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Abstract 

The electrochemical nucleation and growth of nanoparticles (NPs) on an electrode surface at a 

constant potential is traditionally followed by recording the resulting current density during 

the experiment. The obtained chronoamperometric transients are average measurements, 

making it difficult to separate individual NP behaviors and to study their cross-talks. Herein, 

the recently developed Backside Absorbing Layer Microscopy (BALM) is employed to 

monitor optically in situ and operando the electrodeposition of silver NPs. This latter 

technique exploits a pseudo-antireflective and metallic contrast layer and allows both sub-

nanometer vertical and sub-micrometer spatial resolutions. The information from the recorded 

movies is readily exploited to study the NP electrodeposition at the single entity level. The 

image sequences allow quantifying the local electrodeposition of nanomaterials onto the 

electrode surface, probing the NP dynamics through the extraction of single optical NP 

growth transients, and analyzing the effect of the neighboring nuclei on the growth of 

individual NPs. 

Introduction 

Metallic nanoparticles (NPs) are intensively studied,
1,2 

as they possess interesting physical and 

chemical properties that depend on their composition
3
 and surface chemistry,

4
 but also on 

their size and shape.
3,5,6

 Among the various fabrication methods, the electrochemical 

deposition offers several advantages to prepare substrate supported NPs, as the ability to 

finely tune the surface density and the NP size.
7-10

 Nanostructured electrodes have found 

applications in fuel cells,
11

 electrocatalysis
12

 and electroanalysis,
13

 to name but a few.  

In most cases, the nucleation and the growth steps of the NPs onto the electrode are studied by 

recording the electrochemical (EC) current during the electrodeposition procedure. Since the 

early works of the 1960s,
14-16

 many works have elaborated upon models to apprehend the EC 

current response during NP electrodeposition or have confronted those models to 

experiments. Still under active discussions,
17,18

 these modeling aspects have been reviewed by 

Hyde and Compton.
19

 Unfortunately, the current is an average measurement corresponding to 

a distribution of many individual NP behaviors. Trying to get access to the distribution, which 

contains much more information, requires operating at the single NP level or being able to 
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monitor at the single NP level the electrodeposition of ensemble of them. This ultimate 

attainable limit of detection has been recently reached by several techniques based on two 

different strategies. The first approach extends to the nanoscale the early works of Sharifker 

group.
20

 It consists in monitoring the electrochemical formation of one single NP and in the 

capture of its growth dynamics through EC
21-23

 transients. Owing to low sub-nA current range 

associated to single NP growth, a complementary imaging of the grown NP, ideally in real 

time, is often required for assessing its growth or to confirm the charge to mass balance. For 

example, Mirkin’s group used in situ AFM imaging to study the electrochemical growth of 

single silver NPs at the surface of a nanometer-sized electrode.
23 

In a second approach, 

Schuhmann and Kanoufi have put nano-electrodes under optical (OPT) dark-field microscope 

observation in order to use OPT transients to assess the growth of individual NP.
24-26

 Indeed 

in such configuration, the variations of the size of the NP growing at the electrode apex is 

associated, in real time with <0.1 s time resolution, to variations of the scattering light 

intensity of a single NP or of the FWHM of its associated diffraction spot recorded in optical 

images.  

Another pathway is to separate NPs in space by combining electrochemistry to high resolution 

visualization techniques, ideally operando,
27-40 

or ex situ for the ultimate tracking at the 

atomic scale.
41

 The local images of the resolved NPs can be further analyzed and provide 

insights into nanoscale electrochemistry. Complementary in situ visualization also offers the 

advantage of pointing neighboring effect or crosstalk among populations of NPs, important in 

electrodeposition or related phenomena. In this perspective, in situ scanning TEM
27,28,31 

and 

scanning probes microscopies (STM/AFM)
29-34 

were firstly proposed. The latter allow 

detecting ultra-small NPs with atomic resolution, ex situ,
41

 but are often limited to 100 nm NP 

size while imaged in solution and by their low temporal resolution. In addition, those 

techniques are also complicated to use on a regular basis.  

As an alternative, OPT dark-field microscopy has been suggested to collect the 

electrochemical behaviors during the electrodeposition of NPs on transparent  electrode 

surfaces.
31,35-37,42 

It possesses a high throughput and a wide-field assorted with sub-µm 

resolution imaging, but is often limited to >30nm plasmonic nano-objects. Dark-field 

microscopy is also frequently coupled to spectroscopy to obtain chemical information through 

changes in the localized surface plasmon resonance.
43-45

 Interferometric configuration allows 

increasing the OPT signal to background ratio, as in the interferometric scattering microscope 

(iSCAT), but it cannot apply to electrochemistry since it relies on reflections at an insulating 

interface.
46,47

 However, recent works have shown that ultrathin layer of absorbing and 

conducting materials deposited onto a glass substrate could be used in an interferometric 

observation mode named BALM for backside absorbing layer microscopy.
48

 

Herein, an analytical methodology is depicted showing how to extract quantitative valuable 

mechanistic information regarding the nucleation and growth of single to large ensemble of 

NP during electrodeposition processes by using operando high resolution optical imaging 

strategies. The methodology is illustrated with the BALM technique through the real time 

OPT monitoring of silver NP electrodeposition under constant potential. The spatial 

resolution and the sensitivity of the microscope coupled to single OPT NP transients are then 
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exploited and compared to the nucleation growth theories
14,49-51

 developed to analyze the 

electrochemical response obtained for electrodeposition processes.  

Going from single NP to an ensemble of them requires knowledge of their nucleation rate (A) 

and the density of nucleation sites (N0), which are readily obtained from the recorded image 

sequences, both linked to the time dependent current. During the growth of multiple NPs the 

influence of other NPs in their neighboring environment allowing for diffusional cross-talk is 

a central question in electrochemical processes. This is monitored in real time since such OPT 

monitoring allows drawing Voronoi diagrams giving access to the spatial distribution of the 

NPs on the electrode surface. The spatial information associated with the OPT growth curves 

has revealed to be particularly useful to study and describe the formation of NP arrays. 

Finally, optically collected data are verified by introducing them in an analytical model 

capable of quantifying the nucleation and growth of a large ensemble of NPs, even under the 

overlap of NP diffusion layers.    

Experimental section 

Chemicals 

All chemicals were purchased from Merck and used as received, without any further 

purification. Silver NPs employed as nano-gauges, purchased from Sigma-Aldrich, were 

spherical NPs, functionalized by sodium citrate and had an average size of 60 ± 8nm in 

diameter.  

Opto-electrochemical set-up 

The BALM technique is based on an ultrathin and highly absorbing layer (antireflective, AR) 

deposited on a glass slide. The resulting substrate is thus composed of two different 

interfaces, which are formed by the AR layer sandwiched between the glass and the medium 

of interest, here an electrolytic solution.  

The background extinction condition of the AR layer is derived from the Fresnel equations 

and can be calculated along equations (1) and (2): 

  
    

                (1) 

   
 

  

       

    
          (2) 

where n1, k1 and e1 are respectively the real part of the refractive index, the extinction 

coefficient and the thickness of the AR layer, n0 and n2 are the refractive indices of the 

incident and emergent media, respectively. λ stands for the light wavelength. A complete 

mathematical description of this phenomenon has been already published elsewhere.
48 

In the present case, the AR conditions are approached by using gold as the material for the 

glass coating and a thickness layer of roughly 5 nm, which is adapted for visualization in 

water. Figure 1 schematizes the experimental set-up and the principle of the BALM technique 

for visualizing the electrochemistry of NPs. 
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Figure 1. Experimental setup used for monitoring the NP electrodeposition. The right 

image schematizes the phenomenon whereby the OPT contrast is obtained.  

For imaging nanostructures, the layer is illuminated from the glass thanks to an inverted OPT 

microscope (Zeiss axiovert). In this particular configuration, the substrate possesses a pseudo-

AR property due to destructive interferences between beams partially reflected at the 

interfaces. If a NP lies at the contrast layer surface, it locally disturbs the interferences. The 

amount of reflected light is then locally modified, and can be collected by a camera for 

obtaining an image. Elsewhere on the substrate, the constant and low amount of reflected light 

(estimated to roughly 1% of the incident light) contributes to the background intensity.  

This OPT microscopy technique is thus sensitive to local refractive index variations and is 

able to image a broad range of nanomaterials, from dielectric to noble metal NPs.
48,52,53

  

Opto-electrochemical analyses are performed using the gold AR layer as a working electrode. 

Briefly, the homemade 3-electrode electrochemical cell, with a diameter of 300 µm, was 

machined in house from plastic and stuck onto the gold AR surface in order to host a drop of 

electrolytic solution. Gold and silver (0.5 and 1 mm, respectively) wires served as counter and 

quasi-reference electrode, respectively and were placed above the microscope as presented in 

Figure 1. 

Electrodeposition conditions 

Electrodepositions were performed either by chronoamperometry or by cyclic voltammetry at 

100 mV.s
-1

 in a solution containing 0.1M NaNO3 and 100 µM or 500 µM of AgNO3 

respectively.   

Sizing procedure 

Recently,
52,53 

a systematic correlation between BALM and scanning electron microscope 

images showed that the BALM intensity (IBALM) in a NP region scales linearly with the NP 

volume (VNP) though equation (3):  

IBALM = αVNP            (3) 

The correlation factor, α, essential for absolute NP volume quantification, is estimated by ex 

situ SEM analysis or in an equivalent way, by employing calibrated NPs as internal nano-

gauges. In the last case, prior to an experiment, NPs of a well-known size are adsorbed at the 
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AR surface from a diluted colloidal solution. Then, one can measure their corresponding 

average BALM intensity under precise illumination conditions. Following equation (1), the 

size of the other NPs generated at the electrode surface is calculated based on the mean 

intensity of the nano-gauges. This approach has been used herein. 

Extraction of single NP transients 

The amount of reflected light in a single NP region increases with the NP growth. The local 

variation of light intensity thus contains information about NP growth kinetics. From a 

BALM image sequence recorded at a selected frequency, the light fluctuation was extracted 

by data treatment using the ImageJ software. First, OPT spots of interest, corresponding to the 

presence of NPs at the electrode surface, were detected by comparing the first and the last 

images in the sequence. Once localized, the spots were defined by squares of 4x4 pixels. The 

BALM intensity in a NP region was then extracted by taking the average intensity of the 16 

pixels as a function of time. The curves of the BALM intensity as a function of time or 

potential are named respectively OPT transients or OPT voltammograms. 

Transforming OPT signal into OPT related current 

As the OPT signal of a NP scales with the NP volume, it is also proportional to the charge 

(Qopt) passing through the electrode during the electrochemical experiment. From the size 

correlation factor, , and the Faraday law, the charge (Q) can be directly inferred from the 

OPT signal though equation (4).    

      
 

    
               (4) 

where F and Vm are the Faraday constant and the atomic volume, respectively. 

Therefore, differentiating the optically deduced charge as a function of time results in a 

quantitative OPT current related to one single NP. 

Neighboring NPs 

The neighboring nuclei for a given NP can be taken into account by using the Voronoi 

diagrams, which are basically maps of the nearest neighbors for a given set of points. The 

presence of near neighbors is of high importance in the understanding of the electrochemical 

response of various situations: going from electrodeposition to nano-structured electrodes.
54-56

 

The maps are obtained herein from the Delaunay triangulation which consists in a series of 

edges drawn from circles. Here, the set of points corresponds to the NPs present in an OPT 

image.  

The X and Y coordinates of all the NPs in an image of a finite size are collected by finding 

the intensity maxima with the adequate noise tolerance, using the ImageJ software. The area 

of individual Voronoi cells surrounding each growing NP can then be estimated over time if 

the spatial coordinates are extracted for each image in a BALM image sequence. The 

Delaunay triangulation and the Voronoi diagrams are computed using a homemade Python 
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routine, which also estimates the size distribution of the Voronoi cells and fits the distribution 

with a generalized Gamma distribution function.   

Results and discussion 

Monitoring the NP electrodeposition 

As explained in the experimental section, local intensity changes, IBALM, in OPT images are 

attributed to the presence of NPs on the electrode surface. Bright spots can be observed in 

Figure 2a for calibrated silver NPs (60 nm in diameter), which were adsorbed at the pseudo-

AR electrode substrate. They show a measured mean OPT intensity of IBALM = 75 ± 10. Small 

deviations in the gauge intensity have been attributed to the size polydispersity of the 

colloidal solution and to different NP attachments to the electrode surface. Figure 2 also 

shows two BALM images taken before and after an electrodeposition of silver NPs. In that 

case, the newly formed spots do not always have the same OPT intensity, as the sizes of the 

NPs are more poly-disperse.  

As BALM can image metallic NPs at the single NP level on a metallic substrate, this OPT 

technique is perfectly adapted to the dynamical study of the nucleation, growth and 

dissolution of NPs during EC experiments. As an example, Figure 2b shows the results of a 

cyclic voltammetry experiment conducted in a solution of Ag
+
 by using the contrast layer as 

the working electrode. The EC voltammogram (black curve) presents an increasing current 

when the potential reaches a sufficiently negative value and a sharp anodic peak during the 

reverse scan. These two features are characteristics of the deposition and successive stripping 

of silver NPs, respectively. The voltammogram also exhibits the usual hysteresis loop after 

the potential sweep reversal due to the continued growth of NPs until they can be oxidized.    

The cyclic voltammetry was monitored optically by BALM. As stated in the experimental 

section, from the movie recorded by the camera during the EC experiment, one can extract the 

variation of the OPT intensity, IBALM, as a function of time (or potential) for individual NPs. 

The OPT signal related to NPs appears and increases during the cathodic potential sweep and 

finally decreases during the reverse potential scan, corroborating the EC results (not shown). 

Blank experiments have shown that the local OPT spots related to NPs cannot be observed 

when the electrode is biased in the absence of silver ions. The BALM intensity transients of 

NPs can then be transformed into OPT voltammograms by differentiating the OPT signal, 

related to the EC charge (see the experimental section). The red curve in Figure 2b is an OPT 

voltammogram constructed with the cumulated intensity of N=100 Ag NPs appearing at the 

electrode surface during the cyclic voltammetry. Note that the OPT curve can be perfectly 

superimposed to the classical EC one and can be interpreted in the exact same way.  
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Figure 2. (a) BALM images of silver NPs deposited on an AR electrode substrate. The 

top image corresponds to 60 nm silver NPs used as nano-gauges. The two bottom images 

were extracted before and after an electrodeposition of silver NPs conducted at constant 

potential. EC (black) voltammogram (b), EC chronoamperogram (c). OPT (red) 

voltammogram (b) and chronoamperogram (c) obtained during the deposition of silver 

NPs from aqueous solutions of AgNO3 and NaNO3 by using the AR substrate as a 

working electrode as described in the experimental section. Chronoamperometry was 

conducted at -100 mV. 

This general procedure also works very well with EC experiments conducted at constant 

potential, as shown in Figure 2C for a chronoamperogram (CA) at -100 mV in presence of 

Ag
+
. Therefore, we have taken advantage of the OPT transients of individual NPs to study the 

electrochemical nucleation and growth of single NPs at constant potential at the AR gold 

electrode surface.          

Retardation time 

Two opto-electrochemical experiments were conducted at constant potential, with two 

different overpotentials (-100 and -200 mV), which produce two arrays of well dispersed NPs. 

OPT transients related to the nucleation and growth of individual NPs were collected by the 

procedure described in the experimental section at the two overpotential values. Some of them 

are represented in Figure 3a and b for a potential value of -100 and -200 mV, respectively. 

During electrodeposition, different NP growth dynamics were observed. The NP transients 

(equivalent to the variation of VNP as a function of time) collected at -100 mV (Figure 3a) 

show an inhibition behavior when the NPs are larger and thus exhibit a sigmoidal shape. The 

transients collected at -200 mV (Figure 3b) present a diffusion-controlled behavior and 

follow, as will be discussed later, an IBALM-t
3/2

 growth law.  
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Figure 3. Individual NPs OPT transients extracted from a BALM image sequence 

recorded during constant potential electrodeposition at (a and c) -100 mV, (b and d) -

200 mV. (a and b) IBALM-t profiles (equivalent to VNP-t profiles) transformed (c and d) by 

normalizing INP by its maximal value INP,Max and by a retardation time u’ (related to the 

NP time of birth) taken at the half-maximum INP,M/2, as indicated in (a). NB=50 OPT 

transients for (c) and (d). 

In both experiments, the smallest NPs have the slowest growth rate and appear at longest 

times. This observation can be quantified through a retardation time, u’, related to the NP 

birth time, and through the NP final size. The procedure to define those parameters, namely u’ 

and IMax is given in Figure 3a. Interestingly, for both CA experiments, all individual OPT 

transient curves can be recast into a single trace, by translating them along the time axis by 

the retardation time, u’, and by normalizing IBALM by IMax, the final NP intensity (related to 

the final NP volume). The normalization procedure is illustrated in Figures 3c and d, where 

NB=50 OPT transients have been recast for CA at -100 and -200 mV, respectively. It suggests 

that over the whole CA experiment, all NPs show the same behaviors, but with a birth delayed 

by an arbitrary time, u’. 

Figure 4 presents, for the CA at -100 mV, the evolution of the final NP size with the 

retardation time, showing that both quantities are correlated. It is consistent with models 

proposed for a progressive nucleation of NPs, largely proven from ensemble.
14,49-51

 It also 

consolidates our previous report suggesting that the potential shift detected during a CV 

experiment cannot be accounted for size-dependent thermodynamics, in opposition to the NP 

stripping.
53 

This suggests that the NP growth depicted herein is dictated by a same intrinsic growth mode, 

likely limited by Ag
+
 ion diffusion, while the NP birth is controlled by the NP nucleation 

dynamics. The independence of NP growth kinetics from the nucleation is indeed possible if 

the nucleation is progressive rather than instantaneous and with a characteristic time scale 
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slow enough compared to that for the buildup of the Ag
+
 ion diffusion regime. Indeed, as 

devised by Compton group,
57,58

 the diffusional mass transport towards an array of NPs 

working as nano-electrodes, can be characterized by 4 different transport regimes 

successively encountered as times goes on.  

Case 1 corresponds to the linear diffusion towards individual isolated NPs. It is typically 

visited for times shorter than 1 = rNP
2
/D, which is for a diffusion coefficient (D) of 10

-5
cm

2
/s 

and an upper limit of the NP radius (rNP) of 100 nm, 1-2 = 10 µs that is out of reach of our 

present OPT time resolution (10 ms). Case 2 corresponds to the radial diffusion around each 

NP, which then behaves as an individual NP not interacting with its neighbors. This situation 

is observed for times comparable to 1-2 to times shorter than 2-3, the time needed for the 

diffusion layer to reach the next neighboring NPs. If RNN is the inter-particle distance, 2-3 = 

RNN
2
/D. For times of the same order of magnitude as 2-3, the NPs develop overlapped 

diffusion layers propagating over the whole electrode (Case 3). The RNN evolves during the 

electrodeposition (decreases with time until the surface is saturated). However, it can be 

estimated in real time through the OPT visualization. As it will be discussed later, the Voronoi 

cell decomposition of the OPT images allows estimating RNN<2-3µm. It then suggests that the 

transition from Case 2 to Case 3 is detected for times of the order of 4-10ms, again which is 

not explored during the OPT monitoring. For the time scale of OPT monitoring, the diffusion 

regime corresponds to Case 4, which is a linear diffusion towards the entire electrode as a 

consequence of fully overlapped diffusion layers at neighboring NPs.  

For the progressive nucleation observed herein, apart likely for the first few NPs, all further 

NPs grow progressively along the same linear macroscale diffusion regime, explaining that 

most NPs have a common intrinsic transient growth function (decoupled from the diffusional 

regime expansion). The overall NPs growth will then reflect the dynamics of the NP 

nucleation law rather than the exploration of the different diffusion regimes.  

 

 

Figure 4. Correlation of the NP retardation time of each NP (u’) estimated as illustrated 

in Figure 3a, with the NP final intensity for CA at -100 mV. 

Nucleation rate and density of nucleation sites 

The dynamics of the nucleation process is afforded by the OPT monitoring. Movies provide a 

dynamic counting and localization of the individual NPs. Figure 5a and b present the 
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evolution of the NP density (at -100 and -200 mV, respectively) during the time of the CAs, 

extracted from the OPT monitoring.    

 

Figure 5. Time evolution of the number of NPs (symbols) electrodeposited on a region of 

a BALM substrate (13.2x13.2 µm
2
) during CA at -100 mV (a) and – 200 mV (b). The 

corresponding experimental NP densities are fitted (red lines) with the predicted 

evolution (starting at an arbitrary onset time) for a stationary nucleation process. 

For an electrodeposition, the nucleation rate (A) is given by equation (5): 

dN/dt=(N0-N)A          (5) 

which gives after integration, an expression for the density of nucleation sites (N) as a 

function of time: 

N=N0(1-exp(-At))          (6) 

N0, which stands for the saturation density of the surface by the nuclei (in NP.cm
-2

) is 

supposed to be smaller than the atomic density and in the range of 10
4
 to 10

10
 NP.cm

-2
.
51

 

The fits of the experimental data give N0 values of 7.9x10
7
 and 3.9x10

8 
NP.cm

-2
 for CA at -

100 and -200 mV, respectively. N0 is found to be potential dependent and increases with the 

overpotential, in agreement with the literature.
51,59

  

From the fitting curves in Figure 5, one can also evaluate the nucleation rate constant (A). It 

reaches values of 0.03 and 0.05 s
-1

 for CA at -100 and -200 mV, respectively. As A is much 

smaller than 1, the nucleation process can be considered as progressive in both cases. 

Spatial distribution of the NPs 

Unlike in surface plasmon resonance microscopy,
60,61

 a similar technique (based on a contrast 

layer) in which the presence of NPs results in a >4µm
2
 diffraction pattern, the BALM 

technique possesses a high spatial resolution (sub-micron) in the x and y directions that allows 

studying the spatial distribution of each NP lying on the AR gold substrate surface. This was 

achieved though the Voronoi tessellation of each image stacked in a movie. The principle of 

this analysis is illustrated in Figures 6a and b for two images taken at two different times (20 

and 50 s) during the CA conducted at -100 mV. The blue points are the original positions of 

the NPs in the image, while the orange points and black lines are the vertices and the ridges of 

the Voronoi cells, respectively.  
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Figure 6. Voronoi diagrams constructed around the xy positions of NPs (blue points in 

(a,b)) extracted from two images at different times (a and b at t= 20 and 50 s 

respectively) taken during the CA at -100 mV. Corresponding histograms of the Voronoi 

cell areas at (c) t = 20 seconds and (d) at t=50. The red curves are the normalized gamma 

function fits of the two distributions. 

The evolutions of the Voronoi diagrams and of the Voronoi cell area were studied as a 

function of time during CAs. Figures 6c and d present the variation of the size distribution of 

the Voronoi cells at two selected times (t=20 and 50 s for Figures 6c and 6d respectively) for 

the CA at -100 mV. For a set of nuclei randomly distributed on a surface, the distribution of 

the Voronoi cell area follows a Gamma-distribution given by equation (7):
62,63 

        
  

    
                     (7) 

where n is the parameter of the gamma function fit. , <> and   stand for the bins and the 

mean value of the distribution and the Gamma function, respectively.  

The red curves superimposed in Figures 6c and d correspond to the fits of the experimental 

distribution of the Voronoi cell area. At the early stages of the electrodeposition (Figure 6a 

and c for t=20 s), and thus at a low surface coverage by the NPs, the distributions are 

satisfactorily fitted by the probability density function of a random distribution (f(y, ~3.5)), 

which suggests that the NPs are randomly deposited at the beginning of the nucleation 

process. At higher surface coverage and longer deposition times (50 s), the probability density 

functions are narrower, as observed in Figure 6d. The distributions can also be fitted by a 

Gamma distribution, but with higher n values, suggesting a correlated growth of NPs. Such 

changes in the probability density function could be related to the overlap of the diffusion 

layers of consumption of the silver ions around each NP. It confirms that for these longer 

times each NP grows within the Case 4 diffusion regime owing to the overlapping NPs.         

Two types of Voronoi cells can be defined during the CAs. Those at the time of the NP birth 

and those at the end of the EC experiment, the first type of cells being always larger than the 
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second one. The retardation time (u’), previously defined, correlates with the NP Voronoi cell 

area estimated at the NP time of birth. The correlation is plotted in Figure 7 for the CA at -100   

mV. It is expected that both quantities correlate with such trend (the smaller the available area 

on the electrode and the longer the time need for the formation of a new nuclei) if the 

nucleation process is stochastic or not regioselective. Indeed the birth or retardation time 

reflects the probability of a new nucleus to form on the surface which should be proportional 

to the number of nucleation sites on the surface. If these nucleation sites are randomly 

distributed over the electrode surface, the smaller the available surface area and the lower the 

number of sites and therefore the lower the probability (the longer it takes) for a new nucleus 

to appear in that region. Figure 7 then suggests that over the optically monitored region the 

electrodeposition process is ruled by a stochastic process. 

 

Figure 7. Correlation of the NP retardation time of each NP (u’) with the Vornoï cell 

area of the NPs at the time of birth. Data are extracted from the CA at – 100 mV. 

Transient of isolated NPs 

From the variations of IBALM as a function of time and the calibration procedure detailed in the 

experimental section, single NP dynamic volume variations can be inferred. Figure 8a 

corresponds to the OPT transient of one of the first NPs grown from the surface. It thus 

possesses a large Voronoi cell area (>10 µm
2
) at its time of birth. The NP can thus be 

considered as isolated from the other growing nuclei at its time of birth. At the end of the CA 

(at 50 s and a potential of -100 mV), the NP reaches a final diameter of ~85 nm.       

 

Figure 8.  (a) Variation of the NP volume as a function of time during a CA at -100 mV 

for a single silver NP with a large Voronoi cell area (>10 µm²). The black and red curves 

are respectively the experimental BALM (optically inferred) volume transient and the 

theoretical volume variation calculated for an isolated growing nucleus. (b) BALM 
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images taken before (up, t=15s) and after (down, t=18s) the deviation observed in (a). 

Gray arrows highlight the presence of newly formed nuclei.  

Such isolated nucleus can be considered as an individual nano-electrode and, in the absence of 

other NPs, its growing dynamics can be approached mathematically by combining the 

Faraday’s law with the time-independent part of the diffusion equation.
51

 It leads to 

expression (8) of the NP radius (r) as a function of time (t): 

r = (2VmDc/ρ)
1/2

(t-u)
1/2

         (8) 

where Vm, D and c stand for the atomic volume, the diffusion coefficient and the bulk 

concentration of Ag
+
, respectively, and u, the NP time of birth.   

If the experimental volume transient is fitted by this expression, a deviation is noted after few 

seconds of growth (~17 s for the transient in Figure 8, t-u ~ 5 s), which is concomitant with 

the apparition of other NPs at the electrode surface. The image of the newly formed NPs is 

presented in Figure 8b. The observed deviation could be explained by the overlap of the 

diffusion layers of silver ions that form around the newly grown nucleus.  

Note that the fit of the experimental volume transients is done with an apparent concentration, 

which is smaller than the bulk concentration (ranging from 100 to 10 µM depending on the 

considered transient). Several arguments can be advanced to explain the need of considering a 

smaller apparent Ag
+
 concentration and are detailed in the next section.  

Towards an ensemble response  

By using many OPT transients together with the NP density extracted from a recorded BALM 

image sequence during a CA, it is then possible to compute the OPT CA of an electrode 

region under OPT monitoring. The idea here is to combine individual NP transients to 

reconstruct the ensemble OPT transient response and to analyze with the theories developed 

for the macroscopic electrochemical response recorded usually in electrodeposition studies. 

The OPT CA is trusted to be quantitative (thanks to the presence of the nano-gauges) and can 

be interpreted as a classical EC-CA curve. The interest of the approach is also that, as seen in 

Figure 2c, an EC CA contains background currents that may be difficult to subtract (because 

of double layer charging for example), particularly when electrodepostion from low 

concentrations is required. An example of OPT CA is presented in Figure 9 (black curve) for 

the CA conducted at -100 mV. It has been generated with the help of NB=50 single NP OPT 

transients from Figure 3a and c. As expected, the OPT CA presents the characteristics of a 

progressive nucleation process.  
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Figure 9. OPT CA (black curve) constructed with NB=50 intensity transients during an 

EC experiment at an overpotential of -100 mV and calculated CA (red curve) obtained 

by integrating N0 and A in the analytical model of Scharifker and Mostany.  

At the beginning, the current is increasing because of the nucleation and the increased number 

of nuclei that are growing, up to a maximum (at an arbitrary time of roughly 5 s in Figure 9), 

which is higher than the Cottrell current. After this maximum, the linear diffusion regime 

(case 4) dominates and the current drops, approaching the Cottrell stationary current.  

Several analytical models describe the EC CA curves when the diffusion layers overlap. 

Among them, the model developed by Mostani and Scharifker integrates A and N0 to 

calculate the current density through the Cottrell equation for a planar diffusion and the 

Avrami theorem.
14,49,50

        

The analytical equation proposed by Heerman and Tarallo (equation 25 in reference 51) is 

used to model the ensemble OPT CA transient.
51

 As observed in Figure 9, the analytical 

model (red curve) correlates nicely with the experimental current density calculated from the 

OPT data with an apparent bulk concentration of ~60 µM. This value is in fairly good 

agreement with the real bulk concentration of silver ions (100 µM). This mismatch is however 

consistent with the observation made with the individual NP growth. The difference between 

the real and the apparent concentration can be explained by a combination of factors. Firstly, 

the shape of the electrodeposited NPs is probably not exactly hemispheric. Indeed, NPs of 

different shapes will appear as undifferentiated OPT spots, if the sizes of the NPs are below 

the diffraction limit. Small errors can also come from the size correlation factor extrapolated 

from the theoretical volume of the adsorbed nano-gauges and the intensity of the OPT spots.     

Secondly, in the current experimental conditions, the microscope cannot detect the presence 

of NPs with sizes below an estimated diameter of roughly 10 nm.
53

 Therefore, small NPs and 

clusters formed at the electrode surface during the CA reduce the Ag
+
 concentration but are 

not detected optically, leading to a lower apparent concentration. The undetectable growth of 

such cluster may explain both the single NP and ensemble NP behavior. Its contribution is 

further suggested through the comparison of the EC current density measured during CV and 

compared to an ensemble OPT CV (Figure 2b). If the overall CVs are very similar for the NP 

stripping, there is a clear mismatch in the cathodic peak associated to the NP growth. The 

larger onset of the OPT current and higher OPT peak current compared to the EC ones 

suggest also the prior formation of nanocluster invisible to the OPT monitoring. 
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Finally, it is likely that the electrolyte presents some traces of chloride ions, which may yield 

to the precipitation of a portion of the Ag
+
 ions. Owing to NaNO3 purity, a maximum of 20 

µM of Cl
-
 may be present in the 0.1 M NaNO3 solution, which, owing to the AgCl solubility 

product (10
-9.75

) indeed suggests some precipitation of AgCl with a lower concentration of 

free Ag
+
 (and Cl

-
) in the solution. It would be about 80 µM for Ag

+
 (and 2 µM for Cl

-
), more 

consistent with the value obtained from the fits. 

Conclusions 

The OPT monitoring of an electrodeposition (herein using the BALM technique) represents a 

simple and unique toolbox to study nucleation and growth phenomena of individual NPs 

among a large set. Particularly, it has been employed to follow the formation of arrays of 

silver NPs, up to the point that we no longer need of recording the EC current density.  

Image sequences give access to much information as the nucleation rate, the nucleation 

density and the spatial distribution of NPs at any time of the EC experiment. OPT images 

allow drawing Voronoi diagrams and estimating the Voronoi cell area of a NP, with particular 

interest in estimating the Voronoi cell area of a NP at its time of birth . Growth dynamics are 

obtained by extracting the variation of the NP spot intensity as a function of time and OPT 

CA can be constructed in specific electrode regions, which is extremely useful as the 

electrode behavior is frequently inhomogeneous.  

Finally, data originating from the movies and showing collective behaviors of NPs were 

confirmed by comparing them to the analytical model that takes into account for the crosstalk 

between NPs. 

Since BALM does not rely entirely on the ability of a NP to scatter light, we believe that the 

same strategy could be extended to the analysis of the nucleation and growth of a wide range 

of other nanomaterials. 
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