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Abstract 

Anisotropic multiferroic properties of SrMnGe2O6 pyroxene single crystals were systematically 

investigated by means of magnetization, heat capacity, pyroelectric current measurement and elastic and 

inelastic neutron scattering experiments. Single crystal neutron diffraction allows us to unambiguously 

reveal the presence of two incommensurate magnetic orderings: a non-polar amplitude-modulated 

collinear sinusoidal magnetic structure emerges at TN1=4.36(2)K followed by a polar elliptical cycloidal 

spin structure below TN2=4.05(2)K. Pyroelectric current measurements on single crystal confirm the 

appearance of a spontaneous polarization within the (ac) plane below TN2 associated with the latter 

magnetic symmetry through extended Dzyaloshinsky-Moriya mechanism. The magnetic phase diagram 

was calculated considering the three isotropic exchange couplings relevant in this system. The magnetic 

excitations spectra of SrMnGe2O6 measured by inelastic neutron scattering were successfully modeled 

using a set of exchange interactions consistent with this phase diagram.  

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

I introduction 

 

 

  Strong coupling between magnetism and electricity in matter has become a central issue of condensed-

matter physics from both fundamental and technological points of view. In so-called spin-driven 

multiferroics, an electric polarization emerges due to the symmetry breaking induced by the magnetic 

ordering. These last 15 years, a large variety of magnetic orderings was found to induce ferro- or 

ferrielectricity. Mainly three different microscopic models have been proposed to describe the observed 

ferroelectricity in different spin-driven ferroelectrics: for commensurate structures the relevant 

mechanism is exchange striction, whereas in incommensurate structures inverse Dzyaloshinskii-Moriya 

(DM) model1,2 is proposed for cycloid-type ordering, while spin-dependent p-d hybridization model3 is 

invoked in proper screw type of magnetic ordering. The inverse DM model arising from the 

antisymmetric spin-exchange interaction between canted spin sites has been successfully used to explain 

the emergence of ferroelectricity in multiferroïcs with cycloidal order (like prototypical multiferroïc 

TbMnO3
4) but also transverse-conical spin order (for instance in spinel type CoCr2O4

5). In addition, 

Kaplan and Mahanti6 have shown that the extended inverse DM effect in some specific systems 

contributes to microscopic electric polarization in both cycloid and proper-screw helical systems. 

   Competing antiferromagnetic exchanges are well known to lead to frustration and give rise to 

modulated magnetic phases and rich phase diagram. It is the case in Pyroxenes, which are historically 

of great importance in mineralogy and have gained recently interest in condensed matter physics because 

of the interplay between low dimensionality and magnetic frustration. The general formula of Pyroxenes 

is AMX2O6, where A is usually an alkali metal ion with a valence of 1+ (e.g. Li+ and Na+) or an alkaline 

earth ion with a valence of 2+ (Mg2+, Ca2+ and Sr2+), M refers to trivalent or divalent transition metal 

ions (e.g. Fe3+ and Mn2+), and X represents Si4+ or Ge4+. Based on the observation of electric polarization 

under magnetic fields, Jodlauk et al 7 reported that the clinopyroxene (pyroxene with a monoclinic 

crystal structure) compounds NaFeSi2O6, LiFeSi2O6, and LiCrSi2O6 could display multiferroism. They 

suggested that the quasi-one-dimensional spin chain of M3+ ions should be subject to spin frustration 

between intrachain and interchain interactions resulting in an incommensurate spin structure. These 

magnetic structures could induce ferroelectric polarization, possibly due to the formation of spiral spin 

ordering. Subsequent neutron diffraction and electric polarization studies revealed that not only 

NaFeSi2O6 8–10 but also NaFeGe2O6
9,11–14  are spin driven multiferroics, while LiFeSi2O6

15,16 , 

LiCrSi2O6
17–19 and also CaMnGe2O6

20 are linear magnetoelectric materials. In pyroxene triangular 

topology, the 3d5 electronic configuration of the transition metal is a crucial feature to trigger magnetic 

frustration because it is the only one that gives rise to predominant and uniform AFM interactions along 

the octahedra chains21. Recently, we have established that the divalent pyroxene SrMnGe2O6, with Mn2+
 

in a 3d5
 electronic configuration, present indeed multiferroism22.     
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The structure of SrMnGe2O6, (C2/c, a = 10.346(2) Å, b = 9.420(2) Å, c = 5.511(1) Å, β = 104.669(5)) 

shown in figure 1(a), is characterized by zigzag spin chains of Mn2+ running along the c-axis. Along the 

a-axis, the spin chains are connected via GeO4 tetrahedra, and thus intrachain interaction (J) along the 

c-axis is strongest while the weaker interchain interactions (J1 and J2) can be a source of competing spin 

interactions. Therefore, the magnetic arrangement can be regarded as a spin-frustrated network of quasi-

one-dimensional spin chains, thus prone to the formation of incommensurate spin ordering. 
   Recently, we have succeeded in growing large single crystal of SrMnGe2O6 by the floating zone 

furnace technique, as it can be observed in Figure 1(b). In the present study, we extend the investigation 

done previously on powders22 by using these single crystals and access the anisotropic properties. 

Hereafter are reported our single-crystal magnetization, heat capacity, pyroelectric current 

measurements as well as elastic and inelastic neutron scattering experiments.   

 

 

II Experimental details 

 

Single crystals of SrMnGe2O6 were grown using the floating zone furnace technique. To prepare 

SrMnGe2O6 powders the starting materials of reagent-grade SrCO3, MnO2, and GeO2 were thoroughly 

ground in an agate mortar and pressed into pellets. The pellets were placed in a platinum boat and heated 

in air to 1100° C at 100 °C/h, then held at 1100 °C for 10 days and cooled down to room temperature. 

(a) 

 
(b) 

 

 

(c) 

 
Figure 1 (a) Crystal structure of SrMnGe2O6 (C2/c) projected along two different directions. Atoms are represented by 

colored spheres: Sr in gold, Mn in purple, Ge in green and O in red. Right: Sketch of the three main exchange interactions (b) 

Photograph and (c) X-ray Laue image of the single crystal of SrMnGe2O6 grown by floating zone method.  



4 
 

The powder was sealed in a rubber tube, evacuated, and compacted into a rod (typically 4 mm in 

diameter and 10 cm long) using a hydraulic press under an isostatic pressure of 1 GPa.  After removal 

from the rubber tube, the rods were sintered at 1100 °C for 5 days in air. Single crystals of approximately 

4 mm in diameter and up to 50 mm in length were grown from the polycrystalline feed rods in a floating 

zone furnace. Growths were carried out under air at room pressure. The crystal growth rate was 

maintained at 4 mm/hr. Samples with dimensions suitable for the particular measurements and with 

different crystallographic orientations were cut from the same crystal. Both x-ray and neutron single 

crystal Laue diffraction confirmed the good crystallinity of the as-grown single crystals.  

   Magnetization was measured using a SQUID detection magnetometer (MPMS-XL by Quantum 

Design). The dc magnetic susceptibility measurements were performed under both zero-field-cooled 

(ZFC) and field-cooled (FC) procedures over the temperature range between 2 K and 300 K in magnetic 

field of 0.1 T.  

   Heat capacity measurement was carried out using a relaxation technique on a Quantum Design 

Physical Property Measurement System (PPMS). A small single crystal was mounted on a sample 

platform with Apiezon N grease for better thermal contact. The heat capacity was recorded in the 

temperature range of 2–300 K without external field. 

   The temperature dependence of electric polarization of SrMnGe2O6 was obtained by the pyroelectric 

current method. The oriented single crystals were coated with silver epoxy on both parallel surfaces of 

the sample.  A poling field, Ep, up to ± 500 kV/m was first applied in the paraelectric state at temperature 

6–10 K prior to cooling the sample through the Néel temperature down to 2 K in order to obtain a single 

polar domain state. At 2 K, the poling field was removed. Then, the sample was heated at a constant rate 

of 3 K/min, and the pyroelectric current curves were recorded using a Keithley 6514 electrometer. 

Electric polarization curves were eventually obtained by the integration of the time dependence of the 

observed pyroelectric current. 

   Neutron diffraction experiments were carried out on the CEA-CRG D23 4-circle single-crystal 

diffractometer at the Institut Laue Langevin (Grenoble, France) with an incident wavelength λ=1.277 Å 

selected by a fixed curvature Cu 200 monochromator. The single crystal was mounted in a close-cycle 

refrigerator and data collections were carried out at several temperatures in the paramagnetic domain 

and for each of the magnetic phases. The refinements were done using the FULLPROF SUITE package23 

by least-squares refinements using the integrated intensities and including an extinction correction 

following the model of Becker-Coppens 24. To refine the magnetic structures, the crystallographic 

parameters and the scale factors were fixed to the values obtained in the crystalline refinements. The 

spin configurations have been described as follows:  for a given magnetic propagation vector 𝐤𝐤 (and the 

associated−𝐤𝐤) 

𝐦𝐦𝑙𝑙𝑙𝑙 = 𝑚𝑚1𝑙𝑙𝑢𝑢�𝑙𝑙 cos�2𝜋𝜋�𝐤𝐤.𝐑𝐑𝑙𝑙 + Φ𝑙𝑙�� +  𝑚𝑚2𝑙𝑙𝑣𝑣�𝑙𝑙 sin�2𝜋𝜋�𝐤𝐤.𝐑𝐑𝑙𝑙 + Φ𝑙𝑙�� 

Equation 1 
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Where 𝐦𝐦𝑙𝑙𝑙𝑙 is the magnetic moment of the atom j in the unit cell l, 𝐑𝐑𝑙𝑙 is the vector joining the arbitrary 

origin to the origin of unit cell l, and Φ𝑙𝑙 is a magnetic phase. Group-theoretical calculations were done 

using ISODISTORT 25 and Bilbao crystallographic server (magnetic symmetry and application26) 

software. 

   The inelastic neutron scattering (INS) experiment was carried out on the 4F2 cold neutron three-axis 

spectrometer at the Laboratoire Léon Brillouin (ORPHÉE Reactor, Saclay, France). The spectrometer 

was equipped with focusing Pyrolitic Graphite PG (002) monochromator and analyzer. A Be filter was 

implemented in the scattered beam to remove high order contaminations. The final energy Ef was set to 

4.9 meV or 3.48 meV (Kf =1.55 and 1.3 Å-1, yielding an energy resolution of about 0.22 and 0.1 meV 

respectively). The INS measurement was performed on a long single crystal (21*2*2 mm3, 176mg). The 

sample was mounted on a standard orange cryostat, and aligned in the (0 K L) scattering plane.  

 

III Results 

A. Magnetic and multiferroic properties 

Temperature dependence of the magnetic susceptibility curves under a magnetic field along the a, b and 

c* axes of SrMnGe2O6 are shown in Figure 2a. The anomalies in these curves indicate the presence of 

two successive magnetic transitions. At TN1=4.36 K, the first magnetic transition is clearly visible by a 

drop in the magnetic susceptibility along the a direction while only a small kink is observed along the b 

and c* directions. The second magnetic phase transition is featured by a sudden drop in the susceptibility 

along the b axis at TN2=4.05 K (Figure 2b). The two successive magnetic transitions can be further 

confirmed by heat capacity measurements. As shown in Figure 2b, the specific heat curve exhibits a 

sharp peak and a lambda-like anomaly at TN1 =4.36(2) K and TN1 = 4.05(2) K, respectively, coinciding 

with the two magnetic transitions. Only one magnetic phase transition was observed in our previous 

study on powder probably because the two transitions are very close in temperature. 
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Figure 2  (a) Temperature dependence of magnetic 

susceptibility measured under a magnetic field of 0.1 T 

applied along the a, b and c* axis. (b) Temperature 

dependence of heat capacity and magnetic susceptibility 

measured under a magnetic field of 0.01 T applied along the 

b axis. The dashed lines indicate magnetic phase transitions. 

 

The electric polarization anisotropy measured on a single crystal often provides insights in the 

understanding of the pertinent mechanisms of multiferroicity. We have performed pyroelectric current 

measurements with the poling electric field applied along a, b and c* direction under Ep = 500 kV m−1. 

As shown in Figure 3, the spontaneous electric polarization develops very close to 4 K and increases 

with decreasing temperature to reach ∼3 µC m−2 at 2 K along a and c* directions. On the other hand, 

there is minimal or no polarization seen along the b direction. The electric polarization value changes 

its sign with reversal of the electric poling direction which directly evidences that SrMnGe2O6 is indeed 

ferroelectric below 4 K. Moreover, the concomitant ferroelectric and antiferromagnetic transition at TN2 

= 4.05 K confirms that SrMnGe2O6 is a multiferroic compound, while the magnetic ordering at TN1 = 

4.36 K does not seem to cause a ferroelectric order. 

 
Figure 3 Temperature dependence of the electric 

polarization of SrMnGe2O6 measured with the 

electric field parallel to the a, b and c* axis. 
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B. Neutron diffraction 

The structural refinement based on single crystal neutron diffraction data confirmed that SrMnGe2O6 

crystallizes with the C2/c symmetry, in good agreement with our previous results based on single crystal 

x-ray diffraction data22. No structural phase transition could be detected by our temperature-dependent 

neutron diffraction measurements down to 2 K. The atomic coordinates, displacement parameters and 

principal structural parameters are given in Table 1. Although the Mn-O1-Mn in-chain bond angle 

departs from 90° (Mn-O1-Mn = 96.12(6)°), the oxygen octahedra surrounding the Mn2+ cations remain 

very regular as reflected by the small value of the distortion index based on bond lengths, D, defined by 

Baur27.  
 

Table 1 Agreement factors and refined structural parameters for SrMnGe2O6 at 2K. The average distance, octahedral 

distortion and effective coordination number are also given for MnO6 octahedron. 

Name      x            y            z            B (Å2)    

Sr  0   0.30855(  13)   0.25    0.303( 28) 

Mn      0   0.90760(  23)   0.25  0.072( 42) 

Ge      0.28244(6)   0.09546(   8)   0.21927(  13)   0.169( 24) 

O1       0.11107(9)  0.08742(  11)   0.13957(  19)   0.344( 28) 

O2       0.35783(10)   0.25469(  11)   0.31808(  21)   0.394( 25) 

O3       0.35351(8)   0.02179(  11)   0.98119(  20)   0.312( 28) 
Mn-O1-Mn = 96.12(6)° 

Mn-Mn distance  through J:  d=  3.257(3) Å 

Mn-Mn distance  through J1 : d1=  5.996(2) Å 

Mn-Mn distance  through J2:  d2=  6.9896(19) Å 

MnO6 octahedron: 

Average bond length =  2.1784 Å 

Distortion index (bond length) = 0.01072 

Effective coordination number =  5.9725 

Space group C2/c; a=10.3559Å, b=9.3903Å, c=5.5133Å, β=104.651°,RF2= 

4.59, RF2w=6.26, RF=2.62, χ²=118. Number of reflections: 582. 
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Figure 4 Temperature dependence of the ky component of 

the magnetic propagation vector k=(0,ky,0) (top) and the 

integrated intensity of the (1, 1-ky, 1) magnetic reflection 

(bottom). 

 

   Single crystal neutron diffraction experiments show that magnetic Bragg reflections appear below TN1 

(ICM1 phase) which can be indexed by an incommensurate propagation vector k= (0, ky, 0) with 

ky=0.381(1) at 4.1 K. In Figure 4, one can clearly see that the modulus of the k-vector increases 

significantly below TN2 to reach ky=0.425(1) at 2 K, which marks the transition to the lower temperature 

ICM2 phase. This transition is also reflected by a kink in the evolution of the integrated intensity of (1, 

1-ky, 1) reflection. The k-vector corresponding to the ICM2 phase is consistent with the one previously 

observed by neutron powder diffraction22.  To determine the magnetic structures, 248 reflections 

belonging to the ICM1 phase were collected at 4 K and 290 reflections were collected at 2 K for the 

ICM2 phase. Possible magnetic models where searched using the Simulated Annealing method and the 

corresponding magnetic structures were then refined. The two orbits Mn1 (0, 0.90760, 0.25) and Mn2 

(0, 0.09240, 0.75) were constrained to have the same magnetic moment. Only the magnetic phase 

difference ΔΦ between these two sites was refined. The parameters that describe the proposed spin 

arrangements are gathered in Table 2.  

   The magnetic structure in the ICM1 phase was determined as an amplitude-modulated collinear 

sinusoidal structure with the reliability factor Rf = 11%. The refinement leads to a magnetic moment of 

1.961(6) µB  along  the easy-magnetic axis (Figure 5a). As shown in Figure 5c, the easy-magnetic axis 

is confined into the (ac) plane but with an angle of α =18.5◦ away from the a axis towards the c axis. 

The corresponding magnetic superspace group of the ICM1 phase is B2/b1'(0,0,g)s0s with g = ky ,25,28 

generated by the single magnetic irreducible representation mLD2 (see Table 3). Such magnetic 

symmetry preserves the two-fold axis and the mirror plane symmetry, resulting in the centrosymmetric 

magnetic point group 2/m1’. This explains the absence of spontaneous electric polarization between TN1 

and TN2. 
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   The determination of the magnetic structure of the ICM2 phase (reliability factor Rf = 3.54%) leads to 

an elliptical cycloidal spin structure with the moments rotating within the plane formed by the b axis 

and the same easy-magnetic axis than in ICM1 phase (cf Figure 5a and c). It is worth noticing that the 

moments are close to be perpendicular to the c direction (4° off). Tentative refinements constraining 

them to be exactly normal to the c direction lead however to a much lower fit quality. At 2 K, the refined 

Mn2+ magnetic moment varies from 4.26(2) µB along the long axis of the ellipse to 3.90(2) µB along the 

short axis. The magnetic superspace group describing this magnetic structure is Bb1'(0,0,g)0s where two 

magnetic irreducible representations mLD1 and mLD2 have to be combined to generate the magnetic 

structure. It breaks the structural two-fold axis and keeps the mirror plane symmetry perpendicular to 

the unique b axis, leading to the polar magnetic point group m1’. The corresponding magnetic point 

group allows the existence of spontaneous polarization in any direction perpendicular to the mirror, i.e. 

in the (ac) plane, in good agreement with the observed spontaneous polarization along a and c* (Figure 

3).  
 

(a)  

(b) 

(c) 
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Figure 5 : Illustration of the determined magnetic structures: (a) ICM1 amplitude-modulated collinear 

sinusoidal structure with moments along the direction defined by the α angle  (b)  ICM2 elliptical cycloidal spin 

structure with the moments rotating within the ab plane (c) α angle give the direction of the easy-magnetic axis 

located at about 18.5° from the a axis towards the c axis 

 

Table 2 : Refined  parameters of  SrMnGe2O6 magnetic structures at 2 K and 4.1K under zero field. Both 

structure have a propagation vector of the form k= [0, ky,0]. The unitary vectors 𝑢𝑢�  and 𝑣𝑣� are described 

by spherical angles: φ is the angle that the projections of the unitary vectors in the xy plane make with 

x(||a) and θ is the angle the unitary vectors make with z (||c∗). ΔΦ corresponds to the magnetic phase 

difference of Mn1 (0, 0.90760, 0.25) and Mn2(0, 0.09240, 0.75). α is the angle between the plane where 

the moments lay and a direction in the ac plane. m1j and m2j correspond to the modulus of the orthogonal 

components of magnetic moments. RF2, RF2w , RF, and χ2 are the reliability factors. 

Temperature 2K 4.1K 

Magnetic Superspace group Bb1'(0,0,g)0s B2/b1'(0,0,g)s0s 

Basis {(-1,0,0,0),(0,0,-1,0),(0,-1,0,0),(0,0,0,1)} 

Propagation vector [0,ky,0] 

ky 0.425 0.381 

Mn1, Mn2 m1j (µB) 4.26(2) 1.961(6) 

 φu 0° 0 

 θu 71.4(3)° 71.5(4) 

 m2j (µB) 3.90( 2)  

 φv 90°  

 θv 90°  

ΔΦ 0.1744(   6) 0.2089( 15) 

α 18.6(3)° 18.5(4)° 

RF2 (%) 4.37 12.5  

RF2w (%) 4.79 10.2  

RF (%) 3.54 11.0  

χ2 3.79 2.73 

Number of  Reflections 290 248 

 

 

 

Table 3 : Nonzero IR’s and associated basis vectors ψ for the space group C2/c with k = [0 0.424 0]. The 

magnetic atoms Mn2+ at 4e site are split into two independent orbits: Mn1 (0, 0.90760, 0.25) and Mn2 (0, 

0.09240, 0.75). 

  Orbit 1 Orbit 2 

IR Basis vector mx my mz mx my mz 

mLD1 ψ1 0 1 0 0 1 0 
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mLD2 ψ 2 1 0 0 1 0 0 

ψ 3 0 0 1 0 0 1 

 

C. Magnetic phase diagram 

As explained above the dominant magnetic interaction (J) between the Mn2+ nearest-neighbor cations 

(d=3.257Å) along the octahedra chains is mediated by super-exchange interactions through the O1 

oxygen anion in competition with direct exchange interactions. The magnetic coupling between MnO6 

chains is operated through the bridging GeO4 tetrahedra (see Figure 6). Two magnetic interactions J1 

and J2 are expected to play an important role for diverse magnetic orderings: J1 is governed by a double 

super-super-exchange (SSE) path through edges of two different GeO4 tetrahedra (d1=5.996Å), while J2 

is given by a single SSE at a longer distance (d2=6.989Å).  

 
Figure 6 : The MnO6 zigzag chains connected through GeO4 tetrahedra in SrMnGe2O6. The bold solid, thin solid and 
dotted lines correspond to exchange paths J, J1 and J2. 

 

This model with the three isotropic29 exchange interactions (J, J1, J2) was solved assuming classical 

spins to determine the ordered spin configurations in SrMnGe2O6. The Luttinger-Tisza method30 was 

used for finding the ordering wave-vector q0 that minimizes the total classical energy 𝐸𝐸(𝒒𝒒) =

  −𝒩𝒩|𝑺𝑺(𝒒𝒒)|2 𝜆𝜆0 (𝒒𝒒) (with 𝒩𝒩  the number of spins and S(q) their Fourier components), ie that maximizes 

the highest eigenvalue λ0 (q) of the Fourier transform of the interaction matrix J(q), for given sets of 

exchange couplings J, J1, J2 . The resulting classical phase diagram in the (J1/|J|, J2/|J|) is represented in 

Figure 7. When one of the interchain interaction dominates the other, commensurate orders are found: 

J1 promotes k=0 while J2 tends to break the centering C with a k=(0, 1, 0) vector. The k=0 commensurate 

order is found in most of the pyroxenes with the same crystal structure of space group C2/c with AFM 

J: in NaCrGe2O6
31, NaCrSi2O6 32and CaMnGe2O6

20. Incommensurate order comes out from the 
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competition between J1 and J2 interchain interactions, it represents a large intermediate sector of the 

phase diagram. The stabilized incommensurate k vector is (0, ky,0). It is worth noticing that in some part 

of the diagram (kx, 0, kz) order is very close in energy and may be further stabilized by introducing a 

small antiferromagnetic next nearest-neighbor (NNN) interaction in the chain. This is probably the case 

with NaFeGe2O6 14. Note that k=(0, 1, 0) is found in all pyroxenes where the intrachain interaction is 

ferromagnetic: CaM(Si,Ge)2O6 with M= Fe, Co, Ni33 and SrCoGe2O6
22

. 

   To get more insight into the phase diagram, we have also calculated analytically the classical energy 

for the k=(0, ky, 0) propagation vector. Minimizing the classical energy with respect to ky leads to the 

following relation between ky and the exchange interactions J1 and J2: 
Equation 2      

  𝐽𝐽2 =
𝐽𝐽1

2�𝐽𝐽2 + 2𝐽𝐽1 𝑐𝑐𝑐𝑐𝑐𝑐�𝑘𝑘𝑦𝑦/2� + 𝐽𝐽12
 

for J1 and J2 <0 (AFM). The line displayed on Figure 7 illustrates this relationship for ky=0.424. Taking 

into account the phase (ΔΦ) between the magnetic moment directions of the two magnetic sites gives 

another parameterization: 

𝐽𝐽1
|𝐽𝐽|

=  −
sin�𝑘𝑘𝑦𝑦 + ΔΦ�

sin (
𝑘𝑘𝑦𝑦
2 + ΔΦ)

 

𝐽𝐽2
|𝐽𝐽|

=  −
sin�𝑘𝑘𝑦𝑦 + ΔΦ�

2sin (
𝑘𝑘𝑦𝑦
2 )

 

If we now consider the actual structure refined in SrMnGe2O6 at 2 K (ky=0.424(1), ΔΦ = 62.8(2)° ), it 

gives J1/│J│=0.88(2) and J2/│J│=0.29(1) which is represented by the black point marked on Figure 7. 
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Figure 7 : Magnetic phase diagram for an antiferromagnetic intrachain interaction J<0, representing the stability of 

different magnetic ground states in function of on relative values of the exchange parameters, J1/│J│ and J2/│J│. Phase 

boundaries are represented by the plain black lines while the dashed one shows the iso-ky=0.424. The black point is the sets 

of parameters obtained for SrMnGe2O6 (see text). The color scale represents the ky value: the red region shows the magnetic 

phase characterized by k = (0, 1, 0), while the region in blue corresponds to the k = 0 phase. 

 

D. Spin-wave excitations from inelastic neutron scattering 

To cross check this analysis, we have carried out inelastic neutron scattering (INS) experiment at 2 K.   

Representative raw data scans are shown in Figure 8.  

 

Well-defined spin-wave excitations are observed, as shown also in Figure 9. Acoustic modes emerge 

from the incommensurate (0,ky,1) Bragg peaks and disperse throughout the Brillouin zone up to about 

1 meV, as expected in such a non-collinear structure. Along L, a more complicated spectrum emerges: 

the acoustic modes go soft at integer L=1 and 2, while an optical mode is also observed at about 0.7 

meV. 

 

a)

0,0 0,5 1,0 1,5 2,0
0

200

400

600

800

1000

 

 

In
st

en
sit

y 
(N

eu
tro

n 
co

un
ts

)

E (meV)

 K= 0,0
 K= 0.2
 K= 0.424

[0 K 1]

 

b)

0,0 0,5 1,0 1,5 2,0
0

50

100

150

200

250

300

350

 

 

 L= 1.0
 L= 1.2
 L= 1.4
 L= 1.6

In
te

ns
ity

 (n
eu

tro
n 

co
un

ts
)

E (meV)

[0 ky L]

 
c)

-1,0 -0,8 -0,6 -0,4 -0,2 0,0
0

100

200

300

400

500

600

700

 

 

In
te

ns
ity

 (n
eu

tro
n 

co
un

t)

[0 K 1]

 E= 0.36 meV

 

d)

0,6 0,8 1,0 1,2 1,4
0

100

200

300

400

500

 

 

In
te

ns
ity

 (n
eu

tro
n 

co
un

t)

[0 ky L]

 E= 0.48 meV
 E= 0.76 meV

 

Figure 8 : Energy scans measured at selected positions Q=(0 ky L) (a) and Q=(0 K 1)(b) to determine the magnon 
dispersion in the ferroelectric elliptical cycloidal  phase at T= 1.5 K.  (c) and (d) Representative Q-scans at constant 
energy transfer in the [0 K 1] (c) and [0 ky L] (d) directions crossing the spin-waves excitations. 
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Figure 9: Measured (top) and calculated (bottom) intensity mapping of the inelastic intensity for T=2 K along Q=(0 ky l) 
and (0 k 1) direction; black circles mark the fitted magnon energies.  The calculations were performed with J = 0.11 meV, 
J1 = 0.086 meV and J2 = 0.031 meV and planar single-ion anisotropy=0.12 meV 

 

To model the spin dynamics, spin-wave calculations were performed using the Spinwave software34 

developed at LLB. The Hamiltonian governing the magnetic properties is of the form: 

𝐻𝐻 = 𝐽𝐽 � 𝑆𝑆𝑖𝑖𝑆𝑆𝑙𝑙 + 𝐽𝐽1 � 𝑆𝑆𝑖𝑖𝑆𝑆𝑙𝑙

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖,𝑙𝑙

+ 𝐽𝐽2 � 𝑆𝑆𝑖𝑖𝑆𝑆𝑙𝑙 + �𝐵𝐵𝑖𝑖,20
𝑖𝑖

𝜗𝜗𝑖𝑖,20

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖,𝑙𝑙

𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖,𝑙𝑙

 

In addition, to the J, J1 and J2 terms, a single-ion anisotropy term was taken into account, modeled by V 

=  3/2 B20 Sz,i
2. Here B20 is positive to ensure that the spins lie in the easy plane and stabilize the cycloid 

structure, as inferred from diffraction. Diagonalization of the Hamiltonian in the spin wave 

approximation allows to calculate the spin-spin correlation function as observed by inelastic neutron-

scattering experiments. As we have seen before, considering the actual structure refined in SrMnGe2O6 

gives constraints on the ratios J1/│J│and J2/│J│ to fulfill Equation 2. The values of J and B20 have yet 

to be determined. To this end, we have carried out a series of calculations keeping the ratios J1/│J│ and 

J2/│J│constant, but varying J and B20 in a systematic way. The detailed study is presented in Appendix 

A. The best reasonable agreement is found for the following set of interactions consistent with the 
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refined magnetic structure i.e. J = 0.11(1) meV, J1 = 0.086(12) meV and J2 = 0.031(4) meV and 

B20=0.12(3) meV, see Figure 9, hence showing the consistency of this analysis against our neutron 

results.  

 

IV. Discussion  

    

We have just seen that the refined magnetic structure, the calculated magnetic phase diagram and 

the spin-wave measured in SrMnGe2O6 are well captured by the simple model of three isotropic 

exchange interaction J, J1 and J2. To the best of our knowledge, this study shows the first experimental 

determination of exchange interactions done on pyroxene compounds. DFT calculations were however 

performed on isostructural compounds with 3d5 magnetic cation: CaMnGe2O6
35 and NaFeGe2O6

14. The 

hierarchy and the sign of the exchange interactions is the same in the three compounds: all interactions 

are antiferromagnetic and the strongest is the exchange interaction along the chains (Super-exchange J), 

while the second largest exchange coupling is via the two GeO4 tetrahedra (Super-super-exchange SSE 

J1). This hierarchy can be explained by (i) the nature of the interaction SE vs SSE, (ii) the Mn-Mn 

distances and (iii) the fact that J1 involves two GeO4 bridge compared to only one for J2. SrMnGe2O6, 

has much weaker exchange interaction values than in the other two compounds (JNaFeGe2O6=12.3K, 

JCaMnGe2O6=3.6K, JSrMnGe2O6 =1.04K), which is reflected also in the Néel ordering temperatures (TN 

NaFeGe2O6=13K, TN CaMnGe2O6 = 15K, TN SrMnGe2O6 =4.36K). The weaker exchange interaction in SrMnGe2O6 

can be understood by considering the distortion of the ideal pyroxene structure due to the large Sr2+ 

cation size. First of all, in SrMnGe2O6 the magnetic cation distances M-M in between the chains (d1 

through J1 and d2 through J2) are much larger than in NaFeGe2O6 (for instance d1= 5.996 Å in 

SrMnGe2O6 with respect to 5.64Å in NaFeGe2O6
9). Then, let us consider the strength of the dominant 

intrachain magnetic interaction J in SrMnGe2O6. Super-exchange through the O1 oxygen anion between 

the Mn2+ nearest-neighbor cations along the octahedra chains is in competition with direct exchange. 

The detailed analysis of the different orbital contribution done by Streltsov and Khomskii21 show that  

t2g−eg contribution is the strongest and is AFM. eg−eg orbitals give a smaller contribution but which is 

subtly dependent on the angle M-O-M.  For angle close to 90° FM contribution dominates, while it is 

outbalanced by AFM for much larger angle, the compensation occurring about 97°. In SrMnGe2O6, the 

angle M–O1–M is 96.12(6)°, close to the compensation angle, and therefore eg-eg orbital have low or no 

contribution. In NaFeGe2O6 however, the M-O-M angle is ~102.7° and the eg-eg contribution reinforces 

the AFM character of the interaction. This is an important difference between the compounds because 

while for NaFeGe2O6
14

  the value of intra-chain J is nearly three times larger than inter-chain interactions 

J, in SrMnGe2O6 J and J1 are comparable (J1/J =0.88). This raises the question of whether NaFeGe2O6 

is in the quasi-one-dimensional limit unlike SrMnGe2O6. This is a non-trivial issue because, the 

connectivity is quite peculiar in pyroxenes. While J connects the spins of a given chain running along 
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the c-axis, J1 connects two spins alternately within the neighboring left, right, front and back chains. In 

this sense, even with J and J1 comparable, SrMnGe2O6 is not fully 3D. 

Several experimental facts evidence that magnetic anisotropy is an important feature in SrMnGe2O6. 

Firstly, the magnetization susceptibility measured along the c* direction is much smaller than along b 

and a, which is consistent with c* being a hard axis of magnetization. Then, the presence of anisotropy 

promotes a collinear structure over a non-collinear one which is the case here where at high temperature 

an amplitude-modulated collinear sinusoidal structure is preferred. Furthermore, the magnetic structures 

refined in both phases present an easy-axis direction in the (a,c) plane, almost perpendicular to c*, with 

a robust direction with respect to temperature variations. Planar single-ion anisotropy was introduced in 

the spin-wave calculation to stabilize the cycloid structure in the observed plane. The observed 

anisotropy is significant since in a purely ionic description manganese in SrMnGe2O6 is an S-state Mn2+ 

ion with vanishing orbital moment. However it has been reported that single-ion anisotropy of Mn2+ 

cannot be neglected and play an important role36.  

 

Having established the microscopic magnetism model and the driving factors stabilizing the polar 

elliptical cycloidal magnetic phase in SrMnGe2O6, let us now discuss in detail the direction of the electric 

polarization in the (ac) plane and the mechanism that can be proposed to generate it. We have measured 

a polarization along the a and c* directions with almost the same amplitude, which gives a resultant 

experimental polarization Pexp with an angle of ~45 ° with respect to the a direction in the (ac) plane 

(see Figure 10). In the well-known spin current1 and inverse DM theories2,37, for two adjacent spins Si 

and Sj separated by the vector eij the polarization is expressed by 𝑃𝑃1 ∝ 𝑒𝑒𝑖𝑖𝑙𝑙 × (𝑆𝑆𝑖𝑖 × 𝑆𝑆𝑙𝑙), and is therefore 

lying along the direction given by α. These mechanisms cannot therefore explain fully the observed 

polarization. We have to invoke also a polarization parallel to the cross-product  𝑃𝑃2 ∝ 𝑆𝑆𝑖𝑖 × 𝑆𝑆𝑙𝑙, via the 

extended inverse DM effect proposed by Kaplan and Mahanti6. It is indeed allowed by symmetry 

because there is neither a mirror plane containing eij nor an n-fold rotation axis perpendicular to eij. 

Finally, in SrMnGe2O6, the induced macroscopic polarization can be understood in terms of the inverse 

Dzyaloshinskii-Moriya interaction combining the two orthogonal components P1 and P2. This 

combination was found also other spin-driven multiferroics like in delafossite AgFeO2
38 or in 

RbFe(MoO4)2
39

. 
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Figure 10 : Schematic illustration representing the elliptical cycloid 

running along the b axis and the electric polarization directions in 

the (a,c) plane:  Pexp being the experimental one, P1 and P2 

corresponding to the extended inverse DM mechanism6.  

 

 

 

V. Conclusion 

In summary, we have performed a comprehensive study of multiferroic properties of SrMnGe2O6. We 

found two successive incommensurate spin structures below 4.36(2) and 4.05(2)K. A non-polar 

amplitude-modulated collinear sinusoidal magnetic structure emerges followed by a polar elliptical 

cycloidal spin structure. Extended Dzyaloshinsky-Moriya mechanism successfully explains the 

appearance of a spontaneous polarization measured within the (ac) plane associated with the latter 

magnetic symmetry. The good adequacy between the determined magnetic model, the calculated 

magnetic phase diagram and the measured and simulated spin-wave demonstrates that the magnetic 

behavior of SrMnGe2O6 is well captured by a rather simple model with three competing isotropic 

interactions and a weak single-ion anisotropy.  

 

APPENDIX A: Analysis of INS data 

As explained in the main text, the numerical approach described in this study is based on the following 

Hamiltonian: 

𝐻𝐻 = 𝐽𝐽 � 𝑆𝑆𝑖𝑖𝑆𝑆𝑙𝑙 + 𝐽𝐽1 � 𝑆𝑆𝑖𝑖𝑆𝑆𝑙𝑙

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖,𝑙𝑙

+ 𝐽𝐽2 � 𝑆𝑆𝑖𝑖𝑆𝑆𝑙𝑙 + �𝐵𝐵𝑖𝑖,20
𝑖𝑖

𝜗𝜗𝑖𝑖,20

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖,𝑙𝑙

𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖,𝑙𝑙

 

In addition, to the J, J1 and J2 terms, a single-ion anisotropy is taken into account, modeled by a B20 O20 

term, with O20 = 3/2 Sz
2 -5/2(5/2+1)Id . This operator is written with respect to a local “z” quantification 

axis, along the (-0.33, 0, 1) vector. B20 is positive to ensure that the spins lie in the plane perpendicular 

to this axis, and stabilize the cycloid structure, as inferred from diffraction. Meanwhile, the spin wave 
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theory is a theory of harmonic deviations of the spins around a mean field solution. At the level of this 

approximation, the incommensurate propagation vector ky and the ∆Φ phase shift are related via the 

formula:  

 

𝐽𝐽1
|𝐽𝐽|

=  −
sin�𝑘𝑘𝑦𝑦 + ΔΦ�

sin (
𝑘𝑘𝑦𝑦
2 + ΔΦ)

 

𝐽𝐽2
|𝐽𝐽|

=  −
sin�𝑘𝑘𝑦𝑦 + ΔΦ�

2sin (
𝑘𝑘𝑦𝑦
2 )

 

 

Diffraction measurements carried out in SrMnGe2O6 at 2 K yield ky=0.424(1), ΔΦ = 62.8(2)°, hence 

J1/│J│=0.88(2) and J2/│J│=0.29(1). Provided our minimal model is correct, these measurements thus 

put sever constraints on the uncertainties relative to J1/│J│ and J2/│J│.  The values of J and B20 have 

yet to be determined. 

To this end, a series of calculations has been carried out keeping the ratios J1/│J│ and J2/│J│constant, 

but varying J and B20 in a systematic way. We have considered 0.05 < J < 0.19 meV and 0 < B20 < 0.42 

meV. At the same time, we compared the Curie-Weiss temperature value predicted by the calculation 

to the experimental value, equal to 20K. The main results are reproduced in Figures A1 to A4. These 

figures display the neutron intensity calculated along (0 q0 l) and (0 k 1), as well as the measured energies 

of the modes based on standard fits to the experimental data (see the black dots in the figures). The full 

experimental data are also reproduced for a more convenient comparison. These calculations show 

relatively good agreement for 0.1 < J < 0.12 meV with 0.06 < B20 < 0.18 meV. More precisely, best 

values are found for J = 0.1 meV, B20 = 0.15, and, if J = 0.12, we get B20 = 0.09 meV. This indicates a 

correlation between J and B20, estimated to be B20 ~ -3(J-0.1)+0.15. According to this analysis, we thus 

have: 

 

J = 0.11 +/- 0.01 meV and B20 ~ -3(J-0.1)+0.15, i.e. and δB20 ~ 3 δJ. 

 

Figure A4 displays part of the calculations performed for the (0 k 1) direction. They confirm the 

relatively good agreement for the range of parameters determined above.  

 

Figure A5 shows the Curie Weiss temperature calculated in the (J, B20) range of interest. The comparison 

with the experimental value is quite good, hence giving some more confidence in the analysis. Since the 

experimental Curie-Weiss temperature is 20K, this cross-check calculation would favor the strongest 

values of J, hence J=0.12 meV, B20 = 0.09 meV. 
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We also should stress that in incommensurate magnets, in-plane and out-of-plane modes are expected. 

In-plane modes correspond to correlations between spin components within the spiral plane. In the long 

wavelength limit, they correspond to a global phase shift of the spins. These are the Goldstone mode of 

the model, and soften down to zero energy at the magnetic Bragg peaks. Importantly, the planar 

anisotropy term B20 does not induce any spin gap for them since the spins keep an overall degree of 

rotation in the easy plane. In contrast, Figures A1 to A4 show that B20 affects quite strongly the high-

energy part of the spectrum. 

 

We anticipate, however, that measurements in other directions are likely necessary to come to a 

definitive conclusion and propose a better model.  
 

 
Figure A1: Neutron intensity calculated along (0, q0, l) for various J while B20=0. The bottom right panel shows the 
experimental data. Black dot correspond to the fitted positions of the different modes. 
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Figure A2: Neutron intensity calculated along (0, q0, l) for various J and B20. 

 
 

 
Figure A3: Neutron intensity calculated along (0, q0, l) for various J and B20. 
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Figure A4: Neutron intensity calculated along (0, k, 1) for various J and B20 = 0.09 meV. The bottom right panel shows the 
experimental data. 

 

 
Figure A5: Curie Weiss temperature (in K, see the color scale on the right of the figure). The dashed ellipse shows the range 
of parameters determined by comparison with INS data. Since the experimental Curie-Weiss temperature is 20K, this cross-
check calculation favors the strongest values of J. 
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