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Abstract—Multivariate multifractal analysis proposes to esti-
mate the multivariate multifractal spectrum of several signals
as a way to reveal the correlations between their singularity
sets. Recently discovered failures of the “natural” multifractal
formalism challenge its foundations, and raise questions on
the information it provides. We investigate these questions by
supplying some general results on the multivariate multifractal
analysis of processes satisfying the large intersection property, and
illustrate it on random lacunary wavelet series.

I. INTRODUCTION

Context: Multifractal analysis. The purpose of multifractal
analysis is to analyze functions or measures (random or
deterministic) by estimating the size of the sets of points where
they have a given pointwise regularity. Mathematically, this
information is encapsulated through the multifractal spectrum
D(H), which yields the Hausdorff dimensions of the sets
E(H) where a pointwise regularity exponent takes the value H
[1]. In practice, for a signal or an image, a direct estimation of
D(H) is unfeasible; the purpose of multifractal formalisms is
to estimate it through the computation of a Legendre spectrum
which, for univariate data, yields an upper bound of D(H)
[2], and coincides with it for important classes of models (cf.
e.g., [3] and ref. therein). Thus, the derivation of practically
computable Legendre spectra as close as possible to D(H) is
a central issue.
Related works. Recent applications involve simultaneous
recordings of large collections of signals or images, thus
calling for a multivariate multifractal analysis. When several
functions X1(x), · · · , XM (x) are involved, the natural math-
ematical quantity considered is the multivariate multifractal
spectrum D(H1, · · ·HM ), which yields the Hausdorff dimen-
sions of the sets of points where the regularity exponent of
each signal Xi takes a given value Hi. A natural multivariate
multifractal formalism was proposed in [4], initially in the
context of turbulence, and has been used in a wide range of
applications. However, its validity was recently questioned,
and a dramatic turning point was the discovery that, in
general, this formalism does not yield an upper bound for
the multivariate spectrum [5]; counterexamples are supplied
by classical models, such as independent Lévy processes, or
couples of anti-correlated binomial cascades. This unexpected
failure raises the problems of understanding under which
conditions the formalism is valid (i.e. yields an upper bound)

and which information it supplies when such conditions are
not fulfilled (or cannot be verified), in particular what it reveals
about the correlations between the locations of the singularities
of the components Xi.
Goals, contributions and outline. We investigate these ques-
tions following the guideline supplied by a simple stochastic
model: Lacunary wavelet series (LWS). Their sample paths
were shown to be multifractal [6], and we study couples of
such processes, either independent or with tuned correlations.
In particular, we show that, in this case too, the natural
multivariate formalism fails. This confirms a major source
of failure when the singularity sets of the processes satisfy
the large intersection property; we back this intuition by
general mathematical results on multivariate processes which
share this property. In Section II, we recall the basic notions
in multivariate multifractal analysis. In Section III we derive
mathematical results on the bivariate multifractal analysis of
processes satisfying the large intersection property. In Section
IV we study, theoretically and numerically, how the bivariate
spectrum of LWS changes when their correlation is tuned.

II. MULTIVARIATE MULTIFRACTAL ANALYSIS

For simplicity, in the following, we only consider the
bivariate case (M = 2) where functions are defined on R.
Higher dimensional extensions easily follow.

A. Multifractal spectrum

Multifractal analysis quantifies the fluctuations of the reg-
ularity of a signal X(t). Pointwise regularity of functions is
usually measured using the Hölder exponent, h(t), defined as
follows: X ∈ Cα(t), α ≥ 0, if there exist a polynomial Pt
with deg(Pt) < α and a constant C > 0 such that

|X(t+ a)− Pt(t+ a)| ≤ C|a|α, |a| → 0, (1)

h(t) is the largest α such that (1) is satisfied,

h(t) , sup{α : X ∈ Cα(t)} ≥ 0, (2)

see e.g. [7] for alternative notions of pointwise regularity.
Let h(t) , (h1(t), h2(t)) denote the Hölder exponents

of the components of the bivariate signal X = (X1, X2).
Let H = (H1, H2); the bivariate multifractal spectrum
D(H1, H2) of X is defined as (see e. g. [4], [8])

D(H) , dimH(EH), where EH = {t : h(t) = H} (3)



and dimH denotes the Hausdorff dimension (by convention
dimH(∅) = −∞). It provides a global, geometric description
of the pointwise regularity properties of the components Xi;
here and in the following the subscript i refers to the i-th
component (i = 1, 2). Its precise shape and width quantify
key information regarding correlations between the exponents
hi(t) [5], [9], [10].

B. Wavelet leader bivariate multifractal formalism

The estimation of the multifractal spectrum requires numer-
ically robust formulas: multifractal formalisms. A univariate
formalism constructed from the multiscale statistics of wavelet
leaders [2], [11], has recently been extended to the multivariate
setting, see e.g. [5], [8]–[10], [12], and is recalled now.

Let N > 0, and let ψ denote a “mother wavelet”, i.e. an
oscillating well-localized function in CN , such that {ψj,k(t) =
2−j/2ψ(2−jt − k)}(j,k)∈Z2 forms an orthonormal basis of
L2(R). The wavelet coefficients of a univariate function f
are df (j, k) = 2−j/2〈ψj,k|f〉. The wavelet leaders of f are
`f (j, k) , supλ′⊂3λj,k

|df (λ′)|, where λj,k = [k2j , (k+1)2j)

denotes the dyadic interval of size 2j and 3λj,k stands for the
union of λj,k with its two closest neighbors [2], [11]. In the
bivariate case, the structure functions S(q1, q2, j) and scaling
function ζ(q1, q2) of X = (X1, X2) are defined by

S(q1, q2, j) ,2j
∑
k

LX1
(j, k)q1LX2

(j, k)q2 ∼ cq2jζ(q1,q2)

(4)

(for j → −∞), where the order qi of empirical moments is
taken in some interval including zero. In contradistinction with
the univariate case, the bivariate Legendre spectrum

L(H) = inf
q

(1 + 〈q,H〉 − ζ(q)), q = (q1, q2), (5)

does not always yield an upper bound for D(H), see [5] for
a discussion of conditions under which it is the case.

The case where X1 and X2 are independent was studied in
[5]: Under a stationarity hypothesis, Legendre spectra satisfy

L(H1, H2) = L1(H1) + L2(H2)− 1. (6)

This formula is backed by the remark that, applied to multi-
fractal spectra, the corresponding formula

D(H1, H2) = D1(H1) +D2(H2)− 1 (7)

follows the generic rule that, for smooth sets, codimensions
of intersections of sets add up [13] (note that, if (7) yields a
negative dimension it is understood that the corresponding set
is empty). However, a different formula applies to models for
which the lower singularity sets E≤(H) = {x ∈ R : h(x) ≤
H} are sets with large intersections, i.e. any couple among
them satisfies dimH(A ∩ B) = min(dimH A, dimH B), see
[14], [15]. Though the EH are not sets with large intersec-
tion, this leads to the alternative conjectured formula for the
bivariate spectrum of independent processes of this type:

D(H1, H2) = min(D1(H1),D2(H2)). (8)

III. LARGE INTERSECTION PROCESSES

For several standard models such as Lévy processes, lacu-
nary and random wavelet series, the sets E≤(H) are sets of
large intersection, see [16]–[18] and ref. therein. The reason is
that these sets are obtained as limsup of intervals centered at
equidistributed points; as a consequence the following property
holds: For s = dimH(E≤(H)), they belong to the Gs class
of Falconer, which is composed of sets A which are Gδ
sets (i.e. countable intersections of open sets) and such that,
for any countable sequence of similarity transformations fi,
dimH(∩fi(A)) ≥ s. An important consequence is that there
exists a s-dimensional Hausdorff measure of A which is
positive, see [14], [15]. We now investigate which implications
on bivariate spectra hold in this setting.

We consider a couple of functions (X1, X2), determinis-
tic or random, without assumptions on their correlations in
the random case. We assume that there exists an interval
[H−, H+] such that: ∀H ∈ [H−, H+], the set E≤(H) belongs
to Gs with s = D≤(H) (in the examples we mentioned, the
range [H−, H+] coincides with [Hmin, Hmax] of all Hölder
exponents taken by the process). It follows that (in this range
of exponents) the bivariate lower spectrum D≤(H1, H2) ,
dimH({t : h1(t) ≤ H1 and h2(t) ≤ H2}) satisfies

D≤(H1, H2) = dimH(E≤1 (H1) ∩ E≤2 (H2))

= min
(
D≤1 (H1),D≤2 (H2)

)
.

In particular, it can not yield information on correlations
between the two processes. On the opposite, determining the
bivariate spectrum D(H1, H2) requires information on these
correlations. However, we will see that, under an additional
assumption, a part of this spectrum does not depend on
these correlations. We now assume that, for each process Xi

(i = 1, 2) the function H → D≤i (H) is continuous and strictly
increasing on [H−i , H

+
i ] (these assumptions are verified by the

examples we mentioned). The corresponding process will be
called a large intersection process. It follows that, for i = 1, 2,
Di(H) = D≤i (H). We define the ridge of the bivariate
spectrum as the set: {(H1, H2) : D≤1 (H1) = D≤2 (H2)}. Note
that, if the two processes share the same law, then the ridge
simply is a segment of the diagonal H1 = H2.

Theorem 1: Under the previous assumptions, the bivariate
spectrum of (X1, X2) satisfies that, for any (H1, H2) which
belongs to the ridge, D(H1, H2) = D1(H1)(= D2(H2)).

Proof: The upper bound is straightforward since E(H1, H2)
is included in E1(H1). Conversely, the Gs class assump-
tion implies that E≤(H1, H2) has a positive D≤(H1, H2)-
dimensional Hausdorff measure; E(H1, H2) contains

E≤(H1, H2)−
⋃

H<H1

E≤(H,H2)−
⋃

H<H2

E≤(H1, H).

By the increasing spectrum assumption, for H < H1 (resp.
H < H2), the sets E≤(H,H2) and E≤(H1, H) have a van-
ishing D≤(H1, H2)-dimensional Hausdorff measure; since the
unions are countable, E(H1, H2) has a positive D≤(H1, H2)-
dimensional Hausdorff measure; hence the lower bound holds.



Remark: The support of the bivariate spectrum can boil
down to the ridge, for instance when the functions X1 and
X2 coincide. Thus the determination of the bivariate spectrum
outside of the ridge necessarily requires information on the
correlation between the two processes.

IV. LACUNARY WAVELET SERIES

We start by recalling the model studied in [6]. For the sake
of simplicity, the random process X is constructed on [0, 1].
Let η ∈ (0, 1) and α > 0. At scale j ≤ 0, [2−ηj ] dyadic
intervals (λ ⊂ [0, 1]) are drawn at random, and for these
intervals, c1λ = 2αj ; the other wavelet coefficients are set to
0. Additionally, the coefficients are independent at each scale.
The parameters of the series are its lacunarity η and its uniform
regularity Hmin = α. The multifractal spectrum of X is

D(H) = ηH/α if H ∈ [α, α/η]
= −∞ else.

We now consider two LWS X1, X2 of parameters (η1, α1)
and (η2, α2). The results of Section III apply: Without any cor-
relation assumption, ∀(H1, H2) ∈ [α1, α1/η1] × [α2, α2/η2],

D≤(H1, H2) = min

(
η1H1

α1
,
η2H2

α2

)
. (9)

The ridge is included inside the line η1H1

α1
= η2H2

α2
and, on the

ridge, D(H1, H2) is given by (9).
Additionally, since the sets E1(H1) and E2(H2) are empty

if H1 < α1 or if H2 < α2, it follows that E≤(α1, α2) =
E(α1, α2), so that D(α1, α2) = D≤(α1, α2) (note that
(α1, α2) is not in the ridge except if η1 = η2).

1) Independent LWS: If X1 and X2 are independent, then
the assumptions under which the derivation of (6) is performed
in [5] are verified, so that, if (H1, H2) ∈ [α1, α1/η1] ×
[α2, α2/η2], then

L(H1, H2) =
η1H1

α1
+
η2H2

α2
− 1 (10)

(and L(H1, H2) = −∞ else). Therefore L(H1, H2) does not
supply an upper bound for D(H1, H2), see Fig. 1 (c).

2) Correlated lacunary wavelet series: We consider a first
LWS X1 of parameters (α, η), and construct a second random
process X2, correlated with X1: We pick ω > η and β >
0. For each interval λ picked in the construction of X1, we
consider the unique dyadic interval λ̃ of scale j̃ = [ωj] ( where
j is the scale of λ) which contains λ; then we set c2

λ̃
= 2βj̃ , and

all other wavelet coefficients of X2 are set to 0. Considered
independently of X1, X2 is another lacunary wavelet series of
lacunarity parameter η̃ = η/ω and uniform regularity β (note
that, strictly speaking, this is not true because the number of
nonvanishing wavelet coefficients at a given scale is random
and may slightly differ from [2η̃j ] but, clearly, this does not
alter the conclusions concerning the spectra).

Remark: The case ω = 1 and α = β corresponds to the
case where X1 = X2. The case ω = 1 and α 6= β corresponds
to the case where X1 is analyzed jointly with its fractional
primitive of order β − α.

We now recall how the pointwise regularity of X1 is derived
in [6]. Let Λ1 denote the random collection of dyadic intervals
indexing nonvanishing wavelet coefficients of X1, and Λ2

denote those of X2. Let θ ∈ [η, 1]; we consider “dilated”
intervals constructed as follows: λθ has the same center as
λ ∈ Λ1, and width 2θj , and we denote by Fθ the limsup of
the λθ (i.e. the set of points that belong to an infinite number
of the λθ for λ ∈ Λ1). The key result that allows to derive
the multifractal spectrum is that, if x ∈ Fθ, then h1(x) ≤ α/θ
and if x /∈ Fθ, then h1(x) ≥ α/θ. It follows that

x ∈ Gθ :=
⋂
θ′<θ

Fθ′ −
⋃
θ′>θ

Fθ′ ⇐⇒ h1(x) = α/θ,

and the large intersection process assumption implies that, if
θ ∈ [η, 1], then dim(Gθ) = η/θ.

In order to derive the bivariate spectrum of X1 and X2, we
separate two cases:
• Let θ ∈ [ω, 1]. If x ∈ Fθ, then we already know that
h1(x) ≤ α/θ, and x belongs to an infinite number of the
λ̃ (or one of its two closest neighbors), so that h2(x) = β.

• Let θ ∈ [η, ω]. If x ∈ Fθ, then as before, h1(x) ≤ α/θ,
and x belongs to an infinite number of the λθ, which can
be seen as an interval of same center as λ̃ and of width
|λ̃|θ/ω so that h2(x) ≤ βω/θ.

Lower bounds follow in the same way, and we obtain that
the regularity at x of both series is determined by the Gθ to
which x belongs. For a given θ ∈ [ω, 1], the dimension of the
corresponding set is η/θ. The following result follows, where
the spectrum is parametrized as a function of H1.

Theorem 2: The bivariate multifractal spectrum of two
correlated lacunary wavelet series of parameters (α, η, ω) is
supported by the two following (not colinear) straight lines:

if H1 ∈
[
α,
α

ω

]
, H2 = β and D(H1, H2) = H1

η

α

if H1 ∈
[
α

ω
,
α

η

]
, H2 = H1

βω

α
and D(H1, H2) = H1

η

α
.

V. NUMERICAL ILLUSTRATIONS

Monte Carlo simulation. We illustrate the above theo-
retical results using 100 realizations of independent LWS
of sample size 216, for two different sets of parameters:
(α1, η1) = (0.6, 0.85) and (α2, η2) = (0.6, 0.85) for X1

and X2, respectively, corresponding to a multifractal spectrum
with relatively narrow support, and (α1, η1) = (0.5, 0.4) and
(α2, η2) = (0.4, 0.4) for X1 and X2, respectively, which
corresponds to a multifractal spectrum with larger support
and marginal spectra that do not coincide. Sample paths
and increments for the two parameter settings are plotted in
Fig1. 1 (a). Estimation is performed by linear regression of
log2 S(q1, q2, j) for scales j from −10 to −6 and −7 to
−4 for the two parameter sets, respectively, for a sufficiently
wide range of positive and negative moments (q1, q2) so as
to cover the theoretical support of the multifractal spectra.
Numerical process synthesis and estimation procedures have
been implemented by ourselves and are available upon request.



(α1, η1) = (0.6, 0.85), (α2, η2) = (0.6, 0.85)

(a)

(b)

(c)

(α1, η1) = (0.5, 0.4), (α2, η2) = (0.4, 0.4)

(a2)

(b2)

(c2)

Fig. 1. Increments and sample paths (a), and structure functions (b) for bivariate LWS for two different parameter settings, and estimated (red) vs. theoretical
(blue) multifractal spectra (c); the theoretical spectra (in blue) plotted in (c.1) and (c.3) correspond to expression (10) for the Legendre spectrum, those in
(c.2) and (c.4) correspond to the expression (9) for the multifractal spectrum.

Structure functions. Log-log plots of average structure func-
tions S(q1, q2, j) for several values of (q1, q2) are plotted as
a function of scale j in Fig. 1 (b). They show that the power
laws postulated in Eq. (4) hold for a large range of scales, and
in particular for the range over which linear regressions are
performed for the estimation of ζ(q1, q2) and L(H).

Theoretical spectra and Legendre spectra. Fig. 1 (c) plots
averages of Legendre spectra estimates (5) (red surfaces and
lines) together with theoretical spectra, once corresponding
to the theoretical expression (10) for the Legendre spectrum
(left columns) and once to that for the multifractal spectrum
(9) (right columns), respectively. Clearly, the predictions for
the Legendre spectrum and theoretical bivariate multifractal
spectrum do not coincide, while the marginal spectra (solid
lines) do. Moreover, the estimated Legendre spectra provide a
better upper bound for expression (10) than for expression (9),
which further corroborates the above theoretical results. The
fact that the estimated and theoretical Legendre spectra do not
match perfectly is not surprising since it is well documented
that numerical estimation for processes with lacunarity is
notoriously difficult.

VI. CONCLUSION

The present study confirms the failure of the multifractal
formalism for couples of processes which satisfy the large
intersection property. In this case, the Legendre spectrum
does not bound the multifractal spectrum, and fails to
provide information describing the cross-correlations between
components, which was its original goal. Indeed, it is shown
that a part of the bivariate spectrum is independent of the
correlations between the components. These theoretical results
are confirmed by numerical results obtained on sample paths
of LWS. This raises two important questions: How could
a non-trivial upper bound of the multifractal spectrum be
recovered in practice? and which information is supplied by
the bivariate Legendre spectrum? The example of correlated
LWS yields new insights on the key problem of understanding
how the correlations of several processes are reflected in their
multivariate spectrum.
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Theory and Related Fields, vol. 114, no. 2, pp. 207–227, 1999.

[18] A. Durand, “Singularity sets of Lévy processes,” Probab. Theory Relat.
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