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Electron energy loss spectroscopy in the low loss regime is widely used to access to the screening of
the Coulomb potential as a function of the momentum transfer. This screening is strongly reduced
for low dimensional materials and this spectroscopy is a technique of choice to study the resulting
quantum con�nement. Time-dependent density functional theory within an ab initio formalism, is
particularly suited to simulate angular resolved electron energy loss spectra, taking bene�t from
the reciprocal space description. For an isolated object, the standard procedure based on the
supercell approach dramatically fails for the out-of-plane optical response of the surface and we
have proposed a new scheme called Selected-G,1 leading to a slab potential. In this paper, we show
that the standard procedure also a�ects the in-plane components of the EEL spectra. Applying the
Selected-G procedure, we show that the full expression of the slab potential is crucial to describe
slabs of �nite thickness. We compare our formalism to other cuto� procedures, and show that if
they provide spectra with the correct spectral weight, allowing the good description of plasmon
dispersion, the amplitude of the peaks depends on the choice of the supercell. Our results, which
provide spectra independent of vacuum, will have a strong impact on the calculation of properties
such as quasiparticle corrections.

I. INTRODUCTION

Electron energy loss (EEL) spectroscopy is a widely
used technique to measure electronic properties of mate-
rials. In particular, in the low loss regime, it gives ac-
cess to plasmons leading to the screening of the Coulomb
interaction.2 Therefore, it has been applied to low di-
mensional objects, like nanosphere,3, nanotubes,3�6 or
thin-layer systems7�13, where the screening is strongly
modi�ed as compared to the bulk counterpart.
A dedicated framework for the theoretical description

of spectroscopy in bulk materials is based on recipro-
cal space, as it is intimately associated to the crystalline
nature of materials described historically by solid state
physics. Indeed, the 3D-periodicity of the crystal and
the Bloch theorem naturally suggest the use of a plane
wave basis set. Therefore, time-dependent density func-
tional theory (TDDFT) in reciprocal space is a tool of
choice to calculate angular-resolved electron energy loss
spectra, within an ab initio formalism14,15. It allows the
transformation of the equations describing the response
of the matter to a perturbation, which are originally inte-
grals over space variables, into matrix equations, which
can easily been solved numerically. This is the reason
why this formalism is so powerful.
When dealing with 1D or 2D isolated objects, one loses

the periodicity, in at least one direction. A way to treat
this situation is to use a mixed-space formalism: for ex-
ample in the 2D case, the reciprocal space in the plane
and the real space out-of-plane (z)11,13,16,17. It is never-
theless computationally very demanding, since it requires
small integration steps along the z axis1,18.
The remaining periodicity justi�es the use of 3D-

reciprocal space codes. The standard procedure is to
build a supercell, which plays the role of the unit cell,
repeated in the three real space directions. The super-

cell is composed of matter and vacuum to isolate the
arti�cial replicas.19�22 Ground state properties are well
described within this framework.20,23 For spectroscopic
properties like plasmons for in-plane momentum trans-
fers, such a formalism has been applied and can repro-
duce experimental results, under the condition that the
supercell is large enough.24 A work dealing with excitons
has recently been published.25 In this framework, cuto�
procedures have been develop to isolate repeated slabs at
much shorter distance,26,27 and the de�nition of the 2D
macroscopic constant has also been reconsidered.28�30

Nevertheless, we have shown recently that such a for-
malism fails for the absorption spectrum of surfaces, in
particular for the out-of-plane component when one ac-
counts for the local �elds.1 We have demonstrated that
the result given by the standard supercell approach is
equivalent to an e�ective medium theory with vacuum,
and leads non physical results. To cure this vacuum
problem, we have proposed, within TDDFT, a formal-
ism called Selected-G, where (i) the response functions
are expanded on a new set of 3D reciprocal lattice vec-
tors: the new set is de�ned according to the thickness of
the matter rather than the thickness of the supercell, (ii)
due to the �nite thickness of the slabs, the Coulomb in-
teraction in the Dyson equation has to be modi�ed (slab
potential). This formalism was applied, in the limiting
case of surfaces, where due to the in�nite thickness of
the slab, the slab potential tends towards the standard
3D potential, and successfully simulates the absorption
spectra as well as second harmonic generation spectra for
di�erent silicon surfaces.1,31

In this paper, we apply the Selected-G formalism, us-
ing the slab potential, to simulate EEL spectra of thin
slabs of stacked graphene. In the �rst part, we summa-
rize the procedure used to calculate the EEL spectra,
within TDDFT. In the second part, we show that the in-
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plane components of the EEL spectra are also a�ected by
the vacuum introduced in the supercell, when calculated
with the standard supercell approach. The Selected-G
method is used to solve this spurious dependence on vac-
uum, and we emphasize the importance of the slab po-
tential to account for the �nite thickness of the slabs. In
the third part, we compare our method with other for-
malisms using cuto� procedures,26,27, or slab potentials
.17,32 In the last part, we compare our results to the pio-
neering EEL measurements of few layers graphene slabs
of T. Eberlein et al

7, and show that within this frame-
work, our numerical results reproduce the measurements,
and do not depend on the amount vacuum introduced in
the supercell, in contrast to previous calculations.

II. TDDFT FORMALISM: FROM 3D TO 2D

SYSTEM.

A. Dielectric function evaluated in TDDFT

In the case of bulk (3D) materials, the reciprocal space
basis vectors are built using the volume of the unit
cell, while the volume of the supercell is used for low-
dimensional materials.
The Dyson equation15, in reciprocal space, is a matrix

equation, and reads in the random phase approximation
(RPA):

χGG′(q;ω) = χ0
GG′(q;ω) +∑

G1

χ0
GG1

(q;ω) vG1(q) χG1G′(q;ω). (1)

Atomic units are used throughout unless otherwise
stated. q is a reciprocal lattice vector which spans the
�rst Brillouin zone, and ω the frequency. χ is the full
susceptibility, corresponding to the response to the exter-
nal potential and χ0 is the so-called independent-particle
(Kohn-Sham) response function, describing the response
to the total (external + induced) potential. The di�er-

ence between these two quantities arises from the micro-
scopic structure of the material, as the macroscopic ex-
ternal perturbation leads to a microscopic electronic in-
duced density. This phenomenon describes the so-called
local �eld e�ects linked to the microscopic components
(G 6= 0) of the the Coulomb potential:33�35

vG(q) =
4π

|G+ q|2
. (2)

Once χGG′(q;ω) is calculated, the microscopic inverse
dielectric function is evaluated, according to:

ε−1GG′(q;ω) = δGG′ + vG(q)χGG′(q;ω). (3)

and the loss function is proportional to the imaginary
part of the inverse dielectric function −=(ε−1).
We have shown that, for 2D materials described

within a supercell approach, this formalism behaves as
an e�ective medium theory, and provides unphysical
absorption spectrum for the out-of-plane component of
the surface.1

B. Selected-G approach

To avoid this problem, we can solve the matrix Dyson
equation in the 3D-reciprocal space, but using a reduced
set of reciprocal lattice vectors G̃ = (G‖, G̃z), where G̃z
is de�ned in terms of 2π/Lmatz , Lmatz being the height
of the matter and not the supercell. This formalism has
been developed in Ref. [1] and is summarized in appendix
A. Equation (1) becomes:

χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω)

+
∑

G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2
(q) χ̃G̃2G̃′(q;ω). (4)

Due to the �nite extension of the matter, the Fourier
transform of the Coulomb potential depends on two vari-
ables G̃1, G̃2, which have the same in-plane projection:

ṼG̃1G̃2
(q) =

4π

|G1 + q|2
δG̃1G̃2

+
ξ 4π δG1‖,G2‖

|q+ G̃1|2|q+ G̃2|2
× (5){

− (2qz + G̃z1 + G̃z2)
e−|G1‖+q‖|Lmat

z sin(qz L
mat
z )

Lmatz

+
|G1‖ + q‖|2 − (qz + G̃z1)(qz + G̃z2)

|G1‖ + q‖|
e−|G1‖+q‖|Lmat

z cos(qz L
mat
z )− 1

Lmatz

}
.

q‖ and qz are respectively the in-plane and out-of-plane
projection of q, in the �rst Brillouin zone. ξ is a
phase factor, de�ned as ξ = 1 if the matter is located
in [−Lmatz , 0] or [0, Lmatz ] inside the supercell and
ξ = (−1)n1+n2 if it is located in [−Lmatz /2, Lmatz /2], ni
being related to G̃zi by G̃zi = ni2π/L

mat
z , (see App. A 1).

The �rst term of the Slab potential (Eq. 5) is the
usual 3D Fourier transform of the Coulomb potential.

The second term, non-diagonal for G̃zi, is a correction
accounting for the �nite thickness of the matter, as it
can be seen from the 1/Lmatz factor. When one deals
with surfaces, one considers the limit Lmatz → ∞, and
the potential is reduced to the �rst (3D) diagonal term.

For the case of �nite thickness slabs, the expression of
the microscopic inverse dielectric matrix must be modi-
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�ed with respect to Eq. (3) and reads now:

ε−1
G̃G̃′(q;ω) = δG̃G̃′ +

∑
G̃z1

ṼG̃G̃1
(q)χ̃G̃1G̃′(q;ω) (6)

Similar expressions have been obtained both for the
slab potential (Eq. 5) and for the microscopic inverse
dielectric matrix (Eq. 3) in Refs. [17, 32].

A potential based on the same idea was proposed in
Ref. [30]. The o�-diagonal correcting term is similar to
the one proposed in Refs. [17, 32], but the head of the
potential Ṽ00(q) is set to 0.

The fundamental di�erence between these frameworks
and ours is the choice for the reciprocal space basis vec-
tors. They keep the basis built on the full supercell, when
we use the Selected-G one. This point will be discussed
later in Part IIID.

III. RESULTS AND DISCUSSION

The ground state properties are calculated within den-
sity functional theory (DFT) in the local density approxi-
mation (LDA), using the Abinit code36. We used a norm-
conserving Troullier-Martins pseudopotential, with a cut-
o� energy of 31Ha. The independent-particle response
function χ0 is calculated as the sum over Kohn-Sham
states, using the DP code37. This code also solves the
Dyson equations (Eq. 1) or (Eq. 4) and evaluates the
microscopic inverse dielectric matrix ε−1 using (Eq. 3)
or (Eq. 6) accordingly. For small momentum transfer q,
the EEL spectrum is given by −=[ε−100 (q;ω)].

The system chosen is a AB stacking of 4 graphene lay-
ers. The thickness of the stacked graphene layers is de-
�ned as N × Lgraphenez , where N is the number of lay-
ers and Lgraphenez the thickness of the graphene sheet.38

Lgraphenez usually corresponds to half of the graphite unit
cell along the c axis, which gives 3.354 Å. In this work,
we consider the height of the supercell after atomic re-
laxation, leading to Lgraphenez = 3.331 Å= 6.294 Bohr.
Note that this value is close to the van der Waals atomic
radius.39 However, since the numerical value of this im-
portant quantity cannot be assigned unambiguously wi-
hin a range smaller than a few percent, we have checked
that it has a negligible in�uence on our results within a
variation of Lgraphenez up to 17 % (see appendix B).

The thickness of the 4 layer-graphene is then
Lmatz = 25.18 Bohr. This slab is introduced in supercells
of di�erent heights Lsupercellz , de�ned as multiple of the
height of the matter Lmatz . R refers to the ratio between
the height of the supercell and the height of the matter:
R = Lsupercellz /Lmatz . The k-points grid is 40x40x1,
with parameters given in table (I). EEL spectra are
calculated for an in-plane vanishing momentum transfer.

Parameters 4L (R2) 4L (R3) 4L (R4) 4L (R5)
npwwfn 3451 5191 6931 8659
nbands 192 192 192 192
npwmatxy 19 19 19 19
npwmatz 49 73 97 121
npwmatz (SG) 25 25 25 25

TABLE I. Parameters used to calculate EEL spectra of the
4-layers graphene slab as a function of the supercell.

FIG. 1. (color online) Comparison of EELS spectra, includ-
ing LF, for a slab of 4 graphene layers introduced in di�er-
ent supercells (see inset), using the standard supercell ap-
proach (Equations 1 and 3). R refers to the ratio between
the height of the supercell and the height of the matter:
R = Lsupercell

z /Lmat
z . (Orange): R2 - solid line with +,

(Cyan): R3 - solid line with ×, (Green): R4 - solid line
with open circle, (Magenta): R5 - solid line with up triangle.
The spectra are calculated within TDDFT, for an in-plane
q‖ = 10−2 a.u..

A. Standard supercell calculations

The results calculated using the standard supercell ap-
proach, including LF (Eq. 1 and 3), are presented in Fig-
ure (1): it is clear that the spectra, energy position and
amplitude of the π and π + σ plasmons depend on the
amount of vacuum introduced in the supercell.
This is a noticeable di�erence with the results obtained

for the absorption spectra of silicon surfaces1. In that
case, the energy position of the absorption peaks were
unchanged for the in-plane components and the ampli-
tude was scaled by the factor 1/R. For the out-of-plane
component, a shift in energy and a reduction of the am-
plitude were present, leading to a nonphysical absorption
spectrum. These results are explained by the fact that
absorption can be also evaluated by a slightly di�erent
Dyson equation,35 where the long-range component of
the Coulomb potential in Eq.(1) is suppressed (v0 ≡ 0).
Therefore, in-plane absorption, with small LF e�ets, is
given by χ0, which is just proportional to 1/Lsupercellz .
The situation is di�erent for the EEL spectra, since



4

they are governed by the susceptibility given in Eq. (1).
In that case, the long-range component of the Coulomb
potential is always present and dominates for small mo-
mentum transfer. The di�erence between χ and χ0, re-
sulting from the presence of v0,35 explains why the shift
in energy occurs also for the in-plane components, and
is almost independent of the inclusion of LF for the con-
sidered momentum transfer q‖ = 10−2 a.u.. Indeed, the
EEL spectra without LF (not shown) are very similar to
the ones of Fig. (1).
The EEL spectrum for the largest supercell (R5) in

Fig.(1) is quite close to the experimental results pre-
sented in Ref. [7]. Such a behavior was also observed
when simulating the EEL spectra of graphene in the su-
percell formalism. Once the supercell is large enough,
all the spectra are similar, apart from a normalisation
factor 1/Lsupercell.24 In that case, the good agreement
of the plasmon energy compared to experimental results
explains the success of this framework to study 2D ma-
terials, even if the large size of the supercells required
to isolate the replicas has motivated the further develop-
ments.
Nevertheless, even if the energy position of the peaks

can be considered as correct, the amplitude of the cal-
culated spectra depends strongly on the size of the su-
percell. For this reason, it is interesting to apply the
Selected-G formalism for the case of EELS.

B. Selected-G scheme in the limit Lmat
z →∞.

Before testing the in�uence of the o�-diagonal correc-
tions of the slab potential, we will �rst analyze the EEL
spectra calculated using the Selected-G formalism, with
only the �rst term of the slab Coulomb potential (Eq.
5), as it is the case for surface or thick slab calculations.
Since it is equal to the usual expression of the 3D Fourier
transform of the Coulomb potential, it will be denoted
V3D. The results are shown in Fig. (2). In that case, the
double summation appearing in the Dyson equation (Eq.
4) is reduced to a single sum like in (Eq. 1), and the ex-
pression of the microscopic inverse dielectric matrix (Eq.
6) recovers the expression of (Eq. 3). The only di�erence
with the standard supercell formalism lies in the fact that
all the quantities are de�ned on the reduced set of {G̃}
vectors.
The results are presented in Fig. (2) using the same

supercells as in Fig. (1) with the same color code. Note
that when using the 3D expression for the Fourier trans-
form of the Coulomb potential, the number of bands has
to be increased up to 240 bands for convergence above
35 eV. As already shown for the optical response of sur-
faces, all the spectra are superimposed, con�rming that
the Selected-G procedure leads to EEL spectra indepen-
dent of the amount of vacuum. Nevertheless, the result-
ing spectrum does not correspond to the EELS of the 4
graphene layers' slab. Indeed, the spectra are very di�er-
ent from the ones measured by Eberlein et al

7, where the
π + σ plasmon is strongly depressed above 20 eV. In the

present case, the resulting spectrum corresponds actually
to the bulk graphite, which is plotted in black circles in
Fig. (2) for comparison.

0 10 20 30 40
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0

0,5

1
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2

2,5
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E

L
 (

q
//
)

Graphite AB

R2 Selected-G + V
3D

R3 Selected-G + V
3D

R4 Selected-G + V
3D

R5 Selected-G + V
3D

FIG. 2. (color online) Comparison of EELS spectra, including
LF, for a slab of 4 graphene layers introduced in the same
supercells as in Fig. (1), using the Selected-G method with
only the �rst term (V3D) of the slab potential. (Orange): R2 -
solid line with +, (Cyan): R3 - solid line with ×, (Green): R4
- solid line with open circle, (Magenta): R5 - solid line with up
triangle. The spectra are calculated within TDDFT, for an
in-plane q‖ = 10−2 a.u.. (Black) bulk graphite for reference.

C. Selected-G scheme with the slab potential.

We will now show the EELS for these four supercells,
using the Selected-G procedure with the slab potential
(Eqs. 4, 5, 6). Results are presented in Fig. (3), using
the same color code.
As expected from the previous section, the spectra in

Fig. (3) are all superimposed, leading to a result inde-
pendent of the vacuum introduced in the supercell, but
the resulting spectrum does not correspond anymore to
the EELS of bulk graphite. The π plasmon located above
5 eV in the bulk case, is slightly shifted below 5 eV for the
4 layers' slab, but has a similar amplitude. The major
di�erence comes from the π + σ plasmon. It is strongly
depressed for the energy ranging between 20 and 40 eV,
leading to a maximum around 15 eV, when it is located
around 27 eV for the bulk case (See Fig. 2). The spec-
trum calculated for the slab, using the Selected-G proce-
dure with the slab potential, exhibits the strong reduc-
tion of the screening expected for a thin slab of matter,
as compared to the bulk. This spectrum compares also
very well with the EELS spectra of Eberlein et al

7, as it
will be studied in detail in Part III E.

D. Comparison with cuto� procedures

The slab potential used in the present work has been
obtained by Fourier transform of the Coulomb poten-
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FIG. 3. (color online) Comparison of EELS spectra, including
LF, for a slab of 4 graphene layers introduced in the same
supercells as in Fig. (1), using the Selected-G method with
the slab potential (Eq. 5). (Orange): R2 - solid line with
+, (Cyan): R3 - solid line with ×, (Green): R4 - solid line
with open circle, (Magenta): R5 - solid line with up triangle.
The spectra are calculated within TDDFT, for an in-plane
q‖ = 10−2 a.u..

tial along a �nite distance, restricted to the size of the
material slab and can be seen, in a way as a cuto� po-
tential. It is thus interesting to compare our results with
other standard cuto� procedures, built to tackle the prob-
lem of isolating objects in a 3D periodic formalism. In
2006, two papers simultaneously proposed to cuto� the
Coulomb interaction at some distance between the re-
peated objects.26,27 In these two papers, the authors con-
sidered a diagonal expression of the Fourier transform of
the 3D Coulomb potential. Note that it cannot be used
for q‖ +G‖ = 0, which is also the case for the slab po-
tential we have developed.
The important point we want to focus on is the choice

of the cuto� distance. In Ref. [27], the cuto� distance zc
has to be larger than the extension of the electronic den-
sity. The size of the supercell is then deduced from this
cuto� distance zc, to avoid interaction between replicas.
The minimum value corresponds to LSupercellz = 2zc for
the 2D geometry. In Ref. [26], the same value was pro-
posed, as this choice allows to cancel a divergence in the
expression of the cuto� potential.
In 2013, simultaneously with our development of the

Selected-G procedure, leading to the slab potential (Eq.
5)1, a similar expression has been proposed17,32. It re-
sults also from the �nite integration in the z direction
when calculating the Fourier transform of the Coulomb
potential considered as a 2-variable quantity (v(r, r′) in-
stead of v(r− r′)).
However, in these approaches, the reciprocal space vec-

tors are built considering the supercell volume. For this
reason, the results still depend on the amount of vacuum
introduced in the calculation, as it can be seen from Fig.
4. The parameters used for the calculations are the ones
reported in table (I). In this �gure, we plot the results

of the cuto� procedure proposed in Refs. [26, 27] (top
panel), the cuto� procedure proposed in Refs. [32, 17]
(center panel) and the results of the Selected-G with the
slab potential formalism (bottom panel). The left column
corresponds to spectra calculated for an in-plane momen-
tum transfer of q = 1. 10−2 a.u. and the right column for
q = 0.157 a.u.. The black continuous curves corresponds
to the 4 layer graphene slab in the supercell R2, and the
red crosses to the spectra for the 4 layer graphene slab
in the supercell R4.
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FIG. 4. (color online) Illustration of the vacuum e�ect for
the di�erent cuto� procedures on a 4 layer-graphene slab in-
troduced into two supercells: ratio 2 (black continuous line)
and ratio 4 (red crosses). (Top panel) cuto� proposed in
Ref. [26] or [27]; (center panel) cuto� procedure proposed
in Ref. [32] or [17]; (Bottom panel) Selected-G + slab poten-
tial formalism. In-plane momentum transfer: (Left column)
q‖ = 1. 10−2 a.u. and (right column) q‖ = 0.157 a.u..

In the top and center panels, the calculations using
either the R2- or R4-supercells lead to the same peak
positions, but the amplitude of the peaks can be strongly
a�ected. See for instance the case q = 0.157 a.u., where
the ratio between the two curves is almost equal to 2,
which corresponds to the ratio of the supercell's heights.
For small q, the local �eld e�ects are vanishingly

small and the spectra can be evaluated from ε−1,NLF00 =
1+V00χ

0
00/[1−V00χ0

00], where V00 is replaced by the long
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range term v̂0 for the diagonal cuto� case.26,27. For van-
ishing in-plane q‖, V00( or v̂0) → 2πLSCz /q‖. Since χ0

00

is proportional to 1/LSCz , one has an exact compensation
of the dependence in LSCz .
The in�uence of the microscopic terms will play a role

for larger momentum transfer. When q‖ increases, the
compensation does not occur anymore, and the ampli-
tude of the spectra evolves gradually towards a scaling
factor corresponding to the ratio of the supercell's height.
Finally, the bottom panel of Fig. (4) shows the results of
the Selected-G procedure with the use of the slab poten-
tial: the results are independent of vacuum, not only for
vanishing q, as it was already evidenced in Fig. (3), but
also for non-vanishing q (Fig. 4 - bottom-right). Inter-
estingly, the shape of the spectra obtained with the three
di�erent methods is quite similar. Only the amplitude is
a�ected.
The di�erent cuto�s proposed previously17,26,27,32 al-

low a correct description of the spectral weight of the
EELS, which explains their success when following the
dispersion of the π and π + σ plasmons, in particular in
Refs. [32, 40], or 17). The common feature of all these
methods is the strong reduction of the Coulomb poten-
tial, in particular of the long-range term, due the cuto�
procedures. It has for consequence to reduce the ampli-
tude of the dielectric function through Eq. (6). This
e�ect is also obtained by increasing the size of the su-
percell LSCz which normalizes χ0, when the calculation is
done without the truncation of the Coulomb interaction.
Nevertheless, the question of the absolute amplitude of

the spectrum is still open and cannot be clari�ed by com-
paring with the experimental results, since, to our knowl-
edge, they are shown in arbitrary units. This point was
already raised for the case of the diagonal cuto�, where a
di�erent de�nition of ε−1 for the EELS was proposed,24,
as it is discussed in the appendix C 1.
However, the accurate determination of the amplitude

is an important issue for the calculation of the screened
Coulomb potential, used for example in the self-energy,
at the basis of quasiparticle corrections, as well as for
the absorption spectra with the Bethe-Salpeter equation
formalism. Our formalism is the only one to provide
quantities independent of the choice of the supercell.

E. Slabs of di�erent thicknesses

After having discussed and solved the dependence of
the spectra on the size of the vacuum in the supercell
and taken into account the �nite thickness of the mat-
ter, we turn now to a detailed comparison of our results
with the experimental spectra obtained in Ref. [7]. Us-
ing the Selected-G method with the slab potential, we
have simulated the EEL spectra for slabs of few layers
stacked graphene, according to Eq. (6). The parameters
used in the calculations are given in table (II). We re-
mind that the choice of the supercell is meaningless as
our calculations do not depend on vacuum.
The results are presented in Fig. 5. They are in ex-

Parameters 1L (R5) 2L (R4) 3L (R3) 4L (R2) 5L (R2) 8L (R2)
npwwfn 2143 3451 3895 3451 4339 6931
nbands 48 96 144 192 280 384
npwmatxy 19 19 19 19 19 19
npwmatz 7 13 19 25 31 49

TABLE II. Parameters used to calculate the spectra of the
slabs of di�erent thicknesses.
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FIG. 5. (color online) Comparison of EELS spectra, including
LF, for slabs of N graphene layers (N= 1, 2, 3, 4, 5 and 8).
Magenta with ×: N = 1 ; blue with +: N = 2 ; red with right
triangle: N = 3 ; green with left triangle: N = 4 ; black with
diamond: N = 5 ; cyan with open square: N = 8. In-plane
component for q‖ = 10−2 a.u..

cellent agreement with the measured spectra of Ref. [7]
unlike the spectra calculated with the untruncated exter-
nal perturbation (see Appendix C 2). The energy posi-
tion of each plasmon peak corresponds to the measured
one. The progressive shift in energy when increasing the
thickness and the spectral weight of the π + σ plasmon
are well reproduced. It shows a steep decrease above 14
eV for the thinner samples, which shifts towards higher
energy with increasing thickness leading to a plateau, as
observed in the experiment. Neverteless, the plateau is
visible for the 8-layer slab, and not for the 5-layer one.
To improve the agreement with the experimental results,
we calculated EEL spectra for an in-plane momentum
transfer of q|| = 0.02 a.u., for 1-layer, 2-layer and 5-layer
slabs. Calculated spectra are shown in Fig. 6, where
the measurements extracted from Ref. [7] are plotted in
inset. The agreement is very good. The remaining dif-
ference appearing in the width of the spectra can be due
either to the presence of the out-of-plane plasmon excita-
tion, which is not included in our calculations, or, more
probably, to the fact that, due to the collection angle,
the experimental spectra come from the superposition
of plasmons with di�erent in-plane momentum transfers.
Indeed, the plasmon dispersion leads to a blue shift of
the spectra when the momentum transfer increases.
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FIG. 6. (color online) Comparison of EELS spectra, for 1-
layer (magenta) 2-layer (blue) 5-layer (black) slabs. Calcula-
tions within Selected-G and Slab potential framework for an
in-plane momentum transfer q‖ = 2.10−2 a.u..

IV. CONCLUSION

In this paper, we calculated the EEL spectra for thin
slabs of stacked graphene using TDDFT in reciprocal
space in a supercell scheme. We evidenced that, unlike
the absorption case, the in�uence of the vacuum, when
using the standard supercell formalism, is dramatic for
in-plane components. To solve this vacuum problem, we
applied the Selected-G approach, with a slab potential.
We obtained results independent of the vacuum intro-

duced in the supercell, and in very good agreement with
available measurements.
This independence of the spectra with respect to the

vacuum can only be achieved thanks to the Selected-G
approach, where reciprocal lattice vectors are de�ned ac-
cording to the thickness of the matter, and not the super-
cell, as it is usually done within the standard supercell
formalism. This scheme is not limited to TDDFT, and
could be applied to any other method involving the solu-
tion of a Dyson-type equation, such as the Bethe-Salpeter
equation for instance. While the Selected-G scheme is
enough for the calculation of surface excitation spectra,
as is was shown in Ref. 1, we emphasize here that the
full expression of the slab potential must be taken into
account to describe the EEL spectra of thin slabs.
We compared our formalism with other cuto� proce-

dures developed earlier, showing that they can reproduce
the shape of the spectra but with an amplitude depend-
ing on the choice of the supercell.
Our Selected-G formalism, together with a slab poten-

tial, allows the accurate numerical simulations of EEL
spectra using the e�cient supercell-based formalism in
reciprocal space. The question of the amplitude is a cru-
cial issue, since the inverse microscopic dielectric matrix
is also the key quantity for the calculation of the self-
energy in quasiparticles corrections.
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Appendix A: Selected-G approach

As the results presented in this paper are based on the Selected-G approach, we brie�y sketch the main points of
the derivation. For more details, one can refer to Ref. [1]
Assuming that the electronic density is localised in the z-direction between −Lmatz and 0, we introduce two auxiliary

periodic functions χ̃0 and χ̃. χ̃0 and χ̃ are respectively identical to χ0 and χ for (z, z′) in [−Lmatz , 0]× [−Lmatz , 0], but
the period is Lmatz , instead of Lz. Their Fourier transform is given by:

χ̃G̃,G̃′(q;ω) =
1

Lmatz

∫ 0

−Lmat
z

dz

∫ 0

−Lmat
z

dz′e−i(qz+G̃z)zχ̃G||,G′||(q||, z, z
′;ω)ei(qz+G̃

′
z)z

′
, (A1)

where G̃z is de�ned according to the size of the material slab: G̃z = n 2π
Lmat

z
, n ∈ Z.

1. Modi�ed Dyson equation

The Dyson equation linking the independent-particle response function and the microscopic susceptibility for an
isolated slab is given by:

χG‖G
′
‖
(q‖, z, z

′;ω) = χ0
G‖G

′
‖
(q‖, z, z

′;ω) (A2)

+
∑
G′′

‖

∫ ∞
−∞

∫ ∞
−∞

dz1dz2 χ
0
G‖G

′′
‖
(q‖, z, z1;ω) vG′′

‖
(q‖, z1, z2) χG′′

‖G
′
‖
(q‖, z2, z

′;ω)
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where the Fourier transforms for the periodic in-plane coordinates (‖) has already been done. vG||(q||, z, z
′) =

2πe−|q||+G||||z−z′|/|q|| +G||| is the 2D Fourier transform of the 3D Coulomb potential.
Since i) χ0

G‖G
′
‖
(q‖, z, z

′;ω) and χG‖G
′
‖
(q‖, z, z

′;ω) are equal to zero outside [−Lmatz , 0] × [−Lmatz , 0], and ii) equal

respectively to χ̃0 and χ̃ in this range, Eq. (A2) can be restricted to

χ̃G‖G
′
‖
(q‖, z, z

′;ω) = χ̃0
G‖G

′
‖
(q‖, z, z

′;ω) (A3)

+
∑
G′′

‖

∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1 dz2 χ̃
0
G‖G

′′
‖
(q‖, z, z1;ω) vG′′

‖
(q‖, z1, z2) χ̃G‖G

′
‖
(q‖, z2, z

′;ω)

for (z, z′) ∈ [−Lmatz , 0]× [−Lmatz , 0].
By Fourier-transforming equation (A3), one gets after some algebra:

χ̃G̃G̃′(q;ω) = χ̃0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ̃0
G̃G̃1

(q;ω)ṼG̃1G̃2
(q)χ̃G̃2G̃′(q;ω). (A4)

with G̃ = (G||, G̃z), q = (q||, qz) and where qz, G̃z are vectors along the z axis, de�ned according to G̃z = nz
2π
Lmat

z
,

with nz ∈ Z.
The slab potential Ṽ is de�ned as

ṼG̃1G̃2
(qz) =

1

Lmatz

∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1dz2 e
−i(G̃1+qz)z1 v(z1, z2)e

i(G̃2+qz)z2 (A5)

We �nally get for the slab potential

ṼG̃1,G̃2
(q) =

4π

|q+ G̃1|2
δG̃1,G̃2

+
4π ξ δG1||,G2||

|q+ G̃1|2|q+ G̃2|2

[
− e−|q||+G1|||Lmat

z sin(qzL
mat
z )

Lmatz

(2qz + G̃z1 + G̃z2)
)

+
e−|q||+G1|||Lmat

z cos(qzL
mat
z )− 1

Lmatz |q|| +G1|||

(
|q|| +G1|||2 − (qz + G̃z1)(qz + G̃z2)

)]
. (A6)

We assumed here that the matter is located between −Lmatz and 0. The same derivation can be conducted if the
matter is located between −Lmatz /2 and Lmatz /2. In that particular case, a phase factor appears in the second term
of the right-hand side of Eq. (A6). This is accounted for by ξ, which can take the value 1 or (−1)n1+n2 depending on
the way the supercell is constructed. As before, ni ∈ Z is de�ned according to G̃zi = ni2π/L

mat
z .

This modi�ed Dyson equation links the independent-particle response function and the susceptibility for the isolated
slab, by means of the associated quantities of the periodic system. The modi�cations appear at two levels i) it requires
a modi�ed expression for the Coulomb potential (called Slab potential) and ii) the basis vector for the reciprocal space
along the z direction is G̃z = 2π

Lmat
z

instead of Gz = 2π

Lsupercell
z

. For this reason we called it �Selected-G�, where the
selected G vectors are the ones of the matter and not the supercell.

2. Inverse dielectric function

Once we have de�ned the auxiliary functions, we can express the inverse dielectric function ε−1 in terms of χ̃.
By reducing the range of integration to [−Lmatz , 0] in the following expression

ε−1G||G
′
||
(q||, z, z

′;ω) = δ(z − z′) +
∫ ∞
−∞

dz1 vG||(q||, z, z1) χG||G
′
||
(q||, z1, z

′;ω) (A7)

and using χ̃ instead of χ, we �nally get

ε−1
G̃G̃′(q;ω) = δG̃G̃′ +

∑
G̃z1

ṼG̃G̃1
(q)χ̃G̃1G̃′(q;ω) (A8)

which corresponds to Eq. (6).

Appendix B: In�uence of the value of thickness of

the matter

The de�nition of the thickness of a 2D object is a very
delicate point, which is far beyond the scope of this work.

Nevertheless, since it is a key quantity of our formalism,
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we have studied to which extend its value can in�uence
the numerical results. We have chosen the case of the
graphene sheet, which is one of the most critical case.
Indeed, the incertainty regarding the extension of the
electronic density will have a larger impact for graphene
than for a thicker slab. Fig. 7 show the extension of the
electronic density of the graphene sheet introduced in a
cell of 31.47 Bohr. The red lines indicate the limits the
thickness we have chosen (6.294 Bohr), resulting from the
usual procedure, namely half of the c parameter in the
bulk graphite unit cell (after relaxation). This de�nition
is closely related to the van der Waals atomic radius.41

According to Tables 1,7,8 and 9 of Ref. 39, the van der
Waals radius of carbon atom spans in a range going from
1.5 to 1.96 Å. The blue lines in Fig. 7 show the thickness
corresponding to the largest van der Waals radius RvdW
= 1.96 Å(Lgraphenez = 7.408 Bohr), which corresponds to
an increase of 17% of the value used in our calculations.
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FIG. 7. (color online) (black line) Extension of the electronic
density of one sheet of graphene, in a cell of 31.47 Bohr,
(dashed red line) limits of Lmat

z = 6.294 Bohr, (dashed dotted
blue line) limits of Lmat

z = 7.408 Bohr.

To evaluate the in�uence of the thickness of the slab in
our formalism, we have calculated the EELS spectra of
the graphene layer using Selected-G and the slab poten-
tial, considering three di�erent values of Lmatz : the two
extreme ones (6.294 Bohr, 7.408 Bohr) and a intermedi-
ate value, 6.992 Bohr. It corresponds to RvdW = 1.67,
1.96 and 1.85 Å respectively. The results are shown in
Fig. 8 and Fig. 9 for q‖ = 10−2 a.u. and q‖ = 0.157 a.u.
respectively.

The spectra are superimposed, for each value of q. This
shows that our results are not sensitive to the thickness
used to de�ne the matter in a range as large as 17 % of
Lmatz . This shows that, even though there is no perfectly
unambiguous de�nition of the thickness of the layer, one
can use safely standard de�nitions such as half of the
c parameter in the bulk unit cell or the van der Waals
atomic radius.
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FIG. 8. (color online) Comparison of EELS spectra, including
LF, within Selected-G and slab potential framework, for one
graphene layer depicted as a slab with di�erent thicknesses.
(Red with circle): Lmat

z = 6.294 Bohr, (blue with square):
Lmat

z = 6.992 Bohr, (turquoise with down triangle): Lmat
z =

7.408 Bohr. In-plane component for q‖ = 10−2 a.u..
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FIG. 9. (color online) Comparison of EELS spectra, including
LF, within Selected-G and slab potential framework, for one
graphene layer depicted as a slab with di�erent thicknesses.
(Red with circle): Lmat

z = 6.294 Bohr, (blue with square):
Lmat

z = 6.992 Bohr, (turquoise with down triangle): Lmat
z =

7.408 Bohr. In-plane component for q‖ = 0.157 a.u..

Appendix C: Truncated or untruncated external

perturbation to calculate EELS ?

1. In�uence of the vacuum for untruncated

external perturbation

For the case of the cuto� based on a diagonal ex-
pression of Fourier transform of the Coulomb potential
(v̂),26,27 it has been suggested24 that the EEL spectra
should not be calculated by taking the imaginary part of
ε−100 (q) = 1 + v̂0χ̂00(q), as it results naturally from the
evaluation of the screening, but by considering an expres-
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sion where the factor multiplying the response function is
replaced by the untruncated external perturbation, lead-
ing to ε−100 (q) = 1 + v0χ̂00(q), where v0 = 4π/q2. The
Dyson equation giving χ̂ is solved with the cuto� poten-
tial v̂.26,27

Since the purpose of part (IIID) was to compare spec-
tra calculated with the cuto� potential v̂,26,27 with the
ones calculated with Eq. (6) where the modi�ed Coulomb
potential is used, we plotted in part (IIID) spectra cal-
culated according to ε−100 (q) = 1 + v̂0χ̂00(q). In this ap-
pendix, we want to show that the spectra calculated with
ε−100 (q) = 1+ v0χ̂00(q) also exhibit the vacuum problem.
The corresponding quantity for the non-diagonal form

of the Fourier transform of the Coulomb potential would
be:

ε−100 (q) = 1 + v0χ̃00(q) (C1)

where χ̃ is the solution of Eq. (4).
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FIG. 10. (color online) Illustration of the vacuum e�ect for
the di�erent cuto� procedures on a 4 layer-graphene slab in-
troduced into two supercells: ratio 2 (black continuous line)
and ratio 4 (red crosses). (Top panel) cuto� proposed in Ref
[26] and [27] with untruncated external potential in the fac-
tor of the response function; (Bottom panel) Selected-G +
slab potential formalism. In-plane momentum transfer: (Left
column) q = 1. 10−2 a.u. and (right column) q = 0.157 a.u..

The spectra are presented in Fig. (10). The top panel
corresponds to the diagonal case, the bottom panel to the
non-diagonal one. The spectra are larger than in Fig. (4).
The spectra of the top panel are still dependent of the
vacuum introduced in the supercell. The factor coming

from the ratio of the heigth of the corresponding super-
cells occurs for the two range of q. It demonstrates that
the e�ect is contained at the level of χ̂, and con�rms the
origin of the cancellation at vanishing q shown in Fig. (4
- top panel). The spectra calculated using the Selected-G
procedure (Fig. 10 - bottom) to solve the Dyson equa-
tion are again independent of the vacuum introduced in
the supercell.
Such results con�rms that the Selected-G procedure is

the only method which provide spectra independent of
vacuum. But they do not clarify if the external pertur-
bation should be truncated or not, namely if one should
calculate EELS according to Eq. (C1) or Eq. (6).

2. Dependence with the thickness of the matter

To remove the ambiguity concerning the use of the
untruncated or truncated external perturbation, i.e. if
one should use Eq. (C1) or Eq. (6) to calculate EELS,
we will consider the EEL spectra calculated for slabs of
di�erent thicknesses, as in part (III E).
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FIG. 11. (color online) Comparison of EELS spectra, includ-
ing LF, for slabs of N graphene layers (N= 1, 2, 3, 4, 5 and 8).
Magenta with ×: N = 1; blue with +: N = 2; red with right
triangle: N = 3; green with left triangle: N = 4; black with
diamond: N = 5; cyan with open square: N = 8; orange with
circle: graphite AB. In-plane component for q‖ = 10−2 a.u..

The spectra, calculated with Eq. (C1), are shown in
Fig. (11). The evolution of the EEL spectra as the func-
tion of the thickness of the slab of matter is clearly non-
physical: the thinner the slab, the more intense the plas-
mon. This result allows us to con�rm that the spectra
must be calculated with Eq. (6), as shown in part (III E).
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