%; PC2: 32.2%) or intronic variants (PC1: 50.1%; PC2: 50.5%). Manhattan #)+ "

plots of q-values for all SNPs are shown in fig. 4. These figures show some distinct ÒpeaksÓ of highly #)! "

differentiated SNPs along with some broader regions of moderately differentiated SNPs (fig. 4). For #)# "

example, the circadian rhythm gene timeout and the ecdysone signalling genes!Eip74EF and Eip75B #)$ "

all lie near peaks associated with climatic PC1 (Ôhot/dryÕ vs. Ôcold/wetÕ; fig. 4, top panels). We note #)%"

that the corresponding genes have been identified in previous studies of clinal (latitudinal) #)&"

differentiation in North American D. melanogaster (Fabian et al. 2012; Machado et al. 2016). Indeed, #)' "

we found a significant overlap between genes associated with PC1 and PC2 (both of which are #)( "

correlated with latitude) in our study and candidate gene sets from these previous studies of latitudinal #)) "

clines (SuperExactTest; p < 0.001; Fabian et al. 2012; Machado et al. 2016). For example, out of #)* "

1,974 latitudinally varying loci along the North American east coast identified by Fabian et al. (2012), #*+ "

we found 403 (20%) and 505 (26%) of them to also be associated with PC1 and PC2 in European #*! "

populations, respectively (table S5B-C). Moreover, the BayeScEnv analysis and Pool-hmm analysis #*# "

together identify four regions with both climatic associations and evidence for continent-wide #*$ "

selective sweeps (supplementary table S5B-C, Supplementary Material online). Finally, four other #*%"

BayeScEnv candidate genes were previously identified as targets of selection in African and North #*&"

American populations based on significant McDonald-Kreitman tests (Langley et al. 2012; see #*' "

supplementary table S5B-C, Supplementary Material online). #*( "

We next asked whether any insights into the targets of local selection could be gleaned from #*) "



!

!

12 

examining the functions of genes near the BayeScEnv peaks. We examined annotated features within #** "

2kb of significantly associated SNPs (PC1: 3,545 SNPs near 2,078 annotated features; PC2: 5,572 $++"

SNPs near 2,717 annotated features; supplementary table S5B and C, Supplementary Material online). $+! "

First, we performed a GO term analysis with GOwinda (Kofler & Schlštterer 2012) to ask whether $+#"

SNPs associated with climatic PCs are enriched for any gene functions. For PC1, we found no GO $+$"

term enrichment. For PC2, we found enrichment for Òcuticle developmentÓ, and ÒUDP-$+%"

glucosyltransferase activityÓ. Next, we performed functional annotation clustering with DAVID $+&"

(v6.8; Huang et al. 2009), and identified 37 and 47 clusters with an enrichment score > 1.3 for PC1 $+' "

and PC2, respectively (supplementary table S5D-E, Supplementary Material online, Huang et al $+( "

2009). PC1 was enriched for categories such as Òsex differentiationÓ and Òresponse to nicotineÓ, $+) "

whereas PC2 was enriched for functional categories such as Òresponse to nicotineÓ, Òintegral $+* "

component of membraneÓ, and Òsensory perception of chemical stimulusÓ (supplementary table S5D-$!+ "

E, Supplementary Material online).  $!! "

 We also asked whether the SNPs identified by BayeScEnv show consistent signatures of local $!# "

adaptation. Many associated genes (1,205) were also shared between PC1 and PC2. Some genes have $!$ "

indeed been previously implicated in climatic and clinal adaptation, such as the circadian rhythm $!%"

genes timeless, timeout, and clock, the sexual differentiation gene fruitless, and the couch potato  $!& "

locus which underlies the latitudinal cline in reproductive dormancy in North America (e.g., Tauber et $!' "

al. 2007; Schmidt et al. 2008; Fabian et al. 2012). Notably, these also include the major insulin $!( "

signaling genes insulin-like receptor (InR) and forkhead box subgroup O (foxo), which have strong $!) "

genomic and experimental evidence implicating these loci in clinal, climatic adaptation along the $!* "

North America east coast (Paaby et al. 2010; Fabian et al. 2012; Paaby et al. 2014; Durmaz et al. $#+"

2019). Thus, European populations share multiple potential candidate targets of selection with North $#! "

American populations (cf. Fabian et al. 2012; Machado et al. 2016; also see Bo! i"evi# et al. 2016). $##"

We next turned to examining polymorphisms other than SNPs, i.e. mitochondrial haplotypes as well $#$"

as inversion and TE polymorphisms. $#%"

 $#&"
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Mitochondrial haplotypes also exhibit longitudinal population structure $#' "

Mitochondrial haplotypes also showed evidence of longitudinal demographic structure in European $#( "

population. We identified two main alternative mitochondrial haplotypes in Europe, G1 and G2, each $#) "

with several sub-haplotypes (G1.1 and G1.2 and G2.1, G2.2 and G2.3). The two sub-types, G1.2 and $#* "

G2.1, are separated by 41 mutations (fig. 5A). The frequencies of the alternative G1 and G2 haplotype $$+"

varied among populations between 35.1% and 95.6% and between 4.4% and 64.9%, respectively (fig. $$! "

5B). Qualitatively, three types of European populations could be distinguished based on these $$#"

haplotypes: (1) central European populations, with a high frequency (> 60%) of G1 haplotypes, (2) $$$"

Eastern European populations in summer, with a low frequency (< 40%) of G1 haplotypes, and (3) $$%"

Iberian and Eastern European populations in fall, with a frequency of G1 haplotypes between 40-60% $$&"

(supplementary fig. S4, Supplementary Material online). Analyses of mitochondrial haplotypes from a $$' "

North American population (Cooper et al. 2015) as well as from worldwide samples (Wolff et al. $$( "

2016) also revealed high levels of haplotype diversity. $$) "

 While there was no correlation between the frequency of G1 haplotypes and latitude, G1 $$* "

haplotypes and longitude were weakly but significantly correlated (r2 = 0.10; p < 0.05). We thus $%+"

divided the dataset into an eastern and a western sub-set along the 20¼ meridian, corresponding to the $%!"

division of two major climatic zones, temperate (oceanic) versus cold (continental) (Peel et al. 2007). $%#"

This split revealed a clear correlation (r2=0.5; p<0.001) between longitude and the frequency of G1 $%$"

haplotypes, explaining as much as 50% of the variation in the western group (supplementary fig. S4B, $%%"

Supplementary Material online). Similarly, in eastern populations, longitude and the frequency of G1 $%&"

haplotypes were correlated (r2 = 0.2; p<0.001), explaining approximately 20% of the variance $%'"

(supplementary fig. S4B, Supplementary Material online). Thus, these mitochondrial haplotypes $%("

appear to follow a similar east-west population structure as observed for the nuclear SNPs described $%)"

above. $%*"

 $&+"

The frequency of polymorphic TEs varies with longitude and altitude  $&! "

To examine the population genomics of structural variants, we first focused on transposable elements $&#"
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(TEs). Similar to previous findings, the repetitive content of the 48 samples ranged from 16% to 21% $&$"

of the nuclear genome size (Quesneville et al. 2005; fig. 6). The vast majority of detected repeats $&%"

were TEs, mostly long terminal repeat elements (LTRs; range 7.55 % - 10.15 %) and long $&&"

interspersed nuclear elements (LINEs range 4.18 % - 5.52 %), along with a few DNA elements (range $&' "

1.16 % - 1.65 %) (supplementary table S6, Supplementary Material online). LTRs have been $&("

previously described as being the most abundant TEs in the D. melanogaster genome (Kaminker et al. $&)"

2002; Bergman et al. 2006). Correspondingly, variation in the proportion of LTRs best explained $&*"

variation in total TE content (LINE+LTR+DNA) (PearsonÕs r = 0.87, p < 0.01, vs. DNA r = 0.58, p = $'+ "

0.0117, and LINE r = 0.36, p < 0.01 and supplementary fig. S5A, Supplementary Material online). $'! "

 For each of the 1,630 TE insertion sites annotated in the D. melanogaster reference genome v.6.04, $'# "

we estimated the frequency at which a copy of the TE was present at that site using T-lex2 (Fiston-$'$ "

Lavier et al. 2015; see supplementary table S7, Supplementary Material online). On average, 56% $'%"

were fixed in all samples. The remaining polymorphic TEs mostly segregated at low frequency in all $'& "

samples (supplementary fig. S5B), potentially due to purifying selection (Gonz‡lez et al. 2008; Petrov $'' "

et al. 2011; Kofler et al. 2012; Cridland et al. 2013; Blumenstiel et al. 2014). However, 246 were $'( "

present at intermediate frequencies (>10% and <95%) and located in regions of non-zero $') "

recombination (Fiston-Lavier et al. 2010; Comeron et al. 2012; see supplementary table S7, $'* "

Supplementary Material online). Although some of these insertions might be segregating neutrally at $(+ "

transposition-selection balance (Charlesworth et al. 1994; see supplementary fig. S5B, Supplementary $(! "

Material online), they are likely enriched for candidate adaptive mutations (Rech et al. 2019). $(# "

 In each of the 48 samples, TE frequency and recombination rate were negatively correlated $($ "

genome-wide (Spearman rank sum test; p < 0.01), as has also been previously reported for D. $(%"

melanogaster (BartolomŽ et al. 2002; Petrov et al. 2011; Kofler et al. 2012). This remains true when $(&"

fixed TE insertions were excluded (population frequency $95%) from the analysis, although it was $(' "

not statistically significant for some chromosomes and populations (supplementary table S8, $(( "

Supplementary Material online). In both cases, the correlation was stronger when broad-scale (Fiston-$() "

Lavier et al. 2010) rather than fine-scale (Comeron et al. 2012) recombination rate estimates were $(* "
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used, indicating that the former may best capture long-term population recombination patterns (see $)+ "

supplementary materials and methods and supplementary table S8, Supplementary Material online). $)! "

 We next tested whether variation in TE frequencies among samples was associated with spatially $)# "

or temporally varying factors. We focused on 111 TE insertions that segregated at intermediate $)$ "

frequencies, were located in non-zero recombination regions, and that showed an interquartile range $)%"

(IQR) > 10 (see supplementary materials and methods, Supplementary Material online). Of these $)&"

insertions, 57 were significantly associated with a at least one variable of interest after multiple testing $)' "

correction (supplementary table S9A, Supplementary Material online): 13 were significantly $)( "

associated with longitude, 13 with altitude, five with latitude, three with season, and 23 insertions $)) "

with more than one of these variables (supplementary table S9A, Supplementary Material online). $)* "

These 57 TEs were mainly located inside genes (42 out of 57; Fisher's Exact Test, p > 0.05; $*+ "

supplementary table S9A, Supplementary Material online).  $*! "

 The 57 TEs significantly associated with these environmental variables were enriched for two TE $*# "

families: the LTR 297 family with 11 copies, and the DNA pogo family with five copies ($2-values $*$ "

after Yate's correction < 0.05; supplementary table S9B, Supplementary Material online). $*%"

Interestingly, 17 of the 57 TEs coincided with previously identified adaptive candidate TEs, $*&"

suggesting that our dataset might be enriched for adaptive insertions (SuperExactTest, p < 0.001), $*' "

several of which exhibit spatial frequency clines that deviate from neutral expectation $*( "

(SuperExactTest, p < 0.001, supplementary table S9A, Supplementary Material online; cf.; Rech et al. $*) "

2019). Moreover, 18 of the 57 TEs also show significant correlations with either geographical or $** "

temporal variables in North American populations (SuperExactTest, p < 0.001, supplementary table %++"

S9A, Supplementary Material online; cf.; Lerat et al. 2019). %+!"

 %+#"

Inversions exhibit latitudinal and longitudinal clines in Europe %+$"

Polymorphic chromosomal inversions, another class of structural variants besides TEs, are well-%+%"

known to exhibit pronounced spatial (clinal) patterns in North American, Australian and other %+&"

populations, possibly due to spatially varying selection (reviewed in Kapun & Flatt 2019; also see %+'"
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Mettler et al. 1977; Knibb et al. 1981; Leumeunier & Aulard 1992; Hoffmann & Weeks 2007; Fabian %+("

et al. 2012; Kapun et al. 2014; Rane et al. 2015; Adrion et al. 2015; Kapun et al. 2016a). However, in %+)"

contrast to North America and Australia, inversion clines in Europe remain very poorly characterized %+*"

(Lemeunier & Aulard 1992; Kapun & Flatt 2019). We therefore sought to examine the presence and %!+"

frequency of six cosmopolitan inversions (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)Mo, %!! "

In(3R)Payne) in our European samples, using a panel of highly diagnostic inversion-specific marker %!#"

SNPs, identified through sequencing of cytologically determined karyotypes by Kapun et al. (2014) %!$"

(also see Kapun et al. 2016a). All 48 samples were polymorphic for one or more inversions (Figure %!%"

6). However, only In(2L)t segregated at substantial frequencies in most populations (average %!&"

frequency = 20.2%); all other inversions were either absent or rare (average frequencies: In(2R)NS = %!' "

6.2%, In(3L)P = 4%, In(3R)C = 3.1%, In(3R)Mo =2.2%, In(3R)Payne = 5.7%) (cf. Kapun et al. %!( "

2016a; Kapun & Flatt 2019).  %!) "

 Despite their overall low frequencies, several inversions showed pronounced clinality, in %!* "

qualitative agreement with findings from other continents (Lemeunier & Aulard 1992; Kapun & Flatt %#+"

2019). For the analyses below, we tested for potentially confounding effects of significant residual %#!"

spatial autocorrelation among samples; all of these test were negative, except for In(3R)C (MoranÕs I %##"

& 0, p > 0.05 for all tests; table 3). We observed significant latitudinal clines in Europe for In(3L)P, %#$"

In(3R)C and In(3R)Payne (binomial generalized linear model: Inversion frequency "  Latitude + %#%"

Longitude + Altitude + Season; effect of Latitude: p < 0.001 for all; see table 3). Clines for In(3L)P %#&"

and In(3R)Payne were similar between Europe and North America (with frequencies for both %#'"

decreasing with latitude, p < 0.05; see supplementary table S10, Supplementary Material online). %#("

However, all inversions differed in their frequency at the same latitude between North America and %#)"

Europe (p < 0.001 for the Latitude # Continent interaction; supplementary table S10, Supplementary %#*"

Material online).  %$+"

Latitudinal inversion clines previously observed along the North American and Australian east %$!"

coasts (supplementary fig. S6 and supplementary table S10, Supplementary Material online; Kapun et %$#"

al. 2016a) have been attributed to spatially varying selection, especially in the case of In(3R)Payne %$$"



!

!

17 

(Durmaz et al. 2018; Anderson et al. 2005; Umina et al. 2005; Kennington et al. 2006; Rako et al. %$%"

2006; Kapun et al. 2016a,b; Kapun & Flatt 2019). Similar to patterns in North America (Kapun et al. %$&"

2016a), we observed that clinality of the three inversion polymorphisms was markedly stronger than %$'"

for putatively neutral SNPs in short introns (see supplementary table S11, Supplementary Material %$("

online), suggesting that these polymorphisms are maintained non-neutrally. Together, these findings %$)"

suggest that latitudinal inversion clines in Europe are shaped by spatially varying selection, as they %$*"

are in North America (Kapun et al. 2016a; Kapun & Flatt 2019). %%+"

 We also detected longitudinal clines for In(2L)t and In(2R)NS, with both polymorphisms %%!"

decreasing in frequency from east to west (see table 3; p < 0.01; also cf. Kapun & Flatt 2019). %%#"

Longitudinal clines for these two inversions have also been found in North America (cf. Kapun & %%$"

Flatt 2019). One of these inversions, In(2L)t, also changed in frequency with altitude (table 3; p < %%%"

0.001). These longitudinal and altitudinal inversion clines did, however, not deviate from neutral %%&"

expectation (supplementary table S11, Supplementary Material online).  %%'"

 %%("

European Drosophila microbiomes contain Entomophthora, trypanosomatids and previously %%)"

unknown DNA viruses  %%*"

The microbiota can affect life history traits, immunity, hormonal physiology, and metabolic %&+"

homeostasis of their fly hosts (e.g., Trinder et al. 2017; Martino et al. 2017) and might thus reveal %&!"

interesting patterns of local adaptation. We therefore examined the bacterial, fungal, protist, and viral %&#"

microbiota sequence content of our samples. To do this, we characterised the taxonomic origin of the %&$"

non-Drosophila reads in our dataset using MGRAST, which identifies and counts short protein motifs %&%"

('features') within reads (Meyer et al. 2008). We examined 262 million reads in total. Of these, most %&&"

were assigned to Wolbachia (mean 53.7%; fig. 7; supplementary table S1), a well-known %&'"

endosymbiont of Drosophila (Werren et al. 2008). The abundance of Wolbachia protein features %&("

relative to other microbial protein features (relative abundance) varied strongly between samples, %&)"

ranging from 8.8% in a sample from Ukraine to almost 100% in samples from Spain, Portugal, %&*"

Turkey and Russia (supplementary table S12, Supplementary Material online). Similarly, Wolbachia %'+"
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loads varied 100-fold between samples, as estimated from the ratio of Wolbachia protein features to %'! "

Drosophila protein features (supplementary table S12, Supplementary Material online). In contrast to %'#"

a previous study (Kriesner et al. 2016), there was no evidence for clinality of Wolbachia loads (p = %'$"

0.13, longitude; p = 0.41, latitude; Kendall's rank correlation). However, these authors measured %'%"

infection frequencies while we measured Wolbachia loads in pooled samples. Because the frequency %'&"

of infection does not necessarily correlate with microbial loads measured in pooled samples, we might %'' "

not have been able to detect such a signal in our data. %'( "

 Acetic acid bacteria of the genera Gluconobacter, Gluconacetobacter, and Acetobacter were the %') "

second largest group, with an average relative abundance of 34.4% among microbial protein features. %'* "

Furthermore, we found evidence for the presence of several genera of Enterobacteria (Serratia, %(+"

Yersinia, Klebsiella, Pantoea, Escherichia, Enterobacter, Salmonella, and Pectobacterium). Serratia %(! "

occurs only at low frequencies or is absent from most of our samples, but reaches a very high relative %(#"

abundance among microbial protein features in the Nicosia (Cyprus) summer collection (54.5%). This %($"

high relative abundance was accompanied by an 80x increase in Serratia bacterial load. %(%"

 We also detected several eukaryotic microorganisms, although they were less abundant than the %(&"

bacteria.  We found trypanosomatids, previously reported to be associated with Drosophila in other %(' "

studies (Wilfert et al. 2011; Chandler & James 2013; Hamilton et al. 2015), in 16 of our samples, on %(( "

average representing 15% of all microbial protein features identified in these samples. !%() "

 Fungal protein features make up <3% of all but three samples (from Finland, Austria and Turkey; %(*"

supplementary table S12, Supplementary Material online). This is somewhat surprising because %)+"

yeasts are commonly found on rotting fruit, the main food substrate of D. melanogaster, and co-occur %)! "

with flies (Barata et al. 2012; Chandler et al. 2012). This result suggests that, although yeasts can %)#"

attract flies and play a role in food choice (Becher et al. 2012; Buser et al. 2014), they might not be %)$"

highly prevalent in or on D. melanogaster bodies. One reason might be that they are actively digested %)%"

and thus not part of the microbiome. We also found the fungal pathogen Entomophthora muscae in 14 %)&"

samples, making up 0.18% of the reads (Elya et al. 2018). %)' "

 Our data also allowed us to identify DNA viruses. Only one DNA virus has been previously %)( "
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described for D. melanogaster (Kallithea virus; Webster et al. 2015; Palmer et al. 2018) and only two %)) "

additional ones from other Drosophilid species (Drosophila innubila Nudivirus [Unckless 2011], %)*"

Invertebrate Iridovirus 31 in D. obscura and D. immigrans [Webster et al. 2016]). In our data set, %*+"

approximately two million reads came from Kallithea nudivirus (Webster et al. 2015), allowing us to %*! "

assemble the first complete Kallithea genome (>300-fold coverage in the Ukrainian sample %*#"

UA_Kha_14_46; Genbank accession KX130344).  %*$"

We also found reads from five additional DNA viruses that were previously unknown %*%"

(supplementary table S13, Supplementary Material online). First, around 1,000 reads come from a %*&"

novel nudivirus closely related to both Kallithea virus and to Drosophila innubila nudivirus (Unckless %*' "

2011) in sample DK_Kar_14_41 from Karensminde, Denmark supplementary table S13, %*("

Supplementary Material online). As the reads from this virus were insufficient to assemble the %*)"

genome, we identified a publicly available dataset (SRR3939042: 27 male D. melanogaster from %**"

Esparto, California; Machado et al. 2016) with sufficient reads to complete the genome (provisionally &++"

named ÒEsparto VirusÓ; KY608910). Second, we also identified two novel Densoviruses &+! "

(Parvoviridae). The first is a relative of Culex pipiens densovirus, provisionally named ÒViltain &+#"

virusÓ, found at 94-fold coverage in sample FR_Vil_14_07 (Viltain; KX648535). The second is &+$"

ÒLinvill Road virusÓ, a relative of Dendrolimus punctatus densovirus, represented by only 300 reads &+%"

here, but with high coverage in dataset SRR2396966 from a North American sample of D. simulans, &+&"

permitting assembly (KX648536; Machado et al. 2016). Third, we detected a novel member of the &+' "

Bidnaviridae family, ÒVesanto virusÓ, a bidensovirus related to Bombyx mori densovirus 3 with &+("

approximately 900-fold coverage in sample FI_Ves_14_38 (Vesanto; KX648533 and KX648534). &+)"

Finally, in one sample (UA_Yal_14_16), we detected a substantial number of reads from an &+*"

Entomopox-like virus, which we were unable to fully assemble (supplementary table S13, &!+ "

Supplementary Material online).  &!! "

Using a detection threshold of >0.1% of the Drosophila genome copy number, the most commonly &!# "

detected viruses were Kallithea virus (30/48 of the pools) and Vesanto virus (25/48), followed by &!$ "

Linvill Road virus (7/48) and Viltain virus (5/48), with Esparto virus and the entomopox-like virus &!%"



!

!

20 

being the rarest (2/48 and 1/48, respectively). Because Wolbachia can protect Drosophila from &!&"

viruses (Teixeira et al., 2008), we hypothesized that Wolbachia loads might correlate negatively with &!' "

viral loads, but found no evidence of such a correlation (p = 0.83 Kallithea virus; p = 0.76 Esparto &!( "

virus; p = 0.52 Viltain virus; p = 0.96 Vesanto 1 virus; p = 0.93 Vesanto 2 virus; p = 0.5 Linvill Road &!) "

virus; Kendall's rank correlation). Perhaps this is because the Kallithea virus, the most prevalent virus &!* "

in our data set, is not expected to be affected by Wolbachia (Palmer et al.,2018). Similarly, Shi et al. &#+"

(2018) found no link between Wolbachia and the prevalence or abundance of RNA viruses in data &#! "

from individual flies.  &##"

 The variation in bacterial microbiomes across space and time reported here is analysed in more &#$"

detail in Wang et al. (2020); this study suggests that some of this variation is structured &#%"

geographically (cf. Walters et al. 2020). Thus, microbiome composition might contribute to &#&"

phenotypic differences and local adaptation among populations (Haselkorn et al. 2009; Richardson et &#' "

al. 2012; Staubach et al. 2013; Kriesner et al. 2016; Wang and Staubach 2018).  &#("

 &#)"

Conclusions  &#*"

Here, we have comprehensively sampled and sequenced European populations of D. melanogaster for &$+"

the first time (fig. 1). We find that European D. melanogaster populations are longitudinally &$! "

differentiated for putatively neutral SNPs, mitochondrial haplotypes as well as for inversion and TE &$#"

insertion polymorphisms. Potentially adaptive polymorphisms also show this pattern, possibly driven &$$"

by the transition from oceanic to continental climate along the longitudinal axis of Europe. We note &$%"

that this longitudinal differentiation qualitatively resembles the one observed for human populations &$&"

in Europe (e.g., Cavalli-Sforza 1966; Xiao et al. 2004; Francalacci & Sanna 2008; Novembre et al. &$' "

2008). Given that D. melanogaster is a human commensal (Keller 2007, Arguello et al. 2019), it is &$("

thus tempting to speculate that the demographic history of European populations might have been &$)"

influenced by past human migration. Outside Europe, east-west structure has been previously found in &$*"

sub-Saharan Africa populations of D. melanogaster, with the split between eastern and western &%+"

African populations having occurred ~70 kya (Michalakis & Veuille 1996; Aulard et al. 2002; &%!"
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Kapopoulou et al. 2018b), a period that coincides with a wave of human migration from eastern into &%#"

western Africa (Nielsen et al. 2017). However, in contrast to the pronounced pattern observed in &%$"

Europe, African east-west structure is relatively weak, explaining only ~2.7% of variation, and is &%%"

primarily due to an inversion whose frequency varies longitudinally. In contrast, our demographic &%&"

analyses are based on SNPs located in >1 Mb distance from the breakpoints of the most common &%'"

inversions and excluding the inversion bodies, making it unlikely that the longitudinal pattern we &%("

observe is driven by inversions. &%)"

 Our extensive sampling was feasible only due to synergistic collaboration among many research &%*"

groups. Our efforts in Europe are paralleled in North America by the Dros-RTEC consortium &&+"

(Machado et al. 2019), with whom we are collaborating to compare population genomic data across &&!"

continents. Together, we have sampled both continents annually since 2014; we aim to continue to &&#"

sample and sequence European and North American Drosophila populations with increasing spatio-&&$"

temporal resolution in future years. With these efforts, we hope to provide a rich community resource &&%"

for biologists interested in molecular population genetics and adaptation genomics.  &&&"

 &&' "

Materials and methods &&("

A detailed description of the materials and methods is provided in the supplementary materials and &&)"

methods (see Supplementary Material online); here we give a brief overview of the dataset and the &&*"

basic methods used. The 2014 DrosEU dataset represents the most comprehensive spatio-temporal &'+ "

sampling of European D. melanogaster populations to date (fig.1; supplementary table S1, &'! "

Supplementary Material online). It comprises 48 samples of D. melanogaster collected from 32 &'# "

geographical locations across Europe at different time points in 2014 through a joint effort of 18 &'$ "

research groups. Collections were mostly performed with baited traps using a standardized protocol &'%"

(see supplementary materials and methods, Supplementary Material online). From each collection, we &'& "

pooled 33Ð40 wild-caught males. We used males as they are more easily distinguishable &'' "

morphologically from similar species than females. Despite our precautions, we identified a low level &'( "

of D. simulans contamination in our sequences; we computationally filtered these sequences from the &') "
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data prior to further analysis (see Supplementary Material online). To sequence these samples, we &'* "

extracted DNA and barcoded each sample, and sequenced the ~40 flies per sample as a pool (Pool-&(+"

Seq; Schlštterer et al. 2014), as paired-end fragments on a Illumina NextSeq 500 sequencer at the &(! "

Genomics Core Facility of Pompeu Fabra University. Samples were multiplexed in 5 batches of 10 &(#"

samples, except for one batch of 8 samples (supplementary table S1, Supplementary Material online). &($"

Each multiplexed batch was sequenced on 4 lanes at ~50x raw coverage per sample. The read length &(%"

was 151 bp, with a median insert size of 348 bp (range 209-454 bp). Our genomic dataset is available &(&"

under NCBI Bioproject accession PRJNA388788. Sequences were processed and mapped to the D. &(' "

melanogaster reference genome (v.6.12) and reference sequences from common commensals and &(( "

pathogens. Our bioinformatic pipeline is available at https://github.com/capoony/DrosEU_pipeline. &() "

To call SNPs, we developed custom software (PoolSNP; see supplementary material and methods; &(* "

https://github.com/capoony/PoolSNP), using stringent heuristic parameters. In addition, we obtained &)+"

genome sequences from African flies from the Drosophila Genome Nexus (DGN; &)! "

http://www.johnpool.net/genomes.html; see supplementary table S14 for SRA accession numbers). &)#"

We used data from 14 individuals from Rwanda and 40 from Siavonga (Zambia). We mapped these &)$"

data to the D. melanogaster reference genome using the same pipeline as for our own data above, and &)%"

built consensus sequences for each haploid sample by only considering alleles with > 0.9 allele &)&"

frequencies. We converted consensus sequences to VCF and used VCFtools (Danecek et al. 2011) for &)' "

downstream analyses. Additional steps in the mapping and variant calling pipeline and further &)( "

downstream analyses of the data are detailed in the supplementary materials and methods &)) "

(Supplementary Materials online). &)* "

 &*+"

Supplementary Materials  &*! "

Supplementary materials and methods, supplementary results and supplementary figs. S1ÐS13 and &*#"

supplementary tables S1ÐS18 are available at Molecular Biology and Evolution online &*$"

(http://www.mbe.oxfordjournals.org/). &*%"

 &*&"
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 row

s). T
he v

alues 
!"(

$

represent F-ratios from
 general linear m

odels. B
old type indicates 

F
-ratios that are significant after B

onferroni correction 
(adjusted #Õ=

0.0055). A
sterisks in 

!"!
$

parentheses indicate significance w
hen accounting for spatial autocorrelation by spatial error m

odels. T
hese m

odels w
ere only

 calculated w
hen M

oranÕ
s 

I test, 
!&

)
$

as show
n in the last colum

n, w
as significant. *

p < 0.05; **p <
 0.01; ***p <

 0.001.  
!&

*
$

 
!&

+
$

F
actor 

Latitude 
Longitude 

A
ltitude 

S
eason 

M
oran's I 

!
(X

)  
4.11* 

1.62 
15.23*** 

1.65 
0.86 

!
(A

ut)  
0.91 

2.54 
27.18*** 

0.16 
-0.86 

"
(X

)  
2.65 

1.31 
15.54*** 

2.22 
0.24 

"
(A

ut)  
0.48 

1.44 
13.66*** 

0.37 
-1.13 

D
(X

)  
0.02 

0.38 
5.93* 

3.26 
-2.08 

D
(A

ut)  
0.09 

0.76 
5.33* 

0.71 
-1.45 

P
C

1 
0.63 

118.08***(***)
 

3.64 
0.75 

4.2*** 

P
C

2 
4.69* 

7.15* 
11.77** 

1.68 
-0.32 

P
C

3 
0.39 

0.23 
19.91*** 

0.28 
1.38 
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#
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T
able 3. C

linality and/or seasonality of chrom
osom

al inversions. The values represent 
F

-ratios from
 binom

ial generalized linear m
odels to account for 

!&
%

$

frequency data. B
old type indicates deviance values that w

ere significant after B
onferroni correction (adjusted 

#Õ=
0.0071). Asterisks in parentheses indicate 

!&
"

$

significance w
hen accounting for spatial autocorrelation 

by spatial error m
odels. T

hese m
odels w

ere only calculated w
hen M

oranÕ
s 

I test, as show
n in the last 

!&
&

$

colum
n, w

as significant. *p < 0.05; **p <
 0.01; ***p <

 0.001 
!&

'
$

 
!&

(
$

F
actor 

Latitude 
Longitude 

A
ltitude 

S
eason 

M
oran's I 

In(2L)t 
2.2 

10.09** 
43.94*** 

0.89 
-0.92 

In(2R
)N

S 
0.25 

14.43*** 
2.88 

2.43 
1.25 

In(3L)P 
21.78*** 

2.82 
0.62 

3.6 
-1.61 

In(3R
)C 

18.5***(***)
 

0.75 
1.42 

0.04 
2.79** 

In(3R
)M

o 
0.3 

0.09 
0.35 

0.03 
-0.9 

In(3R
)P

ayne 
43.47*** 

0.66 
1.69 

1.55 
-0.89 
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!
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FIGURE LEGENDS !"# $

 !"% $

Fig. 1. The geographic distribution of population samples. Locations of all samples in the 2014 !"& $

DrosEU data set. The color of the circles indicates the sampling season for each location: ten of the !"' $

32 locations were sampled at least twice, once in summer and once in fall (see table 1 and !"( $

supplementary table S1, Supplementary Material online). Note that some of the 12 Ukrainian !") $

locations overlap in the map.  !"* $

 !"" $

Fig. 2. Candidate signals of selective sweeps in European populations. The central panel shows !"+ $

the distribution of TajimaÕs D in 50 kb sliding windows with 40 kb overlap, with red and green !"! $

dashed lines indicating TajimaÕs D = 0 and -1, respectively. The top panel shows a detail of a genomic !+# $

region on chromosomal arm 2R in the vicinity of Cyp6g1 and Hen1 (highlighted in red), genes !+%$

reportedly involved in pesticide resistance. This strong sweep signal is characterized by an excess of !+& $

low-frequency SNP variants and overall negative TajimaÕs D in all samples. Colored solid lines depict !+' $

TajimaÕs D for each sample (see supplementary fig. S2 for color codes, Supplementary Material !+( $

online); the black dashed line shows TajimaÕs D averaged across all samples. The bottom panel shows !+) $

a region on 3L previously identified as a potential target of selection, which shows a similar strong !+* $

sweep signature. Notably, both regions show strongly reduced genetic variation (supplementary fig. !+" $

S1, Supplementary Material online).  !++ $

 !+! $

Fig. 3. Genetic differentiation among European populations. (A) Average FST among populations !!# $

at putatively neutral sites. The centre plot shows the distribution of FST values for all 1,128 pairwise !!% $

population comparisons, with the FST values for each comparison obtained from the mean across all !!& $

4,034 SNPs used in the analysis. Plots on the left and the right show population pairs in the lower !!' $

(blue) and upper (red) 5% tails of the FST distribution. (B) PCA analysis of allele frequencies at the !!( $

same SNPs reveals population sub-structuring in Europe. Hierarchical model fitting using the first !!) $

four PCs showed that the populations fell into two clusters (indicated by red and blue), with cluster !!* $

assignment of each population subsequently estimated by k-means clustering. (C) Admixture !!" $
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proportions for each population inferred by model-based clustering with ConStruct are highlighted as !!+ $

pie charts (left plot) or Structure plots (centre). The optimal number of 3 spatial layers (K) was !!! $

inferred by cross-validation (right plot). %###$

 %##%$

Fig. 4. Manhattan plots of SNPs with q-values < 0.05 in BayeScEnv association tests with PC1 or %##&$

PC2 of bioclimatic variables. Vertical lines denote the breakpoints of common inversions. The gene %##'$

names highlight some candidate genes found in our study and which have previously been identified %##($

as varying clinally by Fabian et al. (2012) and Machado et al. (2016) along the North American east %##)$

coast. Note that q-values of 0 (which are infinite on a log-scale) are plotted at the top of each figure, %##*$

above the grey dash-dotted horizontal lines in order to separate them from the other candidates with q-%##"$

values > 0. These zero values are unlikely to be spurious as the densities of these infinite values tend %##+$

to line up with peaks of log10(q) below the dashed line, suggesting that they represent highly %##!$

significant continuations of these peaks. %#%#$

 %#%%$

Fig. 5. Mitochondrial haplotypes. (A) TCS network showing the relationship of 5 common %#%&$

mitochondrial haplotypes; (B) estimated frequency of each mitochondrial haplotype in 48 European %#%'$

samples. %#%($

 %#%)$

Fig. 6. Geographic patterns of structural variants . The upper panel shows stacked bar plots with %#%*$

the relative abundances of transposable elements (TEs) in all 48 population samples. The proportion %#%"$

of each repeat class was estimated from sampled reads with dnaPipeTE (2 samples per run, 0.1X %#%+$

coverage per sample). The lower panel shows stacked bar plots depicting absolute frequencies of six %#%!$

cosmopolitan inversions in all 48 population samples. %#&#$

 %#&%$

Fig. 7. Microbio ta associated with Drosophila. Relative abundance of Drosophila-associated %#&&$

microbes as assessed by MGRAST classified shotgun sequences. Microbes had to reach at least 3% %#&'$

relative abundance in one of the samples to be represented %#&($
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