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Abstract
Mitochondria are sensitive to oxidative stress, including that derived from ionizing radia-
tion. To quantify the effects of exposure to environmental radionuclides on mitochondrial 
DNA (mtDNA) dynamics in wildlife, bank voles (Myodes glareolus) were collected from 
the chernobyl exclusion zone (CEZ), where animals are exposed to elevated levels of radio-
nuclides, and from uncontaminated areas within the CEZ and elsewhere in Ukraine. Brains 
of bank voles from outside the CEZ were characterized by low mtDNA copy number and 
low mtDNA damage; by contrast, bank voles within the CEZ had high mtDNA copy num-
ber and high mtDNA damage, consistent with putative damaging effects of elevated radia-
tion and a compensatory response to maintain sufficient functioning mitochondria. In ani-
mals outside the CEZ, the expression levels of PGC-1α gene and mtDNA copy number 
were positively correlated as expected from this gene’s prominent role in mitochondrial 
biogenesis; this PGC-1α-mtDNA copy number association is absent in samples from the 
CEZ. Our data imply that exposure to radionuclides is associated with altered mitochon-
drial dynamics, evident in level of mtDNA and mtDNA damage and the level of activity in 
mitochondrial synthesis.

Keywords  Copy number · DNA damage · Ionizing radiation · Mitochondria · Myodes 
glareolus

Introduction

Mitochondria are the powerhouses of eukaryotic cells, involved in energy production, 
metabolism and cell signaling (Chinnery and Hudson 2013). Cells contain many mitochon-
dria, each of which has multiple copies of its own circular genome (the mitochondrial DNA, 
mtDNA): mammalian somatic cells may thus contain up to 104 mtDNA copies (Shoubridge 
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and Wai 2007). The number of mitochondria and mtDNA genomes is dynamic and the orga-
nelles and their DNA can be replicated or degraded independently of the cell cycle (Michel 
et al. 2012; Chinnery and Hudson 2013). Reactive oxygen species (ROS) are natural byprod-
ucts of mitochondrial function, and indeed, mitochondria present the main source of intracel-
lular ROS. Mitochondrial ROS are typically detoxified by antioxidants or can have impor-
tant roles, such as cell signaling and immunological defense (Finkel and Holbrook 2000; 
Shokolenko et al. 2009; Alexeyev et al. 2013). However, damage to mitochondria and/or their 
genomes can elevate levels of intracellular ROS, leading to greater oxidative stress and cellu-
lar damage (Shokolenko et al. 2009; Kam and Banati 2013). Dysfunctional mitochondria and 
impaired clearance of damaged mitochondria have been associated with various diseases and 
accelerated molecular aging (Finkel and Holbrook 2000; Correia-Melo et al. 2014).

Mitochondria are thought to be vulnerable to oxidative damage (Finkel and Holbrook 
2000; Lee and Wei 2005), as they are suggested to have fewer DNA repair pathways than 
for nuclear DNA, and the mtDNA is at close proximity to the site of mitochondrial ROS 
production (Yakes and Van Houten 1997; Stein and Sia 2017). Indeed, oxidative stress 
induces DNA lesions, such as strand breaks and base modifications, at a higher frequency 
in mtDNA compared with nuclear DNA (Finkel and Holbrook 2000; Alexeyev et al. 2013). 
Regulation of the numbers of mitochondria, mtDNA and their integrity is crucial given 
that excess ROS from damaged mitochondria could positively feedback to cause further 
mitochondrial damage (and thus more ROS). To mitigate the potentially damaging effects 
(elevated ROS, inefficient energy production) of dysfunctional mitochondria in response to 
stress, cells may increase mitochondrial DNA copy number (Kam and Banati 2013), and/
or increase transcription of genes associated with mitochondrial biogenesis (Lee and Wei 
2005; St-Pierre et  al. 2006; Jendrach et  al. 2008); notably, peroxisome proliferator-acti-
vated receptor gamma coactivator (PGC-1α) is a key regulator of mitochondrial biogenesis, 
through its role in activating various transcription factors (St-Pierre et al. 2006).

Mitochondria are sensitive to exposure to toxins and other stressors, with the amount of 
mtDNA damage being a putative biomarker of level of exposure to environment stress; for 
example, exposure to heavy metals, toxic chemicals or air pollutants (Meyer et  al. 2013; 
Jayasundara 2017; Roubicek and de Souza-Pinto 2017). However, most of our understand-
ing of the effects of toxins on mitochondrial function is derived from laboratory studies 
(Meyer et al. 2013; Roubicek and de Souza-Pinto 2017) and estimates of levels of mtDNA 
damage in wildlife are scarce. Nonetheless, mtDNA damage has been detected in bats 
exposed to mercury contamination (Karouna-Renier et al. 2014), and also in the sun-blis-
tered skin of whales exposed to UV-radiation (Bowman et al. 2013). Additionally, Atlantic 
killifish exposed to environmental pollutants (PAHs, i.e. polycyclic aromatic hydrocarbons) 
show higher levels of damage in mtDNA, as well as nuclear DNA in several tissues, with the 
highest mtDNA damage observed in the brain tissue (Jung et al. 2009). Ionizing radiation 
is associated with elevated DNA damage (Ward 1988). Under laboratory conditions, expo-
sure to ionizing radiation induces mtDNA damage and mitochondrial dysfunction, leading 
to elevated levels of mitochondrial ROS production and further oxidative damage to cells 
(Leach et al. 2001; Murphy et al. 2005; Azzam et al. 2012; Kam and Banati 2013). Thus, 
exposure to environmental radionuclides is a candidate cause of increased mitochondrial 
damage. The accident at the former nuclear power plant in Chernobyl, Ukraine (in 1986) 
released huge amounts of radionuclides over much of Ukraine, Belarus and western Russia, 
as well as other parts of Europe. Wildlife inhabiting areas contaminated by persistent radio-
nuclides (mostly 137Cs, 90Sr and 239Pu) are exposed to elevated levels of ionizing radiation, 
and often show detrimental physiological and molecular effects, such as increase in DNA 
damage, mutation rates and oxidative stress, compromised immune responses and sperm 
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abnormalities (Møller and Mousseau 2015; Einor et al. 2016; Lourenço et al. 2016). Given 
the high susceptibility to oxidative stress and accumulation of DNA damage, as well as the 
apparent weaker DNA repair mechanisms available to mitochondria, we hypothesized that 
exposure to environmental radionuclides impacts mitochondrial homeostasis in wildlife. We 
examined this hypothesis by measuring (1) mtDNA copy number, (2) amount of damaged 
mtDNA, and (3) expression of PGC-1α in the brain tissue of bank voles, Myodes glareolus, 
that had inhabited locations in Ukraine that are contaminated or uncontaminated by radio-
nuclides. We studied brain tissue as it is a metabolically active organ with high mitochon-
drial copy number, and yet brain tissue has poor mtDNA repair capacity (Karahalil et al. 
2002) and is sensitive to oxidative stress during development (Kaindl et al. 2006).

Materials and methods

Bank voles were trapped during summer 2015 from contrasting locations within the Cher-
nobyl Exclusion Zone (CEZ), an area of approximately 30 km in radius around the accident 
site that has restricted access in order to limit human exposure to contamination. Ambient 
soil background radiation levels were measured at each trap site 1 cm above the ground 
with a hand-held GM dosimeter (Inspector, International Medcom INC, Sebastopol, CA, 
USA). Contaminated trapping locations (CEZ elevated, n = 23 voles) within the CEZ were 
defined by elevated levels of ambient soil radiation (0.46–134  µGy/h) in contrast to the 
uncontaminated locations (CEZ background, n = 19) (ranging from 0.10–0.28  μGy/h). 
In bank voles, the external radiation dose of animals at Chernobyl strongly correlates 
(r = 0.75, Spearman) to the ambient background dose rates measured at the trapping loca-
tions (Lavrinienko et al. unpublished). As bank voles may disperse among the mosaic of 
contaminated and uncontaminated areas within the CEZ, we also sampled animals (con-
trol, n = 30) from three uncontaminated locations within Ukraine that were sufficiently 
far (> 150 km) from the CEZ to ensure that bank voles could not have been exposed to 
radionuclides (mean background radiation: 0.13 μGy/h) (Fig. 1 and additional details from 
ESM1).

Fig. 1   Map of sampling locations for Myodes glareolus. Location of uncontaminated control sampling sites 
outside the CEZ (a) and within the chernobyl exclusion zone (CEZ) in Ukraine (b). For the sampling loca-
tions within the CEZ (b), ‘CEZ elevated’ locations are marked red circles and the ‘CEZ background’ loca-
tions with gray circles. The CEZ is outlined with a dotted line in (b). CNPP chernobyl nuclear power plant
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Tissue samples were collected and stored immediately to Allprotect Tissue Reagent 
(Qiagen). For the mtDNA assays, DNA was extracted from the tissue with DNeasy Blood 
and Tissue kit (Qiagen). A qPCR assay was developed to estimate the relative mtDNA 
copy number and the relative amount of undamaged mtDNA copies. The assay is based on 
amplification of three DNA fragments; a short nuclear gene fragment (N, 36B4 [= Rplp0], 
the ribosomal phosphoprotein P0, 87 bp), and a short (72 bp) and long (3,252 bp) frag-
ment of mitochondrial genome (see Table S1). Briefly, as polymerase cannot copy dam-
aged DNA, we expect to see a reduction in PCR amplification success of the long mtDNA 
product because a longer PCR target likely contains one or more sites of strand break/
oxidative lesion; by contrast, a small PCR target will rarely incorporate a damaged site 
and, the short qPCR should reflect the mtDNA copy number (Hunter et al. 2010; Bowman 
et al. 2013; Zhu and Coffman 2017). The relative copy number estimations were calculated 
using Pfaffl’s (Pfaffl 2001) formula. In short, the mtDNA copy number in a sample was 
calculated as a ratio of the short mitochondrial fragment and the nuclear genomic frag-
ment (87 bp fragment of a reference gene 36B4), and ratio of the long mitochondrial frag-
ment and the short mitochondrial fragment was used for the estimation of relative amount 
undamaged mitochondrial genomes (see ESM1 for full details). Quantitative PCR reac-
tions were performed in 15 µl reactions containing 15 ng of DNA, 200–400 nM of primers 
(Table S2) and 1 × LightCycler 480 SYBR Green I Master (Roche), using the LightCycler 
480 Real-Time PCR System (Roche). Cycling conditions for 36B4 were as follows: 95 °C 
for 10 min followed by 35 cycles of 95 °C for 10 s, 58 °C for 15 s and 72 °C for 10 s, fol-
lowed by a melting curve. Cycling conditions for mitochondrial fragments were the same 
except the quantification step included 35 cycles of 95 °C for 15 s, 57 °C for 15 s and 72 °C 
for 60 s for the short fragment and 35 cycles of 95 °C for 15 s, 57 °C for 20 s and 72 °C 
for 3 min for the long fragment. Primers to amplify the short mtDNA fragment were F: 
5′-GGG​TTG​GTA​AAT​TTC​GTG​-3′, and R: 5′-CGT​TTT​ACG​CCG​AGA​ATA​-3′ (efficiency 
1.92), and for the long mtDNA fragment F: 5′-ATA​GTA​GAA​GCA​GGG​GCT​GGA-3′ and 
R: 5′-TGG​GTT​GGA​ACT​AGG​CTT​GAGT-3′ (efficiency 1.82) (for the nuclear gene 36B4, 
see primer info in Kesäniemi et al. (2019b). To validate that the assay detects differences in 
the amount of mtDNA damage, bank vole DNA samples were exposed to direct UV light 
for increasing amount of time (up to 10 min) to induce mtDNA damage, with control sam-
ples without UV exposure. A decreased amplification of the long mtDNA fragment was 
observed with longer UV exposure times, indicating increased amount of damage (see Fig. 
S1 and ESM1 for full details).

A subset of samples (n = 39) was used to estimate relative PGC-1α expression among 
locations. RNA extractions were done using RNeasy Mini Kit (Qiagen) with tissue homog-
enization using TissueLyser II (Qiagen) and an on-column DNase digestion step. 400 ng 
of total RNA per sample was used for reverse transcription using iScript cDNA synthesis 
kit (Bio-Rad). Two reference genes were used in the qPCR reactions, Beta-actin (Actb) and 
Retention in endoplasmic reticulum sorting receptor 1 (Rer1). Quantitative PCR reactions 
(qPCRs) for all genes were done using a LightCycler480 Real-Time PCR System (Roche) 
in a 16 µl final reaction volume that contained ~ 3 ng cDNA template, 0.5 µM of reverse 
and forward primers and 1X SYBR Green I Master Mix (Roche). Thermal cycling con-
ditions were: 95 °C for 10 min followed by 40 cycles of 95 °C for 10 s, 60 °C for 15 s 
and 72 °C for 10 s. Primers to amplify PGC-1α were: F: 5′-TGG​ATG​AAG​ACG​GAT​TGC​
CC-3′ and R: 5′-AGC​TTC​TTA​AGT​AGA​GAC​GGCT-3′ (efficiency 2.07) (see (Jernfors 
et al. 2018) for primer information for Actb and Rer1, and ESM1 for details of the qPCR 
protocol and primer design). Relative expression of PGC-1α was analyzed using GenEx 
v.6.1 (https​://genex​.gene-quant​ifica​tion.info/), with efficiency correction of the Cq values, 

https://genex.gene-quantification.info/
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and normalization of PGC-1α expression to the harmonic mean of the two reference genes. 
Relative expression levels were calculated against a standard reference sample run on 
each plate (Pfaffl 2001). Relative expression data was log10-transformed to normalise the 
distribution.

We analyzed the effects of sampling location (CEZ elevated, CEZ background, control), 
sex and size of the animals, i.e. head width, as fixed factors in the model, on (1) mtDNA 
copy number, (2) amount of damaged mtDNA (where the mtDNA copy number was also 
added as a factor in the model), and (3) expression of PGC-1α using linear models in R 
v.3.5.2 (The R Core Team 2018).

Results

Bank voles inhabiting both CEZ locations had significantly more mtDNA copies in their 
brain tissue compared with animals from the outside the CEZ (Table  1), with the high-
est mean mtDNA copy number observed in animals from locations of elevated radiation 
(Fig. 2a, Table S3/ESM1). Moreover, there was significantly greater inter-individual vari-
ation in mtDNA copy number in the samples from the CEZ compared with those from the 
control site (Fig. 2a, Table S3/ESM1, Levene’s F-statistic, F = 15.46, df = 2.71, p < 0.001, 
see also Fig. S2 for locations outside the CEZ shown separately). High mtDNA copy num-
ber was significantly associated with greater damage to mtDNA (Table 1): thus, bank voles 
from both CEZ locations had significantly fewer undamaged mtDNA copies compared 
with animals from outside the CEZ (Table 1, Fig. 2b), albeit with a trend of more damage 
in the CEZ background areas (Table S3/ESM1). 

Transcription of PGC-1α was significantly upregulated in the brains of animals col-
lected from the CEZ sites of elevated radiation compared to animals from outside the CEZ. 

Table 1   Summarized results 
of the linear models (shown as 
CEZ elevated and background 
compared to control area outside 
the CEZ)

Effect Estimate SE t p

mtDNA CN
Intercept 5.723 2.562 2.234 0.028
CEZ elevated 1.293 0.326 3.963  < 0.001
CEZ background 1.072 0.333 3.213 0.002
Sex male  − 0.029 0.255  − 0.112 0.911
Head width  − 0.353 0.196  − 1.803 0.076
Undamaged mtDNA
Intercept 1.128 0.655 1.721 0.089
CEZ elevated  − 0.275 0.089  − 3.077 0.003
CEZ background  − 0.457 0.088  − 5.166  < 0.001
Sex male 0.035 0.063 0.563 0.575
mtDNA CN  − 0.142 0.030  − 4.717  < 0.001
Head width  − 0.005 0.049  − 0.097 0.923
PGC-1α expression
Intercept 1.533 0.320 4.796  < 0.001
CEZ elevated 1.044 0.404 2.586 0.014
CEZ background 0.750 0.395 1.897 0.066
Sex male 0.108 0.329 0.328 0.745
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A trend of elevated expression in CEZ background site animals was also seen, however this 
was not significant (p = 0.066) (Table 1). Consistent with its role in mitochondrial biogene-
sis, there was a positive correlation between PGC-1α expression and mtDNA copy number 
(Spearman’s rho, ρ = 0.431, n = 39, p = 0.006). However, when the three sample locations 
were analyzed separately, this gene expression-copy number association was maintained 
only in brains of animals from the control locations (ρ = 0.842, n = 14, p < 0.001), whereas 
weakly negative (CEZ elevated, ρ =  − 0.650, n = 12, p = 0.022) or non-significant correla-
tions (CEZ background: ρ = 0.203, n = 13, p = 0.505) were observed in the samples from 
the CEZ (Fig. 3). No sex effect was seen in any of the analyses (Table 1).

Fig. 2   Relative mtDNA copy number (a) and undamaged mtDNA copy number (b) in the brain tissue of 
bank voles. Box plots show medians of the biological replicates within groups, with quartiles and 5- and 
95-percentiles. *CEZ elevated N = 23, CEZ background N = 19, Control N = 30

Fig. 3   Relationship of PGC-1α 
expression and mtDNA copy 
number in the brain tissue
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Discussion

Mitochondria provide essential functions to eukaryotic cells, with dynamic changes in 
mitochondria copy number potentially allowing and contributing to a response to changes 
in cellular energy demands and/or stress (Michel et al. 2012). Oxidative stress and expo-
sure to ionizing radiation induce mitochondrial dysfunction (Kam and Banati 2013; Meyer 
et  al. 2013), however little is known about the effects of chronic radiation exposure on 
mitochondrial maintenance in wildlife. We show that exposure to environmental radionu-
clides impacts mitochondrial homeostasis in the brains of bank voles via an increase in (1) 
mtDNA copy number and (2) mtDNA damage, and (3) can impact the association between 
PGC-1α expression and mtDNA copy number.

Exposure to genotoxic stressors such as radiation, pollutants, oxidative stress or DNA 
damaging chemicals induce an increase in mitochondrial biogenesis (Lin et al. 2013; Cor-
reia-Melo et al. 2014; Kaur et al. 2014; de Quadros et al. 2016). In addition, damage to 
mitochondria can alter mitochondrial function and cellular energy metabolism (Salin et al. 
2012; Jayasundara 2017). An increase in mtDNA copy number may be a common response 
to elevated mtDNA damage derived from exposure to radiation. Human and mouse cells 
exposed to an acute, high dose of radiation (for example > 3 Gy) increase [by up to three-
fold (Kam and Banati 2013)] their mtDNA copy number (Malakhova et al. 2005; Kam and 
Banati 2013; Dannenmann et al. 2017); we show that exposure to environmental radionu-
clides elicits a comparable response in the brains of bank vole. While increasing the copy 
number of mitochondria or mtDNA may be needed to maintain sufficient energy produc-
tion and overall mitochondrial function within cells, this response may further increase the 
amount of mitochondrial ROS (Lee and Wei 2005), unless there is a concomitant increase 
in effort to repair or remove the damaged mitochondria/mtDNA. Degradation of damaged 
mitochondria is therefore a typical response to acute oxidative stress exposure (Shokolenko 
et al. 2009; Bess et al. 2012) and these pathways also need to be studied to better under-
stand the response to environmental radionuclides, and presumably other stresses, expe-
rienced by wildlife. That high mtDNA copy number was coupled with greater mtDNA 
damage (i.e. lower undamaged mtDNA CN) suggests that inhabiting the CEZ is associated 
with impaired capability to degrade or repair damaged mtDNA, at least in brain tissue. In 
general, tissue-specific differences in mitochondrial DNA maintenance influences mtDNA 
copy number and damage, for example mouse brain tissue with high mitochondrial mass 
can accumulate high levels of mtDNA damage (Herbers et  al. 2019). Additionally, the 
repair capacity of mtDNA is tissue-specific, with characteristics such as high sensitivity 
to oxidative stress, slower repair and faster accumulation of oxidative damage observed in 
mice brains compared with other tissues (testis, kidney and liver) (Karahalil et al. 2002) 
indicating that the mitochondria in brain tissue could be particularly sensitive to exposure 
to environment stress. Indeed, brain development is affected by exposure to elevated levels 
of radiation: prenatal exposure to ionizing radiation is associated with impaired neurogene-
sis (Tang et al. 2017), as well as reduced brain size in laboratory mice (Verreet et al. 2016), 
and also in birds (Møller et al. 2011) and bank voles (Kivisaari et al. unpublished) inhabit-
ing contaminated areas in the Chernobyl region.

Increased transcription of PGC-1α in the CEZ samples, where mtDNA copy number 
was the highest, is consistent with this gene’s key role in regulating mitochondrial biogen-
esis (St-Pierre et al. 2006; Austin and St-Pierre 2012) and that cells with mtDNA damage 
should increase mitochondrial biogenesis to maintain sufficient functional mitochondria. 
However, the loss of the positive correlation between PGC-1α expression and mtDNA 
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copy number in bank voles inhabiting the CEZ may indicate altered regulation of mito-
chondrial biogenesis or a change in the action of mitochondrial degradation-repair dynam-
ics. Therefore, further experimental studies are needed to more specifically examine the 
regulation of mitochondrial biogenesis in response to stress within the CEZ. Similarly, a 
disruption of telomere homeostasis was observed in bank voles inhabiting the CEZ, as the 
within-individual correlation in telomere length of different tissues was weakened (Kes-
äniemi et  al. 2019b). Moreover, PGC-1α regulates a number of other cellular pathways, 
including ROS metabolism (St-Pierre et  al. 2006; Austin and St-Pierre 2012). Elevated 
expression of PGC-1α in bank voles inhabiting the CEZ could be directed towards antioxi-
dant pathways to mitigate oxidative stress (Lee and Wei 2005; Valle et al. 2005; St-Pierre 
et al. 2006; Austin and St-Pierre 2012). Such a response may partly explain the qualitative 
pattern of slightly lower mtDNA damage and PGC-1α upregulation in animals from the 
elevated contamination areas compared with those animals from the areas where elevated 
levels of radionuclides were not detectable within the CEZ.

The numbers of mitochondria and mtDNA genomes within eukaryotic cells and tissues 
are dynamic (Michel et al. 2012; Meyer et al. 2013; Monternier et al. 2014; Herbers et al. 
2019). The generally similar pattern of mtDNA dynamics and PGC-1α expression in sam-
ples from the contaminated and uncontaminated areas within the CEZ implied that an ani-
mal’s recent exposure to radiation does not elicit a distinct change in mitochondrial dynam-
ics. As the CEZ presents a mosaic of radionuclide contamination over a scale of ~ 1.5 km 
(Chesser et  al. 2004), and bank voles are dispersive, the pattern of elevated levels of 
mtDNA copy number and mtDNA damage may reflect previous exposure to contaminants 
in the radioactive landscapes within the CEZ. An increase in the average and the variance 
in mtDNA copy number and/or damage is expected in a sample of wild animals who have 
had diverse opportunities (e.g. during foraging events or dispersal to find new territories) to 
encounter radionuclide contamination during their lifetimes. Current patterns of mitochon-
drial dynamics may also have been shaped by selection or epigenetic effects in the vole 
population recolonizing the contaminated CEZ area after the accident (Omar-Nazir et al. 
2018). Interestingly, skin fibroblasts isolated from bank voles inhabiting the contaminated 
area of the CEZ have greater resistance against oxidative and DNA damaging stressors and 
elevated basal antioxidant levels compared to cells from control voles collected from out-
side the CEZ (Mustonen et al. 2018). While inhabiting an environment contaminated with 
radionuclides can induce elevated levels of oxidative stress, DNA damage and mutation 
rate (Møller and Mousseau 2015; Einor et al. 2016; Lourenço et al. 2016), there is no evi-
dence for an increased rate of accumulation of mutations in the mitochondrial genome, i.e. 
heteroplasmy, in muscle tissue of bank voles inhabiting the CEZ (Kesäniemi et al. 2018). 
While changes in gene expression are observed in voles inhabiting the contaminated CEZ 
areas (Kesäniemi et  al. 2019a), the elevated level of genetic variation seen using mito-
chondrial markers in bank voles within the CEZ is explained by demographic processes 
rather than exposure to environmental radiation (Meeks et al. 2009). More generally, our 
data show how human impacts on the environment can affect mitochondrial dynamics in 
wildlife. Future studies to quantify the heritable or epigenetic components of mtDNA copy 
number would provide insights into the evolutionary consequences of chronic exposure to 
environmental contaminants on mitochondrial homeostasis.
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