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Abstract We present in this paper a new approach to
the static analysis of concurrent programs with proce-
dures. To this end, we model multi-threaded programs
featuring recursive procedure calls and synchronisation
by rendez-vous between parallel threads with commu-
nicating pushdown systems (from now on CPDSs).

The reachability problem for this particular class of
automata is unfortunately undecidable. However, it has
been shown that an efficient abstraction of the execu-
tion traces language can nonetheless be computed. To
this end, an algebraic framework to over-approximate
context-free languages has been introduced by Bouaj-
jani et al.

In this paper, we combine this framework with an
automata-theoretic approach in order to approximate
an answer to the model checking problem of the linear-
time temporal logic (from now on LTL) on CPDSs. We
then present an algorithm that, given a single-indexed
or stutter-invariant LTL formula, allows us to prove
that no run of a CPDS verifies this formula if the pro-
cedure ends.

1 Introduction

The use of parallel programs has grown in popularity in
the past fifteen years, but these stay nonetheless fickle
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and vulnerable to specific issues such as race conditions
or deadlocks. Static analysis methods for this class of
programs remain therefore more relevant than ever.

The model checking framework has proven to be a
cornerstone of modern static analysis techniques. The
program is modelled as a simpler abstract mathematical
model. Desirable properties and forbidden behaviours
are then expressed using a well-defined logical frame-
work, then checked against the abstract mathematical
model of the program.

The linear-time temporal logic (LTL) encodes prop-
erties about the future of execution paths, that is, the
sequence of configurations the model goes through. It
can be used to express safety and liveness properties.

Pushdown systems (PDSs) were introduced to mo-
del the call stack of a program that stores information
about the active procedures such as return addresses,
passed parameters and local variables. Without such
a stack, a finite-state automaton can’t represent accu-
rately programs with nested, recursive function calls,
hence, the need for a more expressive model.

PDSs are a natural model for programs with se-
quential, recursive procedure calls [7]. Thus, networks of
pushdown systems can be used to model multi-threaded
programs, where each PDS in the network models a se-
quential component of the whole program.

Communicating pushdown systems (CPDSs) were
introduced by Bouajjani et al. in [3] as a model for
communicating multi-threaded programs. It is a nat-
ural abstraction: each thread is modelled as a PDS,
and can synchronize by rendez-vous with other threads.
Unfortunately, it has been proven by Ramalingam [16]
that the reachability problem is undecidable for CPDSs.
Therefore, the set of execution paths cannot be com-
puted in an exact manner. To overcome this problem,
Bouajjani et al. computed an abstraction of the execu-
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tion paths language, using a framework based on Kleene
algebras.

Solving the model checking problem of LTL for the
class of CPDSs would be a worthy addition to the ex-
isting verification techniques. However, this problem is
obviously undecidable: we therefore seek an approxi-
mate answer.

Our contributions in this paper are the following:

– We define the semantics of single-indexed LTL for-
mulas for CPDSs, that is, formulas of the form ϕ =

(ψ1, . . . , ψn), where each LTL sub-formula ψi must
hold for the i-th process with regards to the syn-
chronized CPDS semantics.

– We show how to abstract the set of accepting traces
of a Büchi pushdown system. To do so, we use the
abstraction framework of [3] as well as the LTL
model checking methods for PDSs introduced by Es-
parza et al. in [7].

– We use this abstraction on isolated pushdown com-
ponents of the whole program in order to approxi-
mate the single-indexed LTL model checking prob-
lem for CPDSs.

– As a new contribution of the journal version of this
article, we extend the abstraction framework to uni-
versal single-indexed model checking and stutter in-
variant LTL formulas.

– We apply this abstraction framework to detect race
conditions in a toy example.

Some of these results were first presented in the con-
ference version of this paper [13].

Related Work. Multi-stack pushdown systems (from
then on MPDSs) are pushdown systems with two or
more stacks; this class of automata can be used to model
synchronized parallel programs. Qadeer et al. solved the
model checking problem of LTL given a context bound-
ing constraint on runs in [14], where a context is an un-
interrupted sequence of actions on a single thread. This
result still holds with a weaker phase-bounding con-
straint, where only a single stack can be popped from
during a phase, as proven by La Torre et al. in [20].

Atig introduced in [1] ordered multi-pushdown au-
tomata, a sub-class of MPDSs such that the stacks are
ordered and only the first-non empty stack can be pop-
ped from. Given this constraint, the model checking
problem of LTL can be solved within an 2-ETIME up-
per bound. These models depend on bounding con-
straints on runs; our abstraction framework, while less
accurate, does not.

Dynamic pushdown networks (DPNs) were intro-
duced by Bouajjani et al. in [4]. A DPN models a con-
current program as a network with an unbounded num-
ber of pushdown components that can spawn new

threads, also modelled as pushdown systems. Song et al.
described in [18] a model checking framework for single-
indexed LTL and CTL formulas. A DPN can spawn new
threads according to a finite number of patterns, since
it has a finite number of rules. A single-indexed formula
on a DPN is defined as a tuple ϕ = (ψ1, . . . , ψn), where
each component ψi is a formula that must hold for the
i-th thread pattern. While CPDSs can’t model thread
spawns, DPNs do not feature synchronization between
threads, a crucial aspect of concurrent programs. Song
et al. later added in [19] locks that prevent some tran-
sitions from being performed by a thread if a common
resource shared with other components has not been
released beforehand. This is a weaker form of synchro-
nization than communication by rendez-vous.

Synchronized dynamic pushdown networks (DPNs)
were later introduced by Pommellet et al. in [12]. The
reachability problem for this class of automata is un-
decidable but can be abstracted. Abstractions for the
model checking problem, however, have yet to be de-
fined.

Paper outline. The paper is organised as follows. In
Section 2, we present communicating pushdown systems
(CPDSs) and detail how they can be used to model
programs. In Section 3, we define the single-indexed
linear-time temporal logic for CPDSs and remind the
reader of results on the LTL model checking problem for
PDSs. We briefly describe in Section 4 the abstraction
framework designed by Bouajjani et al. in [3] to over-
approximate the set of execution paths of a PDS. In
Section 5, as a main contribution of this paper, we intro-
duce an abstract model checking algorithm for single-
indexed LTL. We then extend the abstraction frame-
work to stutter-invariant LTL formulas in Section 6.
We then apply this scheme in order to detect a race
condition in Section 7. Finally, we show our conclusion
in Section 8.

2 Communicating Pushdown Systems

2.1 Pushdown systems

Pushdown systems are a natural model for sequential
programs with recursive procedure calls.

Definition 1 (Pushdown system) A pushdown sys-
tem (PDS) is a tuple P = (P,Σ, Γ,∆, c0) where P is
a finite set of control states, Σ a finite input alphabet,
Γ a finite stack alphabet, ∆ ⊆ P × Γ ×Σ × P × Γ ∗ a
finite set of transition rules, and c0 ∈ P ×Γ ∗ a starting
configuration.



LTL Model Checking for Communicating Concurrent Programs 3

If d = (p, γ, a, p′, w) ∈ ∆, we write d = (p, γ)
a−→

(p′, w). We call a the label of d. We can assume without
loss of generality that ∆ ⊆ P × Γ ×Σ × P × Γ≤2.

A configuration of P is a pair 〈p, w〉 where p ∈ P is a
control state and w ∈ Γ ∗ a stack content. Let Conf P =

P × Γ ∗ be the set of all configurations of P.

The reachability relation. For each a ∈ Σ, we define the
transition relation a−→P on configurations as follows: if
(p, γ)

a−→ (p′, w) ∈ ∆, for each w′ ∈ Γ ∗, 〈p, γw′〉 a−→P
〈p′, ww′〉. Intuitively, the automaton moves from state
p to p′ while the symbol γ is popped from the stack and
a word w is pushed on the stack.

From these relations, we can then infer the imme-
diate successor relation →P=

⋃
a∈Σ

a−→P . The reachabil-

ity relation ⇒P is the reflexive and transitive closure
of the immediate successor relation →P . If C is a set
of configurations, we introduce its set of predecessors
pre∗(P, C) = {c ∈ P × Γ ∗ | ∃c′ ∈ C, c ⇒P c′}. We may
omit the variable P when only a single PDS is being
considered.

A run r starting from a configuration c is a sequence
of configurations r = (ri)i≥0 such that r0 = c and ∀i ≥
0, ri

ai−→P ri+1. The word (ai)i≥0 is then said to be the
trace matched to r. Traces and runs may be finite or
infinite.

Let Runsω(P, C) (resp. Runs(P, C)) be the set of all
infinite (resp. finite) runs of P starting from a configu-
ration c ∈ C. We define Tracesω(P, C) and Traces(P, C)
in a similar manner.

If P’s initial configuration is c0, we introduce the
set Runsω(P) = Runsω(P, {c0}). We define Runs(P),
Traces(P), and Tracesω(P) in a similar manner.

Many static analysis methods rely on being able to
determine whether a given critical state is reachable or
not from the starting configuration of a program, hence,
the need for reachability analysis techniques.

Regular sets of configurations. A set of configurations
C of a PDS P is said to be regular if ∀p ∈ P , there
exists a finite-state automaton Ap on the alphabet Γ
such that L(Ap) = {w | 〈p, w〉 ∈ C}, where L(A) stands
for the language recognized by an automaton A.

The following property holds:

Theorem 1 (Caucal [5]) Given a PDS P and a reg-
ular set of configurations C, the set of configurations
pre∗ (C) is regular.

Moreover, pre∗ (C) is effectively computable [2].

2.2 The model and its semantics

Let us consider a program with n threads. Let Act be
a set of actions (input alphabet) such that:

– Act contains a special action τ that represents in-
ternal actions of a thread.

– Each pair (i, j) of threads in the network uses a
dedicated set of signals Labi,j = Labj,i disjoint from
the other sets of signals and from the internal action
τ . If we define Labi =

⋃
j 6=i

Labi,j , then Act/{τ} =⋃
i=1,...,n

Labi; we write Lab = Act/{τ}.

We then consider the following concurrent push-
down model:

Definition 2 (Bouajjani et al. [3]) A communicat-
ing pushdown system (CPDS) on the alphabet Act is
a tuple CP = (P1, . . . ,Pn) of pushdown systems such
that each component Pi has input alphabet Labi∪{τ}.

Configurations and transitions. A global configuration
of CP is a n-tuple g = (c1, . . . , cn) of configurations in
Conf P1

× . . .× Conf Pn
= Conf CP . The global starting

configuration of CP is the tuple g0 = (c10, . . . , c
n
0 ) where

ci0 is the starting configuration of the component Pi.
We define the following transition relation a−→CP on

global configurations:

– (c1, . . . , cn)
τ−→CP (c′1, . . . , c

′
n) if there exists an index

i such that ci
τ−→Pi c

′
i and cj = c′j for all j 6= i. A

single process applies a pushdown operation on its
own stack.

– (c1, . . . , cn)
a−→CP (c′1, . . . , c

′
n) if there exist two in-

dices i and j, i 6= j, such that a ∈ Labi,j , ci
a−→Pi

c′i,
cj

a−→Pj
c′j and ck = c′k for all k 6= i and k 6= j. Two

synchronized processes perform a simultaneous ac-
tion.

Intuitively, a thread can either perform an internal
action labelled by τ , or must synchronize with another
thread in order to perform an action labelled by a com-
mon synchronization signal in Lab.

We define runs and traces with regards to this tran-
sition relation in a manner similar to PDSs: a run is a
sequence of global configurations starting from g0 and
connected by transition rules; its matching trace is the
sequence of labels of these transitions.

Example 1 (A global run) We consider three runs

a1
τ−→P1 b1

x−→P1 c1

a2
x−→P2 b2

y−→P2 c2

a3
y−→P3 b3
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on three PDSs P1, P2, and P3. Then

(a1, a2, a3)
τ−→CP (b1, a2, a3)
x−→CP (c1, b2, a3)
y−→CP (c1, c2, b3)

is a global run g of (P1,P2,P3). An internal transition
of P1 is followed by a synchronized transition between
P1 and P2, then another synchronized transition be-
tween P2 and P3.

Given a global run g, we define gi as its projection
on its i-th component Conf Pi

.

Example 2 (Projecting a global run) The projection g3

of the global run

(a1, a2, a3)
τ−→CP (b1, a2, a3)
x−→CP (c1, b2, a3)
y−→CP (c1, c2, b3)

on Conf P3
is

a3
τ−→CP a3

x−→CP a3
y−→CP b3

Note that it is not a run of P3.

2.3 From a concurrent program to a CPDS model

We can assume that the concurrent program is repre-
sented by a n-tuple of control flow graphs, whose nodes
represent control points of threads or procedures and
whose edges are labelled by statements.

These statements can be variable assignments, pro-
cedure calls or returns, or communications between
threads through unidirectional point-to point channels,
where a thread sends a value x through a channel ch
and another thread waits for this value then assigns it
to a variable.

Without loss of generality, we assume that each
thread can share some variables (from now on called
thread variables) with the procedures it calls, but that
there are no global variables shared between threads.
We also consider that both local and thread variables
can only take a finite number of values by abstracting
their domain if needed.

As a consequence, threads can only synchronize
through unidirectional, point-to-point channels: for all
1 ≤ i, j ≤ n, i 6= j, there is a channel chi,j that al-
lows thread i to send values to another thread j. With
a send statement chi,j !(x), a value x is sent through
channel chi,j from thread i to thread j. With a receive
statement chi,j?(x), the value x from thread i received

through channel chi,j is assigned to a variable in thread
j.

For each control flow graph, we will define a cor-
responding PDS P = (P,Act, Γ,∆, cinit). The set of
states P is the set of all possible valuations of thread
variables (i.e. variables shared amongst procedures
called by this thread). The stack alphabet Γ is the set
of all pairs (n, l) where n is a node of the control flow
graph and l is a valuation of the local variables of the
current procedure. The whole program will be modelled
by a tuple of these PDSs.

Labi,j is the set of all possible synchronization ac-
tions chi,j(x) between the components Pi and Pj : value
x is carried from the i-th thread to the j-th thread
through channel chi,j . The set Act = τ

⋃
i6=j

Labi,j also

contains an internal action τ .
For each statement s labelling an edge of the flow

graph between nodes n1 and n2, we introduce the fol-
lowing transition rules in the corresponding PDS, where
t1 and t2 (resp. l1 and l2) are the valuations of thread
(resp. local) variables before and after the execution of
the statement:

– If s is an assignment, it is represented by a rule of
the form:

(t1, (n1, l1))
τ−→ (t2, (n2, l2))

Assigning a new value to a variable in t1 or l1 results
in a new valuation t2 or l2. Note that we have either
t1 = t2 or l1 = l2, depending on whether the value
is assigned to a local variable (in the former case)
or a thread variable (in the latter case).

– If s is a procedure call, it is represented by a rule of
the form

(g1, (n1, l1))
τ−→ (g1, (f0, l0)(n2, l1))

where f0 is the starting node of the called procedure
and l0 the initial valuation of its local variables.

– if s is a procedure return, it is represented a rule of
the form

(t1, (n1, l1))
τ−→ (t2, ε)

We simulate returns of values by introducing an ad-
ditional thread variable and assigning the return
value to it in the valuation t2.

– If s is an assignment ch?(x) of a value x carried
through a channel ch, it is represented by a rule of
the form

(t1, (n1, l1))
ch(x)−−−→ (t2, (n2, l2))

where t1 and t2 (resp. l1 and l2) are such that assign-
ing the value x to a variable in t1 (resp. l1) results
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in a new valuation t2 (resp. l2). Note again that we
have either t1 = t2 or l1 = l2, depending on whether
the variable modified belongs to a procedure or a
thread.

– If s is an output ch!(x) through a channel ch of the
value x, it is represented by rules of the form

(t1, (n1, l1))
ch(x)−−−→ (t1, (n2, l1))

such that the variable copied and sent through the
channel has value x in either t1 or l1.

Finally, we consider the starting configuration of
each process cinit = (tinit , (ninit , linit)) where tinit and
linit are respectively the initial valuations of the thread
and local variables, and ninit the starting node of its
initial procedure.

3 LTL Model Checking on CPDSs

The most widely used variant of temporal logics is the
linear-time temporal logic LTL introduced by Pnueli in
[11].

3.1 The linear-time temporal logic LTL

Let AP be a finite set of atomic propositions used to
express facts about a program. A path is an infinite
word π = (πi)≥0 in the set Paths = (2AP )ω.

Definition 3 (LTL) The set of LTL formulas is given
by the following grammar:

ϕ,ψ ::= True | p ∈ AP | ¬ϕ | ϕ ∨ ψ | X ϕ (Next)
| ϕ U ψ (Until)

X and U are called the next and until operators:
the former means that a formula should happen at the
next step, the latter, that a formula should hold at least
until another formula becomes true. We consider the
following semantics on paths:

Definition 4 (Semantics of LTL) Let ϕ be a LTL
formula, π ∈ Paths, and i ∈ N. We define inductively
the semantics of the relation π, i |= ϕ:

π, i |= ρ where ρ ∈ AP ⇔ ρ ∈ πi
π, i |= X ϕ⇔ π, i+ 1 |= ϕ

π, i |= ϕ U ψ ⇔ ∃j ≥ i, π, j |= ψ and
∀k ∈ {i, . . . , j − 1} , π, k |= ϕ

π, i |= ϕ ∨ ψ ⇔ (π, i |= ϕ) ∨ (π, i |= ψ)

π, i |= ¬ϕ⇔ π, i 6|= ϕ

π, i |= True always.

Intuitively, π, i |= ϕ means that the path π verifies
ϕ from its i-th symbol onward. We consider the lan-
guage L(ϕ) = {w | w ∈ (2AP )ω and w, 0 |= ϕ} of an
LTL formula ϕ, that is, the set of all paths verifying ϕ
according to the semantics outlined previously.

For convenience’s sake, we introduce the operators
F ϕ = (True U ϕ) and G ϕ = ¬(F ¬ϕ) that stand re-
spectively for finally and globally.

LTL and Büchi automata. We consider the following
class of finite state automata:

Definition 5 (Büchi automaton) A Büchi automa-
ton (BA) B is a tuple (Q,Σ, δ, q0, G) where Q is a finite
set of states, Σ a finite input alphabet, δ ⊆ Q×Σ ×Q
a set of transitions, G ⊆ Q a set of accepting states,
and q0 ∈ Q the initial state.

The language L(B) accepted by B is the set of all
infinite sequences w in Σω such that there is an infinite
run r of B with trace w starting in state q0 that visits
accepting states in G infinitely often.

BA can be used in the following fashion:

Theorem 2 (Kesten et al. [8]) Given a LTL for-
mula ϕ, there exists an effectively computable Büchi au-
tomaton B on the alphabet Σ = 2AP such that L(B) =
L(ϕ).

3.2 LTL model checking for PDSs

Let ν : Conf P → 2AP be a valuation function on con-
figurations of a PDS P = (P,Act, Γ,∆, c0). It is said
to be simple if for all w,w′ ∈ Γ ∗, p ∈ P , and γ ∈ Γ ,
we have ν(〈p, γw〉) = ν(〈p, γw′〉). Intuitively, a simple
valuation is equivalent to a function ν : P × Γ → 2AP

that only depends on the control state and the top stack
symbol.

Let r = (ri)i≥0 be an infinite run of P. We define the
image ν(r) = (ν(ri))i≥0 in Paths of r by the valuation
function ν. We write that r |=ν ϕ if ν(r), 0 |= ϕ. The
model checking problem is defined as follows:

Definition 6 (Model checking) Given an LTL for-
mula ϕ, a PDS P with a starting configuration c0, and
a simple valuation ν on configurations of P, the exis-
tential model checking problem consists in determining
whether ∃r ∈ Runsω(P), r |=ν ϕ.

Obviously, since the negation of an LTL formula is
still an LTL formula as well, determining whether ∀r ∈
Runsω(P), r |=ν ϕ is an equivalent problem, called the
universal model checking problem. Indeed:

¬(∀r ∈ Runsω(P), r |=ν ϕ)
⇔ (∃r ∈ Runsω(P), r |=ν ¬ϕ)



6 Adrien Pommellet, Tayssir Touili

We will now present the automata-theoretic frame-
work introduced in [2,7] in order to solve the existential
model checking problem.

Using Büchi pushdown automata. We consider the fol-
lowing class of automata:

Definition 7 (Büchi pushdown automata) A Bü-
chi pushdown automaton (BPDA) is a tuple BP =

(P,Act, Γ,∆, c0, G) such that (P,Act, Γ,∆, c0) is a PDS
and G ⊆ P a set of accepting states.

In a similar manner to BA, an accepting run of BP
is an infinite run of the PDS (P,Act, Γ,∆, c0) that visits
infinitely often configurations whose control state is in
G. To these runs, we match accepting traces.

A BPDA can be seen as a product automaton be-
tween a PDS and Büchi automaton. The use of this
class of automata is the following:

Theorem 3 Given a PDS P and an LTL formula ϕ,
there exists an effectively computable BPDA BP such
that t is an accepting trace of BP if and only if t is a
trace of P matched to a run r such that r |=ν ϕ.

Thus, if we can solve the emptiness problem for
BPDA, then we can solve the model-checking problem
of LTL for PDSs as well. Indeed, if L(BP) = ∅, then
there is no run r such that r. |=ν ϕ.

Repeating heads and the emptiness problem. A repeat-
ing head of BP is an element 〈p, γ〉 of G× Γ such that
∃w ∈ Γ ∗, 〈p, γ〉 →+

BP 〈p, γw〉. Let Rep(BP) be the fi-
nite set of repeating heads of BP. The following lemma
characterizes accepting runs with regards to repeating
heads:

Lemma 1 r is an accepting run of a BPDA BP if and
only if BP has a repeating head 〈p, γ〉 such that r visits
configurations in 〈p, γΓ ∗〉 infinitely often.

Therefore, a run of a BPDA is accepting if and only
if it visits a repeating head infinitely often. Moreover,
the set of repeating heads is obviously finite, being a
subset of P × Γ , and can be effectively computed in
O(|P | · |∆|2) time and O(|P | · |∆|) space [7].

Let Rep(BP)Γ ∗ = {〈p, γw〉 | 〈p, γ〉 ∈ Rep(BP), w
∈ Γ ∗} be the regular set of configurations starting with
a repeating head. A BPDA will admit at least one ac-
cepting run if and only if there exists a repeating head
reachable from the initial configuration, hence, the fol-
lowing theorem:

Theorem 4 Given a BPDA BP with starting configu-
ration c0, its language L(BP) is not empty if and only
pre∗(Rep(BP)Γ ∗) ∩ {c0} 6= ∅.

Since the set pre∗(Rep(BP)Γ ∗) is regular and effec-
tively computable by Theorem 1, we can therefore solve
the model checking problem using Theorems 3 and 4.

3.3 Single-indexed LTL model checking for CPDSs

Let CP = (P1, . . . ,Pn) be a CPDS, ν a simple valuation
function on Conf P1

∪ . . .∪Conf Pn
, and for i = 1, . . . , n,

let ψi be an LTL formula. The tuple ϕ = (ψ1, . . . , ψn)

is said to be a single-indexed LTL formula.
We define the following semantics for single-indexed

LTL formula on CPDSs:

Definition 8 (Single-indexed LTL semantics) Gi-
ven a CPDS CP = (P1, . . . ,Pn), an infinite global run
g of CP, a simple valuation on pushdown components
ν, and a single-indexed LTL formula ϕ = (ψ1, . . . , ψn),
g |=ν ϕ if and only if for each i = 1, . . . , n, gi |=ν
ψi. Finding such a global run g is called the existential
single-indexed model checking problem.

Intuitively, each PDS Pi in the CPDS satisfies its
own LTL formula ψi, but does so while synchronizing
with the others PDSs. This is a simpler problem than
solving the existential model checking for a single LTL
formula and a valuation function on global configura-
tions: we will therefore try to solve it first, then focus
later on the general case.

If the single-indexed model checking problem for
CPDSs were decidable, so would be the reachability
problem. However, it has unfortunately been proven by
Ramalingam in [16] that this problem is undecidable
for synchronization-sensitive pushdown systems. Hence,
since the latter reachability problem is obviously unde-
cidable, the former model checking problem is as well.

We therefore seek to get at least an approximate
answer to this problem. The issue with single-indexed
model checking is the following: for each i = 1, . . . , n,
there may exist a run ri of the PDS Pi satisfying a
formula ψi, but a global, synchronized run on the CPDS
(P1, . . . ,Pn) satisfying ϕ = (ψ1, . . . , ψn) may not exist
if the individual pushdown components of the system
can’t synchronize. We will tackle this issue in the next
section.

4 An Abstraction Framework for Traces

We want to abstract the single-indexed LTL model
checking problem for CPDSs. To this end, we seek to
over-approximate the set

LP(C ′, C) = {t ∈ Traces(P)|∃c ∈ C,∃c′ ∈ C ′, c′ t−→∗Pc}
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of traces of a PDS P leading from a regular set of config-
urations C ′ to another C. We will use the mathematical
framework introduced by Bouajjani et al. in [3] to ap-
proximate the reachability problem for CPDSs. More
details can be found in the appendix.

To this end, they consider a Kleene algebra K =

(A,⊕,�, 0, 1) matched to an abstract lattice E = (A,

≤,t,u,⊥,>) and a Galois connection that consists in
an abstraction function α : Act∗ → K and a concretiza-
tion function β : K → Act∗ such that, given two lan-
guages L1 and L2 on the alphabet Act :

L1 ⊆ β(α(L1))

L2 ⊆ β(α(L2))

α(L1) u α(L2) = ⊥ ⇔ β(α(L1)) ∩ β(α(L2)) = ∅

L2L1

β(α(L2))β(α(L1))

α(L1) α(L2)

α αβ βAct∗

K

Fig. 1: From Act∗ to the abstract domain K and back again.

Hence, as shown in Figure 1, the Galois connection
can be used to over-approximate a language in 2Act∗

(e.g. the trace language of a PDS), and we can directly
check the emptiness of the intersection (a common op-
eration as far as model checking goes) of these approxi-
mations in a simpler, often finite domain. Here are two
examples of such finite-domain Kleene abstractions:

Example 3 (The prefix abstraction) Let n ≥ 1 be an
integer and W (n) = {w ∈ Act∗ | |w| ≤ n} be the set of
words of length smaller than n.

We define the n-th order prefix abstraction αpref
n as

follows:

– The abstract lattice A = 2W is generated by the
elements va = {a}, a ∈ Act .

– ⊕ = ∪.
– U�V = {pref n(uv) | u ∈ U, v ∈ V } where pref n(w)

stands for the prefix of w of length n (or lower if w
is of length smaller than n).

– 0 = ∅ and 1 = {ε}.

From there, we build an abstract lattice where > =W ,
u = ∩, and ≤=⊆.

This abstraction is accurate for the n-th first steps
of a trace: the other steps are then over-approximated

by Act∗ for a finite trace or Actω for an infinite trace.
Hence, if w ∈ Actω, then the prefix abstraction of {w}
is

αpref
n ({w}) = {pref n(w)}

its matching connection

βpref
n ({p}) = p ·Act∗

and the resulting over-approximation the language

βpref
n (αpref

n ({w})) = pref n(w) ·Act∗

Example 4 (First occurrence ordering) Let W be the
set of words

{w ∈ Act∗ | ∀a ∈ Act, |w|a ≤ 1}

where each letter occurs at most once (|w|a is the num-
ber of a in the word w).

We define the first occurrence ordering abstraction
αfoo as follows:

– The abstract lattice A = 2W is generated by the
elements va = {a}, a ∈ Act

– ⊕ = ∪.
– U � V = {uv′ | u ∈ U and ∃v ∈ V, v′ is the projec-

tion of v on letters not occuring in u}.
– 0 = ∅ and 1 = {ε}.

From there, we build an abstract lattice where > =W ,
u = ∩, and ≤=⊆.

If w is a trace in Act∗, its first occurrence ordering
is

αfoo({w}) = a1 . . . an

where the set of letters in w is exactly {a1, . . . , an} and
they first appear in the order a1, . . . , an. Its matching
connection is

βfoo(a1 ·. . .·an) = a1a
∗
1a2(a1+a2)

∗ . . . an(a1+. . .+an)
∗

The resulting over-approximation is

βfoo(α
foo({w})) = a1a

∗
1a2(a1+a2)

∗ . . . an(a1+. . .+an)
∗

Example 5 Let w = aacbabed(ab)ω. Then:

αpref
5 ({w}) = aacbabed(ab)ω

αfoo({w}) = aacbabed(ab)ω

A finite-chain abstraction is such that the lattice
(A,≤) has no infinite ascending chains: as a conse-
quence, infinite sequences of concatenations can be de-
fined and effectively computed, and the abstraction
framework can be applied to countably infinite traces.
The prefix and first occurrence ordering abstractions
defined previously are finite-chain.
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5 Abstract Model Checking of LTL for CPDSs

In this section, as a main contribution of this paper, we
will introduce an approximation framework for single-
indexed LTL model checking on CPDSs.

5.1 Abstracting accepting traces of a BPDA

We show in this subsection how to over-approximate the
set of accepting traces of BPDA. To do so, we extend
the abstract reachability analysis introduced in [3] to
infinite runs.

Properties of accepting runs of BPDA. By Lemma 1, to
each accepting run r of a BPDA BP, we can match a re-
peating head 〈p, γ〉 ∈ Rep(BP) that it visits infinitely
often. Conversely, if a run r of a BPDA BP visits a
repeating head 〈p, γ〉 ∈ Rep(BP) infinitely often, it is
then obviously accepting since Rep(BP) ⊆ G × Γ . We
will use the former property to abstract the set of ac-
cepting traces.

Let 〈p, γ〉 ∈ Rep(BP) be a repeating head. An ac-
cepting trace visiting the set 〈p, γΓ ∗〉 infinitely often
can be split into two parts:

(1) first, it must reach the set 〈p, γΓ ∗〉 from the initial
configuration c0;

(2) then, it must infinitely often move from 〈p, γΓ ∗〉 to
〈p, γΓ ∗〉, using a sequence of transitions of length
superior or equal to one.

Part (1) of an accepting trace visiting 〈p, γ〉 must
therefore be in the set LBP({c0}, 〈p, γΓ ∗〉), and part
(2), in the set [LBP(〈p, γΓ ∗〉, 〈p, γΓ ∗〉)/{ε}]ω.

As a consequence, the set

LBP({c0}, 〈p, γΓ ∗〉) · (LBP(〈p, γΓ ∗〉, 〈p, γΓ ∗〉)/{ε})ω

is an over-approximation of the set of accepting traces
visiting the repeating head 〈p, γ〉 infinitely often. Since
it cannot be computed directly, we will apply the frame-
work of Section 4 to abstract it.

Abstracting the set of accepting traces. Our method to
abstract the set of accepting traces of a BPDA BP is
the following:

1. Compute its finite set of repeating heads Rep(BP).
2. For each repeating head 〈p, γ〉 ∈ Rep(BP), find if

it is reachable from the initial configuration c0 by
checking that

pre∗(〈p, γΓ ∗〉) ∩ {c0} 6= ∅

This way, we can compute the set Rep+(BP) of
reachable repeating heads.

c0 〈p, γΓ ∗〉
I〈p,γ〉

R〈p,γ〉

Fig. 2: Abstracting the infinite set of traces matched to the
repeating head 〈p, γ〉

3. For each reachable repeating head 〈p, γ〉 in the set
Rep+(BP), compute an abstraction

I〈p,γ〉 = α(LBP({c0}, 〈p, γΓ ∗〉))

of the set of traces leading from the initial configu-
ration to the first occurrence of the repeating head;
this yields part (1) of the accepting traces.

4. Compute an abstraction

R〈p,γ〉 = α(LBP(〈p, γΓ ∗〉, 〈p, γΓ ∗〉))/{1}

of the set of non-trivial traces between two occur-
rences of the repeating head; this yields part (2) of
the accepting traces. Note that (R〈p,γ〉)

ω is finite
and can be computed as well, because the abstract
domain is finite-chain.

5. Compute a finite-chain abstraction

T〈p,γ〉 = I〈p,γ〉 � (R〈p,γ〉)
ω

of the set of accepting traces visiting the repeating
head 〈p, γ〉 infinitely often, as shown in Figure 2.

6. Consider the finite sum

T =
⊕

〈p,γ〉∈Rep+(BP)

T〈p,γ〉

as an abstraction in the finite-chain domain of the
set of all accepting traces of BP.

As a consequence, the following theorem holds:

Theorem 5 Given a BPDA BP, we can compute a
finite-chain abstraction of its set of accepting traces
L(BP).

5.2 Abstracting the single-indexed model checking
problem for CPDSs

Let CP = (P1, . . . ,Pn) be a CPDS and ϕ = (ψ1, . . . ,

ψn) a single-indexed LTL formula. Our goal is to com-
pute an over-approximation of the undecidable single-
indexed LTL model checking problem, i.e. compute an
over-approximation of the set of runs of CP verifying ϕ;
if this over-approximation is empty, so is the actual set
of runs verifying ϕ, and the answer to the existential
single-indexed model checking problem is negative.

Our intuition is, for each component Pi, to abstract
the set of paths verifying ψi, then examine the empti-
ness of the intersection of these abstractions. However,
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in a global run of a CPDS, the execution paths of the
pushdown components are interleaved. Synchronization
signals between two threads j and k may occur in the
global run but will not appear in local runs of the i-th
pushdown component. We cannot therefore study the
paths of a pushdown system Pi in isolation from the
other components.

Projecting global runs. For each pushdown component
Pi = (Pi,Labi ∪ {τ}, Γ,∆i, c

i
0) of a CPDS CP = (P1,

. . . ,Pn), we introduce a new PDS P ′i = (Pi, Act, Γ,∆
′
i,

ci0) such that:

– ∆i ⊆ ∆′i; the new PDS P ′i extends the pushdown
component Pi.

– For all p ∈ Pi, γ ∈ Γ , and x ∈ {τ} ∪
⋃

j 6=i 6=k
Labj,k,

(p, γ)
x−→ (p, γ) ∈ ∆′i. We add to each control state

self-loops labelled either by the internal action τ or
by every synchronization signal in Labj,k between
pair of different processes j and k for all j 6= i 6= k.

The PDS P ′i can either simulate Pi or self-loop and
output any possible signal emitted by other processes,
be it an internal action or a synchronization between
two other processes.

Given two regular sets of configurations C ′ and C of
Pi, and the language LPi

(C ′, C) of traces leading from
C ′ to C, we have

LP′i(C
′, C) = LPi

(C ′, C) ({τ} ∪
⋃

j 6=i 6=k

Labj,k)
∗

where is the interleaving operator: we shuffle the
paths of Pi with internal and synchronization actions
of other threads.

As a consequence, it allows us to over-approximate
projections of the set of global runs:

Lemma 2 Let g be a global run of the CPDS CP. Then
gi is a run of P ′i.

Intuitively, we can prove recursively that, at every
step of gi, we can either use an existing transition of
Pi if this step of the global run g involved the i-th
component, or simulate any action performed by other
threads with one of P ′i’s own self-loops.

Application to the model checking problem. Let g be a
global run of CP and ϕ = (ψ1, . . . , ψn) a single-indexed
LTL formula. Then g |=ν ϕ if and only if for each i =
1, . . . , n, gi |=ν ψi.

By Lemma 2, if ∀r ∈ Runsω(P ′i), r 6|=ν ψi, then
gi 6|=ν ψi. By Theorem 3, there exists a BPDA BPi such
that L(BPi) is the set of all traces of runs of P ′i verifying
ψi. L(BPi) is empty if and only if ∀r ∈ Runsω(P ′i),
r 6|= ψi.

The projections g1, . . . , gn of a global run g have
the same trace as the original run g. As a consequence,
even if we can find in the automata P ′1, . . . ,P ′n runs
accepting the LTL formulas ψ1, . . . , ψn, they can’t be
projections of a same accepting global run if they don’t
share the same trace.

We can use this property as a discriminating cri-
terium for the existential single-indexed LTL model
checking problem: we compute an abstraction of the
set of accepting traces α(L(BPi)) of each BPDA BPi
then check if these abstractions share a common trace.

Theorem 6 If α(L(BP1))u. . .uα(L(BPn)) = ⊥, then
there is no global run of CP accepting the single-indexed
LTL formula ϕ.

Proof (Theorem 6) Let us assume that there exists a
global run g of CP such that g |= ϕ. Let gi be its
projection on the component Pi. gi is a run of P ′i by
Lemma 2, hence, its trace ti should belong to the over-
approximation β(α(L(BPi)) of the set of traces of BPi.

However, the projections g1, . . . , gn of g all have the
same trace as g, hence, t1 = . . . = tn = t. As a conse-
quence

t ∈ β(α(L(BP1)) ∩ . . . ∩ β(α(L(BPn))

This set is therefore not empty, hence, by definition of
Galois connections,

α(L(BP1)) u . . . u α(L(BPn)) 6= ⊥

and there is a contradiction. ut

We can decide in a finite-chain domain if

α(L(BP1)) u . . . u α(L(BPn)) 6= ⊥

Hence, Theorem 6 can be used to approximate the ex-
istential single-indexed model-checking problem.

5.3 The universal single-indexed model checking
problem

We now try to apply our abstraction framework to the
universal model checking problem:

Definition 9 (Universal model checking) Given a
CPDS CP = (P1, . . . ,Pn) of CP, a simple valuation
on pushdown components ν, and a single-indexed LTL
formula ϕ, CP |=ν ϕ if and only if for each global run
g of CP, g |=ν ϕ. Determining whether this property
hold is called the universal single-indexed model check-
ing problem.
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Unlike LTL formulas, we don’t know if the negation
of a single-indexed LTL formula is also a single-indexed
LTL formula. However, the following property holds:

¬(CP |=ν ϕ)
= ¬(∀g ∈ Runsω(CP),∀i ∈ {1, . . . , n}), gi |=ν ψi)
= ∃g ∈ Runsω(CP),∃i ∈ {1, . . . , n}, gi 6|=ν ψi
= ∃i ∈ {1, . . . , n},∃g ∈ Runsω(CP), gi |=ν ¬ψi
=

∨
i∈{1,...,n}

∃g ∈ Runsω(CP), gi |=ν ¬ψi

=
∨

i∈{1,...,n}
∃g ∈ Runsω(CP), g |=ν ϕi

Where ϕi is a single-indexed LTL formula such that
its i-th component is the LTL formula ¬ψi and all the
others are True.

As a consequence, at least one single-indexed ex-
istential model checking property ”∃g ∈ Runsω(CP),
g |=ν ϕi” holds true if and only if CP 6|=ν ϕ. Con-
versely, all the existential properties are wrong if and
only if CP |=ν ϕ.

5.4 A summary of our abstraction procedures

In order to approximate the existential single-indexed
model checking problem

“Given a CPDS CP = (P1, . . . ,Pn), a single-indexed
LTL formula ϕ = (ψ1, . . . , ψn), and a simple valuation
on pushdown components ν, is there a global run g of

CP such that g |=ν ϕ?”

we apply the following procedure:

1. For each component Pi, compute the altered PDS
P ′i.

2. Then compute the product BPDA BPi of P ′i and ψi
according to Theorem 3

3. Compute the abstraction α(L(BPi)).
4. Check that α(L(BP1)) u . . . u α(L(BPn)) = ⊥.
5. If this is true, then by Theorem 6, the answer to the

existential single-indexed model checking problem is
negative.

6. However, if this is not the case, we can’t draw any
immediate conclusion. We may use the abstract
counter-example to help us find an actual run of
CP that verifies ϕ. We may also refine the Kleene
abstraction by increasing its order if it’s a prefix
abstraction.

Note that, as an optimization, we can perform an
emptiness check on the BPDA BPi before abstracting
its language α(L(BPi)). If L(BPi) = ∅, then there is
obviously no global run g such that gi |=ν ψi and the
answer to the existential problem is negative. By doing

so, we avoid computing the abstraction α(L(BPi)) that
may lead to spurious counter-examples if it were not
empty.

However, if we want to solve the universal single-
indexed model checking problem

“Is it true that if g is a global run of CP then g |=ν ϕ?”
we apply instead this procedure:

1. For each component ψi of ϕ, approximate the ex-
istential model checking of ϕi (as defined in sub-
section 5.3)) on CP, using the procedure described
above.

2. If, for every sub-problem

“∃g ∈ Runsω(CP), g |=ν ϕi”
the procedure returns a negative answer, then the
answer to the universal single-indexed model check-
ing of ϕ is positive.

3. However, if this is not the case, we can’t draw any
immediate conclusion. We may use the abstract
counter-example to help us find an actual run of
CP that does not verify ϕ. We may also refine the
Kleene abstraction by increasing its order if it’s a
prefix abstraction.

We can apply this abstraction framework to safety
- ensuring that an unsafe state is never reached - or
liveness - checking that a desirable state can always be
eventually reached - properties. By design, our proce-
dure is better at providing a positive answer to these
problems, as a definitive negative answer would require
us to compute an infinite run as a counter-example,
something we are not yet capable of (even as a semi-
decision procedure). It is unlikely such a semi-decision
procedure is even possible, as the actual set we are
approximating is an intersection of ω-context free lan-
guages.

6 Model Checking Stutter-invariant LTL
Formulas on CPDSs

In the previous section, we focused on single-indexed
LTL model checking for CPDSs. The valuation func-
tion was applied on a thread per thread basis: only one
configuration in the set of configurations of pushdown
components was evaluated at a time. It can be argued
that such a definition is not natural, as local properties
are applied to projections of a global run.

Hence, we should consider the LTL model checking
problem on CPDSs where the valuation function takes
a global configuration in the set Conf P1

× . . .×ConfPn

as an input. This problem is obviously undecidable, but
we show that it can be abstracted for the sub-class of
stutter-invariant LTL formulas.
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6.1 Generic model checking for CPDSs

Given a CPDS CP = (P1, . . . ,Pn), let ν : Conf CP →
2AP be a valuation function on global configurations.
It is said to be simple if

∀w1, . . . , wn, w
′
1, . . . , w

′
n ∈ Γ ∗

∀p1 ∈ P1, . . . , pn ∈ Pn,∀γ1, . . . , γn ∈ Γ,
we have

ν(〈p1, γ1w1〉, . . . , 〈pn, γnwn〉)
= ν(〈p1, γ1w′1〉, . . . , 〈pn, γnw′n〉)

Intuitively, a simple valuation on global configurations
is equivalent to a function

ν : (P1 × Γ ) ∪ . . . ∪ (Pn × Γ )→ 2AP

that only depends on the control state and the top stack
symbol of each component. To each global run g of CP,
we can match a path ν(g) ∈ Paths.

We will now consider the general model checking
problem, similar to the simpler PDS case:

Definition 10 (LTL semantics) Given a CPDS CP,
an infinite global run g of CP, a LTL formula ϕ, and
a simple valuation on global configurations ν, g |=ν ϕ
if and only if ν(g) |= ϕ. Finding such a global run g is
called the existential model checking problem.

This problem is obviously undecidable, being more
general than the already undecidable reachability prob-
lem.

6.2 Stutter-invariant LTL formulas

Intuitively, stutter-invariant formulas are such that
adding or removing repetitions in a path does not chan-
ge its evaluation for such formulas. Hence, sequences
that differ only in the amount of stuttering can be
considered equivalent when checking stutter-invariant
properties.

Definition 11 (Stutter-invariance) A LTL formula
ϕ is said to be stutter-invariant if, ∀(πi)≥0 ∈ Paths and
∀(ni)i≥0 ∈ (N∗)N,

πn0
0 πn1

1 . . . |= ϕ if and only if π |= ϕ

where πn0
0 πn1

1 . . . stands for the infinite sequence where
the i-th value of π is repeated ni times. The paths
πn0
0 πn1

1 . . . and π are said to be stutter-equivalent.

As proven by Peled et al. in [10], LTL formulas with-
out the operator next (X) are stutter-invariant and,
conversely, any stutter-invariant LTL property is equiv-
alent to an LTL \ (X) formula. The next operator

is seldom used in concurrent model checking: hence,
abstracting the stutter-invariant LTL model checking
problem for CPDSs would be a worthy addition to ex-
isting verification techniques.

Note that the set of stutter-invariant formulas is sta-
ble by negation. As a consequence, the universal and
existential stutter-invariant LTL model checking prob-
lems are equivalent:

(∀r, r |= ϕ)⇔ ¬(∃r, r |= ¬ϕ)

6.3 Abstract model checking for stutter-invariant LTL

In this sub-section, we show how our abstraction frame-
work for single-indexed LTL formulas can be applied to
stutter-invariant model checking:

Theorem 7 Let CP be a CPDS, ν a simple valuation
on global configurations, and ϕ, a stutter-invariant LTL
formula. Then there exists a CPDS CP ′, a simple val-
uation on configurations of pushdown components ν′,
and a single-indexed formula ψ such that there exists a
global run g of CP verifying g |=ν ϕ if and only if there
exists a global run g′ of CP ′ verifying g′ |=ν′ ψ.

As a consequence, if there is no global run g′ of CP ′
such that g′ |=ν′ ψ, then there is no global run of CP
such that g |=ν ϕ. Our abstraction framework on CP ′
can provide us with a negative answer to the existential
stutter-invariant model checking problem (or, similarly,
with a positive answer to the universal problem).

Reduction to the single-indexed case. Intuitively, we
will add to the pushdown components of CP a new PDS
called the controller, whose purpose will be to store in
its control state the current states and stack symbols
of the other components so that it can be used as an
input for the simple valuation function ν. To do so,
we will modify the pushdown components so that after
each transition they must send a status update to the
controller.

As a consequence, the valuations of the actual global
configurations of the CPDS CP and of the top configu-
rations stored in the controller’s memory will be similar,
although the extra transitions added by the synchro-
nization process between the controller and the other
pushdown components will cause some stuttering. A
global run of CP can therefore be used to design a new
global run in the modified CPDS such that its projec-
tion on the controller will be equivalent as far as the
verification of stutter-invariant properties is concerned.

Proof (Theorem 7) Without loss of generality, we as-
sume that the control states sets (Pi)i=1...n are disjoint,
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that each pushdown component Pi has a bottom stack
symbol ⊥ in Γ that can never be popped and a starting
configuration of the form ci0 = 〈si0,⊥〉.

Modifying the pushdown components. For each push-
down component Pi = (Pi, {τ} ∪ Labi, Γ,∆i, c

i
0), we

introduce a new PDS P ′i = (P ′i , Σi, Γ,∆
′
i, c

i
0) such that:

– Let P ji , j ∈ {1, . . . , n} be disjoint copies of Pi. Then

P ′i = Pi ∪ P 1
i ∪ . . . ∪ Pni

To each state p ∈ P , we match a state pj ∈ P ji .
– We add new synchronization signals between the

controller and the pushdown components:

Σi = {τ} ∪ Labi ∪ (Pi × Γ × {1, . . . , n})

– ∀(p, γ) a−→ (q, w) ∈ ∆i such that a ∈ Labi,j , we have

(p, γ)
a−→ (qj , w) ∈ ∆′i

Unlike ∆i, instead of moving straight to q, the PDS
goes through an intermediate state qj .

– ∀(p, γ) τ−→ (q, w) ∈ ∆i we have

(p, γ)
τ−→ (qi, w) ∈ ∆′i

The PDS goes through an intermediate state qi in-
stead of moving straight to q.

– ∀p ∈ Pi and γ ∈ Γ , ∀j ∈ {1, . . . , n}, we have

(pj , γ)
(p,γ,j)−−−−→ (p, γ) ∈ ∆′i

When the PDS is in an intermediate state pj , it
moves to an actual state p ∈ Pi and sends to the
controller C a signal stating its current state, its top
stack symbol (there is always one since we can’t pop
the bottom of the stack), and the index of the push-
down component it previously synchronized with (i
stands for internal transitions of Pi) so that the con-
troller can update its configuration.

Designing the controller. We define a new pushdown
component C = (C,Σ, Γ,∆c) called the controller such
that:

– Let the set of control states be

C = (P1 × Γ )× (P2 × Γ )× . . .× (Pn × Γ )×Buffer

where

Buffer = ((P1∪ . . .∪Pn)×Γ ×{1, ..., n})∪{Empty}

The set of control states stores the state and top
stack symbols of the n other components, but also
features a buffer that can either store a state and
top stack symbol of a pushdown component or wait
in an Empty state.

– Let the input alphabet be

Σ = (P1 ∪ . . . ∪ Pn)× Γ × {1, . . . , n}

The input alphabet can be used to receive the state
and top stack symbols of another pushdown compo-
nent, as well as the index of the pushdown compo-
nent it last synchronized with (an internal transition
is considered as a synchronization of a component
P ′i with itself).

– For each pushdown component Pi,
∀p1 ∈ P1, . . . ,∀pn ∈ Pn,∀qi ∈ Pi,

∀γ1, . . . , γn, γ′i ∈ Γ
we add to ∆c the transition

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pn, γn〉,Empty),⊥)
(qi,γ

′
i,i)−−−−−→

((〈p1, γ1〉, . . . , 〈qi, γ′i〉, . . . , 〈pn, γn〉,Empty),⊥)
If the buffer is empty and the controller receives a
signal triggered by an internal transition of a push-
down component, then it can directly update its
state according to the information sent.

– For each pushdown component Pi, ∀j 6= i,

∀p1 ∈ P1, . . . ,∀pn ∈ Pn,∀qi ∈ Pi,
∀γ1, . . . , γn, γ′i ∈ Γ

we add to ∆c the transition

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pn, γn〉,Empty),⊥)
(qi,γ

′
i,j)−−−−−→

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pn, γn〉, 〈qi, γi, j〉),⊥)
If the buffer is empty and the controller receives a
signal triggered by a synchronized transition of a
pushdown component, then the data sent is stored
in the buffer and the controller waits for the sig-
nal of the other component that took part in the
synchronized transition.

– For each pushdown component Pi, ∀j 6= i,

∀p1 ∈ P1, . . . ,∀pn ∈ Pn,∀qi ∈ Pi,∀qj ∈ Pj ,
∀γ1, . . . , γn, γ′i, γ′j ∈ Γ

we add to ∆c the transition

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pj , γj〉, . . . , 〈pn, γn〉,
〈qj , γ′j , i〉),⊥)

(qi,γ
′
i,j)−−−−−→

((〈p1, γ1〉, . . . , 〈qi, γ′i〉, . . . , 〈qj , γ′j〉, . . . , 〈pn, γn〉,
Empty),⊥)

If the buffer is full, then the controller updates its
states according to the information sent by the ex-
pected pushdown component as well as the data
stored in the buffer.
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We introduce a buffer in order to handle synchro-
nized transitions between two pushdown components:
if, in a global run, a synchronized transition is such
that a CPDS moves from configuration

(〈p1, γ1w1〉, 〈p2, γ2w2〉)

to

(〈p′1, γ′1w1〉, 〈p′2, γ′2w2〉)

then the representation of the pushdown components
in the controller should move from

(〈p1, γ1〉, 〈p2, γ2〉)

to

(〈p′1, γ′1〉, 〈p′2, γ′2〉)

without going through the partially updated configura-
tion

(〈p′1, γ′1〉, 〈p2, γ2〉)

that is never reached by the original CPDS. To avoid
this issue, the first synchronization signal will be stored
in the buffer, then both configurations are updated at
the same time, using the buffer and the next synchro-
nization signal.

Example 6 (Handling internal transitions) The run ri

〈pi, γiw〉
τ−→ 〈qii , γ′iw〉

(qi,γ
′
i,i)−−−−−→ 〈qi, γ′iw〉

of the pushdown component P ′i can synchronize with
the run r

(. . . , 〈pi, γi〉, . . . ,Empty)
(qi,γ

′
i,i)−−−−−→ (. . . , 〈qi, γ′i〉,

. . . ,Empty)

of the controller.

Example 7 (Handling synchronized transitions) Consi-
der the run ri

〈pi, γiwi〉
a−→ 〈qji , γ

′
iwi〉

(qi,γ
′
i,j)−−−−−→ 〈qi, γ′iwi〉

and the run rj

〈pj , γjwj〉
a−→ 〈qij , γ′jwj〉

(qj ,γ
′
j ,i)−−−−−→ 〈qj , γ′jwj〉

of the pushdown components P ′i and P ′j that can syn-
chronize with the run r

(. . . , 〈pi, γi〉, . . . , 〈pj , γj〉, . . . , Empty)
(qi,γ

′
i,j)−−−−−→

(. . . , 〈pi, γi〉, . . . , 〈pj , γj〉, . . . , 〈qi, γ′i, j〉)
(qj ,γ

′
j ,i)−−−−−→

(. . . , 〈qi, γ′i〉, . . . , 〈qj , γ′j〉, . . . ,Empty)

of the controller.

The valuation function. We define a new simple valu-
ation function ν′ for the pushdown component on the
set

(P1 × Γ ) ∪ . . . ∪ (Pn × Γ ) ∪ ((P1 × Γ )× . . .
×(Pn × Γ )× Buffer)

– ν′((x, y)) = ν(x) if

x ∈ (P1 × Γ )× (P2 × Γ )× . . .× (Pn × Γ )

and y ∈ Buffer ; the valuation function on the con-
troller is equivalent to the simple valuation of global
configurations of CP, and ignores the value of the
buffer.

– ν′(x) = True if

x ∈ (P1 × Γ ) ∪ . . . ∪ (Pn × Γ )

The valuation function on the n other pushdown
components is not relevant and always true.

The CPDS and the single-indexed LTL formula. Let us
consider the CPDS with n+ 1 components

CP ′ = (C,P ′1, . . . ,P ′n)

on the alphabet

Act ′ = Act ∪ (P1 ∪ . . . ∪ Pn)× Γ × {1, . . . , n}

and the single-indexed formula

ψ = (ϕ,True, . . . ,True)

Our goal is to simulate (with some repetitions) in the
controller component of CP ′ paths matched to global
runs of the original CPDS CP, and check the stutter-
invariant formula ϕ there.

Computing a new global run. Let us assume that a
global run g of CP verifying the stutter-invariant LTL
formula ϕ exists. We will define inductively a global run
g′ on CP ′, starting from the initial configuration

((〈s10,⊥〉, . . . , 〈sn0 ,⊥〉,Empty), c10, . . . , c
n
0 )

For each transition of the form

(〈p1, γ1w1〉, . . . , 〈pn, γnwn〉)
x−→CP

(〈q1, γ′1w′1〉, . . . , 〈qn, γ′nw′n〉)

belonging to g, we will design a sequence of transi-
tions of g′ such that, given

v = ν((〈p1, γ1w1〉, . . . , 〈pn, γnwn〉))

and

v′ = ν((〈q1, γ′1w′1〉, . . . , 〈qn, γ′nw′n〉))
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the valuation ν′ on the controller C goes through a
sequence of the form vλv′µ. Moreover, g′ should oth-
erwise be similar to g w.r.t. the other n pushdown
components, interactions with the controller compo-
nent notwithstanding.

1. If x = τ , then the system CP executes in a compo-
nent Pi an internal action

〈pi, γiwi〉
τ−→Pi

〈qi, γ′iw′i〉

and ∀j 6= i

〈pj , γjwj〉 = 〈qj , γ′jw′j〉

We first use in CP ′ an internal transition

〈pi, γiwi〉
τ−→P′i 〈q

i
i , γ
′
iw
′
i〉

of the component P ′i.
It is then followed by a synchronized action between
the transition

〈qii , γ′iw′i〉
(qi,γ

′
i,i)−−−−−→P′i 〈qi, γ

′
iw
′
i〉

of the system P ′i and the transition

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pn, γn〉,Empty),⊥)
(qi,γ

′
i,i)−−−−−→

((〈p1, γ1〉, . . . , 〈qi, γ′i〉, . . . , 〈pn, γn〉,Empty),⊥)

of the controller C.
Intuitively, the i-th component performs the inter-
nal action then synchronizes with the controller to
update the stack configurations. CP performed the
internal action in one step, CP ′ in two. The latter
path stutters once, as the controller’s state does not
change during the first step.

2. if x = a, a ∈ Labi,j , then the system CP executes
a synchronized action between two components Pi
and Pj , but otherwise, ∀k 6= j, i,

〈pk, γkwk〉 = 〈qk, γ′kw′k〉

We first perform in CP’ a synchronized action be-
tween the transition

〈pi, γiwi〉
a−→P′i 〈q

j
i , γ
′
iw
′
i〉

of the component P ′i and the transition

〈pj , γjwj〉
a−→P′j 〈q

i
j , γ
′
jw
′
j〉

of the component P ′j .
Then we perform a synchronized action between the
transition

〈qji , γ
′
iw
′
i〉

(qi,γ
′
i,j)−−−−−→P′i 〈qi, γ

′
iw
′
i〉

of the system P ′i and the transition

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pn, γn〉,Empty),⊥)
(qi,γ

′
i,j)−−−−−→

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pn, γn〉, 〈qi, γ′i, j〉),⊥)

of the controller C.
It is finally followed by a synchronized action be-
tween the transition

〈qij , γ′jw′j〉
(qj ,γ

′
j ,i)−−−−−→P′j 〈qj , γ

′
jw
′
j〉

of P ′j and the transition

((〈p1, γ1〉, . . . , 〈pi, γi〉, . . . , 〈pj , γj〉, . . . , 〈pn, γn〉,
〈qi, γ′i, j〉),⊥)

(qj ,γ
′
j ,i)−−−−−→

((〈p1, γ1〉, . . . , 〈p′i, γ′i〉, . . . , 〈p′j , γ′j〉, . . . , 〈pn, γn〉,
Empty),⊥)

of the controller C.
We perform a synchronized action between Pi and
Pj , then we update the controller by synchronizing
C and Pi, storing in the buffer the updated state to
avoid a partially updated (hence incorrect) config-
uration, then we eventually synchronize C and Pj
while emptying the buffer.

When the valuation path g of CP goes through the
values vv′, the valuation path g′ of the controller in CP ′
goes through the values v2v′ in case 1, and through the
values v3v′ in case 2. Since ϕ is stutter-invariant and
holds for g, then it must hold for the projection of g′

on the controller C, hence g′ |=ν′ ψ.

From CP ′ to CP. Let g′ be a global run of CP ′. By de-
sign, if we remove any synchronized transition involv-
ing the controller from g′ and replace every transition
of the form (p, γ)

x−→ (qj , w) ∈ ∆′i belonging to P ′i by
its equivalent (p, γ)

x−→ (q, w) ∈ ∆i in Pi, we end up
with a global run g of CP such that ν(g) and ν′(g′)

are stutter-equivalent. Hence, ν(g) |= ϕ if and only if
ν′(g′) |= ψ. ut

7 Application to race conditions

A race condition is an issue peculiar to multi-threaded
programs that happens when events do not occur in
the order the programmer intended, such as concurrent
operations on a shared memory location. In this section,
we show a toy example of a race condition in a CPDS
that can be detected thanks to our abstraction.

This example is inspired by the works in [6,9,15] on
a Windows NT Bluetooth driver.
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7.1 The CPDS model

We consider a network composed of three processes: one
of these handles memory allocation, and the two others
processes can synchronize with it in order to use mem-
ory to fulfil requests. These processes are the following:

MEMORY: handles the amount of free memory avail-
able; this amount decreases when another process
uses memory; the process will send different signals
depending on whether there is free memory left or
not;

CONSUME: can arbitrarily use the free memory han-
dled by the previous process;

REQUEST: has a stack of requests to fulfil, and will
use memory to do so.

If MEMORY runs out of free memory and another
process try to use some nonetheless, MEMORY will
reach an error state.

Each process can be modelled by a PDS as follows:

7.1.1 The process MEMORY.

Let m and me be its two states. Its stack alphabet is
{γ,⊥}. The number of γ’s in the stack corresponds to
the amount of memory available to other threads, a
single γ being enough to handle a single request. This
process will pop a γ from its stack if it receives a signal
use. As an internal action, it can also push a γ on its
stack (allocating memory) if there is no free memory
left. It can send a signal on to other threads if there is
at least one γ on the stack, and will send off otherwise.
If it receives a use signal but there is no γ on the stack,
it will instead move to the error state me.

The process MEMORY is represented by the follow-
ing PDS rules:

(r1) (m, γ)
on−−→ (m, γ); the process signals that there is

still free memory left;
(r2) (m,⊥) off−−→ (m,⊥); the process signals that there

is no free memory left;
(r3) (m,⊥) τ−→ (m, γ⊥); the process allocates memory;
(r4) (m, γ)

use−−→ (m, ε); the amount of free memory
available decreases;

(r5) (m,⊥) use−−→ (me,⊥); the process reaches its error
state.

7.1.2 The process CONSUME.

Let c, ccheck , and cdone be its three states and ⊥ its
only stack symbol. This process can check if there is
any free memory left by exchanging a signal on with
MEMORY, then consume one unit by sending a signal
use.

CONSUME is represented by the following PDS
rules:

(r6) (c,⊥) on−→ (ccheck ,⊥); the process checks if there is
any memory left;

(r7) (ccheck ,⊥)
use−−→ (cdone ,⊥); the process uses one

unit of memory;
(r8) (cdone ,⊥)

τ−→ (c,⊥); the process goes back to its
initial waiting state.

7.1.3 The process REQUEST.

Let r and rcheck be its two states. Its stack alphabet is
{γ,⊥}. The number of γ’s in the stack corresponds to
the number of requests it must handle. As an internal
action, it can receive a new request and push a γ symbol
on its stack. This process can check if there is any free
memory left by exchanging a signal on with MEMORY,
then handle a request and consume one unit by sending
a signal use, popping a symbol γ from its own stack.

The process REQUEST is represented by the fol-
lowing PDS rules:

(r9a) (r, γ)
τ−→ (r, γγ); the process adds a new request;

(r9b) (r,⊥) τ−→ (r, γ⊥); the process adds a new request;
(r10) (r, γ)

on−−→ (rcheck , γ); the process checks if there
is any free memory left;

(r11) (rcheck , γ)
use−−→ (r, ε); the process handles a re-

quest while using one unit of memory.

7.2 Using a single-indexed LTL formula

Let P be the set of all states of the CPDS. We define
AP = P and a simple valuation ν such that for each
stack symbol x and p ∈ P , ν(〈p, x〉) = {p}. We express
a correct behaviour of the CPDS as the conjunction of
the three following LTL formulas:

– ψMEMORY = G(¬me); the process MEMORY can’t
reach its error state;

– ψCONSUME = GF (c); the process CONSUME will
always go back to its waiting state c;

– ψREQUEST = G(rcheck ⇒ F (r)); the process RE-
QUEST, when it starts handling a request, must
complete it and go back to its default state.

We then apply the prefix abstraction scheme in-
troduced in Section 5.2 to the universal single-indexed
model checking problem

(MEMORY ,CONSUME ,REQUEST ) |=
(ψMEMORY , ψCONSUME , ψREQUEST )

Our algorithm finds a counter-example in seven steps.
Intuitively, a race condition happens when both CON-
SUME and REQUEST try to use memory while MEM-
ORY only has a single unit available.
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7.3 An erroneous trace

We write (ri) ↔ (rj) if we apply two rules that syn-
chronize. We start from the initial configuration:

(〈m,⊥〉, 〈c,⊥〉, 〈r,⊥〉)

(r3) MEMORY allocates memory:

(〈m, γ⊥〉, 〈c,⊥〉, 〈r,⊥〉)

(r6)↔ (r1) MEMORY sends on to CONSUME:

(〈m, γ⊥〉, 〈ccheck ,⊥〉, 〈r,⊥〉)

(r9b) REQUEST adds a new request:

(〈m, γ⊥〉, 〈ccheck ,⊥〉, 〈r, γ⊥〉)

(r10)↔ (r1) MEMORY sends on to REQUEST:

(〈m, γ⊥〉, 〈ccheck ,⊥〉, 〈rcheck , γ⊥〉)

(r7) ↔ (r4) CONSUME sends use to MEMORY
and the latter process uses one unit of memory:

(〈m,⊥〉, 〈cdone ,⊥〉, 〈rcheck , γ⊥〉)

(r8) CONSUME goes back to default mode:

(〈m,⊥〉, 〈c,⊥〉, 〈rcheck , γ⊥〉)

(r11) ↔ (r5): REQUEST sends use to MEMORY
and the latter process reaches an error mode, violating
ψMEMORY :

(〈me,⊥〉, 〈c,⊥〉, 〈r,⊥〉)
Using a prefix abstraction of order 7, we can find an

erroneous prefix τ ·on ·use ·τ ·use ·τ ·use in 7 steps. This
prefix can be matched to a concrete, infinite global run
with trace τ · on · use · τ · use · τ · use · τω that violates
the single indexed-formula by manually extending the
finite sequence of rules outlined above with an infinite
loop of rule (r9a).

8 Conclusion and Future Works

In this paper, we study the model checking problem of
single-indexed and stutter-invariant LTL properties for
CPDSs, which is unfortunately undecidable. We design
an algorithm to abstract the model checking problem
that relies on the automata-theoretic approach of [2, 7]
and the Kleene abstraction framework of [3]. We then
apply this technique to a toy example and find a race
condition.

An automata-theoretic approach to the CTL model
checking problem for PDSs has been introduced in [17].
It remains to be seen if the CTL model checking prob-
lem for CPDSs can be abstracted in a similar manner
to LTL.
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A Kleene Abstractions

We detail the mathematical framework introduced by Bouajjani
et al. in [3] in order to abstract trace languages of PDSs.

A.1 Abstractions and Galois connections

Let L = (2Act∗ ,⊆,∪,∩, ∅,Act∗) be the complete lattice of lan-
guages on Act.

Our abstraction of L requires a lattice E = (D,≤,t,u,⊥,>),
from now on called the abstract lattice, where D is a set called
the abstract domain, as well as a pair of mappings (α, β) called
a Galois connection, where α : 2Act∗ → D and β : D → 2Act∗

are such that

∀x ∈ 2Act∗ , ∀y ∈ D,α(x) ≤ y ⇔ x ⊆ β(y)

∀L ∈ L, given a Galois connection (α, β), we have L ⊆
β(α(L)); the Galois connection can be used to over-approximate
a language in 2Act∗ (e.g. the trace language of a PDS).

Moreover, it is easy to see that

∀L1,∀L2 ∈ L, α(L1) u α(L2) = ⊥

if and only if

β(α(L1)) ∩ β(α(L2)) = ∅

A.2 Kleene algebras

We consider a special class of abstractions called Kleene abstrac-
tions.

An idempotent semiring is a structure K = (A,⊕,�, 0, 1),
where ⊕ is an associative, commutative, and idempotent (a⊕a =
a) operation such that A is closed under the infinite sum

⊕
, and

� is an associative operation. 0 and 1 are neutral elements for ⊕
and � respectively, 0 is an annihilator for � (a� 0 = 0� a = 0)
and � distributes over ⊕.

K is an Act-semiring if it can be generated by 0, 1, and
elements of the form va ∈ A, ∀a ∈ Act . A semiring is said to be
closed if ⊕ can be extended to an operator over countably infinite
sets while keeping the same properties as ⊕.

We define a0 = 1, an+1 = a� an and a∗ =
⊕
n≥0

an. Adding

the ∗ operation to an idempotent closed Act-semiring K trans-
forms it into a Kleene algebra.

A.3 Kleene abstractions

An abstract lattice E = (D,≤,t,u,⊥,>) is said to be com-
patible with a Kleene algebra K = (A,⊕,�, 0, 1) if D = A,
x ≤ y ⇔ x⊕ y = y, ⊥ = 0 and t = ⊕.

A Kleene abstraction is an abstraction such that the abstract
lattice E is compatible with the Kleene algebra and the Galois
connections α : 2Act∗ → D and β : D → 2Act∗ are defined by:

α(L) =
⊕

a1...an∈L

va1 � . . .� van

β(x) = {a1 . . . an ∈ Act∗ | va1 � . . .� van ≤ x}
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Intuitively, a Kleene abstraction is such that the abstract
operations ⊕, �, and ∗ can be matched to the union, the con-
catenation, and the Kleene closure of the languages of the lattice
L, 0 and 1 to the empty language and {ε}, va to the language
{a}, the upper bound > ∈ K to Act∗, and the operation u to the
intersection of languages in the lattice L.

In order to compute α(L) for a given language L, each word
a1 . . . an in L is matched to its abstraction va1 � . . .� van , and
we consider the sum of these abstractions.

A finite-chain abstraction is such that the lattice (A,≤) has
no infinite ascending chains: as a consequence, infinite sequences
of concatenations

⊙
i≥0

vai can be defined and effectively com-

puted, and the abstraction framework can be applied to infinite
traces in Actω . The prefix and first occurrence ordering abstrac-
tions defined previously are finite-chain.

A.4 The set of K-predecessors

Let P = (P,Act , Γ,∆, c0) be a PDS and K = (A,⊕,�, 0, 1) a
Kleene algebra corresponding to a Kleene abstraction of the set
Act .

We define inductively the set ΠK of path expressions as the
smallest subset of K such that:

– 1 ∈ ΠK ;
– if π ∈ ΠK , then ∀a ∈ Act , va � π ∈ ΠK .

For a given path expression π, we define its length |π| as the
number of occurrences of simple elements of the form va in π.

A K-configuration of P is a pair (c, π) in ConfKP = P ×
Γ ∗ × ΠK . We can extend the transition relation −→P to K-
configurations with the following semantics: ∀a ∈ Act , if c a−→P c′,
then

∀π ∈ ΠK , (c, va � π) −→P,K (c′, π)

(c, va � π) is said to be an immediate K-predecessor of (c′, π).
The reachability relation  P,K is the reflexive transitive closure
of −→P,K .

Given a set of configurations C, we introduce the set of K-
configurations pre∗K(P, C):

pre∗K(P, C) = {(c, π) | c ∈ pre∗(P, C),
π ≤ α(LP({c}, C))

If (c, π) ∈ pre∗K(P, C), then, by definition of the Kleene abstrac-
tion, (c, π) P,K (c′, 1) for some c′ ∈ C. Intuitively, the abstract
path expression π is meant to be the abstraction of an actual trace
from c′ to C.

B Abstracting Traces of Pushdown Systems

We now present the automata-theoretic approach used by Boua-
jjani et al. in [3] to compute the set pre∗K(P, C) in order to ab-
stract runs of PDSs.

B.1 Representing regular sets of configurations

In order to represent regular sets of configurations, we consider
the following structure:

Definition 12 (Bouajjani et al. [2]) Let P = (P,Σ, Γ,∆, c0)
be a pushdown system. A P-automaton A = (Q,Γ, δ, I, F ) is a
finite-state automaton on the stack alphabet Γ of P where Q is
a set of states such that P ⊆ Q, I = P the set of initial states,
F ⊆ Q the set of final states, and δ ⊆ Q × Γ ∪ {ε} × Q a set of
transitions.

Intuitively, a P-automaton is a finite-state automaton whose
edges are labelled by stack symbols of P and whose initial states
represent the states of P.

Let →A be the transition relation inferred from δ. We say
that A accepts a configuration 〈p, w〉 if there is a path p w−→∗Af
such that f ∈ F . Let L(A) ⊆ Conf P be the set of configurations
accepted by A. Obviously, the following lemma holds:

Lemma 3 (Bouajjani et al. [2]) A set of configurations C of
a PDS P is regular if and only if there exists a P-automaton A
such that L(A) = C.

Let C be a regular set of configurations of a PDS P = (P,Σ,
Γ,∆), and let A be a P-automaton accepting C. It has been
proven by Didier Caucal in [5] that the sets pre∗(P, C) is regular.
Moreover, it can be computed by applying a saturation procedure
(where new transitions are incrementally added until a fixed point
is reached) to a P-automaton representing C:

Theorem 8 (Bouajjani et al. [2]) Given a PDS P and a
regular set of configurations C, there exists a P-automaton Apre∗

accepting pre∗ (C).

B.2 K-automata

P-automata are used to represent regular sets of configurations.
They can be extended to K-automata in order to handle sets of
K-configurations of a PDS P.

Definition 13 (K-automata) A K-automaton matched to a
PDS P = (P,Σ, Γ,∆) is a tuple A = (Q,Γ, δ, I, F ) where Q is
a finite set of control states, δ ⊆ Q × Γ ×K × Q a finite set of
transition rules, I = P the set of initial states, and F ⊆ Q the
set of final states.

Intuitively, a K-automaton can be seen as a P-automaton whose
transitions labelled by stack symbols in Γ have been given an
additional label in K. In a similar manner, P-automaton can be
seen as K-automaton whose transitions are all labelled by 1.

We define −→A⊆ Q×Γ ∗×K×Q× as the smallest transition
relation satisfying:

– q
(ε,1)−−−→A q for every q ∈ Q;

– if (q, γ, e, q′) ∈ δ, then q (γ,e)−−−→A q′;

– if q
(w,e)−−−−→A q′ and q′

(w′,e′)−−−−−→A q′′ as well, then

q
(ww′,e�e′)−−−−−−−−→A q′′.

We say that the K-automaton A accepts a K-configuration

(< p,w >, π) if p
(w,e)−−−−→A q for q ∈ F and some e ∈ K such that

π ≤ e.
Let LK(A) be the set of all configurations accepted by A,

and TK(A) = {π | ∃c ∈ C, (c, π) ∈ LK(A)} the set of abstract
traces matched to these configurations.

By adding extra labels in K to the P-automaton Apre∗ ac-
cepting pre∗ (C) yielded by Theorem 1, we can compute a K-
automaton accepting set pre∗K(P, C) using an iterative fixpoint
algorithm:
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Theorem 9 (Bouajjani et al [3]) Let P = (P,Σ, Γ,∆) be
a PDS, A a P-automaton accepting a regular set of configu-
rations C, and K a Kleene algebra matched to a finite-chain
Kleene abstraction α. Then we can compute a K-automaton
Apre∗

K
matched to P accepting the set pre∗K(P, C).

Assuming the size of C is constant, the running time of this
algorithm is in O(l · |∆|3) operations.

B.3 Approximating the set of traces

Let P be a PDS and C, C′ two regular sets of configurations of
P. Let K be a Kleene algebra matched to a finite-chain Kleene
abstraction α. Using Theorem 9, we can compute a K-automaton
Apre∗

K
matched to P accepting the set pre∗K(P, C).

We can then construct a K-automaton A′pre∗
K

over Γ ×K
equal to the restriction of Apre∗

K
to configurations in C′. To do

so, we consider the product between Apre∗
K

and a P-automaton
accepting the regular set of configurations C′.

Finally, α(LP(C′, C)) = TK(A′pre∗
K
) is an abstraction of the

set LP(C′, C) of traces of the PDS P leading from the regular
set of configuration C′ to another regular set of configurations C.

Obviously, the semantics of a PDS and a BPDA being similar,
we can apply this framework to compute finite traces of BPDA
as well.


