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ABSTRACT

In the modern world, systems are routinely monitored by multiple
sensors, generating “Big Data” in the form of a large collection of
time series. However, dynamic signals are often low-dimensional
and characterized by joint scale-free dynamics (self-similarity) and
non-Gaussianity. In this paper, we put forward a statistical method-
ology for identifying the number of multivariate self-similar, Lévy-
driven components immersed in high-dimensional noise, as well as
for estimating the underlying scaling exponents. It relies on the
analysis of the evolution over scales of the eigenvalues of random
wavelet matrices. Monte Carlo simulations show that the proposed
methodology is accurate for realistic sample sizes. This holds even at
low signal-to-noise ratios and for a large number of observed mixed
and noisy time series. The mathematical framework further allows
us to analyze the impact of the tails of the Lévy noise marginal dis-
tribution on the estimation performance.

Index Terms— multivariate self-similarity, operator fractional
Lévy motion, wavelets, random matrices, high dimensions

1. INTRODUCTION

Context: many sensors, few sources. In the modern world of
“Big Data,” a plethora of sensors monitor natural and artificial sys-
tems, generating large data sets in the form of several joint time
series. This can be seen in many fields of application. In neuro-
science, for example, the number of macroscopic brain activity time
series ranges from hundreds (MEG data) to several tens of thou-
sands (fMRI data) [1]. Likewise, in climate studies, dealing with
large numbers of measured components has become standard [2].
Nevertheless, the number of physical mechanisms, or sources, driv-
ing the spatio-temporal dynamics of a system is usually far smaller
than the number of recorded time series (sparsity in high dimen-
sions). This has created a strong demand for data analytic methods
that can statistically identify sources amidst noisy measurements
and extract their informational content [3].

(Covariance) self-similarity and non-Gaussian behavior. A
signal is called scale invariant when its temporal dynamics lack a
characteristic scale. In the presence of scale invariance, the analyst’s
main interest is in identifying mechanisms, often in the form of
scaling exponents, that relate the continuum of scales [4]. Scale
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invariance often manifests itself in physics and engineering in the
form of self-similarity. A signal X is called self-similar when its
finite-dimensional distributions (fdd) are invariant under suitable
time scaling, i.e., {X(t)}t∈R

fdd
= {aHX(t/a)}t∈R, a > 0, where

0 < H < 1 is called the Hurst parameter. A cornerstone model of
scale invariance, fractional Brownian motion (fBm) is the only Gaus-
sian, self-similar process with stationary increments [5]. Estimation
of the Hurst parameter H plays a key role in signal processing tasks
such as characterization, diagnosis, classification and detection. The
wavelet transform underpins efficient multiscale representations of
self-similar or fractional systems, and it provides the analytical basis
for well-established methodologies for the estimation of H [6].

On the other hand, non-Gaussian behavior is pervasive in a myr-
iad of natural and artificial systems displaying scale invariance (e.g.,
turbulence [7] or Internet traffic [8]). Due to its breadth and flex-
ibility, the family of fractional Lévy processes [9–11] has become
popular in physical applications involving non-Gaussianity [12, 13].
Nevertheless, while of great importance in practice, the modeling of
multivariate fractional Lévy signals is a research topic that has been
relatively little explored [14, 15]. In [16], operator fractional Lévy
motion (ofLm), a generalization of the univariate fBm and its multi-
variate counterpart, operator fBm (ofBm) [17, 18], is put forward as
a model for non-Gaussian multivariate (covariance) self-similarity.
In particular, the ofLm family comprises instances where there
are multiple correlated fractional Lévy coordinate processes with
possibly distinct self-similarity exponents Hm, m = 1, . . . ,M ,
occurring in a non-canonical set of coordinates (mixing).

Related work. In the statistical signal processing literature, the
problem of statistically identifying the number and properties of
sources in multivariate (fixed dimensions) or high-dimensional noisy
signals has been studied for at least three decades now [19–22]. Ex-
amples of the proposed techniques include principal component
analysis, factor analysis and sparse graphical Gaussian models [23].
Nevertheless, there has been a paucity of estimation methodolo-
gies for both high-dimensional and scale invariant signals [24]. To
address this issue, the so-named wavelet eigenanalysis estimation
methodology was recently constructed [25,26]. It was shown to lead
to efficient and robust estimation of self-similarity exponents in both
Gaussian multivariate/high-dimensional [26, 27] and non-Gaussian
multivariate [16] settings.

Goal, contributions and outline. In this paper, we tackle the
problem of high-dimensional inference for non-Gaussian covariance
self-similar signals. The observations are assumed to appear in the
form of an ofLm plus high-dimensional noise. The concept of multi-



variate (covariance) self-similarity is briefly laid out at the beginning
of Section 2. The definition and properties of ofLm are recapped in
Section 2.1. The recently proposed wavelet eigenanalysis method-
ology is detailed in Section 2.2. The high-dimensional model and
model order selection procedure are described in Section 3. Perfor-
mance with respect to non-Gaussianity and increasing dimension of
both model order selection and Hurst exponent estimation are as-
sessed by means of Monte Carlo studies and discussed in Section 4.

2. OPERATOR FRACTIONAL LÉVY MOTION AND
WAVELET EIGENANALYSIS-BASED ESTIMATION

Covariance operator self-similarity. Let H = Pdiag(H)P−1

be the so-named Hurst matrix parameter, where the vector H con-
tains the Hurst exponents (eigenvalues). We say a stochastic pro-
cess X = (X1, . . . , XM ) is covariance (multivariate) operator self-
similar (c.o.s.s.) with Hurst matrix parameter H when

EX(s)X(t)∗ = aHEX(s/a)X(t/a)∗aH
∗

(1)

for all a > 0, where aH :=
∑+∞
k=0 logk(a)Hk/k!. When the mixing

matrix P is diagonal, namely, when we can set P ≡ I , the covari-
ance self-similarity relation (1) takes the simple form of component-
wise covariance self-similarity relations

EX`(s)X`′(t) = aH`+H`′EX`(s/a)X`′(t/a) (2)

for a > 0 and `, `′ = 1, 2, . . . ,M .

2.1. Operator fractional Lévy motion

OfLm is a class of non-Gaussian multivariate fractional processes
displaying the same covariance structure of ofBm [16]. In partic-
ular, ofLm is c.o.s.s. For clarity of exposition and without loss of
generality, we construct ofLm in the bivariate case. Let {L(t) =
(L1(t), L2(t))}t∈R be a two-sided symmetric Lévy process in R2

with EL(1)L(1)∗ =: ΣL, |ΣL| < ∞ (e.g., [28]). Let 0 < H1 ≤
H2 < 1, and define the (pre-mixed) process X by the component-
wise convolution X (t) = (gt ∗ L̇)(t), where g is the diagonal-
matrix-valued fractional kernel gt(u) := uD+ − (u − t)D+ , D =
diag(H)− 1

2
I . Then, the entrywise processes XH` (6= X), ` = 1, 2,

are generally correlated fractional Lévy processes with correspond-
ing Hurst parameters H` ∈ (0, 1) (e.g., [9, 10]). In particular, each
has stationary increments and its covariance function is identical to
that of fBm, i.e.,

EXH`(t)XH`(s) = {|t|2H` + |s|2H` − |t− s|2H`}σ2
`/2. (3)

Note that, if non-Gaussian, the stochastic behavior of the process
XH` is not characterized by its covariance function. Let P be a
2× 2, real-valued, invertible matrix. We define the (bivariate) ofLm
XH,L,P by

{XH,L,P
1 (t), X

H,L,P
2 (t)}t∈R = P{XH1(t),XH2(t)}t∈R

(in short, XH,L,P = PX ). Note that the parameters H and ρ :=
Corr(XH1(1),XH2(1)) cannot be selected independently (see [16]
for more details).

2.2. Wavelet-based scaling exponent estimation

Multivariate wavelet transform. Let ψ0 be a mother wavelet,
i.e., an oscillating function that is well localized in both time and
frequency [29]. A mother wavelet is parametrized by the so-named
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Fig. 1. Log-eigenvalues of SY (2j). For γ = 10−5 and SNR=0dB,
plots of log2 ΛY (2j) for M = 4 and L = 10, 100 (left and right
plots, respectively).

number of vanishing moments Nψ , i.e., a positive integer such that,
for κ = 0, . . . , Nψ − 1,

∫
R t
κψ0(t)dt ≡ 0 and

∫
R t
Nψψ0(t)dt 6= 0.

Let {ψj,k(t) = 2−j/2ψ0(2−jt − k)}(j,k)∈Z2 be the collection of
dilated and translated templates of ψ0 that forms an orthonormal
basis of L2(R). For the M -variate process X = {X(t)}t∈R and
its components, let DXm(2j , k) := 〈2−j/2ψ(2−jt − k)|Xm(t)〉,
m ∈ {1, . . . ,M}. The multivariate DWT of X is defined as
DX(2j , k) := (DX1(2j , k), . . . , DXM (2j , k))∗, ∀k ∈ Z, ∀j ∈ Z.
Covariance operator self-similarity in the wavelet domain. It
can be shown that the wavelet coefficients {DX(2j , k)}k∈Z satisfy
the covariance (operator) self-similarity relation [30]

EDX(2j , k)DX(2j , k)∗

= 2j(H+ 1
2
I)EDX(1, k)DX(1, k)∗2j(H

∗+ 1
2
I), (4)

for every fixed octave j and any shift k. When P = I (no mix-
ing), similar to (2), M -variate covariance (operator) self-similarity
in the wavelet domain boils down to the entrywise covariance self-
similarity relations, for `, `′ = 1, . . . ,M ,

EDX(2j , k)DX(2j , k)∗``′

= 2j(H`+H`′+1)EDX(1, k)DX(1, k)∗``′ . (5)

Estimation of H . The sample wavelet spectrum (variance) is
given by the M ×M random matrices

SX(2j) =
1

nj

nj∑
k=1

DX(2j , k)DX(2j , k)∗, j = j1, . . . , j2, (6)

where n is the time series sample size and nj = n/2j . When there
is no mixing (P = I), i.e., when relation (5) holds, the scaling ex-
ponents may be estimated by means of entrywise multiscale log-
regressions based on the system (6) (see [31]). Otherwise, i.e., start-
ing from (4) (mixing, or non-diagonal P ), this procedure does not
yield meaningful results (see [25, 26] for further discussions).

An estimation methodology for general (non-diagonal) P can
be constructed as follows. Consider the eigenvalues ΛX(2j) =
(λ1(2j), . . . , λM (2j))∗ of the random matrix SX(2j). The estima-
tors Ĥ = (Ĥ1, . . . , ĤM ) for (H1, . . . , HM ) are defined by means
of the multiscale weighted linear regressions

Ĥm =

(
j2∑
j=j1

wj log2 λm(2j)

)/
2− 1

2
, ∀m. (7)

It was shown mathematically or based on Monte Carlo experi-
ments that Ĥ has good performance over large and finite samples
in multivariate/high-dimensional Gaussian frameworks [25–27], as
well as in multivariate non-Gaussian (Lévy-driven) frameworks [16].



3. ESTIMATION IN HIGH DIMENSIONS

3.1. High-dimensional model

Let W be a full rank L × M matrix, where L � M . Also let
X = {X(t)}t∈R be a M -variate ofLm with Hurst matrix H =

Pdiag(H)P−1, as described in Section 2. We assume the L ob-
served time series follow the model

Y (t) := WX(t) + σNN (t). (8)

In (8), the noise termN (t) =
(
N1(t), . . . ,NL(t)

)∗
t∈R is made up of

L independent vectors, each consisting of i.i.d. standardized Gaus-
sian variables, and σ2

N is a control parameter for the noise variance.
Assume, without loss of generality, that WP has rows with unit
norm, and further suppose σX := σ1 = . . . = σM in (3). The
Signal-to-Noise Ratio (SNR) is defined as

SNR :=
σX
σN

. (9)

This definition is natural for scaling processes because, for a given
value of the SNR, it sets the size of eigenvalues at fine scales j → 0,
regardless of the values of M and L; see Fig. 1. Note that it is much
more penalizing than the conventional definition of SNR because (9)
implies that, for a fixed SNR value, the overall energy of noise in the
observations increases linearly with L.

We assume the Lévy prrocess driving the ofLm has a symmet-
ric exponentially tempered α-stable distribution (e.g. [32]). Such
distributions have moments of all orders and are parametrized by a
stability index α ∈ (0, 2) and a tempering parameter γ > 0. A
smaller tempering parameter γ > 0 corresponds to heavier-tailed be-
havior. Furthermore, it can be shown [30] that at fine timescales the
corresponding ofLm is approximately operator stable (heavy-tailed),
whereas on coarse timescales it is close to an ofBm (i.e., Gaussian),
with transition controlled by γ. Accordingly, for this class of ofLm,
we treat γ as a proxy for measuring departures from Gaussianity.

3.2. Model order selection procedure

The proposed procedure relies on the eigenstructure of the random
matrices SY (2j) over several octaves j, i.e., on the sample wavelet
spectra of the L-variate observations Y . In the absence of noise
(SNR = +∞), SY (2j) has rankM for all scales 2j (as long as nj >
M ). Conversely, when noise is added (SNR < +∞), SY (2j) has
rank L. Hence, assuming the SNR is sufficiently large, heuristically
speaking each random matrix SY (j) possesses L−M small eigen-
values corresponding to noise and M large eigenvalues correspond-
ing to the hidden ofLm components. The former set of eigenvalues
manifests itself in the form of log-eigenvalue curves with negative
slopes, whereas the latter leads to log-eigenvalue curves with posi-
tive slopes driven by the exponents Hm > 0. This is illustrated in
Fig. 1, which shows averages and error bars for log-eigenvalues gen-
erated based on 1000 independent realizations of ofLm (see Sec. 4
for details on numerical simulations). So, let ΛY (2j) ∈ RL be the
vector of eigenvalues of SY (2j). We propose to estimate the number
of components M as the number of estimated slopes that are found
to be positive, where each slope estimate is obtained as in (7) by
log-linear regressions on the entries of ΛY (2j).

Once the number of ofLm components M̂ has been estimated,
a vector of estimated scaling exponents (Ĥ1, . . . , ĤM̂ ) stems natu-
rally from the procedure given by (7), applied to the M̂ largest values
of ΛY (2j).
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Fig. 2. Model order selection performance. Histograms of se-
lected model orders M̂ for different SNR (increasing from left to
right columns) and γ (decreasing departure from Gaussian from top
to bottom row), respectively, and M = 4. The red/green/blue/grey
bars correspond to L = 10/20/50/100, respectively.

4. PERFORMANCE

Monte Carlo simulation. We evaluate the performance of
the proposed model order detection and high-dimensional esti-
mation procedure for 1000 independent realizations of size n =
214 of ofLm with M = 4 components and exponents H =
(0.4, 0.6, 0.75, 0.9). We study different degrees of deviation from
Gaussian behavior (tempering parameter γ = (10−7, 10−6, . . . ,
10−1)) with α = 1.1 fixed and L = (10, 20, 50, 100) observed
time series, for various SNR values. The mixing matrix is set to
P = ((1 1 1 −1)T , (1 −1 1 1)T , (1 1 1 1)T , (1 −1 −1 1)T ). The
matrix W is picked randomly and is normalized such that the rows
of WP have unit norm. Estimation of the scaling exponents Hm,
m = 1, . . . ,M , is performed as in (7) by means of weighted linear
regressions for j ∈ (4, j

(m)
max ), where j(m)

max is the largest scale for
which λm(j) > 0, ∀m. The ofLm paths were generated via an
adaptation of the FFT-based algorithm described in [33]. In the
notation of [33], the mesh size was chosen m = 16 with kernel
cutoff parameter M = 214. The symmetric tempered stable pro-
cesses driving the ofLm paths were simulated via an accept-reject
procedure (see [34]).
Model order selection performance. For different values of γ
(namely, levels of departure from Gaussianity) and of the SNR, and
for different dimensions L, Fig. 2 plots histograms of the estimated
model orders M̂ generated by means of the proposed model order se-
lection procedure. The results demonstrate that for γ = 10−1, 10−3
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Fig. 3. Estimation performance. Bias, std and rms (left to right
column) for L = 10/20/50/100(top to bottom row) and fixed
SNR=30dB as a function of γ.

(weak departure from Gaussianity), the procedure selects the correct
model order M = 4 with high probability as long as SNR ≥ 0dB.
Note that the procedure’s good performance is robust with respect
to the value of L. Strikingly, we also observe a phenomenon that
may be called the blessing of dimensionality: for lower SNR, larger
dimensional observations turn out to be beneficial. For example, for
SNR= −6dB, the selected model orders are correct with probability
close to one for L ≥ 50, yet the correct model order is only detected
one out of two times for L = 10. This phenomenon has been ob-
served in other frameworks (cf. [35]), in particular in Gaussian sys-
tems [27], and may be related to the fecund eigenvalue repulsion ef-
fect [36]. The fact that model order selection becomes easier in high
dimensions can also be seen in Fig. 1, where the separation between
the curves with negative and positive slopes becomes sharper as the
dimension L increases. Turning back to Fig. 2, as expected, the
stronger the departure from Gaussianity, the more difficult the model
order selection problem. Nevertheless, the model order selection
procedure remains quite reliable. For L ≥ 20 and SNR=0dB, the
probability of correct detection is about 80% for γ = 10−5, 10−7

(instead of ≈100% in lighther-tailed instances). For low SNR val-
ues, it is generally true that the majority of detection attempts are
often too conservative (M̂ < M ). Note that model order selec-
tion performance could be optimized by searching the best threshold
value, which in our simulations is set a priori to 0.

Estimation performance in high dimensions. For instances in-
volving low noise levels (30dB SNR), Fig. 3 plots bias, standard
deviation (std) and root-mean-squared error (rms) for estimates Ĥm
as a function of the dimension L = 10, 20, 50, 100 and γ. The
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Fig. 4. Gaussianity of Ĥm. For SNR=30dB, γ = {10−7, 10−3}
(first two and last two columns, respectively) and L = 10, 100, qq-
plots of the estimates Ĥ4 and Ĥ1 (largest and smallest exponents,
top and bottom rows of subplots) against the standard Normal distri-
bution.

plots reveal a number of properties. First, as expected, it can be seen
that the estimation performance tends to deteriorate for stronger de-
partures from Gaussianity (smaller γ). This is essentially due to a
reduction in the standard deviation as γ increases, whereas, remark-
ably, the bias remains unaffected. These results corroborate similar
findings for the bivariate, bi-dimensional case L = M = 2 without
noise [16]. Second, and interestingly, the results indicate that there is
an inversion in the relative estimation difficulty between the smallest
exponent H1 than the largest exponent H4 as γ increases. In other
words, for small values for γ (heavier tails), the smallest exponent
H1 has lower std and rms than the largest exponent H4; by contrast,
the opposite tends to be observed for large values for γ. Finally, es-
timation performance generally improves for larger L, both in terms
of bias and std. This resonates with the blessing of dimensionality
phenomenon (improved model order selection performance for large
L) observed in Figs. 1 and 2.

Gaussianity of estimates Ĥm. In Fig. 4, we investigate the in-
fluence of L and γ on the finite-sample distribution of Ĥm. We
report qq-plots for estimates Ĥm against the standard Normal dis-
tribution for instances with very little noise (30dB SNR). We can
observe that, regardless of L, the finite-sample distribution of Ĥm
becomes more and more Gaussian as the regularization value γ in-
creases, as expected and reported in [16] for M = L = 2. The
results also show that there is no clear difference between the his-
tograms for the smaller exponent H1 and for the largest exponent
H4. Moreover, the dimension L seems to bear little influence on the
distribution of Ĥm.

5. CONCLUSIONS

In this paper, we construct statistical methodology for the identifica-
tion of the number of multivariate self-similar, Lévy-driven compo-
nents immersed in high-dimensional noise, as well as for the estima-
tion of the associated scaling parameters. The technique draws upon
the analysis of the evolution over scales of the eigenvalues of random
wavelet matrices (wavelet eigenanalysis). Monte Carlo simulations
reveal the effect of high dimensions on the estimation procedure and
show that the proposed methodology is accurate for realistic sample
sizes. This holds even at relatively low signal-to-noise ratios and for
a large number of observed mixed and noisy time series. By tuning
the tail parameter of the Lévy noise distribution, we further quantify
the impact of non-Gaussianity on the estimation performance, where
strongly non-Gaussian instances are shown to be typically more sta-
tistically challenging.
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motion and transient super-diffusion,” Journal of Computa-
tional and Applied Mathematics, vol. 233, no. 10, pp. 2438–
2448, 2010.

[35] C. Lam and Q. Yao, “Factor modeling for high-dimensional
time series: inference for the number of factors,” Ann. Stat.,
vol. 40, no. 2, pp. 694–726, 2012.

[36] T. Tao, Topics in Random Matrix Theory, vol. 132, American
Mathematical Society, 2012.


