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Abstract 

Background: Extra-pair paternity (EPP) in birds provides benefits in terms of more offspring, and characteristics for 
maintenance of this behaviour have been the subject of investigation. Microorganisms are known to be transmitted 
during mating, especially when mating with multiple partners, and factors reducing this cost of multiple mating are 
expected. Further, plumage brightness and colour intensity have been shown to be important traits to benefits from 
multiple mating as predicted by sexual selection. The aim of this study was to investigate the relationship between 
the rate of extra-pair paternity and the relative size of the uropygial gland at the interspecific level, as the uropygial 
gland is an exocrine gland hypothesized to produce antiparasitic substances and further identified to affect plumage 
brightness. Because of the expected benefits of large uropygial gland in scenarios of sexual selection, we predicted a 
positive correlation with EPP.

Methods: We collected information from the literature of uropygial gland size and frequency of extra-pair paternity 
of 60 avian species of different families and explored the predicted positive correlation between them. We did so with 
means of comparative analyses that considered phylogenetic relationship as random factor and included body mass 
as covariate. We used Markov chain Monte Carlo generalized linear mixed models that were weighted by number of 
nests used to estimate extra-pair paternity.

Results: We detected a positive relationship between level of extra-pair paternity and uropygial gland size at an 
interspecific level. This finding is consistent with the prediction.

Conclusions: We discuss the importance of this result in scenarios of sexual selection and argue that the detected 
relationship may have arisen by utilizing antiparasitic secretions through secondary sexual characters indicating para-
site resistance.
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Background
Extra-pair paternity (EPP) has received great attention 
during recent decades, after Trivers (1972) argued that 
males should seek additional copulations, while females 
should choose males that could increase the genetic 
quality or the genetic constitution of offspring. Several 
hypotheses have been put forward to achieve a better 

understanding of the potential benefits of this behav-
iour. Empirical studies have found support for differ-
ent benefits, although most attention has been given 
to the “good genes” hypothesis, predicting that females 
use male phenotypic cues to assess male genetic quality 
from which the offspring might benefit (Westneat et al. 
1990; Birkhead and Møller 1992; Hasselquist et al. 1996; 
Griffith et  al. 2002). Alternatively, “compatible genes” 
where the genes of an extra-pair male fit better with 
the genes of the female than those of the social partner 
may increase offspring fitness (Kempenaers et al. 1999; 
Tregenza and Wedell 2000; Griffith and Immer 2009). 
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Females’ benefits from EPP may also include fertility 
insurance (Birkhead and Møller 1992; Sheldon 1994; 
Schmoll and Kleven 2016) and access to resources 
(Wolf 1975; Gray 1997). However, these benefits have 
received less empirical support (Griffith et  al. 2002). 
Social mates pay the main costs are loss of parental care 
(Birkhead et al. 1993; Suter et  al. 2009), while costs of 
partner assessment (Petrie and Kempenaers 1998) and 
transmission of sexually transmitted diseases (Sheldon 
1993) have also been suggested for males and females 
involved in EPP.

The Hamilton and Zuk hypothesis predict that females 
should choose mates with signals reliably reflecting 
resistance against parasites in the context of sexual 
selection (Hamilton and Zuk 1982; Møller 1990). Males 
expressing resistance to parasites may provide more 
parental care, as they suffer lower rates of parasites (Mil-
inski and Bakker 1990), but also transmit resistance genes 
to offspring, which also benefit females (Hamilton and 
Zuk 1982). Regardless of the explanation, males reveal-
ing their resistance to potential female partners will 
more likely obtain extra-pair copulations. This was dem-
onstrated for instance in the House Finch (Carpodacus 
mexicanus) in which carotenoid-based feather coloration 
was negatively correlated with the amount of feather-
degrading bacteria (Shawkey et al. 2009), while poor male 
condition was related to the presence of other parasites 
(Thompson et al. 1997). Thus, males signalling his pheno-
typic quality including resistance to parasitism will more 
easily access to females including extra-pair females.

However, extra-pair copulations would also imply the 
transmission of microorganisms between males and 
females, which may have beneficial (Lombardo et  al. 
1999) or pathogenic effects. Costs of EPP associated 
to parasitism and/or antiparasitic defences are in case 
scarcely studied. As examples of parasites’ transmission 
during copulation, Ring-necked Pheasants (Phasianus 
colchicus) are known to transmit ectoparasites from male 
to female during copulation (Hillgarth 1996). Thus, as 
mating with several partners will expose individuals to 
potential parasite transmission, this could affect both 
individuals and the outcome of the reproductive event. 
Any males with superior resistance should be better 
to avoid potential costs or simply be better adapted to 
reduce the consequences for the costs of extra-pair pater-
nity. Since birds usually signal their antiparasitic capa-
bilities throughout plumage brightness (Hamilton and 
Zuk 1982), related characters should also play a crucial 
role describing which males could gain multiple mating. 
Hence, understanding potential relationships between 
parasites and defence mechanisms should help under-
stand the underlying mechanisms behind EPP (Westneat 
and Stewart 2003).

By definition, secondary sexual traits are important 
for gaining multiple mating, and these traits are often 
reflected in colour and brightness (Baker and Parker 
1979), which, as mentioned before, usually reveals resist-
ance of individuals to parasitic infection (Hamilton and 
Zuk 1982). Several secondary sexual traits, including 
feather coloration, are condition-dependent, hence indi-
cating high-quality individuals (Andersson 1994). It is 
known for instance that more colourful individuals in 
the Greater Flamingo (Phoenicopterus roseus) had higher 
breeding success (Amat et  al. 2011), and that plumage 
brightness was related to chick development in Blue Tits 
(Cyanistes caeruleus) (Senar et  al. 2002), both results 
suggesting a direct link between feather coloration and 
important fitness components. Thus, any characteristics 
that prevented feather deterioration or enhance parasite 
resistance will be sexually selected and, consequently, 
should predict the strength of sexual selection. The uro-
pygial gland is a good candidate trait, mainly because its 
main function is to protect feathers from degradation 
agents including microorganisms (Moreno-Rueda 2017; 
Azcárate-García et  al. 2020) but also because its size or 
volume of secretion predicts selection pressures due to 
ectoparasites (Magallanes et al. 2016).

The objective of this study was to test the prediction 
relating EPP and the size of the uropygial gland among 60 
bird species. The relationship between the size of the uro-
pygial gland and bacterial diversity has been investigated 
several times (Møller et al. 2009; Jacob et al. 2014). Secre-
tions from the uropygial gland have been demonstrated 
to act as antiparasitic defence in some species, although 
generally assumed for many species, especially against 
feather-degrading bacteria (Jacob and Ziswiler 1982; 
Møller et  al. 2009; Ruiz-Rodríguez et  al. 2009), which 
can affect interspecific interactions such as predation 
(Møller et  al. 2010), but also sexually selected feathers 
(Ruiz-Rodríguez et  al. 2015). Simultaneously, secretions 
from the uropygial gland have been shown to increase 
colour intensity (Amat et  al. 2011) and affect plumage 
brightness (Moreno-Rueda 2010). However, the rela-
tionship between EPP and the uropygial gland remains 
poorly understood. Here we provide, to our knowledge, 
the first test of the hypothesis that the level of EPP is 
positively related to the size of the uropygial gland, which 
will suggest a direct link between uropygial gland and the 
strength of sexual selection.

Methods
Uropygial gland
Uropygial gland data from Jacob and Ziswiler (1982)
We extracted information on the size of the uropygial 
gland using Jacob and Ziswiler (1982) as a source. We 
assumed that a larger uropygial gland could produce 
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more secretions than a smaller gland, which was dem-
onstrated at an intraspecific level in Barn Swallows 
(Hirundo rustica) (Møller et al. 2009) and is discussed at 
the interspecific level by Soler et al. (2012).

Extra‑pair paternity data
Estimates of species-specific extra-pair paternity rate 
were extracted from Griffith et  al. (2002). Extra-pair 
paternity was defined as the proportion of offspring that 
was extra-pair offspring. In a second data set we used the 
proportion of broods that held extra-pair offspring. Data 
since 2002 were extracted from the Web of Science. In 
total, estimates of both EPP and uropygial gland size were 
available for 60 species (Additional file 1: Table S1).

Body mass
Body mass was extracted from Dunning (2008).

Comparative analysis
Species characteristics are not statistically independ-
ent because they share their evolutionary history. We 
adjusted for this dependence using comparative analy-
ses. We controlled for phylogenetic uncertainty, using 
phylogenetic relationships among species. This was 
done by using 100 phylogenetic ultrametric trees for all 
the species included in the analysis from https ://birdt 
ree.org/ (accessed April 2020). All models were fitted to 
the different trees by using Bayesian phylogenetic mod-
els from the MCMCglmm package (Hadfield 2010). 
The MCMC algorithm was set to 2,000,000 iterations, 
with a burn-in period of 100,000 and a thinning inter-
val of 1000. Geweke’s convergence diagnostic was used 
for Markov chains, giving a z-score of the first 10% and 
last 50% of the means in the chain (Geweke 1992). The 
models use the frequency of EPP (proportion of broods 
with extra-pair paternity) as response variable, and 
 log10-transformed uropygial gland size from Jacob and 
Ziswiler (1982),  log10-transformed body mass from Dun-
ning (2008) and sample sizes for EPP as explanatory con-
tinuous variables. Model 1 assumes Poisson distribution, 
while Model 2 assumes Gaussian distribution, and these 
models are further weighted for sample size to account 
for uneven sampling effort (Garamszegi and Møller 
2010). Tests of the random effect of phylogeny for the 
100 phylogenetic trees was performed and assessed as 
heritability (h2), a measure of phylogenetic signal rang-
ing between zero and one (Hadfield 2010). For all the 
independent factors  (log10-transformed uropygial gland 
size,  log10-transformed body mass and sample sizes for 
EPP), the averaging estimates, lower and upper values 
of the confidence interval (95% CI), calculated as upper 
and lower 95% credibility interval values of the estimates 
of the 100 models, the 95% CI for the 100 models for 

pMCMC values, z-score of the Geweke’s convergence 
diagnostic, effective sample sizes and autocorrelations 
are reported.

Results
Uropygial gland size and EPP
When corrected for phylogeny in comparative analyses, 
there was a significant positive relationship between level 
of EPP and size of the uropygial gland for both models 
(Fig. 1) and body mass, but not with sample sizes for EPP 
(Table 1). The size of the uropygial gland is from previ-
ous studies known to correlate positively with body size 
(Møller et  al. 2010) and the amount of wax produced 
(Elder 1954; Møller et  al. 2009; Pap et  al. 2010). Hence, 
we assume that the size of the uropygial gland represents 
the relative amount of wax and, thus, larger amounts of 
the antiparasitic defence properties that can affect the 
integrity of feathers, hence give plumage in better con-
dition (Azcárate-García et  al. 2020) as well as their col-
oration and brightness (Amat et al. 2011; Moreno-Rueda 
2017).

Discussion
The main finding in this study is that the size of the uro-
pygial gland is positively related to the level of EPP at 
the interspecific level. This is in line with the predictions 
regarding the role of secretions of the uropygial gland 
in both antimicrobial defence and plumage brightness 
(Moreno-Rueda 2017). The specific function of the uro-
pygial gland on these two processes, however, remains 
unknown.

Fig. 1 Association between residuals of rate of extra pair paternity 
and volume of the uropygial gland of the 60 avian species 
considered in the study after controlling for the effect of body mass. 
Line is the regression line and size of circles are proportional to 
 log10-transformed sample size used to estimate extra pair paternity in 
each species

https://birdtree.org/
https://birdtree.org/
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Previous studies have documented transmission of 
microorganisms from males to females through mat-
ing events (Hillgarth 1996; Westneat and Rambo 2000) 
and other social events (Brown et  al. 2001). This mech-
anism is one of few, but still poorly understood costs of 
EPP. However, the related costs can be of crucial impor-
tance in order to maintain this behaviour (Westneat and 
Stewart 2003), and mechanisms to reduce the costs are 
expected. The size of the uropygial gland is positively 
related to the amount of secretions produced for a variety 
of species (Elder 1954; Møller et al. 2010; Pap et al. 2010) 
as the gland is made up of tubules where secretion of the 
substances occur (Jacob and Ziswiler 1982), and secre-
tions are hypothesized to have antiparasitic substances 
(Moreno-Rueda 2017). Hence, selection for defence 
through uropygial gland secretions could be an impor-
tant factor for fitness components such as reproductive 
success (Whittaker et al. 2013) and survival (Merino et al. 
2000; Møller et al. 2010; Magallanes et al. 2017).

Both Møller et al. (2010) and Soler et al. (2012) docu-
mented a relationship between bacterial abundance and 
load with size of the uropygial gland, with the substances 
secreted by the gland hypothesised to act as antimicro-
bial defence. Here, we demonstrated that, when corrected 
for phylogeny, the level of EPP was positively related to 
uropygial gland size. Due to the potential transmission of 
bacteria through mating (Hillgarth 1996; Westneat and 
Rambo 2000), the relatively increased size of the uropy-
gial gland, and hence amount of wax, could be an impor-
tant defence mechanism to reduce this cost. Hence, we 
suggest that the increased size of the uropygial gland, and 
further the amount of wax, may have arisen as coevolu-
tionary responses to reduce the associated costs of EPP.

Species with higher intraspecific levels of EPP often 
show more intense selection on secondary sexual traits, 
caused by greater variance in reproductive success (Yez-
erinac et al. 1995; Møller 1997; Whittingham and Dunn 
2005). Furthermore, there is a negative relationship 
between secondary sexual ornaments and the loss of 
within-pair paternity (Møller and Ninni 1998). Several 
hypotheses have linked the intensity of secondary sexual 
traits to parasite resistance, such as the Hamilton-Zuk 
(1982) hypothesis. The size of the uropygial gland has 
been shown to correlate positively with secondary sexual 
traits (Moreno-Rueda 2010), plumage brightness (Møller 
and Mateos-González 2019) and colour intensity (Amat 
et  al. 2011). Moreover, ornamental feathers are more 
easily degraded by bacteria (Ruiz-Rodríguez et  al. 2015; 
Azcárate-García et al. 2020), and individuals with larger 
uropygial glands were those better protecting their orna-
mental feathers from degradation, which could result in 
more attractive plumage (Ruiz-Rodríguez et  al. 2015). 
Hence, secretions from the uropygial gland can be an 

important factor promoting the acquisition of gain extra-
pair copulations since several of these are likely to be 
condition-dependent (Andersson 1994).

In light of this finding, uropygial gland is likely influ-
enced by sexual selection, but more research is needed 
in order to acquire a better understanding of the role of 
the uropygial gland in EPP. Studies using a representa-
tive measure of feather bacteria are needed to investi-
gate the effect of uropygial gland secretions in relation 
to EPP. Furthermore, a similar interspecific investi-
gation is needed regarding plumage brightness and 
coloration, although a positive relationship is found 
in species-specific studies (Galvan and Sanz 2006; 
Moreno-Rueda 2010; Amat et al. 2011). However, these 
two processes are not mutually exclusive, and they may 
act simultaneously as described here.

Conclusions
Here we demonstrate, to our knowledge, the first find-
ing of a positive relationship between the size of the 
uropygial gland and the level of EPP. This, together with 
previous findings of the role of uropygial gland, suggest 
that the size of uropygial gland size could be selected 
for through exaggeration of secondary sexual traits 
and/or signalling antimicrobial defence mechanism. 
This provides important insight to the role of secretions 
by the uropygial gland on EPP. Future investigations 
should focus on the effect of uropygial gland secretions 
and explore the relationship between EPP and size of 
uropygial gland at an intraspecific level.
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