
HAL Id: hal-03028229
https://hal.science/hal-03028229

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Focus on Hypoxia-Related Pathways in Pediatric
Osteosarcomas and Their Druggability

Marina Pierrevelcin, Quentin Fuchs, Benoit Lhermitte, Melissa Messé, Eric
Guerin, Noelle Weingertner, Sophie Martin, Isabelle Lelong-Rebel, Charlotte

Nazon, Monique Dontenwill, et al.

To cite this version:
Marina Pierrevelcin, Quentin Fuchs, Benoit Lhermitte, Melissa Messé, Eric Guerin, et al.. Focus on
Hypoxia-Related Pathways in Pediatric Osteosarcomas and Their Druggability. Cells, 2020, 9 (9),
pp.1998. �10.3390/cells9091998�. �hal-03028229�

https://hal.science/hal-03028229
https://hal.archives-ouvertes.fr


cells

Review

Focus on Hypoxia-Related Pathways in Pediatric
Osteosarcomas and Their Druggability

Marina Pierrevelcin 1, Quentin Fuchs 1, Benoit Lhermitte 1,2, Melissa Messé 1, Eric Guérin 3 ,
Noelle Weingertner 2, Sophie Martin 1, Isabelle Lelong-Rebel 1, Charlotte Nazon 4,
Monique Dontenwill 1 and Natacha Entz-Werlé 1,4,*

1 Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France;
marina.pierrevelcin@etu.unistra.fr (M.P.); quentin.fuchs@etu.unistra.fr (Q.F.);
Benoit.lhermitte@chru-strasbourg.fr (B.L.); melissa.messe@etu.unistra.fr (M.M.);
sophie.martin@unistra.fr (S.M.); isabelle.lelong-rebel@unistra.fr (I.L.-R.);
monique.dontenwill@unistra.fr (M.D.)

2 Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France;
Noelle.weingertner@chru-strasbourg.fr

3 Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg,
67098 Strasbourg, France; Eric.guerin@chru-strasbourg.fr

4 Pediatric Oncohematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France;
Charlotte.nazon@chru-strasbourg.fr

* Correspondence: Natacha.entz-werle@chru-strasbourg.fr; Tel.: +33-3-8812-8396; Fax: +33-3-8812-8092

Received: 2 August 2020; Accepted: 22 August 2020; Published: 31 August 2020
����������
�������

Abstract: Osteosarcoma is the most frequent primary bone tumor diagnosed during adolescence
and young adulthood. It is associated with the worst outcomes in the case of poor response to
chemotherapy and in metastatic disease. While no molecular biomarkers are clearly and currently
associated with those worse situations, the study of pathways involved in the high level of tumor
necrosis and in the immune/metabolic intra-tumor environment seems to be a way to understand
these resistant and progressive osteosarcomas. In this review, we provide an updated overview of the
role of hypoxia in osteosarcoma oncogenesis, progression and during treatment. We describe the
role of normoxic/hypoxic environment in normal tissues, bones and osteosarcomas to understand
their role and to estimate their druggability. We focus particularly on the role of intra-tumor
hypoxia in osteosarcoma cell resistance to treatments and its impact in its endogenous immune
component. Together, these previously published observations conduct us to present potential
perspectives on the use of therapies targeting hypoxia pathways. These therapies could afford new
treatment approaches in this bone cancer. Nevertheless, to study the osteosarcoma cell druggability,
we now need specific in vitro models closely mimicking the tumor, its intra-tumor hypoxia and the
immune microenvironment to more accurately predict treatment efficacy and be complementary to
mouse models.
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1. Introduction

The overall survival (OS) of osteosarcoma (OTS) patients has remained stable for three decades.
For that reason, it is important to find new therapeutic strategies and new biomarkers to be able to
predict the outcome and refine the prognosis of those children from the diagnosis. Pediatric high-grade
OTS is the most common primary malignant bone tumor in children and adolescents. Those tumors
account for more than 50% of primary bone cancers each year. The annual incidence is around 2 per
million persons [1,2] with an incidence peak during puberty in a gender-dependent manner (males
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are more affected than females) [3]. Ten-year OS is 65% for patients diagnosed without metastases
and decreases to 20% for patients with metastatic disease at diagnosis [4]. The most frequent tumor
localizations are metaphyseal areas of long bones (e.g., 42% in the femur, 19% in the tibia and 10%
in humerus) [5]. These metaphyseal bones are close to the growth plates, where there is rapid bone
growth. OTS is characterized by an impaired balance between the osteoblast, osteoclast and the
mesenchymal precursor activities. They are defined by an extracellular osteoid and sometimes
chondroid matrix produced by the malignant osteoblasts and a rapid proliferation with early micro-
and macro-metastases [5]. At diagnosis, 80% of the patients present “invisible” micro-metastasis and
23% of the patients will have already visible metastases, which are located for more than two-thirds of
the cases in the lungs and 16% in bones [4,5].

This bone cancer is known as a highly necrotic tumor even at diagnosis, where this histological
feature is frequently observed on biopsies. This necrosis might be the consequence of the excessive and
rapid growth of cancer cells, which are proficient in creating a hypoxic microenvironment [6,7] and an
abnormal neoangiogenesis [8,9]. Besides finding tumor necrosis at biopsy, OTS is also characterized by
necrotic rate assessment on surgical tumor resection after a neoadjuvant multichemotherapy approach.
The histological Huvos grading classifies OTS patients in 2 groups considering the number of residual
tumor cells and their paired necrotic percentage [7,10]. A rate of less than 10% viable cells is the
witness of good histological response (GR): grade III GRs have less than 10% residual tumor cells
and grade IV GRs have a complete tumor necrosis. A rate above 10% viable cells is related to a poor
histological response (PR): grade II PR is between 10 and 50% residual tumor cells and grade I PR
is above 50% of residual tumor cells. The 5-year OS in localized GR patients is 80%, whereas this
OS decreases dramatically at less than 30% in patients with PR, an unresectable tumor, a primitive
metastatic tumor or a therapeutic resistance [7,11]. Tumor necrosis is believed to represent the endpoint
of severe chronic hypoxia. This necrosis can promote oxidative stress and modify metabolic responses
due to inducing hypoxia-related biomarkers. Hypoxia itself can induce necrosis in the heart of the
tumor, but, oppositely, can also induce inhibition of apoptosis and necrosis during cancer progression
and treatment [12]. The cancer-related hypoxia is in addition to in vivo physiological oxygen tension,
called physioxia (Figure 1). The atmospheric oxygen level (21% oxygen) is a non-physiological
environment and can be considered as hyperoxia. The physioxia within human organs ranges from 5
to 9% depending on body regions (e.g., breast is at 8.5%, bone marrow at 7% and 5% for bones) [12–14].
Therefore, the hypoxic level can be probably defined in tumors and OTS as the rate of oxygen, which is
below physiological oxygen concentration, then, less than 9% (Figure 1). This hypoxia directly induces
the overexpression of hypoxia-inducible factors (HIFs). These hypoxia-related biomarkers were in
past studies found to be frequently associated with the worst OS in many cancers, including OTS.
HIF-1α hyperexpression was significantly linked with metastatic disease, poor prognosis and outcome
in OTS, supporting its probable role at diagnosis and during progression [15–18]. Usually, hypoxia
confers a more aggressive phenotype by activating a cascade of molecular events partly mediated and
regulated by HIFs. These also play an essential role in immunological responses and are considered
as crucial physiological regulators of homeostasis, vascularization and anaerobic metabolism. So,
the hypoxia-specific tumor microenvironment might be of importance during OTS oncogenesis,
progression and during their treatment. Therefore, we try to decipher the normoxic/hypoxic pathways
in normal tissues, bones and osteosarcomas to understand their role and to estimate their druggability
in OTS. To study the efficacy of drugs inhibiting hypoxic biomarkers, we now need specific in vitro
models closely mimicking the tumor and its intra-tumor hypoxia.
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tension. The α subunits are in normoxic conditions hydroxylated at their proline residues (PHD) by 
HIF prolyl-hydroxylases to be, thereafter, ubiquitinated by the pVHL (protein Von Hippel-Lindau) 
ubiquitin ligase complex and degraded by the proteasome (Figure 2A). In hypoxia, HIF prolyl-
hydroxylases are inhibited and HIF-α subunits are stabilized to translocate into the nucleus, where 
they heterodimerize with the β unit (Figure 2B). The heterocomplex composed of the HIF-α and HIF-
β will bind the hypoxia response element (HRE) with the coactivators CBP and p300 and recognize 
the promoters of a large number of genes to enhance their transcription [20–23]. Physioxia (Figure 1) 
seems to be part of these hypoxia-related pathways and is associated with a modulation of stress 
signals that can induce a balance between proteasomal degradation of HIFs-α and their stabilization 
[24]. No clear-cut threshold separates physioxia from hypoxia nor normoxia. 

Globally, HIFs are regulated by their upstream signaling cascade in all oxygen tensions (Figure 
2A,B). When PI3K/AKT/mTOR or RAS/RAF/MEK/ERK pathways are upregulated, HIF-α mRNA 
transcriptions and protein translations are promoted [25–28]. The distinct roles of HIF-1α and HIF-
2α cover the regulation of cell differentiation and promotion of the tumor cell resistance and invasion. 
HIF-1α is known to activate acutely more than one hundred genes [19] in combination with 
PI3K/AKT/mTOR [29,30], RAS/MAPK [21,30] and NF-kB pathways [31]. These molecular cascades 
will activate cell proliferation and oncogenic features, cell migration and invasion [32]. Locally or 
during metastatic processes, HIF-1α will induce a neoangiogenesis with VEGF/VEGFR (vascular 

Figure 1. Oxygen tensions in bone tissues. Description of the signaling pathways controlling responses
to oxygen variations.

2. Biomarkers Related to Hypoxia Regulation in Normal Tissues

In response to a decrease in oxygen level, HIFs are induced and will rapidly after induction regulate
the downstream- and upstream-related pathways (descriptions in Figures 1 and 2). These transcription
factors are heterodimeric DNA-binding complexes with a basic helix-loop-helix-PAS domain and
comprise one α subunit (HIF-1α, HIF-2α or HIF-3α) and the paired β subunit. Knowledge is very
limited for the role of HIF-3α, but HIF-1α and HIF-2α are frequently described in hypoxia regulation [19].
The aryl hydrocarbon nuclear translocator (ARNT), the β unit, is constitutively expressed in the cell
nucleus and its rate is constant and independent of oxygen tension. The α subunits are in normoxic
conditions hydroxylated at their proline residues (PHD) by HIF prolyl-hydroxylases to be, thereafter,
ubiquitinated by the pVHL (protein Von Hippel-Lindau) ubiquitin ligase complex and degraded by
the proteasome (Figure 2A). In hypoxia, HIF prolyl-hydroxylases are inhibited and HIF-α subunits
are stabilized to translocate into the nucleus, where they heterodimerize with the β unit (Figure 2B).
The heterocomplex composed of the HIF-α and HIF-β will bind the hypoxia response element (HRE)
with the coactivators CBP and p300 and recognize the promoters of a large number of genes to enhance
their transcription [20–23]. Physioxia (Figure 1) seems to be part of these hypoxia-related pathways
and is associated with a modulation of stress signals that can induce a balance between proteasomal
degradation of HIFs-α and their stabilization [24]. No clear-cut threshold separates physioxia from
hypoxia nor normoxia.

Globally, HIFs are regulated by their upstream signaling cascade in all oxygen tensions
(Figure 2A,B). When PI3K/AKT/mTOR or RAS/RAF/MEK/ERK pathways are upregulated, HIF-α
mRNA transcriptions and protein translations are promoted [25–28]. The distinct roles of HIF-1α
and HIF-2α cover the regulation of cell differentiation and promotion of the tumor cell resistance and
invasion. HIF-1α is known to activate acutely more than one hundred genes [19] in combination with
PI3K/AKT/mTOR [29,30], RAS/MAPK [21,30] and NF-kB pathways [31]. These molecular cascades will
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activate cell proliferation and oncogenic features, cell migration and invasion [32]. Locally or during
metastatic processes, HIF-1α will induce a neoangiogenesis with VEGF/VEGFR (vascular endothelial
growth factor and receptor) cascade and an anaerobic glycolytic switch, pushing cells in a specific
phenotype in case of acute hypoxia. It will also play a role in epithelial–mesenchymal transition,
as well as in the tumor cell resistance to therapies through p53 or upstream signaling [16,20,30,33–35].
HIF-2α regulates, like its HIF-1α counterpart, many physiological functions, such as local or metastatic
neoangiogenesis, cell proliferation, and migration [23,30,33,36]. For the metabolism, HIF-2α seems to
promote an alternative metabolic switch like phospholipid or amino acid metabolisms [37]. Through its
specific roles, HIF-2α mostly drives the response to chronic hypoxia, maintaining immature tumor
cells [23,32,33,38,39]. Both HIFs are modulated and combined to adapt normal and cancer cells
to oxygen variations and tensions. They have probable compensatory activities because, when
HIF-1α is underexpressed, HIF-2α can in different conditions increase its expression. Nevertheless,
this modulation is probably in a tissue dependency manner [11,19,23,24,40].
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Figure 2. Schematic description of the biomarkers involved in normoxia (A) and hypoxia (B) and
their interplay.

Just upstream to HIFs (Figures 1 and 2), there is the mammalian target of rapamycin (mTOR),
a serine/threonine kinase, which is represented by two subunits: mTORC1 and mTORC2. They have
several common components: mTOR kinase, which is the central catalytic component, mLST8,
a scaffolding protein, and Deptor, a regulatory subunit. mTORC1 is associated with Raptor, a scaffolding
protein necessary to stabilize its subcellular localization and with PRAS40, inhibiting mTORC1 activity
in absence of growth factor. mTORC2 is composed of Rictor and mSin1, a negative regulator. Rictor and
Raptor have similar functions [41,42]. To simplify, usually, mTORC1 upregulates HIF-1α via the S6
ribosomal protein (S6K), whereas mTORC2 directly activates HIF-2α [25,32,33].

Upstream to mTOR, we have two signaling cascades, both stimulated by tyrosine kinase
receptor phosphorylation: PI3K/AKT and RAS/ERK/MAPK. The production of phosphatidylinositol
(3,4,5)-triphosphate (PIP3) will directly activate mTORC2, which phosphorylates Akt on ser473.
mTORC1 is activated by PI3K/AKT in two different ways: either by phosphorylation of PRAS40 or by
the inhibition of tuberous sclerosis complex 2 (TSC2) [43,44]. RAS indirectly activates mTORC1 and
ERK HIF-1α through S6K [45].

In parallel to these cascades, where oxygen variations are predominant drivers [46], there are
two oxygen-independent conditions where HIFs can be regulated by other mechanisms than the
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pVHL-induced proteasomal process. Indeed, HIF-1α will also undergo proteasomal degradation,
after it binds p53 protein leading to ubiquitination by MDM2 (Murine Double Minute 2), another
ubiquitin ligase. Another mechanism of HIF-1α degradation is driven by glycogen synthase kinase 3b
(GSK3B). In fact, GSK3B is known to phosphorylate HIF-1α and then enhance its degradation [47].
Furthermore, a specific mechanism, called pseudo-hypoxia (Figure 1), is also described for HIF-α
induction in normoxic conditions. It is a compromised cellular capacity of utilizing oxygen due to
decreased levels of nicotinamide adenine dinucleotide (NAD), which can cause the accumulation of
NADH with the occurrence of NADH/NAD redox imbalance. These metabolic modifications might
induce HIF production or stabilization mainly through stress signals and ROS accumulations [19].

3. Normal Bone and Hypoxia: Involvement in Osseous Production and Formation and
Osteoclast-Mediated Bone Resorption

Bone and its associated marrow microenvironment offer access to growth factors, cytokines, blood
supply and tumor-supportive cells including macrophages, T cells and stromal cells. The osteoblasts
and the osteoclasts play a pivotal role in skeletal development and remodeling. Bone can form through
two different mechanisms: intramembranous or endochondral ossification. The intramembranous
bone formation is dedicated to flat bones. It develops from mesenchymal cells that directly differentiate
into osteoblasts for the skull. In other flat skeletal locations, it derives from a chondrocyte anlage that
is replaced by bone [48–50]. For the endochondral bone development, we have three steps where
physioxia and hypoxia play major roles. The first step is the condensation of mesenchymal cells,
which will next differentiate into chondrocytes and, at the end, generate the growth plates. In the
growth plates, chondrocytes are highly proliferative and will form columnar layers, where, in the
most distal part, cells will stop proliferating, exit the cell cycle and differentiate into hypertrophic
chondrocytes associated with mineralization [50,51]. The growth plate is a unique mesenchymal
tissue with avascular and hypoxic regions [52]. To overpass this challenging microenvironment,
the chondrocytes need HIF-1α expression and production of VEGF-A to induce the angiogenic switch
and be able to replace cartilage by bone [51]. This overexpression is associated with pVHL expression,
that is modulated by HIF-1α, and the stabilization of HIF-2α, which is balancing HIF-1α action [53].
In fact, the HIF signaling pathway has a critical role in regulating both the osteoblastic and the vascular
niches during the endochondral process. HIF-1α is considered as a positive regulator of bone formation,
as well as osteoblast number and activity. It stimulates non-oxidative glycolysis in osteoblasts and can
delay osteoclastogenesis, favoring the senescence of bone macrophages [51]. So, HIF-1α will play a role
of regulator of osteoclast-mediated bone resorption, but with little effect on osteoclast differentiation
itself [54]. It stimulates the expression of cytokines that might regulate the differentiation process
and increases both the glycolytic and mitochondrial metabolic rate to provide an adaptive support
to the macrophages during bone resorption [35,55]. By contrast HIF-2α can, then, be considered as a
negative regulator of bone mass accrual with a direct action on osteoblast lineage [51]. In compensation,
MIF (macrophage migration inhibitory factor) seems to regulate HIF-1α activity in a p53-dependant
manner. This physiological oxygen tension and pathological hypoxia during cancer processes might
in this context of hypoxic growth plate be a good site to favor tumor cell homing and initiation,
as well as tumor expansion. It can also explain the tight interactions between malignant osteoblast
and its immune environment, as well as blood vessel formation and the macrophages infiltrating
tumor microenvironment.

4. Presence of Hypoxic Biomarkers in Osteosarcomas Is Related to Progression and Resistance
to Treatment

Hypoxia seems to be an important key in OTS local and distant environments. As described
above, the local environment of growth plates is conducive to favor variations in oxygen levels and is
typically the location where osteosarcoma cell arise. The hypoxic biomarkers seem to be modulated
during osteosarcoma initiation and progression. Correlations have been established in numerous



Cells 2020, 9, 1998 6 of 15

publications between OTS poor prognosis and those biomarkers including HIFs, mTOR or CA IX
(Carbonic Anhydrase IX) [16–18,47,56–58]. They are underlining the dominant driving force of hypoxia
for OTS cancer progression, drug resistance and metastatic propensity. When looking at the material
used in studies, the proof of concept for hypoxia in osteosarcomas was made in in vitro or in vivo
preclinical models, as well as in tumor collections. However, constantly, HIF-1α was the central
hypoxia-related marker involved in OTS and is frequently hyper-expressed in locally aggressive
and metastatic OTS [17–19,58,59]. It is associated with GLUT-1 (GLucose Transporter 1), CA IX or
VEGF/VEGFR overexpression [57–59], explaining a global enhancement of the hypoxia pathways from
the membrane to the nucleus and the increase of intra-tumor microvessel density [20]. HIF-1α was,
then, mostly described as a major driver of tumor microenvironment modulation. HIF-2α was less
studied in OTS than its homologues, but seems to be implicated in OTS cell proliferation and apoptosis
and promotes OTS stemness features [17,36,38,56,60,61]. So, HIF-2α was mostly described as a major
driver in OTS cells with specific metabolic switch [40]. mTOR was frequently involved in direct
links with autophagic processes and was associated with Pi3K/AKT upstream signaling stimulated by
different tyrosine kinase receptors [62–64], combining an OTS cell and tumor microenvironment effect.
Nevertheless, it is for instance not so clear how all those biomarkers specifically interact during OTS
progression and metastatic propension, as hypoxia is present since the OTS cell initiation. A balanced
HIF-1α/HIF-2α, as well as a variation of expression of both markers, are now more precisely described
to explain the intermittent role of hypoxia signaling pathways in many cancer types, but must be more
studied in OTS [33,47].

Recent insights also associate a global intra-tumor hypoxia to elevated genomic instability in
cancer cells, including osteosarcomas, where a high level of chromosomal breakage and chromothripsis
are usually observed [15,65]. This genomic instability and complexity is linked to a poor outcome and
is frequently correlated in such tumor types with a high dysregulation of microRNAs subsequent to
hypoxia. In OTS, it is miRNA-133a that was probably shown to be part of chromosomal deregulation
and osteosarcoma progression [66].

The epithelial–mesenchymal transition (EMT) is a mechanism also playing a role in OTS
proliferation and cell invasion. One central signaling pathway was particularly deciphered in
OTS EMT process, which is Wnt/β-catenin signaling. Surprisingly, studies more often describe
a balance of down- and up-regulation to explain the role of the Wnt/βcatenin pathway. In fact, it is
up-regulated to favor cell proliferation, colony formation and migration [67], but it is down-regulated
by hypoxia and, then, promotes cell resistance to chemotherapies through stemness properties and
MDR (MultiDrug Resistance) induction [68]. For these treatment resistances, several other studies
have focused on hypoxia as a way for OTS cells to adapt to their new environment and induce
neoangiogenesis to favor cell proliferation and tumor growth, avoiding autophagic and apoptotic
response to therapies [8,11,33,38,68,69]. They confirmed that MDR phenotype is reactivated during
oxygen hypoxic tension [70]. Another process was the inhibition by PI3K/AKT and HIF-1α of MAX
dimerization protein 1 (Mxdm1), a member of the Myc/Mxd/Max family, to notably overpass cisplatin
DNA toxicity in OTS cells [70,71]. Finally, the overproduction of reactive oxygen species (ROS)
interplays with OTS hypoxia and the AMPK signaling pathway, as well as autophagy and another
hypoxic biomarker [71,72], to promote treatment resistance for chemotherapeutic strategies and for
irradiation [57].

5. Immune Response, Hypoxia and Osteosarcoma Cells

The OTS microenvironment is surprisingly characterized by specific immune infiltrates in which
mostly macrophages and osteoclasts are present. T cell response, able to fight against the tumor
cells, is suppressed in OTS leading to a T-cell exhaustion. It induces immune tolerance and prevents
excessive immune responses leading to tumor growth, drug resistance and/or metastatic spread [73–75].
Besides the fact that programmed death receptor-1 (PD-1) and its ligand PD-L1 seem to be interesting
cancer targets, PD-L1 is absent in the OTS primary tumor. The PD-1/PD-L1 expression is described
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mostly in metastatic locations and is linked to a poorer outcome [76,77]. Indoleamine 2,3-dioxygenase 1
(IDO1) is another suppressive protein, which is also minimally expressed as PD-1 and only in metastatic
disease [77]. Nevertheless, this T-cell immunity is rare in OTS, explaining the fact that predominant
immune system balance is macrophage based [74,77–80]. Hypoxia is known to attract myeloid-derived
suppressor cells and tumor-associated macrophages (TAMs).

In the innate immune response, osteoclasts favor metastatic OTS spread with local environment
destruction. A balance between M1, considered as pro-inflammatory and anti-tumoral macrophages,
and M2, considered as pro-tumoral macrophages, is frequently described in OTS to explain the response
to macrophage modulators, as well as the capacity to have local or distant progression. This M2
polarization phenotype and specific TAM infiltration change during OTS tumor growth represents
a whole dynamic process precisely regulated by hypoxia [59,79,81,82]. Hypoxia and especially the
PI3K/AKT/mTOR upstream pathway are known to regulate this osteoclastogenesis phenomenon [82,83],
but also the immune system through cell surface protein modulations. This balanced M1/M2 phenotype
in OTS is complex, but growing evidence suggests that a high density of M2 TAM is associated
with OTS primary and metastatic locations. The TAM recruitment in the OTS microenvironment is
hypoxia-dependent and in direct link with several chemokines and their receptors.

In fact, M1 macrophages, which are activated by interferon γ or lipopolysaccharide, exhibit
anti-tumor properties through the production of pro-inflammatory cytokines (interleukin-1β and
interleukin-6) and inducible factors against pathogens such as the tumor necrosis factor α (TNF-α) and
the nitric oxide synthase (INOs). HIF-1αupregulation usually stimulates the amino acid metabolism and
promotes nitric oxide synthase activity. When suppressing the M1 macrophage activity, as in the recent
OS2006 therapeutic protocol, it can promote a poorer outcome in metastatic disease [81]. The presence
of the M1 subtype was therefore linked to a better OTS patient outcome [78–80]. M2 macrophages,
instead, are activated by anti-inflammatory cytokines (interleukine-4 and interleukine-10) and
the PI3K/AKT/mTOR pathway, and exert immunosuppressive effects associated with enhanced
angiogenesis and tumor progression, pushing OTS cells in stemness status [78,82,83]. In fact, they are
able to suppress T cell proliferation [84], favor angiogenesis through VEGF and angiopoietin signaling,
and enhance cancer stem cell properties by upregulating CD133+ cells [34].

Additional effects of hypoxia reinforce this M2 pro-tumoral phenotype. In fact, hypoxia can also
decrease the expression of cell surface MHC class I-related chain molecules A (MICA) and prevents
the immune cells degrading the tumor cell via a HIF-1α-dependent pathway linked to increased
expression of metalloproteinase (MMP) [77]. Macrophage migration inhibitory factor (MIF) interplays
with HIF-1α protein overexpression and stabilization [50] for the promotion of OTS tumorigenesis,
whereas osteoclast activity is enhanced by the hypoxia-induced ANGPTL4 (angiopoietin-like 4)
overexpression [8].

Recent studies have linked hypoxia and immunomodulation scores in OTS [77,85]. This score also
supports the idea that hypoxia-driven immunity is associated with glycolytic metabolic switch, collagen
biosynthesis and redox regulation. Globally, HIFs and mTOR pathway exert a tumor-promoting effect
by intra-tumor immunosuppression.

6. HIFs Targeting in OTS

All these findings point out the crucial role of HIFs in osteosarcoma initiation, progression and
immune dynamic modulation. They suggest that HIFs and their upstream and downstream pathways
might be key targets in OTS treatments. Many hypoxia inhibitors exist to stop directly or indirectly the
hypoxic pathways and now are progressively used in clinical trials. When focusing on HIFs, several
levels of inhibition can be listed and are summarized in Figure 3. In fact, a growing number of molecules
have been demonstrated to inhibit HIFs by reducing mRNA or protein levels, DNA-binding activity or
the trans-activation of some HIFs related genes [85]. They can also block HIFs/HIF-1β dimerization.
The synthesis of HIF-1α is strictly related to mTOR activity. As described above, the continuous
activation of PI3K/AKT and RAS/MAPK signals determines the increase of mTOR activity and the
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consecutive activation of HIFs [26,27]. Thus, inhibitors of those biomarkers are also able to inhibit HIF
activity and reduce their impact on OTS cell adaptation.
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HIFs, as transcription factors, have been considered undruggable for a long time [40]. To date,
no specific inhibitors of HIF-1α have been brought to the market, but the use of indirect or partial
inhibitors are currently increasing in trials and recently in OTS protocols. Oppositely, recent direct
inhibitors of HIF-2α have been developed and commercialized, such as PT2385 or PT2977, but are
not used directly in OTS and only preclinical data show that HIF-2α targeting can attenuate the
proliferation, migration and invasion of OTS cells [61,85,86]. Those specific inhibitors of HIF-2α
destabilize heterodimerization of HIF-2α with ARNT, leading to inhibition of target genes and tumor
regression. These treatments were used recently in clinical trials for patients with clear cell renal cell
carcinoma, where the majority of patients had a partial response or a stable disease associated with a
good tolerance [61,85,86]. The HIF-1α inhibitors are mostly decreasing HIF-1α expression with a proven
mRNA downregulation in the OTS preclinical models or in cancer trials [85–90]. So, molecules like
EZN-2968 or EZN-2208 and topoisomerase I (irinotecan) and II (topotecan and GL331) are frequently
used for this purpose. A small number of pediatric studies have proposed these molecules, which were
well tolerated and efficient in hypoxic tumors like neuroblastomas. Only topotecan seems to have a dual
effect of HIF-1α/HIF-2α. Histone DeACcetylase (HDAC) inhibitors, like vorinostat or panobinostat,
can also block HIF-1α nuclear translocation via direct acetylation of its associated chaperone, heat
shock protein 90 (Hsp90) [90]. Artificially, the same mechanism of inhibition was also shown with
Bisphenol A that is not used in clinics [91]. Another way to stop HIF transcription is to interrupt
interaction between HIF-1α and its coactivator p300, which results in a mitigation of hypoxia-inducible
transcription [92]. Proteasome inhibitors like bortezomib might also interact with HIF transcription
and can be used efficiently alone or in combination with other targeted therapies of the mTOR/HIF
pathway [93,94]. Upstream to HIFs, PI3K/AKT, RAS/ERK/MAPK and mTOR are also good candidates
for targeted treatments using specific mTORC1 and/or mTORC2 inhibitors or combining mTOR and
PI3K antagonists [62,72,95,96]. In parallel, RAS/BRAF/MEK/ERK mitogen-activated protein kinase
cascade is known to be involved in OTS. It integrates signals from cell surface receptors to activate ERK
and such upregulation can be also targeted by MEK or BRAF inhibitors. In fact, multiple selective,
orally available, non–ATP-competitive small-molecules are now available in clinics to block MEK1 and
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MEK2 (MAPK kinase) proteins and might be administered in new OTS trials. They might be proposed
in a single drug approach or combined with BRAF inhibitors.

Finally, when inhibiting mechanisms induced by hypoxia, efficient drugs should promote tumor
growth and cell proliferation arrest through an up-regulation of caspase-3. These molecules might
also attenuate tumor angiogenesis leading to efficacy antitumor strategies and reduce usually radio-
and chemoresistance of human OS cells in hypoxic conditions. Nevertheless, frequent oncogenic
addictions are described due to an AKT reinduction after mTOR or HIFs inhibition, leading to a
selective resistance to these inhibitors and conducting the proposal of more and more combinations in
phase I and II trials [62,72,94].

When looking ar osteosarcoma trials on the https://clinicaltrials.gov website, fewer than 15 currently
opened protocols are using such strategies with HIFs inhibitors such as irinotecan, mTor inhibitors
(ridaforolimus, everolimus, sirolimus) or AKT/Pi3K inhibition with dual mTOR/PI3K targeting.
More recently, other therapies independently from HIFs, such as the CA IX inhibitors or strategies
targeting metabolic OTS cell vulnerabilities, seem to be effective in in vitro and in vivo models with an
increase of cytotoxicity on OTS cells [97].

The future of all those therapies’ proposals is to combine treatments in order to increase the effects
and decrease therapeutic resistance.

7. In Vitro and In Vivo Models to Recreate OTS Hypoxic Microenvironment

To study hypoxia features and test druggability of those biomarkers, a recent effort was made to
develop appropriate models to mimic closely both OTS patient cells and the tumor microenvironment
(Figure 4). First, the OTS cells themselves are now mostly patient-derived cell lines based on diagnostic
tumor or relapse tissue specimens. In fact, for several years, there have been commercial cell lines
allowing the study of OTS. In order to get as close as possible to the physiological conditions, it is
important to develop cell models able to recreate the OTS behavior and heterogeneity and the
tumor microenvironment, where several supporting stromal cell subtypes are present [98]. For this
purpose, more and more 3D-based approaches have been developed and offer advantages over the
monolayer-based cultures (Figure 4).
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The evolution of 3D OTS culture systems now takes into account the engineered osteoid matrix,
as well as oxygen concentrations, angiogenic cells or intrinsic immune components (e.g., macrophages
or lymphocytes). They overlap the tumor spheroids to the complex organoid-derived models, where
the endogenous infiltrating immune stroma is automatically present. In sphere culture, co-culture
with angiogenic cells like HUVEC, as well as macrophages, can partially replace the stromal or
immune subtypes observed in initial patient tumors. For the bone environment, one major part is
the osseous matrix, which can be mimicked by natural (e.g., collagen, Matrigel) or synthetic scaffolds
(e.g., hydrogels) [99]. For hypoxia features and oxygen variations, hypoxia chambers are the most
accurate culture environment, where deep intra-tumor hypoxia might be approximate (Figure 4).

Patient tumor cells can also be injected subcutaneously or orthotopically in mouse models [100].
Unfortunately, in these models, metastatic modelization is variable and probably more frequently
accessible during orthotopic injections. To facilitate tumor cell dissemination and metastatic spread,
some publications describe femoral artery ligation close to the orthotopic injection to promote a hypoxic
environment and enhance the probability of success in obtaining pulmonary metastases.

The final goal of all those models is to obtain more representative results after drug testing and
allow a rapid translation of those preclinical data into new innovative therapeutic trials for patients.

8. Conclusions

Development of innovative therapies for worst outcome OTS is an unmet medical need.
The extended knowledge in hypoxia-driven OTS development offers understanding of crucial key
points of OTS progression and interaction with its immune environment. It also helps to support the
development of personalized hypoxia-targeting trials in OTS, as drugs are available and might be used
in combination. Nevertheless, to improve targeting hypoxic biomarkers, a number of challenges need
to be addressed in specific 3D preclinical models integrating hypoxia, bone matrix, patient-derived
OTS cells and the endogenous immune-infiltrating macrophages.
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