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Abstract
The SARS-CoV-2 epidemic in France has focused a lot of attention as it has had oneof the largest death tolls in Europe. It provides an opportunity to examine the effect ofthe lockdown and of other events on the dynamics of the epidemic. In particular, it hasbeen suggested that municipal elections held just before lockdown was ordered mayhave helped spread the virus. In this manuscript we use Bayesian models of the num-ber of deaths through time to study the epidemic in 13 regions of France. We foundthat the models accurately predict the number of deaths 2 to 3 weeks in advance, andrecover estimates that are in agreement with recent models that rely on a different struc-ture and different input data. In particular, the lockdown reduced the viral reproductionnumber by ≈ 80%. However, using a mixture model, we found that the lockdown hadhad different effectiveness depending on the region, and that it had been slightly moreeffective in decreasing the reproduction number in denser regions. The mixture modelpredicts that 2.08 (95% CI: 1.85-2.47) million people had been infected by May 11, andthat there were 2567 (95% CI: 1781-5182) new infections on May 10. We found no evi-dence that the reproduction numbers differ between week-ends and week days, and noevidence that the reproduction numbers increased on the election day. Finally, we eval-uated counterfactual scenarios showing that ordering the lockdown 1 to 7 days soonerwould have resulted in 19% to 76% fewer deaths, but that ordering it 1 to 7 days laterwould have resulted in 21% to 266%more deaths. Overall, the predictions of the modelindicate that holding the elections on March 15 did not have a detectable impact on thetotal number of deaths, unless it motivated a delay in imposing the lockdown.
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1. Introduction
The World Health Organization (WHO) declared a pandemic of coronavirus disease 2019(SARS-CoV-2) on March 11, 2020 following its spread to 114 countries (World Health Organiza-tion, 2020) with an estimated 118, 000 cases at the time. In France, a first patient was diagnosedwith the disease on January 24th 2020 (Bernard Stoecklin et al., 2020). By May 1st, the numberof SARS-CoV-2 related deaths in France was 24, 594 (French Government, 2020). On March 17at noon, a lockdown was enforced that required a self-authorisation to leave home. This lock-down followed a series of less severe measures such as the prohibition of gatherings above 100people (March 13) and school closures (March 14).These measures surrounded already planned nation-wide municipal elections on SundayMarch 15. With enforced distancing measures in polling stations, they were maintained, whichled to criticism (Cédric Pietralunga, Alexandre Lemarié, Olivier Faye, 2020), as this could havefavored the spread of the virus by increasing the number of contacts on a week-end day. It istherefore of interest to investigate whether these elections did have an effect on SARS-CoV-2related deaths in France.There has also been suggestions that different parts of France may have adhered to the lock-down requirements with different observance. Behaviours susceptible to favour the spread ofthe virus may have been more widespread in some regions than in others. In particular, news-papers reported that large numbers of people were not following the strict lockdown rules andinstead spent time outside, typically on the banks of the Seine river, in Paris (Elsa Ponchon, 2020).If such differences between regions were true, one might expect to see an effect on region-wisenumbers of SARS-CoV-2 related deaths. In particular, the Île-de-France (Paris) region would beexpected to show higher mortality rates.The lockdown was eventually lifted on May 11, when the authorities estimated that theepidemic was sufficiently under control. Given the importance of such a decision, it is importantto assess the state of the epidemic on May 11 using several methodological approaches.
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Various approaches have been used to monitor the epidemic. Most are compartmental mod-els, which include Susceptible Infected Removed/Recovered (SIR) or Susceptible Exposed In-fected Removed/Recovered (SEIR) models. Such models can be used in a deterministic frame-work, as in (Magal and Webb, 2020; Massonnaud et al., 2020; Roux et al., 2020; Sofonea etal., 2020), can be used for performing simulations by including stochasticity through resamplingsteps in an otherwise deterministic framework (Neher et al., 2020), or can be used in a completelystochastic framework, as in (Flaxman et al., 2020; Salje et al., 2020). Deterministic models havesmall computational requirements, but probabilistic approaches lend themselves to statisticalinference, e.g. Bayesian inference.In this paper we used Bayesian inference to study SARS-CoV-2 related deaths in France. Webuild upon work by Flaxman et al. (Flaxman et al., 2020) to investigate heterogeneity of the viralreproduction number Rt due to both temporal (lockdown, week-ends, election day) and spatialvariations (inter-regional heterogeneity), and to evaluate the status of the epidemic when thelockdown was lifted on May 11.Flaxman et al. proposed a Bayesian method to estimate decreases of the reproduction num-ber (Rt ) of the virus due to various interventions such as school closures and lockdowns among11 countries. We adapted this model from its released version 2. Version 2 improves upon ver-sion 1 by accounting for the fact that Rt decreases as the pandemic progresses because a largerportion of the population has been infected and can no longer be infected.We applied themodelto the 13 French regions and notably computed region-wise Infection Fatality Rates (IFR) by tak-ing into account region-specific demographic data. First, we investigated the ability of the modelto predict the progression of the epidemic in France. Second, we examined the effect of the lock-down on the reproduction number of the disease. Third, we examined the ability of the modelto detect two types of temporal heterogeneities: week-ends, during which a smaller portion ofworkers go to work, and March 15th election day. We used simulations to assess the effect sizenecessary for the model to detect these heterogeneities, and then applied the model to theempirical data. Fourth, we developed a mixture model to study potential heterogeneities amongregions.We found that this model had a better fit than the first model. Fifth, we used bothmodel1 and the mixture model to assess the total number of infections as of May 11, and the new in-fections on that day. Finally, we investigated counterfactual scenarios in which the lockdown isimposed 1 to 7 days before or after the actual date.
2. Material and methods

2.1. Models.
2.1.1. Basic model. Here we present the version 2 of the model by Flaxman et al. (Flaxman et al.,2020) briefly, and direct the interested reader to the original publication for more details. Wehave kept the original authors’ symbols for clarity. Version 2 models the evolution of the numberof deaths day by day by assuming a discrete renewal process, where portions of the populationare susceptible, infected, or recovered/dead. This process describes the evolution of the num-ber of infections over time, and serves as an input to a model of the time between infection anddeath. In the original model, heterogeneities between countries were induced by different inputparameter values. For instance, each country had its own population size. All the countries how-ever shared the same estimated parameter values, apart from parameters setting the number ofseed infections, which describe the numbers of infections happening during the first 6 days ofthe epidemic in a given country, and are necessary to initiate the epidemic. Themodel accountedfor variations in the reproduction number of the virus due to non-pharmaceutical interventions.It estimated parameter values for each of the interventions, which were shared by all countries.More specifically, deaths on a given day are the consequence of infections that took placesome infection-to-death time in the past. The model allows for variation across individualsin this infection-to-death time by assigning it a probabilistic distribution π. In practice π isthe convolution of two Gamma distributions whose parameters are obtained from the literature.That is, the infection-to-death time is modeled as the sum of two independent random times
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: the incubation period, and the time between onset of symptoms and death. Both time compo-nents are Gamma distributed. The observed daily numbers of deaths Dt,m on day t for region mare drawn from a negative binomial distribution with parameters that vary day by day:
Dt,m ∼ NegativeBinomial(dt,m, dt,m +

d2
t,m

ψ
)

where ψ ∼ Normal+(0, 5) is a half-Normal distribution. dt,m =
∑t−1

τ=0 cτ ,mπt−τ ,m is the ex-pected number of deaths on day t for region m. It is a discrete sum of the number of new infec-tions cτ ,m per day τ and region m since the first day of data, times the probability πt−τ ,m thatpeople infected on that day τ die on day t . The number cτ ,m of new infections on day τ andregion m is the result of a discrete renewal process. This process depends first on a distribution
g of time between infection and the ability to infect other individuals, and second on a country-specific reproduction number Rt,m. g is set to be a Gamma distribution with parameters fixed.
Rt,m models the average number of secondary infections at time t for country m. It depends on:

• the population size of the country:Rt,m will tend to be larger in larger populations as thereare more people to infect. However, as the number of infected and recovered individualsincreases in a country, Rt,m decreases because there are fewer individuals to infect. Thisis handled in the version 2 model deterministically based on population sizes given asinput to the model.
• the age structure of the country to account for the variable susceptibility of the differentage classes in a population. Rt,m will tend to be larger in countries with older populations.This is handled in the version 2 model deterministically based on infection fatality ratios(IFR) given as input to the model.
• non-pharmaceutical interventions such as a lockdown. By reducing the number of con-tacts between individuals, these interventionswill tend to reduceRt,m. The effect of eachintervention is quantified by a single parameter that we seek to estimate from the data.It is assumed to be homogeneous over all days during which it is enforced.

2.1.2. Model extensions. Our models reproduce the general structure of the version 2 model.However we applied it to French regions, with changes in the type and number of interventions,and, in one case, allowing for different estimated parameter values for different regions.We used four models: one model where only the lockdown is included, one model with lock-down and week-ends, one model with lockdown and election day, and one mixture model withlockdown allowing for heterogeneities among regions in the efficiency of the lockdown.
(1) Model with lockdown. The model with lockdown is basically the same as in (Flaxmanet al., 2020) except that a single intervention was considered. Lockdown was consideredto have an homogeneous effect throughout all m regions and from its start to its end. Itwas assumed to have an effect on the reproduction number Rt,m of the virus accordingto equation 1:

(1) Rt,m = R0,m × e−It×αlockdown

where R0,m stands for the reproduction number at day 0 in region m and incorporatesdemographic parameters, and It stands for an indicator function for day t taking value 1on lockdown days and 0 otherwise.The prior distribution of αlockdown is a Gamma distribution of shape 0.1667 and rate
1.0, shifted to the left to allow for decreasing or increasing effects with about a 50/50chance. For this intervention, large decreasing effects are expected, so the distributionwas mirrored around 0 by taking its negative, leading to the prior shown in 2.

(2) αlockdown = Z − log(1.05)

6
where Z ∼ Γ(0.1667, 1)

(2) Model with lockdown and week-ends. The second model builds upon the first model byincluding the influence of week-ends. These were modelled as an additional interventionwith the same prior as for the lockdown, assuming less work on week-ends comparedto weekdays should induce lower reproduction numbers (Eq. 3). However, let it be clear
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that this model is not intended to explain the irregularities in mortality reporting duringweek-ends.
(3) Rt,m = R0,m × e−It,lockdown×αlockdown−It,weekends×αweekends

(3) Model with lockdown and election day. The third model builds upon the first model andincludes the influence of the election day. On this single day, another intervention isadded, with a prior very similar to that used for the two other interventions, except thatwe expect here an increase of the reproduction number. Therefore, we used the sameprior as for the other interventions except for the negative sign, yielding equation 4.
αelections = Z − log(1.05)

6
where Z ∼ Γ(0.1667, 1)(4)

Rt = R0,m × e−It,lockdown×αlockdown−It,elections×αelections(5)
(4) Model with heterogeneity among regions.The fourth model builds upon the first model but allows for heterogeneity among re-gions with two categories. These two categories of regions are allowed to differ in howmuch the lockdown changed the transmissibility of SARS-CoV-2. To this end, we imple-mented a mixture model on αlockdown parameters, with two categories, resulting in twoparameters, α1

lockdown and α2
lockdown. A region m can choose between the two possiblevalues, and this is indicated with a Bernoulli distributed variable Cm ∈ {1, 2}. We called θthe parameter of the Bernoulli distribution, and chose a uniform prior for it. In summary:

θ ∼ Beta(1, 1)
Cm ∼ Bern(θ)

Then we defined Rt,m, the reproduction number for region m as:
(6) Rt,m = R0,m × e−It,lockdown×αCm

lockdown

We draw both αk
lockdown values from the same prior distributions as for the first and sec-ond models, but enforce that α2

lockdown is larger than α1
lockdown by using a dedicated vari-able type in Stan (Stan Development Team, 2019). Since Stan does not handle mixturemodels explicitly, we encoded a marginalized version of our model as proposed in Stan’smanual and developed a posterior decoding method (described in Supplementary Mate-rial 4.1) to extract results for individual regions.

2.2. Data.
2.2.1. Mortality data.Mortality data per region were downloaded on May 11 2020 from two sources: OpenCovid(OpenCOVID19 contributors, 2020) , and Santé Publique France (SPF) (FrenchMinistry ofHealth,2020). OpenCovid is a citizen-based initiative, whose aim is to assemble and provide data setsto study the epidemic in France and abroad. SPF is a governmental agency that provides datarelated to the epidemic at national and sub-national levels. Both datasets were merged into one,prioritizing data from SPF on the days when observations from both sources were available..Data for regions Guadeloupe, Guyane, La Réunion, Martinique, and Mayotte, which have lowmortality numbers in the studied period, were not included in this analysis. The first day forwhich we have data in all regions is February 15. The amount of missing data from this dayonward is low: 14 days at most for regions Île-de-France, Occitanie and Pays de la Loire, and
10.92 days on average (fig. 1)..
2.2.2. Infection Fatality Ratios. Infection Fatality Ratios (IFRs) provide the probability of deathgiven infection, and vary depending on the age of the infected individual. Based on data fromChina, IFRs were estimated for 9 age classes: [0 − 9], [10 − 19], ..., [70 − 79], [80 <] by (Verityet al., 2020). Those estimates cannot be used directly for French regions as many parameterssusceptible to affect IFRs differ between the two countries. However Flaxman et al. (Flaxman
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Figure 1 – Mortality data for 13 regions in France, from the first day when all regionshave data. Colors are scaled as log mortality for a given day and region. Gray tiles indicatemissing data. All data from March 19th onwards originate from the SPF dataset.

et al., 2020) estimated country-specific Case Fatality Rates (CFRs), providing the probability ofdeath given a diagnosed infection.We used the country-wise CFRs for China (0.0138) and France(0.011526) to scale the Chinese age-specific IFRs. More specifically, we use proportionality toscale all Chinese age-specific IFRs by 0.011526/0.0138 to obtain French age-specific IFRs. Finally,we obtain region-wise IFRs by computing the sum of the French age-specific IFRs weighted bythe population size of the corresponding age class in each region.
2.3. Choice of interventions.

In (Flaxman et al., 2020), different interventions had been used: school closure ordered, case-based measures such as self-isolation, public events banned, social distancing encouraged, lock-down decreed. In France, these different interventions happen in close temporal proximity, atthe same time in all regions, between March 13 and March 17. This makes identifying their in-dividual contributions very challenging. Therefore we chose to only use one intervention, thefull lockdown, on March 17. We also considered two additional events, that were treated in themodel as additional interventions: week-ends and the election day, as each could have an effect

6 Louis Duchemin et al.

Peer Community Journal, Vol. 2 (2022), article e6 https://doi.org/10.24072/pcjournal.84

https://doi.org/10.24072/pcjournal.84


on the viral reproduction number. In particular, week-ends may decrease Rt because more busi-nesses are closed on week-ends, and the election day may increase Rt by gathering many votersin polling stations.
2.4. Simulations to estimate effect sizes.

We investigated the ability of the model to detect the effect of one-day events, like theelections, or of week-ends, depending on the size of the effect.To do so, we relied on simulations reproducing the model’s dynamics, and accounting for theeffect of the events to be investigated (elections or week-ends) as described in section 2.1.2.Each simulation was initialized with parameters sampled from a previous fit of the model. Thereference model used to sample these parameters accounted for the lockdown effect, and wasfitted on mortality data up to May 11, yielding 2000 samples of parameter values. 500 sets ofparameters were randomly sampled from this pool in order to run 500 simulations per conditions.Conditions were defined as a fold-change applied to the adjusted Rt during the elections orweek-end days. With our prior hypotheses that week-ends would cause a decrease in Rt , weran simulations assuming fold-changes : 1 (no change), 0.9, 0.75, 0.5. Similarly, to evaluate theconsequences of a putative Rt spike during the elections, we ran simulations with fold-changes: 1, 1.25, 1.5, 2. We then compared the simulated mortality between conditions to evaluate thepossibility to retrieve such a change in Rt from mortality observations.
2.5. Implementation.

The models described in paragraph 2.1.2 were encoded using Stan’s probabilistic language(Stan Development Team, 2019), as variants of the code developed by Flaxman et al. (Flaxman etal., 2020) (version 2). Inferencewas performed using Stan via the R library rstan. Stan implementsa variant of Markov ChainMonte Carlo (MCMC) inference algorithms, called HamiltonianMonteCarlo (HMC). Given a model with unknown parameters and data, this algorithm generates asequence of parameter values whose distribution converges to the posterior distribution of theparameters given the data. In our inferences, we used 4 independent chains. We discarded theinitial 2000 iterations of each chain (burnin) and used the next 4000 iterations for our posteriorsample. Convergence of the chains was assessed by checking the Rhat statistic which is basedon comparing inter-chain to intra-chain variance, as recommended in Stan’s manual.
2.6. Availability.

The code used for the experiments is available at https://gitlab.in2p3.fr/boussau/corona_
french_regions

3. Results
We first investigate whether model 1 can capture the major trends of the epidemic in theFrench regions. Second, we use it to evaluate the efficacy of the lockdown. Third, we study theability of models 2 and 3 (section 2.1.2) to identify changes in the reproduction number due tothe elections or to week-ends, both on simulated and empirical data. Fourth, we investigate po-tential differences among regions in the efficacy of the lockdown. Fifth, we study counterfactualscenarios where the lockdown is enforced a few days before or after March 17 to evaluate theeffect on the total number of deaths.

3.1. Evaluation of Model 1 and of the efficiency of the lockdown.
3.1.1. Model fit. (Flaxman et al., 2020) investigated the fit of their model by cross validation.To do so, they pruned from their data set 3 days for which they have data and compared theinferred numbers of deaths to the empirical numbers of deaths. They repeated this procedureseveral times. The model was found to behave well, with a correlation of 93% between theinferred and empirical country-wise numbers of deaths. We challenged our model a bit furtherby predicting the number of deaths in the 13 regions of France after hiding large parts of thedata. Each run was performed by removing the k last weeks of data, with k ranging from 0 to 8,and comparing the inferred and empirical numbers of deaths up to May 11 when the lockdown
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was lifted. Remaining data points used for estimation after removing those weeks are refered toas "prefix" in this section.

Figure 2 – Model fits using prefixes of data for region Île-de-France. The dashed verticalline corresponds to March 17, when the lockdown was enforced. Data right of the plainvertical line were hidden from the model. The observed numbers of deaths are repre-sented with a brown histogram, and the predictions of the model are in blue. Dark blueribbons correspond to the 50% credibility intervals and light blue ribbons to the 95%credibility intervals of the expected numbers of death. Blue dashed lines represent the95% credibility interval of the predicted numbers of deaths Dt,m (see section 2.1).
Fig. 2 shows the results when different numbers of days are given as input for region "Îlede France". Data for other regions are presented in Supp. Mat. and show the same trends. Thedata shows weekly trends of low numbers of deaths on week-ends compared to high numbersjust after the week-ends. This can be explained by the fact that the counts provided by Frenchpublic health agencies are based on the date each event was reported, and not the date it oc-curred (Luc Peillon, 2020). However in practice there is always a latency between the eventsoccuring during the treatment process (e.g hospitalization, admission in ICU, decease) and theirreporting. This latency is longer during the week-ends, possibly because of reduced workforce,leading to increased numbers reported on the following Monday. The model does not explicitlyhandle under-reporting and instead smoothes these irregularities out.The model both predicts the expected numbers of deaths per day and the actual numbersof deaths, which are simulated thanks to a negative binomial distribution around the expectednumbers of deaths. Themodel performs poorly when the last 8weeks of data are held out (upperleft panel), and vastly overestimates the numbers of deaths. This is likely due to the fact that withsuch an early censoring of the data, no information about the lockdown is given to themodel. Thethree other panels show that when 4 or more additional weeks of data are provided, the modeldoes a good job at predicting the dynamics of the epidemic. These 4 additional weeks providethe data necessary for the model to estimate the effect of the lockdown on the reproductionnumber.For instance, the model estimates that in total there had been 6231 deaths [CI: 5456-7160]in region "Île de France" when all the data up to May 11 is used, 6502 deaths [CI: 5698-7403]

8 Louis Duchemin et al.

Peer Community Journal, Vol. 2 (2022), article e6 https://doi.org/10.24072/pcjournal.84

https://doi.org/10.24072/pcjournal.84


when the data stops oneweek beforeMay 11 (bottom right panel), 6829 deaths [CI: 5908-7882]when the data stops two weeks before May 11 (bottom left panel), and 5894 deaths [CI: 4854-7443] when the data stops four weeks before May 11 (top right panel). The actual total numberof deaths on May 11 in this region is 6643, which is in the credibility interval for all estimates.To focus on the predictive ability of themodel, i.e. its ability to estimate the number of deathsfor unobserved weeks, we computed the total squared error only on the last unobserved weekof data, and varied the prefix size. With a prefix that stops right before this last week, the totalsquared error is 12350 (95% CI : 7051-25307). If the prefix stops 2 weeks before the last week,it is 14956 (95% CI : 8036;35293), and 18001 (95% CI : 11420;27495) if the prefix stops fourweeks before the last week. The error made by the model when predicting 4 weeks in advanceis thus 45%worse than when predicting one week in advance.We conclude from the above thatthe model can be used to predict the number of deaths several weeks in advance while keepinga useful level of accuracy.Figure 3 presents fitted mortality for three regions, using data up to May 11. Equivalentfigures for all regions in this analysis are provided as supplementary material.If we focus on the total number of deaths in France using data up to May 11, we observethat the model is able to reproduce the trends in the observed numbers very accurately, makingerrors ranging from 0.86% (9750 estimated deaths for 9834 observed in data) to 6.70% (7300estimated for 7824 observed) per day over the month of April (Fig. 4). This shows that the in-ability of the model to capture weekly irregularities in the reporting of deaths has not had anoticeable effect on the estimation of the total numbers of deaths through time.Overall, the model appears to capture well the dynamics of the epidemic in French regions.In the following, we use the model to investigate whether particular events in the pandemics inFrance have left a footprint in the number of deaths.
3.1.2. Reduction of viral transmissibility due to the lockdown. Model 1 allows estimating the effectof the lockdown on the reproduction number of the virus. This is done through a parameter
αlockdown whose prior distribution is a shifted Gamma (see section 2.1). The posterior distributionclearly differs from the prior distributionmeaning that there is information in the data to estimatethe αlockdown parameter value (Supplementary Figure 11).As shown Fig. 5, the reproduction number in Île-de-France decreases markedly with the lock-down, shifting from about 3.58 (95% CI : 3.34 - 3.86) before the lockdown to 0.69 (95% CI : 0.65- 0.73) after the lockdown, i.e. a reduction of 80.78%.At the national level, the average Rt among regions weighted by their population size is 3.34(95% CI : 3.19 - 3.51) before lockdown and decreasing to 0.65 (95% CI : 0.62, 0.67) after.
3.2. Effect of week-ends.

Model 2 combines the effects of the lockdown and of week-ends. First we investigated whateffect size would be necessary to detect an effect of week-ends on viral transmissibility, andthen we assessed whether week-ends had had a detectable impact on viral transmissibility.
3.2.1. Effect size required to observe an effect of week-ends. Fig. 6 shows the effect on mortalityin Île-de-France through time and total mortality at national scale of decreases in Rt due to areduction of contacts between individuals on week-ends, when fewer workers are active. Theyreveal that a Rt fold change of around 0.75 seems necessary for it to have a detectable impact onthe number of deaths, because the distributions obtained with an Rt fold change of 0.9 overlaplargely with the distributions obtained without a fold change. In terms of contacts, this wouldmean that there should be 25% fewer contacts during week-ends than during a week-day for theeffect to be detectable. Simulation results for all regions are available as supplementary material.
3.2.2. No detectable effect of week-ends on viral spread. Themodel finds little effect of changes ofindividual behaviour on week-ends on the dynamics of the number of deaths through time. Fig.7 shows that the resulting posterior of Rt looks very similar to the posterior obtained withoutaccounting for behavioural changes onweek-ends (see Supplementary Figure 14 for comparison
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Figure 3 – Model fit on the complete dataset for three different regions.
with base model Rt ). The associated posterior distribution of αweekend is presented in Supplemen-tary Figure 12.
3.3. Effect of the elections.

The first round of voting in the municipal elections took place on Sunday March 15, justtwo days before the nation-wide lockdown was enacted. The voter turnout amounted to 41.6%.Following measures were enforced : safety distancing, and a maximum of three voters wereallowed at once in polling stations ; hydroalcoholic gel was available in every polling station, andmasks were mandatory ; voters were encouraged to bring their own pen and ballot paper which
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Figure 4 – Cumulated mortality over time, fitting data up to May 11.

Figure 5 – Prior and posterior samples of Rt in region Île-de-France.
was sometimes sent by mail. Even with these precautions, such an event is expected to increasethe number of contacts that occurs during the day, as well as the reproduction rate.Model 3 combines the effects of the lockdown and of the election day. First we investigatedwhat effect size would be necessary to detect an effect of the election day on viral transmissibil-ity. Using simulations, we investigated different fold change values for the Rt parameter. Second,we assessed whether the election day had had a detectable impact on viral transmissibility usingthe French mortality data.
3.3.1. Effect size required to observe an effect of the election day. Fig. 8 suggest that in order todetect an increase of the transmission rate Rt on the election day based on mortality data, thiseffect would have to be a change in Rt of at least a factor 2. This suggests that a model based ofthe number of deaths through time could only detect strong increases of Rt during the electionday. Additional simulation results for all regions are presented as supplementary material.
3.3.2. No detectable effect of the election day on viral spread. The model finds no evidence for anincrease in the number of contacts during election day on the dynamics of the number of deaths
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(a)

(b)
Figure 6 – Simulated distributions of deaths, assuming different effect sizes ofweek-endson Rt . (a) Simulated distribution of deaths through time in region Île-de-France. Medianvalues are represented with a solid line, and shaded areas correspond to 95% credibilityintervals. (b) Distributions of the total numbers of deaths in four regions. Each box shows(from top to bottom) the 3rd quartile, median and 1st quartile of the distribution. Thevertical line on top of each box extends up to the largest value of the sample no furtherfrom the 3rd quartile than 1.5 times the inter-quartile difference; larger values are thenrepresented as dots and can be interpreted as possible outliers. The vertical lines beloweach box are constructed in an analogous way for low values.

through time. Fig. 9 shows that the resulting posterior on the Rt value is much flatter on March15 than the prior. The associated posterior distribution ofαelections is presented in SupplementaryFigure 13.
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Figure 7 – Prior and posterior samples of Rt in region Île-de-France

3.4. Evidence for heterogeneity between regions in the efficacy of the lockdown.
It has been suggested that the lockdown may have not been applied as strictly in differentFrench regions. To investigate this, we used a mixture model to allow for two categories of re-duction of the transmissibility due to the lockdown. We estimated two αlockdown values, one foreach category of the mixture, and estimated a proportion θi associated to each category. Wefound that the two categories almost had the same share among the 13 regions, with θ1 = 0.52and θ2 = 0.48; comparison between the prior and the posterior distributions indicates that thedata informed the model (Supplementary Figure 7). The corresponding reduction factors were

α1
lockdown = 1.57 (95 %C.I. 1.46 - 1.65) and α2

lockdown = 1.79 (95% C.I. 1.67 - 1.94). We usedposterior decoding to assign to each region a distribution of the Rt fold change due to the lock-down (Fig. 10), defined as exp(−α) in equation 1. The distributions appear to be bimodal, whichis expected given the underlying two categories of αlockdown used in the mixture model. The sizesof the modes vary depending on the region, which reveals that the two αlockdown values fit theregions differently. The lower Rt fold change fits best the regions Île de France or Corse, whilethe higher Rt fold change fits best Hauts de France and Occitanie.Median fold changes vary between 0.174 for Île de France and 0.207 for Hauts de France. Îlede France is the region where the lockdown has had the strongest effect on the Rt , contraryto expectations based on news reports. We used a linear model to investigate the relations be-tween Rt fold change as a dependent variable and regional population size, population density,and difference between pre- and post-lockdown population sizes as explanatory variables. Thisdifference between pre- and post-lockdown population sizes is due to migrations between re-gions during the few days surrounding the lockdown decree. Our linear model has an adjusted
R2 of 0.45. For each variable included in the model, we asked whether the corresponding coeffi-cient in the linear regression was significantly different from 0. The most significant associationwe found was with population density, with a p-value of 0.02 and a negative correlation.We compared the adjustement of themixturemodel compared to that of model 1 by comput-ing sums of squared errors over each day up to May 11. Squared errors are calculated for eachsample between daily numbers of deaths and the numbers of deaths as predicted by each model.We found that the mixture model has a smaller error at 257950 (95% CI : 193776-345351) thanmodel 1 at 283397 (95% CI : 211504-379692), representing a reduction of about 9% (Supple-mentary Figure 9). The reduction in error made by using a mixture model also varies dependingon the region (Supplementary Figure 10), with the largest improvement observed in Île de France.
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(a)

(b)
Figure 8 – Simulated distributions of deaths count, assuming different effect sizes ofthe election day on Rt . (a) Simulated distribution of deaths through time in region Île-de-France. Median values are represented with a solid line, and shaded areas correspond to95% credibility intervals. (b) Distributions of the total numbers of deaths in four regions.See Figure 6b for details on the representation.

There is support in the data for using a mixture model as shown by the difference between pos-terior and prior distributions (Supplementary Figure 7).However, predictions on the last week of data when fitting on the corresponding prefix ofdata are not enhanced through the mixture model with total squared error equal 12975 (95% CI: 7335 ; 34699) when compared to model 1 (12350 [95% CI : 7051 ; 25307]). A more thoroughevaluation of prediction performances, such as cross-validation, would be necessary to concludeon the general predictive capacity of both models.The estimates of the national average reproduction number according to the mixture modelare 3.25 (95% CI : 3.10 - 3.44) before lockdown and 0.63 (95% CI : 0.59 - 0.67) after.
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Figure 9 – Prior and posterior samples of Rt in region Île-de-France

Figure 10 – Posterior distribution of Rt fold change per region

3.5. Status of the epidemic on May 11.
We used both the mixture model and model 1 to assess the status of the epidemic on May11, the day before the lockdown was lifted. Model 1 estimates that on May 11 2.09 (95% CI: 1.69-2.66) million people had been infected. This represents 3.22% (95% CI: 2.61-4.09) ofthe population. Further, the model estimates that there were 2793 (95% CI : 1761-4543) newinfections on May 11.
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The mixture model estimates that until this date 2.08 (95% CI : 1.85-2.47) million peoplehad been infected, representing 3.20% (95% CI : 2.85-3.81) of the population. According to thismodel there were 2567 (95% CI : 1781-5182) new infections on May 11.
3.6. Counterfactual investigation of alternative lockdown enforcements.

We used our models to investigate the effect of putting the lockdown in place either earlieror later than the actual lockdown date on March 17. To do so, we assessed the total number ofdeaths predicted by the model as of May 11, a quantity that is well estimated by model 1 and bythe mixture model as seen on Fig. 4. For the mixture model, Fig. 11 shows that delays in startingthe lockdown result in excess deaths: from 21% (3575) additional deaths for one day of delayto 266% (45932) for 7 days of delay. Conversely, an earlier lockdown results in lower numbersof deaths, 76% (13044) fewer deaths for 7 days, and 19% (3204) for one day. For model 1, thetrend is very similar with respectively: 21% (3666), 262% (45172), 75% (12997), 18% (3098).

Figure 11 – Effect of different lockdown dates in counterfactual scenarios. Both modelswere used to predict the total number of deaths on May 11 if the lockdown was put inplace up to 7 days before or 7 days after the actual lockdown date on March 17.

4. Discussion
In this manuscript, we studied the ability of a Bayesian model to fit the mortality data of theSARS-CoV-2 epidemic in France. These mortality data are incomplete, as they only include thenumbers of deaths in hospitals of patients positive for the virus. In particular, they do not includedeaths at home, or deaths in retirement facilities. Such input data also neglect other potentiallyuseful sources of information, such as the number of cases, or the number of hospitalizations.Despite their shortcomings, numbers of deaths in hospitals have been widely used to study theepidemic in France and in other countries as it unfolded, notably because they were more readilyavailable than other statistics.We assessed the ability of our model to predict the number of deaths based on censoring ofthe data, and found that the model was able to accurately predict the number of deaths weeksin advance (Fig. 2).
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We further explored the ability of our model using solely the number of deaths through timeto detect the effect of week-ends or of single-day events, such as the election day. Week-endswould need to incur a decrease of about 20% in e.g. the number of contacts to be detectableby the model. This was not found in the empirical data. The difference between week days andweek-end days is probably weaker during lockdown, because fewer people go to work on anyday during the lockdown. A single-day event would need to e.g. multiply the number of contactson that day by a factor of 2 to be detectable; expectedly, the model found no evidence forsuch a large effect of the elections on the number of deaths. Accordingly, another study usingadmissions and deaths together with regional participation to the election has also found anabsence of evidence that the elections had had a detectable impact on viral spread (Zeitoun etal., 2020).We investigatedwhether the lockdown had had different effects on the reproduction numberin the 13 French regions. Our mixture model identified differences between regions, with Îlede France showing the largest effect of the lockdown. This heterogeneity is not significantlycorrelated to differences in pre-lockdown R0, population sizes, areas, or the difference betweenthe number of inhabitants pre and post lockdown. However, it is weakly negatively correlatedto population density: the lockdown tends to be more efficient in denser regions.Estimates obtained with the mixture model differ slightly from those obtained with model1. For instance, nationally the average reproduction number is a bit smaller before and afterlockdown (3.25 vs 3.34, and 0.62 vs 0.65). These estimates of the reproduction number can becompared to the values estimated by other groups. We focus on two works: those of (Salje et al.,2020) and (Sofonea et al., 2020).(Salje et al., 2020) and (Sofonea et al., 2020) found results that are a bit different from ours, inparticular for the reproduction number before the lockdown. The former estimated a reproduc-tion number of 2.90 (95% CI:2.80-2.99) before the lockdown, and of 0.67 (95% CI:0.65-0.68)after the lockdown, and the latter a reproduction number of 2.99 (95% likelihood interval 2.59-3.39), and "between 21.3 and 27.1% of its value after the lockdown", i.e. between 0.64 and 0.81.Our credibility intervals thus overlap with the intervals of (Sofonea et al., 2020). This is interest-ing as (Sofonea et al., 2020) used a different model from ours, that did not take into accountheterogeneities between regions, but that is based on a probabilistic fine-grain compartmentalmodel. (Salje et al., 2020) used a Bayesian model similar to ours, except that they used both hos-pitalization and deaths data, but did not model the saturation of the population as the epidemicprogresses and the proportion of susceptible individuals decreases in the population, and did notuse a mixture model to account for heterogeneities in the lockdown efficacy between regions.A source of difference between our model, the model of (Sofonea et al., 2020), and theirsis the values of the Infection Fatality Ratios that were used. They based their IFR on the datafrom the Diamond Princess cruise ship, while (Sofonea et al., 2020) and we based ours on datafrom Wuhan, in China. As a result, their average IFR, nation-wide, is 0.7, while ours is 0.99. Weperformed a test by scaling down our IFRs by multiplying them by 0.7/0.99 in model 1. We findreproduction numbers in our results are virtually unchanged by this scaling of the IFR.Values of the reproduction number in turn affect the estimates of the total number of infectedpeople and the total number of new infections on May 11. (Salje et al., 2020) estimate that 2.8(range : 1.8-4.7) million people have been infected by May 11, when the lockdown was lifted,and that there were 3900 (range 2600-6300) new infections on May 11. A series of sensitivityanalyses yielded a larger range of values, notably between 1700 and 9600 new infections onMay 11. These values are consistent with our estimates of the number of new infections onMay 11. However, the mixture model infers that only 2.08 million people had been infected byMay 11 (vs 2.09 for model 1), with 2567 new infections (vs 2794 for model 1). The differencein the total number of infections with (Salje et al., 2020) is likely explained by our higher IFR:fewer infections are required to explain a given number of deaths. Indeed, down-scaling ourIFRs resulted in an increase of the total number of infections to 2.71 millions (95% CI : 2.19 -3.49) as of May 10 for model 1, closer to the estimate reported by (Salje et al., 2020). Betterestimates of regional IFRs might be obtained by updating the work of (Roques et al., 2020) withmore data. However, the better fit of the mixture model over model 1 suggests that the total
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number of infections is probably overestimated by model 1 and by (Salje et al., 2020). Overall,this comparison with (Salje et al., 2020) and (Sofonea et al., 2020) suggests that the estimatesof key parameters of the epidemic are similar across a range of models and data sources, evenif they do not fully agree.Our study of counterfactual scenarios suggests that imposing the lockdown early results infewer deaths, and imposing the lockdown late results in more deaths, which is unsurprising giventhe dynamics of any epidemic. It can be put in perspective with our study of the effect of theelections on the French epidemic. Although holding the elections on SundayMarch 15th did notleave a noticeable footprint in the number of deaths, it may have caused a delay in imposing thelockdown. For instance, and according to the projections of our mixture model, setting up thelockdown on Friday March 13 instead of Tuesday March 17 would have resulted in 50% fewerdeaths nationwide (8557 fewer deaths as of May 11, while the estimate according to model 1 is55% (9466 fewer deaths as of May 11)).
5. Conclusion

WeusedBayesianmodels of the number of SARS-CoV-2 related deaths through time to studythe epidemic, assess the influence of various events, and evaluate counterfactual scenarios. Wefound that the model accurately predicts the number of deaths a few weeks in advance, andrecovers estimates that are in agreementwith recentmodels that rely on a different structure anddifferent input data. We also found evidence for heterogeneity between regions in the efficacyof the lockdown on epidemic spread. The predictions of the model indicate that holding theelections on March 15 did not have a detectable impact on the total number of deaths, unless itmotivated a delay in imposing the lockdown.
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