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Abstract 

Within the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as 

components of its building block, the nucleosome. This chromatin organization contributes to the 

regulation of all DNA template-based reactions impacting genome function, stability and 

plasticity. Histones and their variants endow chromatin with unique properties and show a 

distinct distribution into the genome that is regulated by dedicated deposition machineries. The 

histone variants have important roles during early development, cell differentiation and 

chromosome segregation. Recent progress has also shed light on how mutations and 

transcriptional deregulation of these variants participate in tumorigenesis. In this chapter we 

introduce the organization of the genome in chromatin with a focus on the basic unit, the 

nucleosome, which contains histones as the major protein component. Then we review our 

current knowledge on the histone H3 family and its variants - in particular H3.3 and CenH3CENP-A- 

focusing on their deposition pathways and their dedicated histone chaperones that are key 

players in histone dynamics. 
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Abbreviations 

ChIP-seq  chromatin immunoprecipitation sequencing 

DSC   DNA synthesis coupled 

DSI   DNA synthesis independent 

ES   embryonic stem 

KO  knockout 

NCP   nucleosome core particle 

PTM   post-translational modification 

 

2.1 Introduction 

2.1.1 Chromatin 

The term chromatin (from the Greek chrôma, “color”) emerged in the 1880s when Flemming 

found a structure in the cell nucleus that strongly absorbed basophilic dyes [1]. Chromatin is a 

complex nucleoprotein structure comprising mainly DNA (Deoxyribonucleic acid) and basic 

proteins (histones). DNA is the heritable genetic material (genome) which consists of about three 

billion base pairs distributed into 46 chromosomes per cell in human. This material representing 

about two meters of DNA is confined in each cell in a nuclear compartment of few micrometers 

in diameter. Thus, chromatin organization ensures to compact DNA from the basic unit, the 

nucleosome, up to higher level of architecture. Chambon and Kornberg discovered in the 1970s 

the nucleosome as a repeating unit for the organization of chromatin [2,3]. This nucleosome 

comprises about 147 bp (base pairs) of DNA wrapped around a core histone octamer flanked by 

20-90 bp of a linker DNA associated with the linker histone H1. The complex 147 bp DNA-core 
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histone octamer (without the linker DNA and H1) constitutes the nucleosome core particle (NCP). 

The core histone octamer consists of two copies of each core histone H3, H4, H2A and H2B 

organized into a (H3-H4)2 tetramer flanked by two (H2A-H2B) dimers. Resolution of the crystal 

structure of the nucleosome core particle at 2.8 Å in 1997 revealed how histones interact with 

each other and with DNA, and how their amino-terminal tails protrude out of the particle [4]. The 

nucleosome array forms a 10 nm (nanometer) diameter fiber that resembles "beads on a string" 

[5]. In the cell, this fiber undergoes different levels of compaction to form the higher order 

chromatin structure. In 1928, Heitz observed in the cell nucleus two different types of regions 

with a light microscope, discrete highly condensed regions and dispersed lightly packed regions 

that constitute two types of chromatin, heterochomatin and euchromatin, respectively [6]. 

Constitutive heterochromatin mainly consists of repetitive DNA sequences that do not contain 

genes such as telomeres, centromeres and pericentromeres, whereas euchromatin is mainly 

comprised of the coding part of the genome harboring genes. Recent progress with chromatin 

capture technologies has further revealed levels of chromatin organization with interacting 

chromatin loops and topologically associating domains (TADs) which serve as functional 

platforms for physical interactions between regulatory elements [7,8]. 

 Beyond DNA compaction, chromatin organization influences all nuclear functions. Indeed, 

chromatin is the substrate for the different processes operating on DNA such as replication, 

transcription and repair. Thus a proper control of the dynamics of this organization ensures 

accurate genome function [9-11]. This control is exerted at all levels from the DNA and histones 

within the nucleosome particle up to the higher order chromatin architecture in the cell nucleus 

[12].  
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2.1.2 Histones	
  

Histones are small basic proteins that are among the most conserved in eukaryotes [13]. The 

core histones from the H2A, H2B, H3 and H4 families range in size from 11 kDa to 15 kDa while 

the linker histones from the H1 family are around 21 kDa. A structurally conserved motif called 

histone-fold domain is present in all core histones. It consists of three α-helices (α1, α2 and α3) 

connected by short loops L1 and L2 that mediate heterodimeric interactions between the core 

histones [14]. The unstructured N-terminal extremity that extends at the surface of the 

nucleosome is the main region of the histone which is subjected to post-translational 

modifications (PTMs) with important consequences on chromatin functions [15]. Numerous 

PTMs include acetylation, phosphorylation, methylation, ubiquitylation, crotonylation and the 

latest described serotonylation [16].  As schematic examples, tri-methylation of the lysine 9 of 

histone H3 (H3K9me3) mainly associates with silenced regions in the genome while tri-

methylation of the lysine 4 of histone H3 (H3K4me3) generally correlates with transcriptionally 

active regions. These histone PTMs do generally occur in various combinations that gave rise to 

the hypothesis of a histone code where these modifications would work sequentially and/or 

together [17,18]. They can either modulate the physical properties of the nucleosome and/or 

regulate the binding of protein partners that recognize specific modifications or RNA and 

possibly alter higher order structure. The histone PTMs are most often reversible providing a 

system to react to external stimuli for short term response, as part of a signaling module. They 

can also be maintained over cellular divisions and thereby function as a memory module of 

“epigenetic” nature. Furthermore, as we will discuss, in addition to these PTMs, the choice of 

distinct histone variants to form a nucleosome particle offers not only various provision of 

histones but also another way to alter the nature of the NCP with impact on chromatin function. 
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2.1.3 Replicative Histones and Histone Variants 

In most eukaryotes, two types of histones exist for each histone family, the replicative and the 

non-replicative histones, the latter commonly referred to as non-allelic histone variants [19]. The 

replicative histones exhibit a high peak of expression during S phase when the doubling of 

genomic content requires a massive provision of histones. The genes of replicative histones 

show a peculiar organization in clusters that comprise multiple copies of all core histones and 

the H1 histone linker [20,21]. This unique genomic organization and regulation at multiple levels 

contribute to optimize coregulation which is essential for the need of a high peak of expression 

of replicative histones during S phase. These histone clusters lack introns, have relatively short 

UTRs, and produce transcripts that do not undergo polyadenylation and harbor a conserved 3’ 

stem-loop structure which is required for the regulation of mRNA stability [22]. The existence of 

non-allelic variants for H2A, H2B and H3 in mammals was first uncovered in 1977 when 

resolving histones on polyacrylamide gel electrophoresis in presence of non-ionic detergents 

(Triton Acid Urea gels) [23]. In contrast with replicative histones, the expression of histone 

variants does not increase during S phase and each variant harbours a unique temporal 

expression. They are encoded by multi-exon genes located outside of histone clusters. 

Transcripts lack 3’ stem-loop and undergo conventional processing through splicing and 

polyadenylation like most other RNA polymerase II (Pol II) transcripts. The protein sequence of a 

histone variant is either extremely similar or divergent from its replicative counterparts. 

Importantly, not only the expression but also the deposition pathways for the replicative histones 

and the histone variants are distinct. The replicative histones are incorporated into chromatin in 

a DNA synthesis coupled (DSC) manner. This occurs mainly at replication forks during S phase 

when vast amounts of newly synthesized histones are required to ensure chromatin restoration 

on the duplicated genome. In contrast, the histone variants are incorporated into chromatin in a 

DNA synthesis independent (DSI) manner. Their mode of deposition onto DNA and their location 

in the genome are in general specific for each histone variant [24]. 
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 The deregulated expression of histone variants and histone chaperones in various 

cancers shed light on the importance to connect chromatin and genome stability [25,26]. The 

discovery of H3 mutations in pediatric glioblastomas attracted attention on histone variants in 

cancer development [27,28]. In particular, mutations of histone H3 at K27M and G34V/R known 

as “oncohistones” were put forward as major drivers in these glioblastomas [29-32]. Since then, 

a considerable number of histone mutations - higher than previously recognized- has been 

identified in human tumours [33]. An increased interest has thus arisen in exploring the histones 

of the H3 family in greater details along with their modes of incorporation into chromatin by their 

dedicated chaperones. Progress in this field is therefore of critical importance for understanding 

normal development and disease like cancer [25]. 

 

2.2 The Histone H3 Family 

To date in human, eight members constitute the histone H3 family, two replicative histones 

(H3.1 and H3.2) and six histone variants. Among these H3 variants, limited information exists for 

the testis-specific H3.4 (H3.1t) [34], the hominid-specific H3.5 [35] and the two primate-specific 

H3.X and H3.Y [36]. Thus, we will focus on the H3.1 and H3.2 replicative histones and H3.3 and 

CenH3CENP-A histone variants which have been explored in more details. 

2.2.1 Replicative H3.1 and H3.2 

The two replicative histones H3, H3.1 and H3.2, are encoded by several genes in clusters (Fig. 

2.1). They differ by only one residue at position 96 (Fig. 2.2A). Most studies have focused on 

H3.1 as the representative of H3 replicative histone in mammals, yet H3.2 is the most common 

replicative histone in eukaryotes. H3.1 is present only in mammals in addition to H3.2. Despite 

their high similarity, in human, some functional specificity was suggested based on differences in 

both expression patterns and associated PTMs [37]. As expected for replicative histones, both 

H3.1 and H3.2 are incorporated into chromatin at replication forks during S phase in a DSC 

manner in order to duplicate chromatin of the replicated DNA [38-40]. Moreover, deposition of 
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H3.1 outside of S phase occurs at sites of DNA synthesis as observed at UV damaged sites [41]. 

Indeed, the DNA repair process leads to histones eviction to allow access to the repair 

machinery and repaired coupled incorporation of H3.1 participates to the chromatin restoration 

[42]. This is accompanied by a recycling of pre-existing histones (Adam et al, 2017). 

 2.2.2 H3.3 Variant 

The histone variant H3.3 is encoded by two single genes in mammals (Fig. 2.1). It is closely 

related to H3.1 and H3.2 with only five and four amino acid residue differences, respectively (Fig. 

2.2 A). One difference concerns the residue 31 in the N-terminal tail of the histones with a serine 

in H3.3 instead of an alanine in both H3.1 and H3.2. This serine 31 in H3.3 is phosphorylated 

during mitosis [43] and at transcribing regions in mouse activated macrophages [44], however 

the exact role of this modification remains elusive. The three other different residues AIG, 

located in the α2 helix of the histone fold (at positions 87, 89 and 90), are important for specific 

histone chaperone recognition and the choice of  a deposition pathway. An evolutionary analysis 

suggested that H3.3 is the ancestral form of the replicative H3.1/2 and in budding yeast the 

unique non-centromeric histone H3 is closely related to H3.3 [19]. However, recent work to 

“humanize” histones in budding yeast showed that adaptation to H3.1 proved easier in yeast 

compared to H3.3 in the context of a fully humanized nucleosome [45]. In mammals, two 

paralogous genes, H3.3A and H3.3B, encode the same H3.3 protein but have different codons 

(could impact the folding) and distinct untranslated regions (could impact transcription 

regulation) (Fig. 2.1). This suggests that a distinct transcriptional and post-transcriptional 

regulation of these two genes could provide different patterns of expression among tissues and 

during development [46-48]. The H3.3 variant present throughout the cell cycle was first 

described for its high level of incorporation at active rDNA arrays independently of replication in 

Drosophila [38]. H3.3 is deposited onto DNA in a DSI manner during interphase (G1, S and G2 

phases). H3.3 is the histone H3 predominantly present in chromatin of cells that are not dividing 

like quiescent or post-mitotic cells, due to its capacity to be incorporated in a pathway 
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independent of DNA synthesis [49-51]. Moreover, upon fertilization and concomitantly with 

protamines removal, a major reprogramming involves H3.3 incorporation in paternal chromatin 

before the first round of DNA replication in both Drosophila and mouse [52-54]. The genome 

wide distribution of H3.3 variant as observed by ChIP-seq analysis in mammalian cells shows a 

distinct pattern. Enriched in euchromatin at active genes, H3.3 presence is most often correlated 

with active transcription [55]. More precisely, H3.3 accumulates throughout the body of active 

genes but also at promoter regions at both active and inactive genes and at genic and intergenic 

regulatory regions in ES cells. In addition, a significant contribution of this variant is also 

revealed through enrichment in heterochromatin at both telomere and pericentric 

heterochromatin in ES cells [55,56]. Remarkably, the crystal structure of human nucleosome 

core particles containing H3.1, H3.2 or H3.3 revealed identical structures suggesting a common 

function in the organization at the level of individual particles (Fig. 2.2 B) [57]. However, H3.3 

containing nucleosomes in vivo appear more sensitive to salt-dependent disruption [58], arguing 

that the presence of this variant, the associated PTMs or combination with other variants (such 

as H2AZ) may change the properties of the nucleosome towards a more open/active chromatin 

[59]. Importantly, morpholino experiments revealed a critical role for H3.3 during early 

development in X. laevis [60]. In mice, a double-KO of the two genes (H3.3A and H3.3B) results 

in impaired development and embryonic lethality, no double-KO embryo surviving after stage 

E8.5 [47]. These defects are proposed to result from heterochromatin structures dysfunction at 

telomeres and centromeres leading to mitotic defects [47]. How this is entailed remains to be 

deciphered since it is unclear to which extent these phenotypes arise from the provision of the 

variant, the deposition mode or the final organization involving the variant or a combination.   

2.2.3 CenH3CENP-A Variant 

In 1985, Earnshaw and Rothfield identified CenH3CENP-A as one of the proteins detected by 

autoantibodies from patients with CREST (calcinosis, Reynaud syndrome, oesophageal 

dysmotility, sclerodactyly, telangiectasia) [61]. Then, in 1991 Palmer et al. demonstrated that 
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CenH3CENP-A is a distinctive histone, with some sequences similarity to H3 [62]. This distant 

histone H3 variant was also called “deviant” given the fact that many segments are not related to 

H3 [63]. The histone variant CenH3CENP-A is encoded by a single gene (Fig. 2.1) and exhibits 

less than 50% of amino acid sequence identity with its replicative counterparts H3.1/2 and is 

highly divergent in various species (Fig. 2.2 A). This low level of conservation is in line with a 

rapid evolution of centromere organization and its components [64]. While H3.1 and H3.3 

nucleosomal structures are almost identical, the more compact CenH3CENP-A nucleosome only 

wraps 121 bp of DNA, and this may impact further the higher-order chromatin organization in 

these regions (Fig. 2.2 B) [65-67]. In human, expression of new CenH3CENP-A occurs in G2/M 

phases. Its incorporation into chromatin is restricted to late mitosis (telophase)/early G1 by a DSI 

pathway, leading to centromeric CenH3CENP-A dilution during replication [68]. The deposition of 

CenH3CENP-A specifically at centromere (in the centric region) plays a crucial role in chromosome 

segregation by enabling kinetochore formation in mitosis [69,70]. This critical need is illustrated 

in KO mice which are not able to develop beyond the stage E8.5 [71]. The embryos accumulate 

mitotic problems, further arguing for a major function of this variant in chromosome segregation.  

 

2.3 Histone H3-H4 Chaperones  

2.3.1 Histone Chaperone Definition  

In the NCP, the basic charge of the histones is neutralized by the phosphate backbone of 

the DNA. Before incorporation into chromatin or after eviction, free histone in solution could 

potentially, due to their charge, engage into promiscuous interactions with any acidic partner and 

even could form aggregates in the cell. This is prevented by dedicated proteins, named histone 

chaperones which escort non-nucleosomal histones in the cell throughout all their cellular life 

[72]. Some of them directly buffer the positive charge. Nucleoplasmin, the most prominent 

protein in X.laevis oocyte, thanks to its properties to promote chromatin assembly, was the first 

protein named “histone chaperone” in 1977 by Laskey [73]. The current definition of a histone 
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chaperone is “a protein that associates with histones and is involved in their transfer but is not 

necessarily part of the final product” [74]. This definition fully illustrates the general property of a 

histone chaperone, and underlines the fact that in vivo, histones are never left alone from their 

synthesis to their delivery into or eviction from chromatin. All processes involving histone transfer 

or modification will thus involve at least one histone chaperone. They have a wide range of 

functions including histone transport, buffering, storage, histone modification, recycling and 

deposition onto DNA as well as nucleosome remodeling.  In vitro, all histone chaperones share 

the fundamental ability to promote a progressive transfer of purified histones onto naked DNA at 

physiological ionic strength to reconstitute nucleosomes from purified components [75]. 

Interestingly, no single feature in term of sequence allows to demarcate a protein as a histone 

chaperone and some proteins turned out to function as histone chaperones after having been 

first characterized for other functions. Among histone chaperones, we can consider a first 

category according to affinity for either H2A-H2B or H3-H4. Then, within these categories, a 

further distinction depends on the selectivity for replicative histones and/or for one or several 

particular histone variants. Here, we focus on H3-H4 chaperones with an emphasis on those 

involved in histone deposition using newly synthesized histones (new/de novo deposition) or old 

histones (recycling) (Table 2.1) (for reviews on histone chaperones [24,76,77]). 

2.3.2 Dedicated H3-H4 Chaperones 

2.3.2.1 H3.1/2-H4 Chaperone 

The chromatin assembly factor 1 (CAF-1) is the unique histone chaperone complex that 

interacts selectively with the replicative variants H3.1/2 (Fig. 2.3). The CAF-1 complex was 

identified in 1989 on the basis of its ability to promote specifically nucleosome assembly in vitro 

onto newly synthesized DNA during replication with cytosolic extracts derived from human cells 

[78]. It consists of three distinct subunits p150/CHAF1A , p60/CHAF1B and p48/RbAp48/RBBP4 

also referred to as “large”, “mid” and “small” subunits. They are functionally conserved in 

S.cerevisiae as CAC1, CAC2 and CAC3, respectively. The “large” subunit, p150, provides a 
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scaffold for the other CAF-1 subunits and mediates recruitment of the complex and interaction 

with other nuclear factors. In particular, its N-terminal portion contains two important regions: a 

stretch that is enriched in K/E/R amino acids (KER) predicted to bind DNA, and a proliferating 

cell nuclear antigen (PCNA) interacting peptide (PIP-box) motif [79,80]. An oscillation between 

monomeric and homo-oligomeric forms of p150 participates in the regulation of the functional 

activity of CAF-1 [81,82]. In addition to histone binding, p150 interacts with heterochromatin 

protein 1 (HP1), an interaction of importance for the replication of pericentric heterochromatin 

[83,84].The “mid” subunit, p60, with a WD40 propeller fold involved in the binding of H3-H4 

dimer, is responsible for histone loading. The “small” subunit, p48, provides less-well 

characterized accessory interactions and is part of several other chromatin regulating complexes 

such as the corepressor mSin3A [85]. It can possibly serve as an interface or link between 

various complexes. The H3.1 complex purified from human cell extracts retrieved all three CAF-

1 subunits required for the deposition of H3.1 onto DNA coupled with DNA synthesis [86] as 

found later with the H3.2 complex purification [40]. Thus, the deposition of both H3 replicative 

histones relies on CAF-1. The current model for histone deposition promoted by CAF-1 involves 

that the complex binds an H3-H4 dimer and that a transient association of two CAF-1-H3-H4 

allows two histone chaperone complexes to concertedly deposit one (H3-H4)2 tetramer onto 

DNA [87]. Loss of p150 CAF-1 in homozygous mutants leads to very early developmental arrest 

at the 16-cell stage in mice (between stages E2.0 and E3.0). These embryos show severe 

alterations in the organization of cell nuclei and their constitutive heterochromatin [88]. In ES 

cells, downregulation of CAF-1 can favor the emergence of cells showing properties of totipotent 

cells [89]. In somatic cells, induction to pluripotency IPS cells is facilitated when CAF-1 is 

reduced [90]. In T cells, CAF-1 cooperate with DNA methyltransferases and histone modifying 

enzymes to maintain silent states of the Cd4 gene [91]. This is in line with the general view 

according to which CAF-1 can contribute to the maintenance of somatic cell identity by 

stabilizing chromatin patterns [11].  
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2.3.2.2 H3.3-H4 Chaperones 

H3.3 variants present two selective H3.3 histone chaperones: the Histone regulator A (HIRA) 

complex and death domain-associated protein 6 - α-thalassaemia/mental retardation syndrome 

X-linked (DAXX-ATRX) (for review [92,93]) (Fig. 2.3).  

 The HIRA gene was identified in 1995 within a region of chromosome 22q11.2 deleted in 

most patients with a developmental disorder, the DiGeorge syndrome [94]. The HIRA acronym 

comes from its amino acid sequence homology to the two S. cerevisiae proteins histone 

regulation 1 and 2 (Hir1p and Hir2p). Initially described as a chaperone involved in a DSI 

nucleosome assembly pathway using the X. laevis egg extract model system [95], the 

identification of HIRA in the purifed H3.3 complex revealed its dedicated function in the 

deposition of H3.3 [86]. In addition to HIRA, two other proteins, ubinuclein 1 (UBN1) and 

calcineurin-binding protein 1 (CABIN1), co-purified with H3.3 and turned out later to be part of 

the HIRA histone chaperone complex [96,97]. Both UBN1 and CABIN1 interact with HIRA which 

plays therefore a central platform role in the complex. UBN1, first identified as a nuclear protein 

interacting with cellular and viral transcription factors [98], is the subunit that directly interacts 

with the H3.3-H4 dimer [99]. X-ray crystallographic analysis, revealed that the Hpc2-related 

domain (HRD) in UBN1 binds H3.3 in the proximity of the three residues AIG at positions 87-89-

90 (in the α2 helix of the histone fold domain) that are different between H3.1/2 and H3.3 [100]. 

The Gly90 in H3.3 mediates the specificity for binding to H3.3-H4 over H3.1-H4. CABIN1 was 

first described as a corepressor of the MEF2 family of transcription factors [101]. To date, its 

exact function within the HIRA complex remains unclear. Like HIRA, UBN1 and CABIN1 have S. 

cerevisiae counterparts, histone periodic control 2 (Hpc2p) and histone regulation 3 (Hir3p), 

respectively. They form with Hir1p and Hir2p, the Hir complex which is involved in the 

incorporation of H3 independently of DNA synthesis in yeast [102]. The HIRA subunit forms a 

homotrimer that interacts with two CABIN1 subunits [103]. This trimeric structure is required for 

the functional activity of the HIRA complex in depositing H3.3. Ubinuclein 2 (UBN2), which is a 
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paralog of UBN1 that interacts with HIRA [96], forms with HIRA another complex which appears 

distinct from the one comprising UBN1 [104]. These two complexes could cooperatively deposit 

H3.3 onto cis-regulatory regions in mouse embryonic stem cells (mESCs). While yeast exhibits a 

single Hpc2, understanding why other eukaryotes evolved with the emergence of two UBN 

paralogs will be interesting to explore. In a manner that compares with H3.3 KO, HIRA is 

required for proper development in vertebrates, possibly reflecting their tight functional 

connexion. HIRA KO mice die by stage E10.0 or E11.0 as a consequence of abnormal 

gastrulation [105].   

 DAXX was originally described as a Fas death receptor binding protein that induced 

apoptosis via JNK pathway activation [106]. ATRX was identified through the discovery of 

mutations in the corresponding gene in a form of X-linked mental retardation (ATR-X syndrome) 

in young males [107,108]. It is a member of the SNF2 family of chromatin remodeling factors 

[109]. Chromatin remodelers consist of a group of protein complexes containing an ATPase 

subunit that regulate a number of DNA transactions by sliding, removing and reconstructing 

nucleosomes [110]. The discovery of DAXX and ATRX in complex with H3.3 suggested a role 

for these two proteins in the deposition of this variant [55,56]. Although DAXX and ATRX along 

with HIRA associate with H3.3, they form distinct H3.3 complexes [111]. Interestingly, in contrast 

to HIRA, DAXX and ATRX have no known counterparts in budding yeast suggesting a more 

recent function for this complex possibly in metazoans. In the DAXX-ATRX-H3.3 complex, 

DAXX is the component that interacts directly with H3.3 while ATRX allows the targeting to 

heterochromatin [112]. The crystal structure of the histone-binding domain of DAXX bound to the 

H3.3–H4 dimer revealed the principal determinants of human H3.3 specificity with Ala87 and 

Gly90 in H3.3. DAXX prefers Gly90 in H3.3 over the hydrophobic Met90 in H3.1 [113,114]. As 

mentioned above, the UBN1 subunit in the HIRA complex has nearly identical points of contact 

in the proximity of H3.3 G90 although the mechanism for H3.3 G90 recognition are likely distinct 

[100]. Of note, in human cells overexpressing CenH3CENP-A the strict selectivity of DAXX-ATRX 
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for H3.3 is altered and DAXX binds the centromeric CenH3CENP-A leading to its mis-localization. 

This occurs at sites of active histone turnover and involves an unusual heterotypic tetramer 

containing CenH3 CENP-A -H4 with H3.3-H4 [66,115-118]. In addition, DAXX can function 

independently of ATRX to repress endogenous retroviruses, in a process that does not involve 

H3.3 incorporation into chromatin [119]. Both loss of DAXX and ATRX are embryonic lethal in 

mice at stage E9.5 [120,121]. ATRX KO cells exhibit loss of the H3K9me3 heterochromatin 

modification, loss of repression and aberrant allelic expression arguing for a role of ATRX in the 

maintenance of silencing memory at imprinted loci [122].  

2.3.2.3 CenH3CENP-A-H4 Chaperone 

The histone chaperone dedicated to the centromeric histone H3 variant CenH3CENP-A is the 

Holliday junction recognition protein (HJURP) (for review [69]) (Fig. 2.3). Described in 2007 as a 

protein that binds Holliday junction, HJURP was initially involved in the homologous 

recombination (HR) pathway in the double strand break (DSB) repair mechanism [123]. As for 

CAF-1, HIRA and DAXX-ATRX, the biochemical purification of the protein complex associated 

with CenH3CENP-A in human cells enabled to identify HJURP as a CenH3CENP-A histone chaperone 

[124,125]. The yeast suppressor of chromosome mis-segregation 3 (Scm3) stands as the 

HJURP counterpart in S. Cerevisiae. Despite their conserved function in CenH3 deposition, 

HJURP/Scm3 homologues exhibit high degrees of sequence divergence among species likely 

as a consequence of the rapid co-evolution of the chaperone and the variant. The selectivity of 

HJURP for CenH3CENP-A is mediated by the interaction of its CENP-A binding domain (CBD) in 

the N-terminal part of the protein with the CENP-A targeting domain (CATD) in CenH3CENP-A 

(composed of the α2 helix and the loop L1) [126]. Structural analysis showed that the CBD of 

HJURP binds a CenH3CENP-A
-H4 dimer [127]. The homodimerization of HJURP, through its 

HJURP C-terminal domain 2 (HCTD2), is required for CenH3CENP-A deposition, leading to the 

hypothesis that HJURP dimerization allows to bring two CenH3CENP-A –H4 dimers to form the 

(CenH3CENP-A –H4)2 tetramer at centromeric DNA [128]. Of note, in addition to its role as 



	
   15	
  

chaperone of CenH3CENP-A, HJURP also interacts and recruits CENP-C, another kinetochore 

component, at centromere [129]. 

2.3.3 Other H3-H4 Chaperones 

Other H3-H4 chaperones, less selective, bind several H3 histones (both replicative and variants) 

and participate in the nucleosome assembly line. Upstream or downstream the new deposition 

process, they can be involved in handling soluble new histones or in recycling nucleosomal 

histones or both. 

 The anti-silencing function 1 (ASF1) histone chaperone was initially identified in S. 

cerevisiae in a screen for silencing defects upon overexpression [130]. ASF1 was the first 

histone chaperone crystallized in complex with H3-H4 [131,132]. Its domain interacting with 

histones contains an Ig-like fold that binds the α2-α3 helices of histone H3. Together with CAF-1, 

ASF1 facilitates chromatin assembly linked to DNA synthesis in vitro [133,134]. However, ASF1 

is not directly involved in the deposition mechanism but likely acts by transferring H3-H4 dimers 

to the downstream histone chaperones that are depositing the new histones H3-H4. In mammals, 

two paralogous proteins exist, ASF1a and ASF1b with distinct cellular roles [135]. ASF1a and 

ASF1b co-purified with H3.1 and H3.3 complexes arguing for their role in both DSC and DSI 

assembly lines [86]. Although ASF1a and ASF1b do not exhibit preferences for H3.1/2 or H3.3 

per se and can associate with both H3.1/2-H4 and H3.3-H4 dimers, ASF1a harbors a preference 

for the HIRA complex whereas ASF1b interacts preferentially with CAF-1 [136]. ASF1a and 

ASF1b bind a motif named B domain which is present in both HIRA and CAF-1p60 subunits but 

how the interaction preferences are achieved is not fully understood [137]. Importantly, ASF1 a 

and b interact with the B domain of CAF-1p60 or HIRA through a conserved hydrophobic groove 

at a site opposite to that of their interaction with H3–H4. A ternary complex (CAF-1–ASF1–H3.1–

H4) or (HIRA-ASF1-H3.3-H4) could thus represent an intermediate that enables histones to be 

handed over from one chaperone to the next. ASF1a and b bind H3-H4 at the tetramerization 

interface and therefore sterically prevent their tetramerization [131,132,138]. Furthermore, these 
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chaperones are able to disrupt an (H3-H4)2 tetramer into two H3-H4 dimers but alone cannot 

disengage it from DNA. Notably, in addition to participating upstream in the new deposition, 

ASF1a and b are also involved in old/pre-existing/parental histones recycling during replication 

in association with mini chromosome maintenance 2 (MCM2) [139,140]. 

  MCM2 is a subunit of the Cdc45-MCM(2-7)-GINS (CMG) replicative helicase that 

unwinds DNA and separates the two strands of the double helix prior to the action of DNA 

polymerases [141]. Although its binding capacity to histones was discovered almost 20 years 

ago [142], its central role in handling both old and newly synthesized histones during replication 

was highlighted more recently [139]. Together with other subunits of the helicase (MCM3–7), 

MCM2 coimmunoprecipitates with H3-H4, enriched in parental histones, from nuclear extracts in 

S phase human cells. In contrast, only MCM2 co-immunoprecipitates with newly synthesized 

histones H3-H4 and with ASF1a and b in human cytosolic cells extracts. This suggests that 

independently from its role at the replication fork, MCM2 could also play a specific role as a 

histone chaperone. Biochemical studies revealed that the N-terminal tail of MCM2, containing 

the histone-binding domain (HBD), directly binds histone H3 in vitro [143]. Then, structural 

analysis showed that MCM2 HBD can bind both an (H3-H4)2 tetramer and a dimer of H3-H4 

engaged in an interaction with the other chaperone ASF1 [144,145]. The interaction of MCM2 

with histones involving a tetramer-to-dimer transition would be important for the proper dynamics 

of histones during passage of the replication fork. Moreover, the finding that MCM2 can bind all 

H3 (H3.1, H3.2, H3.3 and CENP-A) [144] suggests that this mechanism to handle histones could 

apply throughout the entire genome [146].  

 POLE3 and POLE4 are accessory subunits of the mammalian Polε, the polymerase that 

is active on the leading strand at the replication fork [147]. A recent study discovered that the 

human POLE3-POLE4 complex binds to histones H3-H4 (either H3.1 or H3.3) as dimer or 

tetramer [148]. POLE3-POLE4 binds H3-H4 in the context of chromatin during replication 

excluding the possibility that it chaperones soluble histones. Moreover, POLE3-POLE4 
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associates with histones carrying modifications characteristic of both newly synthesized and 

parental histones suggesting that POLE3-POLE4 may handle both new and old histones in 

proximity of the leading strand. Another recent study in S.cerevisiae showed that  the yeast 

counterparts Dpb3 and Dpb4, drive the recycling of parental histones onto the leading strand, 

indicating that their function in histone dynamics at replication fork is likely conserved [149]. We 

will discuss later how the dynamics of recycling and deposition of histones respectively on the 

leading and lagging strand has combined all these features. 

  

2.4 Deposition of H3-H4 Histones onto DNA 

During most of DNA processes such as replication, repair or transcription, the nucleosome 

organization is disassembled then reassembled. The disassembly is generally required to permit 

access of the actors of the different machineries to DNA and the reassembly is needed to 

maintain the chromatin organization to ensure genome integrity. During the reassembly, 

deposition of both new and old/pre-existing/parental histones occurs. Recycling of old histones 

contributes to preserve positional information and allows variants and PTMs transmission while 

new histones deposition could give rise to epigenome fluctuations. The mechanisms of new 

histone deposition involving histone chaperones have been explored over the last 25 years while 

those involved in the deposition/recycling of old histones were under investigations more 

recently. Of note, the studies on histone dynamics in vivo benefited in particular from the SNAP-

tag technology which allows to visualize selectively either newly synthesized or old histones in 

the cell [68,150].   

2.4.1 Deposition of New H3-H4 Histones 

2.4.1.1 New H3.1/2-H4 Deposition by CAF-1 

The histone chaperone CAF-1 deposits new replicative histones at sites of DNA synthesis both 

during replication when DNA is duplicated and during repair when DNA damage is repaired 

[78,151] (Fig. 2.4). Thus, CAF-1 deposits new H3.1/2 onto DNA in a DSC manner both coupled 
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to replication during S phase and independently of replication at sites of DNA repair throughout 

interphase [103,41]. CAF-1 is recruited to sites of DNA synthesis mainly by the interaction of its 

large subunit p150 with the DNA sliding clamp, PCNA [79,80]. The phosphorylation of CAF-1 

p150 by Cdc7/Dbf4 during S phase promotes this interaction by regulating the homo-

oligomerization status of p150 [81]. The p60 subunit is also a substrate for phosphorylation by 

cdk in vitro, which may represent another mechanism by which CAF-1 deposition activity is 

regulated [152,153]. The SNAP-technology enabled to follow the deposition of newly 

synthesized H3.1 in the cell. H3.1 new deposition colocalized with replication sites during S 

phase and CAF-1 depletion abrogated this new H3.1 deposition [39]. To date, no other histone 

chaperone proved able to deposit H3.1 in the absence of CAF-1. However, H3.3 deposition 

promoted by HIRA does occur at replication sites when CAF-1 is depleted [39]. These findings 

suggest that, when the assembly coupled to DNA synthesis is defective, the gaps left free could 

be filled up via in a compensatory mechanism involving the DSI nucleosome assembly pathway 

in order to maintain chromatin integrity.  

2.4.1.2 New H3.3-H4 Deposition by HIRA  

The HIRA complex is involved in the DSI deposition of new H3.3 histone variant (Fig. 2.4) and 

this new deposition occurs throughout interphase as visualized in the cell by using the SNAP-tag 

technology [39]. H3.3 is enriched in the body of transcribed genes, at promoter regions at both 

active and inactive genes and also at genic and intergenic regulatory regions [55]. Thus, HIRA-

dependent enrichment of H3.3 in the coding regions of genes appears mainly associated with 

active transcription. The deposition of H3.3 at transcribed genes was underscored by the co-

immunoprecipitation of the HIRA complex with both the initiating and elongating forms of the 

RNA pol II harboring specific phosphorylation at serine 5 and serine 2 into its carboxy terminal 

domain (CTD), respectively [39]. The interactions between the HIRA complex and several actors 

of the transcriptional process further support the link between HIRA-dependent H3.3 deposition 

and transcription [154-156]. Furthermore, post-translational modifications of the HIRA subunit 
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can modulate the H3.3 deposition activity of the complex [157,158].  

 The HIRA complex can also promote deposition of H3.3 independently of transcription in 

several circumstances, at UV damage sites where H3.3 deposition occurs upon detection of the 

DNA damage prior to repair [159], at fertilization in paternal chromatin before the first round of 

DNA replication [52,53] and onto viral DNA upon virus infection. In this latter case, depending of 

the system, H3.3 accumulation onto viral DNA correlated with active or repress viral transcription 

and with virus latency [160-162]. 

 The HIRA complex shows unique DNA binding properties as compared to other H3-H4 

histone chaperones, and its depletion increases DNA sensitivity to nucleases [39]. The HIRA 

complex from cell extracts binds to both double-stranded and single-stranded DNA suggesting 

that it could recognize particular DNA structures [103]. The ability of the HIRA complex to bind 

naked DNA provides a mechanism of new H3.3 deposition that may operate to avoid 

nucleosome-free DNA regions which could be deleterious for maintenance of chromatin 

organization and genome integrity. This leads to the proposal of a nucleosome gap filling 

mechanism for the HIRA-dependent H3.3 deposition and a crucial role to maintain chromatin 

integrity [39,163]. 

2.4.1.3 New H3.3-H4 Deposition by DAXX-ATRX 

The histone chaperone DAXX-ATRX is responsible for the enrichment of H3.3 in 

heterochromatin at pericentric regions and telomeres [55,56]. Although not formally 

demonstrated, DAXX-ATRX is assumed to be key for the deposition of new histone variant H3.3 

at these heterochromatic regions in a DSI manner (Fig. 2.4). Whether the deposition of H3.3 by 

DAXX-ATRX at these specific locations occurs during a particular time window during the cell 

cycle and whether it does link to the deposition of H2AZ variant will be interesting to explore 

[164]. While DAXX directly interacts with H3.3 [113,114], ATRX recognizes H3K9me3 through its 

ATRX-Dnmt3-Dnmt3L (ADD) domain and could therefore target DAXX to these locations [112]. 

DAXX-ATRX also mediates H3.3 deposition at G-quadruplexes (G4) and at endogenous 
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retroviruses through a possible direct binding of ATRX to these structures and transposable 

elements [165,166]. These data have led to propose a role for ATRX in suppressing 

recombination at telomeric repeats by resolving G4 structures through the deposition of H3.3 

[167]. At transposable elements, the incorporation of H3.3 is proposed to silence repetitive 

elements through regulation of H3K9me3 [168,166].  

 DAXX-ATRX also mediates H3.3 enrichment outside of heterochromatin and repetitive 

elements. DAXX-ATRX together with the HIRA complex was proposed to induce virus latency by 

enabling H3.3 accumulation onto viral DNA [160]. In the nervous system, the serine residue 669 

of DAXX is phosphorylated by the homeodomain-interacting protein kinase 1 (HIPK1) and upon 

neuronal activation, the calcium-dependent phosphatase calcineurin (CaN) dephosphorylates 

S669 [169]. This dephosphorylation, by enhancing DAXX activity, increased H3.3 enrichment at 

promoters and enhancers of immediate early genes leading to their active transcription. 

However, a major role for the H3.3-mediated activity of DAXX-ATRX is likely linked to its impact 

on heterochomatin function as shown above.  

2.4.1.4 New CenH3CENP-A-H4 Deposition by HJURP   

The histone chaperone HJURP deposits the new histone variant CenH3CENP-A at centromere in a 

DSI manner during late mitosis (telophase)/early G1 in mammals (Fig. 2.4) [68,124,125]. 

HJURP localizes to centromeres at the time of CenH3CENP-A deposition and CDK kinases control 

its timely recruitment to centromeres in late mitosis by changing its phosphorylation status 

[170,171]. HJURP interacts with DNA through a specialized domain, which is essential to 

deposit CenH3CENP-A at centromeres, highlighting that HJURP is not merely escorting 

CenH3CENP-A, but plays an active part in CenH3CENP-A deposition [170]. Of note, although HJURP 

is the histone chaperone involved in the final step of CenH3CENP-A deposition, numbers of other 

factors are required for the proper incorporation of this histone variant into centromere (review 

[69]). CenH3CENP-A post-translational modifications are important for its deposition. Ser68 

phosphorylation of CenH3CENP-A prevents an interaction with HJURP in the pre-deposition 
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complex, helping to prevent premature loading [172]. The crystal structure at the interface of 

CenH3CENP-A and HJURP shows that Ser68 lies in the histone variant binding domain of HJURP. 

Moreover, Lys124 ubiquitylation of CenH3CENP-A plays a role in CenH3CENP-A deposition by con-

trolling the stability of the CenH3CENPA–HJURP complex through a regulatory mechanism 

involving the cullin 4 (CUL4) ubiquitin ligase [173]. The new deposition of CenH3CENP-A  only 

occurs in late mitosis/early G1 phases, thus CenH3CENP-A is diluted during S phase and 

distributed evenly to both daughter chromosomes in mammals [68]. In addition to deposit new 

CenH3CENP-A , HJURP may be also required for its retention during S phase. By interacting with 

the replicative helicase complex, HJURP is proposed to retain and recycle CenH3CENP-A  

following DNA replication [174]. During S phase, new deposition of both H3.1 (in a DSC manner) 

and H3.3 (through a possible post-replicative gap-filling mechanism) is observed, filling the gaps 

generated by diluting CenH3CENP-A. Interestingly, the detected loss of H3.3 only later in G1 phase 

argues that H3.3 variant could serve as a CenH3CENP-A placeholder [175].  

2.4.2 Recycling of Old H3-H4 Histones  

Chromatin integrity is critical for cell function and identity but is challenged by DNA processes 

that involve nucleosome disassembly. How chromatin architecture and the information that it 

conveys are preserved? For example, during replication, the chromatin structure is affected by 

the transient disruption of histone-DNA interaction from old/pre-existing/parental nucleosomes 

located ahead of replication forks (Disassembly). Chromatin assembly onto daughter strands 

relies on two distinct processes: the transfer of old histones (Recycling) and second the 

deposition of new histones (New deposition). The latter process, as mentioned before is 

regulated by the CAF-1 complex that deposits new H3.1/2-H4 histones onto both daughter 

strands. Experiments in the 1980s with bulk chromatin demonstrated the retention of parental 

histones on daughter strands [176,177]. The recycling of old histones with their PTMs and the 

subsequent modifications of new histones to mirror the parental ones would participate in the 

maintenance of chromatin identity. The transmission of parental PTMs during replication 
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appears to occur in human cells [178] This is critical for features to be inherited from one cell to 

the next.  

 ASF1 has been the first H3-H4 chaperone implicated in the recycling of old histones 

during replication [139]. ASF1 was proposed to handle old histones at replication fork via an 

ASF1-(H3-H4)-MCM2-7 intermediate. An important role for MCM2 emerged based on structural 

analysis showing that MCM2, in contrast to ASF1, can bind an (H3-H4)2 tetramer [144,145]. This 

mode of binding implies that, once evicted from DNA possibly by the force of the helicase and 

the activity of remodelling factors, nucleosomal H3-H4 could be directly transferred to MCM2 as 

a tetramer. After this step old tetrameric (H3-H4)2 could simply be directly loaded onto the newly 

synthesized DNA. Alternatively, old H3-H4 could be deposited as dimers after splitting by ASF1 

[146]. Although reassociation of the two parental dimer partners might be favored most of the 

time, mixing H3.3-H4 dimers, but not H3.1-H4 dimers, was reported with potential important role 

in the inheritance of epigenetic traits [179,180]. 

 During replication, the two daughter chromatids differ in how they are replicated. The 

leading strand synthesis occurs in the direction of the fork progression while the lagging strand 

proceeds in interspersed segments in an opposite direction. Recycling old histones on leading 

and lagging strands exploit distinct mechanisms involving histones chaperones. In yeast, while 

MCM2 operates on the lagging strand, Dpb3-Dpb4 subunits of the polymerase ε act on the 

leading strand [149,181]. The function of MCM2 in recycling old histones onto the lagging strand 

is conserved in human [182]. POLE3-POLE4, the human counterpart of Dpb3-Dpb4, recently 

described as a H3-H4 chaperone whose depletion affects chromatin at replication fork, could 

similarly participate in the recycling of old histones onto the leading strand in human [148]. 

Whether, the evicted (H3-H4)2 tetramer splits in to dimers before recycling/deposition onto the 

leading strand remains to be explored, in particular in light of possible connection with Asf1. A 

scheme of the current model for histone dynamics at replication fork, involving old histone 

recycling and new histone deposition, is shown in Fig. 2.5.  
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 Of note in yeast, Cohesion establishment factor 4 (Ctf4), a replisome factor that links the 

CMG helicase on the leading strand to the DNA polymerase α  on the lagging strand (through a 

direct interaction with both GINS and polα) [183], participates in the recycling of old histones on 

this latter strand [181]. Ctf4 and its human counterpart, Acidic nucleoplasmic DNA binding 

protein-1 (And-1), form homotrimers that exhibit homology with the homo-trimeric form of the 

HIRA subunit of the histone chaperone complex HIRA [103]. This intriguing homology could 

suggest for Ctf4/And-1 and HIRA a similar way of mediating protein and DNA interactions at 

particular bubble DNA structures as encountered at replication fork for Ctf4/And-1 and perhaps 

at transcription sites for HIRA. 

 The existence of distinct mechanisms for recycling old histones on the two daughter 

strands raises new interesting hypothesis [184]. Indeed, while ensuring an equal partitioning of 

old histones for most cells, it may as well offer an opportunity for unequal partitioning. For 

example, in Drosophila male germline and adult midgut, replicative H3 and CenH3CENP-A are 

asymmetrically distributed, respectively.  The daughter stem cell retains the parental/old 

histones while the post-mitotic differentiating daughter cell genome is assembled with new 

histones [185,186]. The existence of distinct mechanisms to recycle old histones might be a way 

to regulate asymmetric distribution of old histones onto the two daughter cells in the wake of the 

replication. This could be crucial to initiate a differentiation program by loosing parental marks. 

  

2.5 Concluding Remarks and perspectives 

Chromatin can protect DNA from various deleterious threats while remaining flexible to enable 

the regulation of gene expression and programmed changes in cell identity to occur during 

normal development. The histone H3 family and its various chaperones are crucial for allowing 

dynamic accessibility to particular genomic loci. Over recent decades, much progress has been 

made in the study of histones and their modes of incorporation into chromatin. This is 
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particularly true for histones H3-H4 with the identification of histone chaperones that are often 

specialized in the deposition of one peculiar H3 variant at a particular time and at specific 

locations onto the genome. We are unveiling complete histone H3 deposition pathways from 

their site of synthesis to their sites of delivery and we are also now currently elucidating how old 

histones are recycled at replication fork. Open questions remain regarding this network of 

histones and histone chaperones. For example, histone H3 chaperones are most often protein 

complexes whose stoichiometry, post-translational modifications and functional regulations are 

still poorly characterized and understanding how they may link to cell cycle control and cell fate 

will be extremely exciting. While the deposition process of H3-H4 is now rather well understood, 

the mechanisms and histone chaperones involved in the deposition of H2A-H2B dimers still 

needs to be deepened. Processes of old histone recycling started recently to be deciphered at 

replication fork but old histone recycling also occurs at DNA repair and transcription sites 

[187,188]. Most fascinating is to understand how the marking with particular variants actually 

experience cell division and can be restored after the passage of the replication fork. Elucidating 

therefore the mechanisms that operate during repair and transcription would also be crucial. 

Furthermore, exploring how this network of histones and histone chaperones is potentially 

rewired when one of several of the actors are mutated or deregulated in particular during cancer 

will bring undoubtedly important new findings in the field. 
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Figure Legends 

 

Fig. 2.1:  Differences between replicative histones (H3.1 and H3.2) and histone variants (H3.3 

and CenH3CENP-A) in human. Replicative histone genes are organized in clusters and lack introns 

whereas histone variants are encoded by single genes (two for H3.3 and one for CenH3CENP-A) 

and have introns. While H3.3A and H3.3B genes encode the same protein, their architecture is 

different. In particular, their promoter regions contain distinct putative binding sites for 

transcriptional regulators. Transcripts of replicative histones do not undergo polyadenylation and 

harbor a 3’ stem-loop structure while transcripts of histone variants are polyadenylated and 

processed through splicing like most RNA pol II mRNAs. Replicative histone genes are highly 

transcribed during S phase which is not the case of histone variant genes that can be 

transcribed with various timings depending of the variant (throughout the cell cycle for H3.3 and 

during G2/M phases for CenH3CENP-A) .  

 

Fig. 2.2: (A) Alignment of human amino acid sequences corresponding to the replicative 

histones H3.1 and H3.2 and the histone variants H3.3 and CenH3CENP-A.  Sequences are 

compared to H3.1 and the residue differences are highlighted. H3.1 and H3.2 differ by only one 

residue at position 96. H3.3 differs from H3.1 by five residues (at positions 31, 87, 89, 90 and 

96) and from H3.2 by four residues (at positions 31, 87, 89 and 90), while the amino acid 

sequence of CenH3CENP-A exhibits less than 50% identity with H3.1. The histone fold domain 

containing three α-helices and two loops is shown. (B) Crystal structures of H3.1, H3.3 and 

CenH3CENP-A nucleosome core particles (NCP). The NCP contains an histone octamer that 

consists of a tetramer with two H3-H4 dimers ((H3-H4)2) flanked by two H2A-H2B dimers. 

Histone octamer from both H3.1 and H3.3 NCPs is wrapped by 147 bp of DNA [57] whereas 121 

bp of DNA wrapped the histone octamer from CenH3CENP-A NCP [65]. 
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Fig. 2.3: Replicative histones (H3.1 and H3.2)  and histone variants (H3.3 and  CenH3CENP-A) are 

de novo deposited onto DNA by their dedicated chaperones using two different nucleosome 

assembly pathways, DNA synthesis coupled (DSC) and DNA synthesis independent (DSI), 

respectively. H3.1/2-H4 and CenH3CENP-A-H4 dimers bind to one histone chaperone, CAF-1 and 

HJURP, respectively, while H3.3-H4 can associate with two distinct histone chaperones, the 

HIRA complex and DAXX-ATRX. Of note, the homo-oligomerization status of each component is 

not indicated and only one molecule is represented.  

 

Fig. 2.4: (A) Enrichment of H3.1, H3.3 and CenH3CENP-A mediated by their dedicated histone 

chaperones at specific genomic sites and/or during particular DNA processes in cycling cells. 

CAF-1 deposits replicative H3.1/2-H4 genome wide mainly during replication but also during 

DNA repair. The HIRA complex deposits H3.3-H4 at active genes, promoters, sites of DNA 

repair and potentially at any transient nucleosome free region by a gap-filling mechanism, while 

DAXX-ATRX is involved in the enrichment of H3.3-H4 mainly at heterochromatin (telomere and 

pericentromere) but also at regularory elements. HJURP mediates the incorporation of 

CenH3CENP-A –H4 at centromere (in centric heterochromatin). (B) Genomic distribution of H3.1, 

H3.3 and CenH3CENP-A  [20] from published ChIP-Seq data in HeLa cells [140,66]. The plot 

shows the enrichment relative to input for all variants at a representative region spanning the 

centromere and the proximal short and long arms of chromosome 18 (p11.21-q21.1). Enriched 

regions are highlighted in darker colors, illustrating the partitioning of the genome into chromatin 

domains associated with specific histone H3. 

 

Fig. 2.5: Current model of histone dynamics at the replication fork. (A) For each old/parental 

nucleosome disrupted by the replication fork passage, a H3-H4 tetramer is available 

(Disassembly). The old H3-H4 histones are recycled on newly synthesized DNA either directly 

as a tetramer or potentially as two dimers (Recycling). New H3-H4 dimers are deposited onto 
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newly synthesized DNA to ensure a full complement of nucleosomes on the nascent DNA (New 

Deposition). Recycling of old/parental histones and deposition of new histones are thought to 

occur randomly on both the leading (in orange) and the lagging strand (in green). (B) The 

mechanisms and the histone chaperones involved in the recycling of old histones on the leading 

and the lagging strands are distinct. At the replication fork, the CMG (Cdc45-MCM(2-7)-GINS) 

helicase on the leading strand unwinds the DNA. The homotrimer And-1/Ctf4 links the helicase 

on the leading strand to the polα on the lagging strand through its interaction with both GINS 

and polα. While the two accessory subunits of polε (POLE3 and POLE4) mediate the recycling 

of old H3-H4 histones on the leading strand, the helicase subunit, MCM2, operates on the 

lagging strand. It is still not fully understood whether H3-H4 are directly recycled as tetramers or 

whether they split as dimers before deposition or whether both events happen. Moreover, if H3-

H4 split, whether ASF1 handles the H3-H4 dimers before deposition remains unclear. (C) To 

fulfill the requirement for nucleosome assembly, deposition of newly synthesized H3.1/2-H4 

dimers occurs on both strands by the histone chaperone complex CAF-1 through its interaction 

with the sliding clamp PCNA. The histone chaperone ASF1 would hand over H3.1/2-H4 dimers 

to CAF-1 before deposition. 
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Table 2.1 Histone H3-H4 Chaperones 
 
Chaperone 
 

Human 
subunit(s) 

S.cerevisiae 
subunit(s) 

Histone 
preference(s) in 
human 
 

Function(s) 

CAF-1 
complex 
 
 
 
HIRA 
complex 
 
 
 
DAXX-ATRX 
 
 
 
HJURP 
 
 
 
 
ASF1 
 
 
 
 
 
MCM2 
 
 
 
Polε  

p150 (CHAF-1) 
p60 (CHAF-2) 
p48 (RbAp48) 
 
 
HIRA 
CABIN1 
UBN1 or UBN2 
 
 
DAXX 
ATRX 
 
 
HJURP 
 
 
 
 
ASF1a or ASF1b 
 
 
 
 
 
MCM2 
 
 
 
POLE3 
POLE4 

cac1 
cac2 
cac3 
 
 
Hir1p and Hir2p 
Hir3p 
Hpc2p 
 
 
NA 
 
 
 
Scm3 
 
 
 
 
Asf1 
 
 
 
 
 
Mcm2 
 
 
 
Dpb3 
Dpb4 

H3.1/2-H4 
 
 
 
 
H3.3-H4 
 
 
 
 
H3.3-H4 
 
 
 
CenH3CENP-A 

 

 
 
 
H3.1/2-H4 
H3.3-H4 
CenH3CENP-A ? 
 
 
 
H3.1/2-H4 
H3.3-H4 
CenH3CENP-A 

 
H3-H4 

New deposition 
DSC 

 
 
 

New deposition 
DSI 

 
 
 

New deposition 
DSI 
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Fig. 2.4

Genomic enrichment of H3.1, H3.3 and CenH3CENP-A mediated by their dedicated chaperonesA

B Genomic distribution of H3.1, H3.3 and CenH3CENP-A from ChIP-Seq data in human cells 
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Fig. 2.5 Model for the dynamics of H3-H4 histones at the replication forkA
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