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Abstract—This paper investigates a new regularization of the
group-sparsity estimation problem based on a quadratic envelope
operator. The resulting estimator is shown to have a reduced
bias when compared to the classical LASSO estimator and is
characterized by a simple hyperparameter selection. Numerical
results show that the quadratic envelope regularization yields
estimates equal to an oracle solution with high probability. The
robustness of the proposed hyperparameter selection rule is also
analyzed.

Index Terms—Sparse representations, group-sparsity,
quadratic envelope regularization, proximal operators.

I. INTRODUCTION AND PROBLEM FORMULATION

Sparse representations have received an increasing interest
in many signal and image processing applications. These
applications include signal and image denoising [1]–[3], clas-
sification [4], [5], navigation [6] and anomaly detection [7],
[8]. Sparse representations take advantage of the fact that the
signals or images of interest can be generally decomposed as
a linear combination of few atoms. Some additional works
have shown that the estimation performance can be even
more improved when the analyzed data are group-sparse [9].
Group-sparsity assumes that the unknown variables of interest
can be decomposed into sub-groups of variables with many
sub-groups identically equal to zero. This group-sparsity has
been used successfully in several signal/image processing
applications such as signal reconstruction [10], face recog-
nition [11] or anomaly detection [8]. This section first recalls
the principles of group-sparsity and introduces the problem
addressed in this work.

Consider a signal which is naturally composed of segments
of length k, where each segment has some structure. Mathe-
matically, we represent this as a matrix X ∈ Cm×k, so that
each row xj (j = 1, . . . ,m) of X contains a segment of
the original “signal”. We will think of X as a vector where
each entry is the smaller vector xj , and introduce the notation
|X|2 = (‖x1‖2, . . . , ‖xm‖2)T (where ‖xj‖2 is the `2 norm
of xj and T denotes transposition), which thus collapses the
second dimension and reduces X to a vector in Rm. We
consider the classical group-sparsity problem [9]

argmin
X

µ‖|X|2‖0 + ‖A(X)− b‖22 (1)

where A : Cm×k → Cn is a linear operator into some
measurement space, and ‖y‖0 denotes the cardinality of the

vector y, i.e., the number of non-zero entries of y. Of course,
upon concatenating the rows of X into a vector, we may
represent A in the usual form as a matrix in C(mk)×n. We
assume that n < mk so that the least squares problem
A(X) = b is ill-posed. This is the classical compressed
sensing setup except for the group structure. The parameter µ
controls the trade-off between data fidelity and group sparsity.
The classical approach to the NP-hard problem (1) is to relax
it with the `1-type problem

argmin
X

λ‖|X|2‖1 + ‖A(X)− b‖22, (2)

which was suggested in [9]. Note that ‖|X|2‖1 can be written
in the more familiar form ‖|X|2‖1 =

∑m
j=1 ‖xj‖2 which is

often referred to as `21 regularization.
In the scalar case k = 1, it has recently been shown that

for reasonable values of noise, superior results are obtained by
relaxing (1) by using its quadratic envelope [12], [13] instead
of replacing the `0 with an `1 penalty. Indeed, this formulation
has been proven to find the so called “oracle solution”, i.e.,
the best solution assuming knowledge of the true location of
the zeros in the signal. The objective of this work is to extend
these results to the group sparsity problem (1) (i.e., k > 1).

The paper is organized as follows. Section II introduces the
group-oracle solution and a relaxation of the group-sparsity
problem based on a quadratic envelope operator. Section III
presents some properties of the quadratic envelope regular-
ization including its computation using proximal operators.
Section IV introduces an interesting hyperparameter selection
procedure for the proposed group-sparsity estimator based on a
quadratic envelope regularization. Simulation results presented
in Section V allow the performance of the proposed regular-
ized group-sparsity method to be appreciated. Conclusions and
future work are reported in Section VI.

II. THE GROUP ORACLE SOLUTION

A. Definition

Assume that b = A(Xgt)+e where e is some additive noise,
e.g., resulting from model errors, and the “ground truth” Xgt
is group sparse, i.e., |Xgt|2 is sparse in the traditional sense.
If an “oracle” would reveal the location of the true support
S = {j : Xgt(j, ·) 6= 0} (where Xgt(j, ·) is the jth row of
Xgt), we would still not be able to retrieve Xgt. The best we



can do is to solve the `2-problem

Xor = argmin
X|xj=0,j 6∈S

‖A(X)− b‖22, (3)

and we refer to Xor as the oracle solution (this is well defined
as long as A restricted to the constrained set {X|xj = 0, j 6∈
S} is injective, as we shall assume).

B. Global minimum and unbiased estimator

In the particular case k = 1, it is proven in [13] that the
oracle solution is the unique global minimizer of (1), under
mild assumptions on A. The proof is quite complicated, but
we expect to extend it to the present group setting in a future
publication. Note that the residual error ‖A(Xor) − b‖2 is
clearly less than ‖A(Xgt) − b‖2 = ‖e‖2. Therefore, as long
as the parameter µ satisfies µ > ‖e‖22, it is quite plausible
that Xor is the global minimum of (1). Indeed, a matrix X
with ‖|X|2‖0 > ‖|Xgt|2‖0 can then not be a global minimum.
It remains the possibility that another equally sparse matrix
would provide a better data-fit than the oracle solution, but
this is highly unlikely.

It is important to note that the oracle solution Xor indeed is
an unbiased estimator for Xgt, unlike the classical `1 solution
(2). To see this, note that the values on the support S are
obtained by solving a well posed least squares problem. It
easily follows that Xor −Xgt is a linear function of the noise
e, and hence its expectation on each coordinate equals 0. An
illustration for this is provided in row 3 of Fig. 1 whereas
row 4 shows the corresponding bias for the `1 solution, for
the two signals in the first row (with 2 and 4 non-zero
groups, respectively), where it may be useful to emphasize
that different scales are used in rows 3 and 4 of Fig. 1 (details
on the experimental setup are provided in Section V).

C. Computation using quadratic envelopes

Our approach to solving the NP-hard problem (1) is to
regularize via the quadratic envelope Qγ , where γ is a user-
parameter (c.f. [12], [13]). More precisely, we propose to solve
the group-sparsity problem as follows

argmin
X

Qγ(µ‖| · |2‖0)(X) + ‖A(X)− b‖22. (4)

Details about this “quadratic envelope operator” Qγ are pro-
vided in the next section. It has been shown to have the
exceptional property of regularizing without moving the global
minima (as long as ‖A‖2 < γ), while at the same time
removing many local minima. Here the norm refers to the
operator norm of ‖A‖ (which is identical to the matrix norm
of any matrix representation of A based on vectorizing X).
Our main finding here is that for reasonable values of signal to
noise ratio (SNR), the solution of (4) coincides with the group
oracle solution with high probability. A numerical illustration
for this result is provided in Fig. 2 (cf. Section V for details).

III. REGULARIZATION VIA QUADRATIC ENVELOPE

A. The quadratic envelope

The quadratic envelope can be computed for a cost func-
tional f on any finite dimensional Hilbert space, in particular
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Fig. 1: Signals and oracle solutions. Top row: noise-free sig-
nals Xgt (blue) and oracle solutions Xor (red) for SNR=10dB;
second row: noise-free and noisy observations A(Xgt) (blue)
and b (red), respectively; average bias (blue) and 95% error
bars (red) for oracle solution Xor and standard `1 solution
(third and bottom row, respectively).
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Fig. 2: Finding the oracle solution. Success rate of finding
Xor with the proposed method (4) for different values of µ.

Rk×m or Ck×m equipped with the Frobenius norm. In this sec-
tion we represent points by x and y, whatever the space may
be. Given a parameter γ > 0, the quadratic envelope Qγ(f)
at a point x is defined as the supremum of {α− γ

2 ‖x− y‖2}
over all α ∈ R and y such that α − γ

2 ‖ · −y‖
2 ≤ f . Fig. 4

explains the idea in the simple case where x ∈ R. The key
result of [12] reads as follows.

Theorem 1: If 2‖A‖2 < γ and f ≥ 0 is lower semi-
continuous, then Qγ(f)(x)+‖A(x)−b‖22 has the same global
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Fig. 3: `1 support recovery. Success rate of finding the true
support with the `1 approach (2) for different values of λ.

minima as f(x)+‖A(x)−b‖22, and the set of local minimizers
for the former is a subset of the latter.

A key result of [12] is that the maximum negative curvature
of Qγ(f) is γ. On the other hand, the maximum positive
quadrature of ‖A(x)−b‖22 is 2‖A‖2, which in a way explains
the assumption 2‖A‖2 < γ1. Hence γ controls the tradeoff
between convexity/concavity; a large value of γ thus leads to
a “more” non-convex optimization problem, and better perfor-
mance is often achieved by choosing γ below the theoretical
bound from the above theorem (more on this will be provided
in the next section).

For k = 1 and the particular choice of f(x) = µ‖x‖0,
it turns out that Qγ(µ‖x‖0) equals the Minimax Concave
Penalty (MCP) [14] as well as CE`0 (for normalized columns)
investigated in [15], from which Theorem 1 is inspired.

B. Proximal operators and computation

We consider the computation of Qγ(f(| · |2)) and of re-
lated proximal operators. With the particular choice f(X) =
µ‖|X|2‖0 we retrieve the situation in the previous sections, but
the theory applies to any f for which Qγ(f) is computable,
see [16] for many other relevant choices. Straightforward
computations lead to the following formulas

Qγ(f(| · |2))(X) = Qγ(f)(|X|2) (5)

and

((X))j = (proxQγ(f)(|X|2))j
xj
‖xj‖2

(6)

(which hold both in the real and complex cases). Armed with
these, we can now pick formulas for proxQγ(f) off the shelf
from the scalar situation, and apply these to the group-sparse
problem. We recall that

proxQγ(f)/ρ(x) = argmin
x
Qγ(f)(x) +

ρ

2
‖y − x‖22 (7)

where it is important that ρ ≥ γ to have a convex minimization
problem. In particular, for γ = 2, proxQ2(µ‖·‖0)/ρ(x) can

1Note that the formulation in [12] does not have the factor 2 due to the
fact that the data fit term is multiplied by 1

2
.

Algorithm 1: FBS algorithm for solving (4)
Input : y, A, µ, γ, ρ
Output: X

Initialize X
while stopping criterion not met do

X← X− 2
ρ (A

TAX−ATy) (gradient step)
X← proxQγ(µ‖·‖0)/ρ(X) (proximal operator)

end
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Fig. 4: Left: Illustration of the quadratic envelope. Right:
Related proximal operators for the sparsity application.

be computed elementwise by applying a function to each
coordinate xj of x. This function is defined for t ≥ 0 by

t 7→


0 0 ≤ t < 2

√
µ

ρ
ρt−2√µ
ρ−2

2
√
µ

ρ ≤ t <
√
µ

t
√
µ ≤ t

and is extended to negative values by requiring it to be odd,
see the red graph of Fig. 4 for an illustration.

Algorithmically, we suggest the use of forward-backward
splitting (FBS), since by combining results of [12] with
[17], we know that this algorithm converges to a stationary
point in this non-convex setting. Having said that, we have
observed numerically that ADMM works just as well. The
FBS-algorithm for solving (4) is summarized in Alg. 1.

IV. HYPERPARAMETER SELECTION

For the particular case of f(x) = µ‖x‖0 (k = 1) it is shown
in [13] that the conclusion of Theorem 1 still holds if we pick
γ = 2 and only assume that the columns of A are normalized
(in which case ‖A‖ ≥ 1). In this work we chose γ = 2 and
normalized A so that each block Aj of the matrix realization
of A (related to each vector xj in X) is normalized to 1. It
is our belief that we can prove that (1) and (4) have the same
global minimizer under this assumption, as Fig. 2 strongly
suggests, but we leave this as a conjecture for future work.

It remains to settle how to chose µ. In Section II we already
derived the lower bound

√
µ > ‖e‖2. In Section III-B we

saw that the proximal operator proxQ2(µ‖·‖0)/ρ(x) acts as the
identity on any entry of xj of X with ‖xj‖2 >

√
µ, which

would suggest
√
µ < minj{‖Xgt(j, :)‖2 : j ∈ S}. However,

this estimate does not take into account effects of noise on the
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Fig. 5: Hyperparameter selection. Success rate of finding
Xor with the proposed method (4) for different values of µ
and signals, and rules of thumb (8) (white and red lines,
respectively): SNR=20dB (top row), SNR=10dB( bottom row).

non-zero entries, and is therefore most likely too optimistic.
In the scalar case k = 1, a more careful analysis leads to(

1 +
1

β2
N

)
√
µ < min

j
{‖Xgt(j, :)‖2 : j ∈ S}

where βN > 1. Our experiments have shown that

‖e‖2 <
√
µ <

minj{‖Xgt(j, :)‖2 : j ∈ S}
2

(8)

is a conservative and reasonable rule of thumb.

V. NUMERICAL EXPERIMENTS

Monte Carlo simulations. We test our algorithm on two
group-sparse signals Xgt with m = 20 blocks of k = 5
samples, of which 2 and 4 blocks are non-zero (corresponding
to 10 and 20% of samples), respectively. The samples within
each block are uniform random variables on the interval (α, 1),
with random sign. For the results reported below, α = 1.
Similar results have been obtained with α = 1/4 and α = 0
and are not reported here for space reasons. The resulting
signals are depicted in Fig. 1 (top row). A is constructed
with centered standard Gaussian entries, properly normalized.
The n = 50 observations b are constructed from A(Xgt) by
adding centered Gaussian noise. Examples for observations
b for the two signals are plotted in Fig. 1 (second row).
The results are obtained for 100 independent realizations
of noise e, for different signal to noise ratios defined as
SNR =10 log10(||A(Xgt)||22/||e||22) (in dB). We set γ = 2,
ρ = 32 and initialize X with zero entries. Note that as long
as ρ > 2, ρ essentially only affects speed of convergence,
except for isolated cases for very low SNR values, for which
a larger value for ρ was found to be beneficial (we tested
ρ ∈ (2 + ε, 64)).

Finding the oracle solution. Fig. 2 plots the empirical
rate of success (in %) for the proposed algorithm to find the
oracle solution Xor, for different values of µ and for a range
of SNR. It demonstrates that for reasonable values of SNR
(≥ 10dB for the sparser signal, and ≥ 15dB for the signal with
20% non-zero coefficients, which is more difficult to estimate),
the proposed algorithm converges to the oracle solution every
time. Even for much smaller SNR values (≥ 2dB and ≥ 5dB,
respectively), it recovers the oracle solution with probability
larger than 1/2. As discussed above, the oracle solution that is
found by our algorithm in these cases is unbiased, see Fig. 1
(3rd row) for an illustration for SNR = 10dB. For comparison,
Fig. 3 plots the success rate for the `1 approach (2) to find the
true support of the non-zero elements of Xgt. It indicates that
large values of λ (λ = 1.2 and λ = 1.6 for the two signals,
respectively) lead to higher probability for finding the true
support and that this probability remains below that of the
proposed method for finding the oracle solution. Moreover,
even in the cases where the true support is recovered using
`1, the solution is of course strongly biased, see Fig. 1 (4th
row) for an illustration for SNR = 10dB. In fact, the shown
values for λ are much higher than typical recommendations
found in the literature, and the corresponding reconstructions
are clearly suboptimal in terms of distance to ground truth.
Robustness to hyperparameter tuning. Fig. 5 plots the
empirical rate of success (in %) for the proposed algorithm
to find the oracle solution Xor, for different values of µ, and
for different minimum block norms of the signal (for SNR=
20dB and 10dB), together with the rule (8) for picking µ. It
shows that the proposed method finds the oracle solution for a
relatively large range of values for µ, even in the most difficult
scenario (10dB SNR, 4 non-zero blocks). More surprisingly, it
indicates that the estimates (8) of µ are reasonable but overly
pessimistic, so that the range of values of µ for which our
algorithm finds the oracle solution is larger in practice than
the theoretical estimate.

VI. CONCLUSIONS

This paper proposed and studied a novel approach to solving
the group-sparse estimation problem (1). Our algorithm relies
on the use of the quadratic envelope of (1) which, unlike
the classical `1 relaxation, is constructed to yield unbiased
estimates. We demonstrated that for reasonable signal to noise
ratio, the proposed approach finds the group oracle solution
with high probability, that is, it finds the true support and an
estimate for the non-zero coefficients that is as good as if one
knew the true positions of the zeros in the signal beforehand,
hence performs significantly better than the classical `1 ap-
proach. Moreover, we showed numerically that the algorithm
is quite robust to the choice of the hyperparameter, and provide
rules for its selection. Future work will investigate the appli-
cation of the method to anomaly detection in telemetry time
series. In this application, each group of variables corresponds
to correlated time series, which are for instance acquired with
the same device onboard a satellite.



REFERENCES

[1] M. Elad and A. Aharon, “Image denoising via sparse and redundant
representation over learned dictionaries,” IEEE Trans. Image Process.,
vol. 14, no. 12, pp. 3736–3745, Dec. 2006.

[2] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, May 1995.

[3] L. Chaari, J.-Y. Tourneret, and C. Chaux, “Sparse signal recovery using
a bernoulli generalized gaussian prior,” in Proc. Euro. Conf. Signal
Process. (EUSIPCO’15), Nice, France, Aug. 31-Sept. 4 2015.

[4] K. Huang and S. Aviyente, “Sparse representation for signal classifica-
tion,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS’06), Whistler, B.
C., Dec. 2006.

[5] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. Conf.
Comput. Vis. Pattern Recognition (CVPR’09), Miami, FL, June 2009.

[6] J. Lesouple, T. Robert, M. Sahmoudi, J.-Y. Tourneret, and W. Vigneau,
“Multipath mitigation for GNSS positioning in urban environment using
sparse estimation,” IEEE Trans. Intell. Trans. Systems, vol. 20, no. 4,
pp. 1316–1328, Apr. 2019.

[7] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with
anomaly detection,” J. Signal Process. Syst., vol. 79, no. 2, pp. 179–188,
May 2015.

[8] B. Pilastre, L. Boussouf, S. D’Escrivan, and J.-Y. Tourneret, “Anomaly
detection un mixed telemetry data using a sparse representation and
dictionary learning,” submitted to Signal Process., 2019.

[9] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. R. Statist. Soc. B (Statistical Methodology), vol.
68, no. 1, pp. 49–67, 2006.

[10] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured sparsity,”
J. Machine Learning Research, vol. 212, pp. 3371–3412, Nov. 2011.

[11] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via spare representation,” IEEE Trans. Patt. Anal. Machine
Intell., vol. 31, no. 2, pp. 1–17, Feb. 2009.

[12] M. Carlsson, “On convex envelopes and regularization of non-convex
functionals without moving global minima,” Journal of Optimization
Theory and Applications, to appear, 2019.

[13] M. Carlsson, D. Gerosa, and C. Olsson, “An unbiased approach to
compressed sensing,” arXiv preprint, vol. arXiv:1806.05283, 2018.

[14] C. H. Zhang et al., “Nearly unbiased variable selection under minimax
concave penalty,” The Annals of Statistics, vol. 38, no. 2, pp. 894–942,
2010.
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