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Abstract

The purpose of a reputation system is to hold the users of a distributed
application accountable for their behavior. The reputation of a user is
computed as an aggregate of the feedback provided by fellow users in
the system. Truthful feedback is clearly a prerequisite for computing a
reputation score that accurately represents the behavior of a user. How-
ever, it has been observed that users can hesitate in providing truthful
feedback, for example, due to the fear of retaliation. Privacy preserving
reputation systems enable users to provide feedback in a private and thus
uninhibited manner. In this survey, we propose analysis frameworks for
privacy preserving reputation systems. We use these analysis frameworks
to review and compare the existing systems in the literature. An empha-
sis is placed on blockchain-based systems as they are a recent significant
development in the area. Utilizing blockchain as a building block, pri-
vacy preserving reputation systems have been able to provide properties
such as trustlessness, transparency, and immutability, which were absent
from prior systems. The results of the analysis reveal several insights and
directions for future research. These include exploiting blockchain to its
full potential to develop truly trustless systems and to implement some
important security properties and defenses against common attacks that
are so far ignored by a majority of the systems.

1 Introduction

Reputation systems are an essential tool for determining the trustworthiness
of users in environments where pre-established trust in users does not exist.
Reputation of a target user is computed by aggregating the subjective feedback
provided by source users. These are users who have previously interacted with
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the target user and have consequently gained personal experience regarding her
actions in the context of the given application. It is expected that actions per-
ceived as legitimate will lead to high positive feedback and thus an aggregation
of a positive reputation score. Inversely, a target user acting dishonestly will
elicit negative feedback resulting in a low reputation score. Any users concerned
about the legitimacy of future actions of a potential transacting partner, can
consider the computed reputation score of the user as an indication of her trust-
worthiness. Reputation systems thus assist in holding users accountable for
their actions despite the initial absence of trust in the users.

E-commerce marketplaces and sharing economy based platforms are some
popular applications where reputation systems are employed. Sites and mobile
applications such as ebay.com, airbnb.com, and uber.com are significant exam-
ples. Additionally, systems by Liu et al. [1], Azad et al. [2], Bag et al. [3], and
Schaub et al. [4] are some of the academic proposals for managing reputation
in e-commerce and retail environments. Let’s consider Airbnb (airbnb.com),
which is an online marketplace for vacation rentals. The platform enables in-
dependent hosts to offer their private lodgings to guests for short stays. The
reputation system of the platform plays a critical role since the guests seeking
satisfactory accommodations can only rely on the reputation of the hosts and
their offerings stemming from reviews provided by previous guests. Similarly,
hosts concerned about lending out their lodgings to well-behaving guests also
need to depend on the reputation system.

Another application that relies on reputation systems is mobile participatory
sensing, where users sense various environmental conditions with their mobile
devices and submit sensing data to a central entity for analysis. Reputation is
used to discourage users from furnishing corrupted information. Systems by Jo
and Choi [5], Ma et al. [6], and Mousa et al. [7] are examples of reputation
systems that target this application area. A related application is participatory
sensing in Vehicular Adhoc Networks (VANETs), where vehicles collect and
upload information about road conditions. Reputation systems by Zhao et al.
[8], Lu et al. [9], and Chen et al. [10] aim to hold the vehicles and their
owners accountable for submitting false data. One more notable application
area, among several others, that counts on reputation systems is the Internet
of Things (IoT). Trusting corrupted devices in the IoT can lead to comprises in
network security [11]. Recent systems by Azad et al. [11, 12] are instances of
reputation systems serving this application domain.

It has been documented that users may hesitate to provide truthful feedback
[13, 14]. Reasons range from fear of retaliation to negative reviews [13, 14] to
concerns about revealing sensitive personal information [15]. Returning to the
example of Airbnb, we note that its reputation system escrows the feedback until
both parties have submitted their opinion. This is done in hopes of preventing
tit for tat retribution by the hosts and the guests. However, the truthfulness and
the impartiality of user feedback can still be impacted due to the personal nature
of the reviews [16]. Hiding the identities of the users has been recommended as
a solution [16]. Moreover, it has been observed that the lack of anonymity on
Airbnb “causes people to feel pressure to post reviews that lean positive” [17].

2



Privacy preserving reputation systems are designed to allay the fears of feed-
back providers by protecting the confidentiality of their individual feedback.
The implication is that providing feedback in a private manner encourages the
raters and un-inhibits them to submit honest and accurate feedback. Another
approach that privacy preserving reputation systems take to motivate users to
submit feedback and to do so truthfully is by guaranteeing their anonymity.
Operating in an anonymous manner in the system signifies that a third party is
unable to attribute sensitive personal information to the user or to profile the
user in the long term. Privacy preserving reputation systems are therefore an
important category of reputation systems for scenarios where user privacy or
anonymity needs to be upheld.

The field of research of privacy preserving reputation systems is fairly ma-
ture. All academic reputation systems cited above are in fact privacy preserv-
ing. Reputation systems that respect user privacy were first proposed in the
mid 2000s. Some notable original works include those by Pavlov et al. [18],
Kinateder and Pearson [19], and Dingledine et al. [20], among others. However,
privacy preserving reputation systems continue to evolve to cater for emerging
application areas, such as Social IoT (Azad et al [11]), Industrial IoT-enabled
retail marketing (Liu et al. [1]), and Intercloud (Dou et al. [21]). Moreover,
the advent of the blockchain technology has recently fueled further research in
this area. The outcome of utilizing blockchain as a building block is privacy
preserving reputation systems that offer novel properties such as trustlessness,
transparency, and immutability. For example, Schaub et al.’s [4] system does
not require users to trust third parties or any fellow users in order to guarantee
their security and thus provides trustlessness. This property was absent from
prior systems. Another important reason for continued research in the area of
privacy preserving reputation systems is the fact that a number of issues still
remain open. As we discover in this survey and discuss in Section 10, these
issues include lack of implementation of important security properties and lack
of defenses against common attacks.

Despite the maturity of the topic, to the best of our knowledge, no com-
prehensive survey has been conducted so far on privacy preserving reputation
systems. Section 11 provides a summary of the related work. We believe that a
survey is needed to cultivate a uniform perspective to the rich literature in this
area. Moreover, we believe that the current moment is opportune to present
this survey due to the recent emergence of systems based on blockchain as well
as novel systems for upcoming application domains. In this survey, we analyze
40 privacy preserving reputation systems published between the years 2003 and
2020 inclusive, while placing an emphasis on recent systems based on blockchain.

Reputation systems that respect user privacy have always mostly relied on
cryptographic building blocks and their combinations to provide strong secu-
rity guarantees. These building blocks include Secure Multi-Party Computa-
tion (SMPC), secret sharing, homomorphic encryption, zero-knowledge proofs,
cryptographic signatures, and others. Blockchain is a recent addition to this
repository of cryptographic building blocks utilized by privacy preserving rep-
utation systems. We study blockchain-based systems as well as systems based
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on other building blocks and security mechanisms in this survey.

1.1 Contributions

This survey makes the following contributions:

• Identification of the various dimensions of privacy preserving reputation
systems. An analysis framework that allows for the decomposition and
comparison of privacy preserving reputation systems in a normalized man-
ner.

• Identification of the security requirements of privacy preserving reputation
systems that cut across multiple types of such systems.

• Summary of the building blocks utilized by current privacy preserving
reputation systems.

• Definition of broad categories of the privacy preserving reputation systems
proposed in the literature according to their security mechanisms.

• Fine-grained analysis and comparison of 40 privacy preserving reputation
systems using the proposed analysis frameworks.

• Detailed review of several significant and representative privacy preserving
reputation systems in the literature.

• Discussion of the analysis results that lead to multiple insights and iden-
tification of avenues for future work in this field of research.

1.2 Organization

The rest of the paper is organized as follows. Section 2 develops an analysis
framework that delineates the various dimensions of reputation systems. Sec-
tion 3 identifies the dimensions and the requirements of privacy preserving rep-
utation systems. Section 4 defines two broad categories of privacy preserving
reputation systems with respect to their security objectives. Section 5 presents
an overview of some of the major building blocks that serve as the foundation
for privacy preserving reputation systems. Section 6 defines broad categories
of the privacy preserving reputation systems proposed in the literature accord-
ing to their security mechanisms. Section 7 presents a fine-grained analysis of
privacy preserving reputation systems in the literature according to the frame-
works established in Sections 2 through 5. Section 8 and Section 9 describe in
greater detail some of the systems. Section 10 provides an overall discussion and
reveals a number of insights into the field of research. Section 11 summarizes
the related work and Section 12 concludes the survey.
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2 An Analysis Framework for Reputation Sys-
tems

In this section, we develop an analysis framework that identifies the various
dimensions of reputation systems. The framework presented in this section is
not a novel contribution because several prior works (such as the surveys by
Braga et al. [22], Hendrikx et al. [23] and Hoffman et al. [24]) have developed
more comprehensive frameworks for reputation systems. However, since privacy
preserving reputation systems are fundamentally reputation systems, we need
to establish a uniform framework to analyze and compare their non-privacy fea-
tures as well. The analysis framework for issues specific to privacy is presented
in Section 3.

Some fundamental concepts in reputation systems are as follows:

Source User (Rater). A user u is said to be a source user or rater of a user
t if u has feedback about t in a given context.

Target User (Ratee). When a source user assigns feedback to a user t, or a
user q initiates a query to determine the reputation of user t, the user t is
referred to as the target user or the ratee.

Querying User (Querier, Inquirer). When a user q initiates a query to de-
termine the reputation of a user t, the user q is referred to as the querying
user, the querier, or the inquirer.

Reputation. The reputation of a target user is any function that aggregates
the feedback of its source users. In Section 2.4, we present some possible
realizations of the aggregation function.

The analysis framework for reputation systems is graphically represented
in Figure 1. In the following sections, we present the various dimensions of
reputation systems.

2.1 Architecture

The architecture of a reputation system is one of the key factors in determining
how the following activities are conducted: 1) Feedback collection; 2) Feedback
aggregation (reputation computation); and 3) Reputation dissemination. We
discuss below three architectures for reputation systems: centralized, decentral-
ized, and hybrid.

Centralized. Centralized reputation systems are characterized by the exis-
tence of a fully or partially trusted central authority. The central author-
ity receives feedback from users, aggregates it to compute the reputation,
and disseminates the reputation scores. One of the benefits of a central-
ized solution is that it is straightforward to implement. Additionally, the
central authority is universally trusted, therefore users can be assured that
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Figure 1: Analysis framework for reputation systems.

the feedback collection, aggregation, and dissemination are being done cor-
rectly. However, if the central authority fails, the whole reputation system
is compromised. Thus the central authority is a single point of failure and
a high-value target for attackers. Centralized reputation systems are also
unable to cater for decentralized environments such as peer-to-peer net-
works, ad-hoc networks, decentralized social networks, etc.

Decentralized. Decentralized reputation systems are suitable for decentral-
ized environments as they do not assume the presence of a central entity.
In decentralized reputation systems, a central location for submitting and
aggregating feedback, and disseminating reputation does not exist. Feed-
back is commonly stored locally by the node who generates it, for example
in response to its experiences with another party. Computing reputation
of an entity in the system requires finding all or a portion of the nodes
who carry feedback about that entity. Once the feedback providers have
been located, the aggregation may be done at a single location after re-
ceiving all feedback, or a more sophisticated protocol may be employed to
aggregate the feedback in a distributed manner.

Hybrid. The hybrid architecture merges elements from the centralized and the
decentralized architectures. Some activities are carried out in a centralized
manner whereas others in a decentralized fashion.

2.2 Properties of Feedback

Set / Range. The set or range that the feedback belongs to, for example,
{−1, 0, 1}, [0, 1].

Granularity. The feedback of a rater may reflect the experience with the ratee
for a single given transaction or the feedback may reflect the cumulative
experience with the ratee over multiple transactions.
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2.3 Properties of Reputation

Set / Range. The set or range that the reputation score belongs to, for ex-
ample, R, [0, 1].

Liveliness. As noted by Schiffner et al. [25], reputation liveliness implies that a
reputation system does not offer users the possibility to reach a final state
of reputation in which bad behavior no longer damages their reputation.
For example, for a reputation score in the set R, there is no maximum limit,
whereas, for a reputation score in the interval [0, 1], the reputation can
reach the maximum value of 1. If the reputation system is also monotonic
(defined later in this section), the reputation cannot decrease and the user
can retain the maximum score forever.

Visibility. The visibility of a reputation score may be global or local. Global
visibility implies that all nodes in the system view the same reputation
score of a certain entity. Whereas with local visibility, the reputation
score available to a subset of the nodes may be different than elsewhere
in the system. Local visibility is generally a concern in decentralized
or personalized reputation systems, where a different subset of feedback
providers may be included for computing the reputation of an entity at
different instances.

Durability. Reputation durability refers to the transience of a reputation score.
Once a reputation score is computed, it may be stored permanently for
subsequent access by nodes through a simple retrieval operation. Recalcu-
lation of the score is mandated only when new feedback becomes available.
Alternatively, the reputation score may be transient and re-computed ev-
ery time a node wishes to learn the score. The latter approach requires
repeated computation of the reputation, however, it does not require stor-
age of the scores by a trustworthy entity.

Monotonicity. Monotonic reputation implies that the reputation score incre-
ments in only one direction. For example, consider a reputation system
in which a user can receive integer feedback between 1 and 5 for each
transaction, and reputation is considered as the sum of feedback. The
reputation in such a reputation system can only increase upwards. The
reputation of a user cannot be decremented.

2.4 Feedback Aggregation Models

There are a number of models for aggregating feedback to obtain reputation
scores. We describe some interesting models below. A comprehensive survey
of feedback aggregation models (also called reputation computation engines) is
provided by Jøsang et al. [26].

Sum and Mean Model. One of the most common methods of aggregating
feedback to obtain the reputation score is simple summation. The ad-
vantage of this approach is that it is very straightforward and easy to
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understand for the users of the reputation system. A related method is to
compute the reputation score as the mean of the feedback values. Repu-
tation represented as mean has the benefit of being normalized and thus
the reputation of different users may be compared objectively.

Flow Network Model. A class of reputation systems (such as the Advogato
(advogato.org) [27] reputation system) are constructed using the concept
of flow networks. The users are considered as the nodes of a network
and the feedback that they assign each other is considered as the flow in
the network. The reputation of a node is computed as a function of the
flow that the node receives from other nodes. A salient characteristic of
such reputation systems is that a node cannot assign more flow to other
nodes than it has received itself. This prevents a node from creating
multiple pseudonyms for malicious purposes, since the total incoming flow
and hence the reputation of the pseudonyms would be only as high as the
original node itself. It is assumed in the Advogato reputation system that
the amount of flow available in the network is constant and regulated by
trustworthy nodes adjacent to the source.

Markov Chain Model. Several reputation systems (such as EigenTrust [28]
and PowerTrust [29]) draw on the Markov chain theory. Feedback from
one node to another is considered as the probability of transition from the
source to the target node. The reputation of a node is computed as the
probability of arriving at that node by following random transitions from
a known trustworthy node. The reputation systems based on the Markov
chain theory also offer the advantage that a malicious node does not benefit
from creating multiple pseudonyms for malicious purposes. This is due to
the fact that even if the malicious node assigns maximum feedback to each
of its pseudonyms, the probability of reaching those pseudonymous nodes
from a trustworthy node would be no higher than reaching the original
malicious node.

Bayesian Model. The reputation score in a Bayesian reputation system is
generally represented by a beta distribution in which the two free param-
eters α and β correspond to the number of positive and negative feedback
respectively. The reputation score is computed by statistically updating
the given beta distribution. The observable difference in the statistical
properties of fair and unfair ratings enables filtering out unfair ratings
[30].

2.5 Challenges faced by Reputation Systems

Reputation systems can be classified by the challenges that they address and
their success in resolving them. In this section, we discuss some of the challenges
other than privacy that reputation systems have to contend with.

Sybil Attack. The Sybil attack [31] on a reputation system operates as follows:
An attacker creates multiple identities in the system in order to gain an
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unfair advantage over honest users who own a single identity. The attacker
may use its multiple identities to mount attacks including self-promotion
and slandering.

Self-Promotion, Ballot Stuffing. Self-promotion is the act of raising one’s
own reputation through unfair means. Self-promotion may be carried out
by a user individually or in collusion with other members of the system. A
self-promotion attack is particularly effective in systems where users may
assign each other additional feedback after every transaction. Two users
may repeatedly transact with each other, and after each transaction assign
each other positive feedback. This attack is also known as ballot stuffing,
which implies that a user submits more feedback than he is entitled to.

Slandering, Bad-Mouthing. Slandering or bad-mouthing is the act of sab-
otaging an honest user’s reputation by assigning them unwarranted low
feedback. Motivation for such an attack may include retaliation, reducing
a competitor’s reputation, or malicious disruption of services. A slander-
ing attack is highly detrimental to the target user in applications that are
sensitive to the presence of even a small amount of low feedback, such as
high-value monetary systems.

Whitewashing. A whitewashing attack occurs when a user with negative rep-
utation quits the system and re-enters with a new identity and thus a
fresh reputation. A reputation system is vulnerable to the whitewashing
attack when: the pseudonyms in the system are not linked to real world
identities; quitting the system incurs little or no loss; and creating new
pseudonyms is cheap (in terms of limited resources, such as money, human
effort, etc.). To mitigate the risk of whitewashing attacks, a reputation
system may differentiate users who are newcomers from those who have
been in the system for a long time. A user may only be allowed to build his
reputation gradually by demonstrating good behavior consistently over a
long period of time. This approach lessens the appeal of a whitewashing
attack, since a user who re-enters the system with a new identity is not
viewed as trustworthy.

Oscillation. In oscillation, an attacker initially builds good reputation in the
system and then suddenly shifts behavior to take advantage of honest
users who are misled into trusting the attacker due to the good reputation.
This attack is advantageous only if the payoff of the attack is greater than
the cost of building good reputation. One scenario is that an attacker
engages in several low value transactions to accumulate reputation and
then reverses its good behavior for a high value transaction. A reputation
system may mitigate the risk of oscillation attacks by weighing feedback
according to its age in the system.

Random Ratings. In a random ratings attack, an attacker submits randomly
generated feedback to the system instead of providing an accurate evalua-
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tion of the target’s behavior. This attack is advantageous for the attacker
in systems where feedback submission is incentivized.

Free Riding. Free riding is more of a user behavioral pattern that is generally
detrimental to the system rather than an attack. In free riding, a user
doesn’t actively participate in the feedback collection part of the system,
but still makes requests to learn the reputation of other users. The free
riding user thus takes advantage of the system without providing any
contribution.

2.6 Costs

The operations of a reputation system, which include feedback collection, feed-
back aggregation (reputation computation), and reputation dissemination, incur
various computational costs. The costs of these operations can be measured as
follows: 1) number of messages exchanged; 2) bandwidth consumed; 3) compu-
tational resources consumed; and 4) storage required.

3 An Analysis Framework for Privacy Preserv-
ing Reputation Systems

In this section, we propose an analysis framework that identifies the common
dimensions and requirements of privacy preserving reputation systems. We
conduct a fine-grained analysis and comparison of privacy preserving reputation
systems in the literature using this framework in Section 7.

Three of the dimensions (adversary, reputation binding, and trust model) are
described in the following subsections. Whereas, the other two dimensions are
described independently in later sections: In Section 4, we discuss the security
objectives of privacy preserving reputation systems proposed in the literature.
In section 5, we list the building blocks that serve as the foundation for privacy
preserving reputation systems.

The analysis framework for privacy preserving reputation systems is graph-
ically represented in Figure 2.

3.1 Adversary

The goal of a reputation system is to compute the reputation from the inputs
of the participants. All participants of the protocol are expected to pursue
this and only this goal. An honest participant is one who conforms to this
expectation. However, there may exist dishonest participants who have ulterior
motives. Those motives may include learning the inputs of other participants,
tampering with the output, disrupting the protocol, etc.
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Figure 2: Analysis framework for privacy preserving reputation systems.

3.1.1 Adversarial Model

We list below two standard adversarial models [32] that characterize the be-
havior of dishonest users. A privacy preserving reputation system is considered
secure under one of these models if it can show correctness and meet its privacy
requirements under the given model.

Semi-Honest. In the semi-honest model, the users do not deviate from the
specified protocol. In other words, they always execute the protocol ac-
cording to the specifications. The adversary abstains from wiretapping
and tampering of the communication channels. However, within these
constraints, the adversary passively attempts to learn the inputs of hon-
est users by using intermediate information received during the protocol
and any other information that it can gain through other legitimate means.

Malicious. Malicious users are not bound to conform to the protocol. Users
under a malicious model may deviate from the protocol as and when they
deem necessary. They actively attempt to achieve their objectives. They
may participate in extra-protocol activities, devise sophisticated strate-
gies, and exhibit arbitrary behavior. Specifically, malicious users may 1)
refuse to participate in the protocol, 2) provide out of range values as
their inputs, 3) selectively drop messages that they are supposed to send,
4) prematurely abort the protocol, 5) distort information, and 6) wire-
tap and tamper with all communication channels. A malicious adversary
may have either or both of the following objectives: 1) learn the inputs
of honest users, and 2) disrupt the protocol for honest users. The reasons
for disrupting the protocol may range from gaining illegitimate advantage
over honest users to completely denying the service of the protocol to
honest users.
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3.1.2 Collusion

A dishonest user may act alone or multiple dishonest users may act in agreement
to achieve their ulterior motives. When multiple dishonest users work together,
it is referred to as collusion. Privacy preserving reputation systems either con-
sider that collusion can take place between users or consider that collusion does
not take place.

Collusion can be bounded or unbounded. Bounded collusion implies that
the number of dishonest participants in the system allowed to collude with each
other is limited, for example, 1

2 or 1
3 of all n participants. Unbounded collusion

places no limit on the number of dishonest participants who can collude with
each other, thus n−1 of the participants can be dishonest and colluding, except
for the one honest participant whose privacy needs to be preserved.

3.2 Reputation Binding

A privacy preserving reputation system can be either pseudonym-bound or
identity-bound.

In a pseudonym-bound system, the reputation of the user is associated with
her pseudonym. If she changes or creates a new pseudonym then she looses her
reputation. This can be disadvantageous for several reasons. This implies that
reputation is not transferable between a user’s multiple pseudonyms. Moreover,
a dishonest user can drop a pseudonym with bad reputation and re-enter the
system with a new pseudonym and a fresh reputation.

On the other hand, in an identity-bound system, the reputation of a user is
bound to her real identity. Even if she changes pseudonyms, she maintains her
reputation. This is often made possible by verifying the true identity of a user
before issuing a new pseudonym.

3.3 Trust Model

The security and privacy guarantees that users receive in a privacy preserving
reputation system often require that they trust certain entities, such as a central
authority, or some fellow users in the system. The trust implies a belief of the
trusting user that the trusted entity or the trusted fellow users will behave in
an expected manner in order to ensure their security and privacy. We identify
four different types of trust models that privacy preserving reputation systems
are based on.

Trusted Third Party. A Trusted Third Party (TTP) for a set of users is an
entity whom every user in the set trusts completely for certain actions. In
this model, all users of the system must trust the designated TTP entities
in the system. A user in a system who needs to be fully trusted is also
considered as a TTP.

Trust on arbitrary k fellow users. A user in the system is required to place
her trust in k different fellow users for the security guarantees, where k ≤
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n, and n is the total number of users participating in the protocol. These k
users are selected by the system without taking the user’s preferences into
account. Thus from the perspective of the user, the set of trusted users is
selected arbitrarily. Generally, only a partial level of trust is required in
each of the trusted users in this model.

Trust on chosen k fellow users. In this trust model, a user in the system
also places her trust in k distinct fellow users. However, these fellow users
are chosen by the user herself. The user may select the trusted users based
on the level of their subjective trustworthiness in order to maximize the
privacy guarantee. This model requires that a user is able to determine
the trustworthiness of fellow users and choose accordingly from a pool of
available users.

Please note that there is a difference between choosing fellow users for
establishing security guarantees versus choosing feedback providers for
personalizing the reputation score of the target entity. In the first case, a
user chooses fellow users who specifically influence the security and privacy
guarantees that she would receive in the reputation system. In the latter
case, there is no intentional impact of the selection on the security guar-
antees. The “Trust on chosen k fellow users” model addresses choosing k
users specifically for the purposes of security in the reputation system.

As an example, consider the systems by Hasan et al. [33] and Gudes et
al. [34]. In the system by Hasan et al., the selection of k fellow users is
made in the context of preserving privacy. The trust model of this system
can thus be classified under the chosen k users category. In contrast, in
the system by Gudes et al., even though a user selects a subset of fellow
users, the system’s trust model cannot be classified as the chosen k users
model. The reason being that the selection of users in this latter system
is made purely for personalizing the reputation score.

Trustless. In the trustless model, the users in a system do not need to trust
any entities or any fellow users. Thus, this model does not expect users to
have pre-existing trust toward fellow users or entities in the system. The
users need to rely solely on the underlying algorithms and protocols of the
system in order to receive the security guarantees.

However, we note that even though the users do not need to directly trust
any entities or users in this model, there may exist a requirement of trust-
worthiness for the overall correct and secure functioning of the system.
Trustless systems are based primarily on the blockchain technology. As
an example, the Bitcoin blockchain requires that a majority of all partic-
ipants in the system act honestly in order to ensure integrity.

The trustless model may be considered a special case of the “Trust on ar-
bitrary k fellow users” model, where k is at least greater than half of the
total number of all participants in the entire system (not just a protocol
instance). A blockchain system functions by building consensus among
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peers. In case of Bitcoin, if a majority of peers are dishonest, consen-
sus cannot be achieved and the entire system malfunctions. Thus, the
breach of the trustworthiness requirement in such systems does not sim-
ply threaten the security of a given user but the integrity of the entire
system. It is therefore in the collective interest of all honest users in the
system to prevent any breach of trustworthiness.

4 Security Objectives of Privacy Preserving Rep-
utation Systems

We have identified two broad categories of privacy preserving reputation systems
with respect to their security objectives. The goal of the systems in the first
category is to preserve the anonymity of the users. The systems in the second
category do not aim to hide the identity of the users but focus on preserving
the confidentiality of the feedback that the users provide. The two categories of
privacy preserving reputation systems are defined as follows:

1. User anonymity oriented privacy preserving reputation systems.
The true identity of the users is hidden in these systems. The feedback
providers thus remain anonymous. A user is represented in the system by
one or more pseudonyms which are unlinkable to his real identity. This
setup allows the user to anonymously carry out transactions with others
and submit feedback. There is no need to guard the confidentiality of
the submitted feedback since the anonymity of the users prevents it from
being linked to them.

2. Feedback confidentiality oriented privacy preserving reputation
systems. These systems do not attempt to hide the identity of the users
beyond assigning each user a single pseudonym. Moreover, these sys-
tems do not conceal the act of a user assigning feedback to another user.
However, the value of the submitted feedback and any other related in-
formation is considered private. This type of systems is necessary since
complete anonymity is not always possible due to the nature of real world
transactions. For example, even if anonymity is preserved online on an
e-commerce site, the exchange of physical items sold and bought through
the site would reveal the real identities of the participants. Preserving the
confidentiality of the feedback values is a practical alternative to enable
users to submit truthful feedback without the fear of retaliation.

The security objectives of a privacy preserving reputation system can be
further subdivided as those fulfilling privacy and those fulfilling integrity or cor-
rectness. The privacy objectives are concerned with hiding information about
users, for example, preserving the anonymity of the rater and the ratee. On the
other hand, the integrity objectives are aimed toward maintaining the correct-
ness of the functions of the reputation system while preserving the privacy of
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the users. For example, integrity objectives include preventing a malicious user
from manipulating the reputation aggregation function to forge an unmerited
good reputation.

Figure 3 illustrates the classification of the security objectives of privacy
preserving reputation systems. In Sections 4.1 and 4.2, we describe several
individual security objectives of user anonymity and feedback confidentiality
oriented privacy preserving reputation systems respectively. A particular repu-
tation system may pursue a few or more of these objectives depending on the
stringency of its security requirements.

Security Objectives of PPRS

User Anonymity
Oriented Systems

Feedback Confidential-
ity Oriented Systems

Privacy Integrity Privacy Integrity

Multiple
Pseudonyms
User – Pseudo Un-
linkability
Pseudo – Pseudo
Unlinkability

Rater Anonymity

Ratee Anonymity

Inquirer
Anonymity
Reputation Trans-
fer

Unforgeability

Distinctness

Accountability

Authorizability

Verifiability

Feedback Confi-
dentiality – Inter
Feedback Confi-
dentiality – Public
Privacy of Rela-
tionships

Correct Range

Correct Computa-
tion

Authorizability

Verifiability

Figure 3: Security objectives of privacy preserving reputation systems.

4.1 User Anonymity Oriented Privacy Preserving Repu-
tation Systems

4.1.1 Privacy Objectives

Multiple Pseudonyms. A user is able to assume multiple pseudonyms in
the system. As noted by Anwar and Greer [35, 36], the variation in the
pseudonyms of a user may be on a per context or a per transaction basis.
In the first case, a user may adopt a different pseudonym for each context
in the system, for example, a tutor could use different pseudonyms for dif-
ferent subjects in an e-learning system. Alternatively, a user may choose
a different pseudonym for each transaction in the system.

User-Pseudonym Unlinkability. User-pseudonym unlinkability implies that
the true identity of a user is not linkable to any pseudonym that he uses
in the system. Androulaki et al. [37] identify this requirement as follows:
Given a pseudonym P that does not belong to a corrupted party, the
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adversary can learn which peer owns P no better than guessing at random
among all non-corrupted peers that appear consistent with P .

Pseudonym-Pseudonym Unlinkability. Pseudonym-pseudonym unlinkabil-
ity implies that two different pseudonyms that belong to the same user
cannot be linked to each other. The adversary is unable to tell whether
two given pseudonyms belong to the same user. This property is specified
by Androulaki et al. [37] as follows: Given two pseudonyms P1, P2 that
do not belong to corrupted parties, the adversary has no advantage in
telling whether P1, P2 belong to the same peer or not. This requirement
should hold as long as there are at least two non-corrupted peers who
appear consistent with both P1 and P2 (because if there is only one such
uncorrupted peer, clearly both pseudonyms belong to the same one).

Rater Anonymity. A user is able to rate another user without his true identity
being revealed. The purpose of rating anonymously is to prevent the
adversary from linking the rater to his interaction with the ratee and
the rating that he submitted. Schiffner et al. [25] state this property as
follows: A pseudonym P1 that interacted with a ratee R should not be
linkable to the pseudonym P2 that rated R.

Ratee Anonymity. A user is able to receive a rating without his real iden-
tity being disclosed. A ratee may not wish to be associated with his past
transactions and ratings since they could influence the ratings for his fu-
ture transactions. According to Schiffner et al. [25], this property implies
that a ratee R can use a different pseudonym for each transaction.

Inquirer Anonymity. A user is able to inquire about the reputation of an-
other user, however, others are not able to learn whose reputation he is
querying or even the fact that he is inquiring about another user’s repu-
tation. Users wish to query the reputation of other users anonymously in
order to prevent the adversary from compiling a profile of their interactions
and interests.

Reputation Transfer and Aggregation. A user is able to transfer reputa-
tion among multiple pseudonyms that he owns without letting the adver-
sary draw associations between these pseudonyms. Consequently, a user
is able to aggregate the reputation of his multiple pseudonyms into the
reputation of one pseudonym.

4.1.2 Integrity Objectives

Reputation Unforgeability. A user is unable to show reputation higher than
the cumulative reputation of his pseudonyms. A user is also unable to
borrow good reputation from another user.

Distinctness. It is possible to prove that the reputation of a target user is
an aggregate of votes or feedback that come from distinct users while si-
multaneously hiding the identities of those users. The advantage of this
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property is that one or a few dishonest users are not able to submit multi-
ple votes or feedback (ballot stuffing) for artificially raising the reputation
of the target user.

Accountability. If and only if a user commits a predefined adversarial act,
such as ballot stuffing, then his pseudonym becomes linkable to his real
identity. This property ensures that anonymous users are still accountable
for adversarial actions.

The properties of authorizability and verifiability are discussed in Section
4.3.

4.2 Feedback Confidentiality Oriented Privacy Preserving
Reputation Systems

4.2.1 Privacy Objectives

No Inference from Intermediate Information. This property requires that
a rating assigned by a rater to a ratee is never revealed to any other party
including the ratee. The system must protect the confidentiality of the
feedback such that the feedback is neither divulged explicitly nor inferred
from any intermediate information gained by the adversary during a rep-
utation query. The system may define the confidentiality of the feedback
as deterministic or probabilistic. In the first case, the adversary is unable
to learn any information about the feedback. However, in the latter case
of probabilistic confidentiality, the amount of information leakage depends
on certain variables, such as the number of raters, the reputation score,
etc.

No Inference from Public Information. The reputation score of any user
is by definition public and any other user in the system is authorized to
learn this score. The issue is that a dishonest user may use this public
information to derive the private feedback of honest users. For example, in
a basic additive reputation system, the adversary simply needs to observe
the reputation score before and after the latest user submits his feedback
to learn its value. The requirement of confidentiality of feedback, with
no inference from public information, implies that the adversary is un-
able to learn information about the feedback even from publicly available
information.

Privacy of Relationships. A user may have relationships with multiple users
in the system. These other users may include fellow users who have rated
the same ratees. The relationships between the users could be in various
contexts, for example, the context of trust in preserving each others pri-
vacy. This requirement implies that information about the relationships
of a rater is not revealed during the course of a reputation query. This
information includes the amount of trust that the rater has in the fellow
users.
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4.2.2 Integrity Objectives

No Out of Range Feedback. A dishonest user is unable to submit out of
range feedback. A dishonest user may take advantage of the fact that the
feedback is confidential and submit out of range feedback in order to mount
an attack such as bad mouthing or ballot stuffing. A system enforcing this
property does not permit out of range feedback even though the feedback
is hidden.

No Incorrect Computations. A dishonest user is unable to carry out in-
correct computations. A reputation query may require users to perform
certain computations, for example, the summation of some values. This
property requires that a dishonest user is unable to submit erroneous re-
sults for these computations.

4.3 Integrity Objectives Common to Both Types of Pri-
vacy Preserving Reputation Systems

Authorizability of Ratings. The requirement of authorizability of ratings
implies that only the users who have had a transaction with the ratee
are allowed to rate him. This property prevents users who have not trans-
acted with a ratee from assigning him feedback and thus possibly reduces
the impact of attacks such as bad mouthing and self promotion.

Verifiability by Ratee. The requirement of verifiability by ratee as identified
by Kerschbaum [38] suggests that a ratee R should be able to identify all
published feedback linked to his identity and verify that they are related
to a recorded transaction and the correct transaction partners. Moreover,
a ratee R should be able to identify all published feedback linked to his
identity and verify that the inquirer has computed its reputation score
according to them.

5 Building Blocks for Privacy Preserving Rep-
utation Systems

In order to achieve their security objectives, privacy preserving reputation sys-
tems utilize various building blocks, which are generally cryptographic in na-
ture. These building blocks include secure multi-party computation, homomor-
phic cryptosystems, zero-knowledge proofs, blockchain, etc. In this section, we
present an overview of some of the major building blocks that serve as the
foundation for privacy preserving reputation systems.

5.1 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) is the study of protocols that take
inputs from distributed entities and aggregate them to produce outputs, while
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preserving the confidentiality of the inputs.
One of the well-known secure multi-party computation protocols is secure

sum [39], which takes inputs from entities and computes their sum. The protocol
assumes that there are three or more sites and there is no collusion between
them. It is also assumed that the value to be computed, v =

∑s
l=1 vl lies in

the range [0..m]. The sites are numbered as 1 . . . s. Site 1 generates a random
number R uniformly chosen from [0..m]. It then sends R + v1 mod m to site
2, where v1 is site 1’s local input. Site 2 does not learn any information about
v1 since R + v1 mod m is distributed uniformly across the range [0..m] due to
R. For sites l = 2 . . . s − 1, the protocol proceeds as follows: Site l receives
V = R +

∑l−1
j=1 vj mod m. Site l learns nothing since the value is distributed

uniformly across [0..m]. Site l computes R+
∑l

j=1 vj mod m = (vl +V ) mod m.
Site l then sends this value to site l + 1. Eventually, site s also performs the
above step. Site s sends the result back to site 1, who subtracts R from it
to obtain the sum. Site 1 does not learn any of the private values due to the
uniform distribution of the received result over the range [0..m].

The protocol may be used to compute reputation as the sum or the mean
of the feedback values provided as private inputs by the participants of the
protocol. However, the above protocol in its original form suffers from problems
such as no resistance to collusion and no defense against out of range feedback.

5.2 Homomorphic Cryptosystems

Let Eu(.) denote an encryption function with the public key PKu of user u
in an asymmetric cryptosystem C. The cryptosystem C is said to be additive
homomorphic if we can compute Eu(x+y), given only Eu(x), Eu(y), and PKu.
In other words, a cryptosystem is additive homomorphic if we can compute the
encryption of the sum of two plaintexts, given only their ciphertexts and the
encrypting public key.

The Paillier cryptosystem [40] is a well-known additive homomorphic cryp-
tosystem. Similarly, a multiplicative homomorphic cryptosystem such as the
ElGamal Cryptosystem [41] allows computation of the encryption of the prod-
uct of two plaintexts from their ciphertexts and the encrypting public key.

Homomorphic cryptosystems are useful for privacy preserving reputation
systems as they allow operations on multiple source feedback values in their
encrypted form. The operations can be carried out while obfuscating individual
values.

5.3 Zero-Knowledge Proofs

A zero-knowledge proof [42] is an interactive proof that allows a prover to con-
vince a verifier that a statement is true without revealing any information other
than the fact that the statement is valid.

As an example, consider a prover who knows an RSA modulus n and its two
large prime factors p and q. A verifier knows only n. Factoring n is considered
intractable therefore the verifier cannot learn p and q. An interactive proof
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would be zero-knowledge if it allows the prover to convince the verifier that he
knows the factors of n without revealing any information about p and q.

Zero-knowledge proofs are used in the context of feedback confidentiality to
guarantee the integrity of the obfuscated values by mitigating the risk of out of
range feedback. In anonymity preserving reputation systems, zero-knowledge
proofs may be used to provide a proof that a user’s pseudonym is valid without
revealing the identity of the user.

5.4 Cryptographic Signatures

A blind signature scheme (for example, the scheme introduced by Chaum [43])
is a cryptographic signature scheme in which an entity signs a message provided
by a user, however, the entity does not learn the content of the message.

Group signatures are another type of cryptographic signatures. As discussed
by Michalas and Komninos [44], group signatures allow a group of users to create
a signature with the following properties: 1) Only members of the given group
can sign a message representing that group; 2) The receiver is able to verify that
a signed message originates from that group; 3) The signature reveals the group
but not the identity of the individual signer; and 4) The real identity of a user,
who behaves maliciously in a predefined manner, can be revealed by collectively
opening the signature.

Cryptographic signatures are used in privacy preserving reputation systems
in several ways. Some systems in the literature use signatures as proof of iden-
tity, providing a way to ensure that a pseudonym belongs to a user while keeping
the identity of the user secret. Signatures are also used during the transfer of
reputation between two pseudonyms. Finally, some systems use signatures to
ensure the integrity of the source’s feedback.

An application of signatures in privacy preserving reputation systems is in
the form of anonymous credential systems. Using this building block, an or-
ganization grants credentials to pseudonymous identities of users. Verifiers are
able to verify the authenticity of credentials in the possession of users. However,
neither the organization or the verifier is able to link the credential to the true
identity of the user.

5.5 Cryptographic Hash Functions

A cryptographic hash function maps data of arbitrary size to data of fixed size.
The key properties of a cryptographic hash function include collision-resistance,
hiding and puzzle-friendliness.

Cryptographic hash functions in the privacy preserving reputation systems
literature are mostly used to produce verifiable short term pseudonyms, or a
transaction identifier that allows a source’s feedback to be linked to a specific
transaction.
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5.6 Blockchain

A blockchain is a distributed data structure that was introduced as the foun-
dation of the Bitcoin cryptocurrency. A blockchain can be considered a public
distributed ledger that is composed of a set of blocks linked by cryptographic
hashes. The blocks are chronologically ordered. Each block comprises of the
record of a set of transactions or operations that have recently taken place be-
tween the users. Through an implicit consensus mechanism, all users eventually
agree on the state of the public distributed ledger. A new block is proposed
for appending to the blockchain by competing users. The user who wins the
right to append the new block by first solving a cryptographic puzzle receives
an award in order to incentivize the continuity of the blockchain. This Proof of
Work (PoW) mechanism is specific to Bitcoin, however, several other consensus
mechanisms have been proposed as well. Examples include Proof of Stake (PoS)
used by Ethereum, and Proof of Authority (PoA) used by VeChain. The new
block and the user’s right to append it are verified by the peers. Only correctly
formed blocks are accepted thus guaranteeing the security of the blockchain.

A blockchain offers some advantageous properties that can be utilized by
systems using it as a building block. A blockchain stores an immutable record
of information, which means that the information once recorded is not modifi-
able and its integrity and persistence are guaranteed. Additionally, a blockchain
provides transparency since all information is public and each block of informa-
tion is appended in an auditable manner. Moreover, a blockchain offers de-
centralization since there is no trusted third party or any super nodes involved
in its maintenance. Every node in the network is able to verify the integrity
of the blockchain as well as compete toward earning the right to appending a
new block. This decentralization also leads to the property called trustlessness,
which enables users to cooperate and collaborate without needing to trust each
other.

Certain blockchain systems, such as Ethereum, build on the principles of
blockchain to implement the smart contract technology. A smart contract is a
set of programmed rules that are agreed upon by a group of users in advance.
The correct execution of the program and the enforcement of the rules is then
guaranteed by all nodes in the system who are maintaining the blockchain.
Smart contracts allow users who do not have any pre-existing trust in each
other to be able to conduct transactions with guaranteed compliance to the
mutually agreed upon set of rules. They can rely on the underlying blockchain
system to prevent deceitful behavior from any of the parties.

Privacy preserving reputation systems can benefit from blockchains in mul-
tiple ways. A blockchain can be used for its immutability, transparency, and
auditability properties to create a reputation system that enables users to verify
the integrity of the computation of the reputation scores. The decentralized sys-
tem by Schiedermeier et al. [45] is an example of such utilization of blockchain.
Moreover, a privacy preserving reputation system can use smart contracts to
transparently enforce the rules for updating the reputation of a user. This is
the case in the reputation framework for participatory sensing systems by Jo
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and Choi [5], where a smart contract manages the reputation of a participant
user based on their sensing data and the corresponding feedback.

5.7 E-Cash

Some privacy preserving reputation systems (such as the one proposed by An-
droulaki et al. [37]) with user anonymity as their security objective, use E-cash
as one of the building blocks. E-cash, a predecessor of blockchain-based cryp-
tocurrencies, is a digital currency first proposed by Chaum [43, 46]. As discussed
by Belenkiy et al. [47], E-cash provides the following features:

Anonymity. It is impossible to trace an e-coin (the monetary unit of e-cash) to
the user who spent it. This property holds even when the bank (a central
entity who issues the e-coins) is the attacker.

Unforgeability. The only exception to the anonymity property is that e-cash
does not guarantee the anonymity of a user who tries to double-spend an
e-coin. In this case, the bank can learn the identity of the dishonest user.
A forged e-coin allows the bank to trace down the user who forged it.

Fungibility. A user can use the e-coins received for services provided as pay-
ment for services received from any other user in the system.

Endorsed e-cash [48] adds the following property to e-cash:

Fair Exchange. Fair exchange means that a buyer gets the item only if the
seller gets paid and vice versa.

E-cash protocols are often used in privacy preserving reputation systems in
the following manner: the votes of the raters are represented by e-coins of an
E-cash system. The quantity of the coins that a target has received is considered
its reputation. A trusted third party acting as a bank is needed to enforce the
integrity of the system.

5.8 Trusted Platform Modules

A Trusted Platform (TP) [49, 50] is described as a secure computing platform
that preserves the privacy of the user by providing the following three function-
alities:

Protected Storage. Data on the TP is protected from unauthorized access.

Integrity. The TP can prove that it is running only the authorized software
and no malicious code.

Anonymity. The TP can demonstrate that it is a genuine TP without revealing
the identity of the user. The TP uses a pseudonym attested by a PKI
Certification Authority (CA).
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A Trusted Platform comprises of a Trusted Platform Module (TPM), which
is a hardware device with cryptographic functions that enable the various secu-
rity functionalities of the TP. The TPM is unforgeable and tamper-resistant.

Kinateder and Pearson [19] implement a privacy preserving reputation sys-
tem, in which a TPM at a node enables to demonstrate that it is a legitimate
member of the system without disclosing its true identity.

6 Categorization of Privacy Preserving Reputa-
tion Systems according to their Security Mech-
anisms

In this section, we identify broad categories of the privacy preserving reputation
systems proposed in the literature. These categories are based on the general
mechanisms that these systems rely on in order to guarantee privacy and other
critical security properties, for example, authorizability, verifiability, etc.

We also briefly discuss the contributions of the systems that belong to each
of these categories. Each system is further analyzed in depth and compared in
Section 7. Five of the listed blockchain-based systems are discussed in detail in
Section 8. One or two interesting systems are selected from each of the other
categories and discussed in detail in Section 9.

Please note that these categories are not mutually exclusive and a system
may belong to multiple of these categories. For example, the system by Schie-
dermeier et al. [45] can belong to the category of blockchain-based systems as
well as SMPC-based systems. However, we place a system under a single cat-
egory based on its main novel idea. For example, even though Schiedermeier
et al.’s work uses SMPC, the novel idea and the main contribution is rather
the use of a blockchain-based public ledger as the sole communication medium
between the parties of the SMPC protocol. The blockchain-based protocol pro-
vides transparency and verifiability properties that are usually missing from
SMPC-only systems. The system by Schiedermeier et al. is therefore catego-
rized as a blockchain-based system.

In this survey, we have included the systems that we are aware of in this
field of research as well as those discovered using the following approach. We
searched for articles on Google Scholar published during the period of 2000 to
2020. The search phrases included the keyword ‘reputation’ along with one of
the keywords ‘privacy’, ‘anonymous’, and ‘anonymity’. For each relevant article
found, we studied its list of references to find other potential systems. Moreover,
we also looked at the article’s “Cited by . . . ” list on Google Scholar to discover
later relevant papers that cite the given article.

6.1 Blockchain-based Systems

These systems rely on a blockchain or smart contracts as an integral building
block for achieving their security objectives.
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Schaub et al. [4] introduced the first blockchain-based trustless privacy
preserving reputation system. The system does not need to rely on trusted
third parties, arbitrary trusted nodes, or subjective trust relationships in or-
der to guarantee security. Using blinded tokens issued by service providers,
raters anonymously submit feedback, which is recorded on a public immutable
blockchain. Issuing a token requires spending the system’s cryptocurrency,
which provides an incentive to mine and maintain the blockchain and also dis-
courages ballot-stuffing. Bazin et al. [51] present a system, which in addition
to protecting rater privacy, enables retrieval of a self-reported reputation score
directly from the target service provider. The validity of the reputation score is
verifiable and only a constant number of messages need to be exchanged for its
retrieval.

Azad et al. [2, 11] propose privacy preserving reputation systems for online
marketplaces and for the Social Internet of Things environment. Self-enforcing
computation is a property of their latter system, which implies that the compu-
tation process is independent of any trusted third party and it allows verification
of the integrity of the scores in an autonomous and public manner. Bag et al.
[3], describe a system for computing personalized global reputation of a target,
which considers only the feedback from a set of trusted participants. This is
done without disclosing the identities of the members of the trusted set and their
feedback. The systems by Azad et al. and Bag et al. rely on a public bulletin
board for communication, which according to the authors may be realized by a
blockchain.

Dou et al. [21] propose a distributed trust evaluation protocol with privacy
protection for the Intercloud environment. A distinctive feature of the protocol
is that it can continue to function even if some of the feedback providers go of-
fline. Lu et al. [9] present a privacy preserving trust model based on blockchain
for vehicular adhoc networks. Vehicles can anonymously submit alerts about
traffic conditions and neighboring vehicles can provide feedback about the va-
lidity of the alerts. The anonymous reputation of a vehicle reflects the feedback
received regarding its contributions. Owiyo et al. [52] propose a decentralized
privacy preserving reputation system based on blockchain that is claimed to
provide low transaction overheads. Jo and Choi [5] describe a blockchain-based
privacy preserving reputation framework for participatory sensing systems. The
system includes a smart contract that manages the reputation of a participant
based on their sensing data and the corresponding feedback. The smart contract
and the underlying blockchain enable transparency and public auditability of
the reputation scores.

Liu et al. [1] present an anonymous reputation system for retail marketing
in the Industrial Internet of Things environment. The system, which also uses
smart contracts on a Proof of Stake blockchain as a building block, is able to
provide transparency and public verifiability under the malicious adversarial
model. Schiedermeier et al. [45] describe a protocol for holding referendums in
trustless networks, which can also serve as a reputation protocol. The proto-
col combines secure multi-party computation with a blockchain as the unique
channel for communication between the parties. The protocol ensures trans-
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parency, that is, maintaining a public trace of all operations performed and the
information exchanged among the participants. Moreover, any participant is
able to autonomously verify the correctness of the outcome of the referendum.
Zhao et al. [8] propose a privacy preserving reputation management system
that takes advantage of blockchain technology in the resource-constrained envi-
ronment of mobile crowdsensing. The global reputation scores are updated by
a smart contract based on the average of all feedback. The system overcomes
the challenge of user dynamics, that is, frequent user turnover, by including a
delegation protocol.

6.2 SMPC-based Systems

These systems use feedback score as direct evidence from witnesses to compute a
reputation score. Their goal is to obfuscate the feedback score of the witnesses
from the querier as well as from fellow witnesses. These systems use Secure
Multi-Party Computation to achieve their goal. The reputation systems in this
category focus primarily on feedback confidentiality as their security objective.

Pavlov et al. [18] introduced SMPC-based privacy preserving reputation sys-
tems by proposing a number of protocols for decentralized additive reputation
systems. Two of their protocols are secure under the semi-honest and the ma-
licious adversarial models respectively. The protocols draw their strength from
witness selection schemes, which guarantee the inclusion of a certain number
of honest witnesses as participants. Gudes et al. [34] and Gal-Oz et al. [53]
present several schemes that augment their Knots reputation system [54] with
privacy preserving features. A defining characteristic of the Knots reputation
model is the notion of subjective reputation. The reputation of a target member
is computed by each querying member using a different set of feedback, thus the
reputation is subjective for each querying member. Nithyanand and Raman’s
system [55] complements an SMPC mechanism for privacy with a fuzzy tech-
nique and an Ordered Weighted Average (OWA) operator in order to compute
local as well as global reputation scores.

Hasan et al. [33, 56] present a system that operates under the more demand-
ing malicious adversarial model and offers the chosen k trust model (discussed
in Section 3.3) instead of the usual arbitrary k trust model for privacy preserva-
tion. Dimitriou and Michalas [57, 58] describe a decentralized privacy respecting
scheme that is formally shown to be resistant to collusion against up to n − 1
malicious participants. Dolev et al. [59, 60] propose SMPC-based reputation
schemes that are more efficient than the previous ones in terms of the number of
messages exchanged. Their schemes privately compute reputation scores with
a communication overhead of O(n) messages, where n is the number of partic-
ipants in the protocol. Clark et al. [61] present a dynamic privacy preserving
decentralized reputation system. They specifically address the problem of the
dynamicity of the nodes in a network. Nodes may frequently leave along with
their feedback, which then becomes unavailable for reputation computation in
a decentralized manner. Clark et al. propose a privacy preserving reputation
information delegation protocol to counter this problem.

25



6.3 Token-based Systems

These systems are a type of privacy preserving reputation systems in which a
cryptographic token is issued to a pseudonymous user participating in a trans-
action. The token is implemented using a blind signature or another scheme.
The token is issued either by a central entity (called the bank in the system by
Androulaki et al. [37]) or directly by the ratee to the rater (as in the system
by Kerschbaum [38]). A variation of the following approach is then employed
in order to credit the ratee with a reputation point while preserving the pri-
vacy of the token depositing user. The token is deposited by the user to an
account maintained by the central entity using a different pseudonym or even
their real identity. The blinded nature of the token unlinks the user from the
initial pseudonym while assuring the central entity of the legitimacy of the de-
posit. The number and the value of the tokens deposited reflects the reputation
of the ratee.

The system by Androulaki et al. [37] addresses the difficulties outlined
by Dingledine et al. [20] for building reputation systems in anonymous user
networks. Androulaki et al.’s system achieves: 1) unlinkability between a
pseudonym and the identity of its user; 2) no double-awarding or forging of
a token; 3) no false accusations of forgery; and 4) non-transferability of reputa-
tion, that is, a user cannot borrow reputation from another user. The system
by Kerschbaum [38] builds on the blinded token idea to achieve feedback con-
fidentiality while enforcing the property of verifiability. Schiffner et al. [25, 62]
improve upon Androulaki et al.’s work by introducing systems that support the
properties of liveliness and non-monotonicity.

Zhang et al. [63] propose a reputation system that preserves the privacy of
feedback providers and resists Sybil attacks. The system is based on the Ca-
menisch and Lysyanskaya (CL) signature scheme. Busom et al. [64] describe
a privacy preserving reputation system based on Chaum-Pedersen blind signa-
tures that allows users to anonymously submit text feedback about a target
entity. Fellow users can in turn anonymously endorse a text feedback that they
find helpful. The system thus encourages honest feedback. Moreover, the sys-
tem offers a privileged status for users who earn sufficient endorsements thus
also incentivizing feedback submission.

6.4 Proxy-based Systems

These systems aim to maintain privacy through the use of a trusted third party
as a proxy between the feedback providers and the reputation querier. The
proxy may forward the anonymized feedback scores to the querier or the proxy
may compute the aggregated reputation and only report that to the querier.
Additionally, the querier and the feedback providers may interact directly, how-
ever, in this case, a feedback provider is generally issued an anonymous identity
or an encryption key by the proxy to protect their privacy. The proxy may
be composed of one or several central entities. Usually, the architecture of
these systems comprises of one to three central entities that are considered not
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to collude with each other in order to guarantee security. The proxy may be
considered partially or fully trusted.

Ries et al. [65] propose an approach for privacy preserving computation of
trust. A key contribution of this approach is that in addition to computing rep-
utation based on encrypted private feedback, the querier can also evaluate the
trustworthiness of the feedback providers. Petrlic et al. [66] propose a reputation
management system that focuses on privacy (anonymity in reputation retrieval,
and anonymity in rating) as well as robustness (authorization, authentication,
integrity, and accuracy). A semi-honest Reputation Provider (RP) entity serves
as an intermediary between the raters and the service providers. The RP man-
ages the reputation of the service providers and helps enforce some of the above
listed security objectives.

Mousa et al. [7] present PrivaSense, a privacy preserving reputation sys-
tem for mobile participatory sensing applications. The system implements a
sequence of registration and authentication phases orchestrated by independent
central servers that ensure participants’ anonymity and improve the system’s
resilience against Sybil and replay attacks. Ma et al. [6] propose a privacy
preserving reputation management system for edge computing enhanced mo-
bile crowdsensing. The architecture comprises of a Central Manager (CM), a
Reputation Manager (RM), and a Central Authority (CA). Participants submit
sensing data in homomorphic encrypted form. The encrypted deviation of a
participant’s data from the aggregated result is computed and the RM updates
reputation according to the deviation.

6.5 Signature-based Systems

Inspired by cryptographic digital signatures and group signature schemes, Ben-
thencourt et al. [67] propose a new cryptographic framework called signatures
of reputation. In a scheme based on this framework, the verification of the sig-
nature of a user reveals her reputation instead of revealing her identity. This is
in contrast to a conventional signature scheme where the verification of the sig-
nature of a user results in the confirmation of the identity of the user associated
with the corresponding public key.

Guo et al. [68] build upon the notion of signatures of reputation to propose a
fine-grained attribute-based privacy preserving reputation system. The system
enables users to rate each other’s attributes instead of real identities. The
signature verification process provides authenticity of the reputation value of
a user for a given attribute. Bethencourt et al.’s system is improved by the
work of Anceaume et al. [69] and Lajoie-Mazenc et al. [70], who implement
non-monotonic signature-based reputation systems. Whereas, Bethencourt et
al.’s system can only support monotonic reputation.

Chen et al. [10] present a privacy and reputation-aware announcement
scheme for vehicular adhoc networks where vehicles can report road conditions.
The scheme is based on the Boneh-Boyen-Shacham (BBS) short group signa-
tures. The scheme overcomes the problem of having to establish a secure channel
for reputation score retrieval in prior systems.
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6.6 Transitory Pseudonym-based Systems

Transitory pseudonym-based systems aim to obfuscate a user’s identity by as-
signing them multiple short-term pseudonyms. The focus is on how to make
the multiple pseudonyms of a user unlinkable with the user as well as with one
another. Moreover, how to transfer reputation from one pseudonym to another
while preventing observation and profiling is also addressed.

One of the first systems in this category is RuP (Reputation using Pseudonyms)
by Miranda and Rodrigues [71]. In their system, a user is identified by a
certified pseudonym that is valid only for a predefined time slot. The certi-
fied pseudonyms are issued by a TTP called Pseudonym Certification Author-
ity (PCA). However, the link between the real identity of the user and the
pseudonym is hidden from the PCA as well. The system also includes a scheme
based on blind signatures that allows a user to transfer their reputation associ-
ated with an old pseudonym to a new one, without disclosing the link between
them or their real identity. Another early work in this category is by Stein-
brecher [72]. Their system enables simultaneous use of multiple pseudonyms
by a user and permits them to regularly change their pseudonyms to achieve
anonymity. To prevent an adversary from linking new and old pseudonyms, the
system suggests using a set of non-colluding trustworthy third parties who make
incremental changes to the pseudonym of the user.

Anceaume et al. [73] propose a privacy preserving distributed reputation
mechanism. The system allows users to themselves generate pseudonyms in or-
der to achieve anonymity. They introduce the concept of mailboxes, which are
agents that replicate anonymous feedback, in order to provide resistance against
network dynamicity and user misbehavior. Christin et al. [74] present Incog-
niSense, another improvement on the RuP scheme, which is claimed to achieve
better protection against reputation manipulation and reduce the cryptographic
overhead for the client.

6.7 Other Systems

In this category, we include systems that propose unique approaches and there-
fore cannot be placed in the above defined categories.

Kinateder and Pearson [19] introduced one of the very earliest privacy ori-
ented decentralized reputation systems. The system requires a Trusted Platform
Module (TPM) chip at each agent, which enables an agent to demonstrate that
it is a valid agent and a legitimate member of the system without disclosing its
true identity. This permits the agent to provide feedback anonymously. Bo et
al. [75] present a privacy preserving reputation system, which offers incentives
to users for feedback submission. A user who anonymously submits feedback
can also anonymously receive a discount token (an incentive) from the ratee.
The architecture of the system comprises of a Card Issuer (CI) entity and a
Registration Center (RC) entity that are responsible for issuing smart cards
and anonymous identities to users respectively.

28



6.8 Additional Literature

Due to the depth and breadth of research in this area, there are a number of
other privacy preserving reputation systems in the literature that we have not
been able to treat in detail in Section 7. Moreover, there are papers that do not
present specific systems but discuss the problem of reputation and privacy in
general. We summarize some of these two types of works below in chronological
order.

Ismail et al. [76, 77] present a decentralized privacy preserving reputation
system that enforces accountability regarding the legitimacy of the feedback
provided. Cvrček et al. [78] develop a specification of requirements for a trust
model for evidence-based reputation systems supporting pseudonymity. Voss et
al. [79] present a decentralized system that is based on similar lines as Kinateder
et al. [19]. They suggest using smart cards as the trusted hardware modules.
A later system by Kinateder et al. [80] avoids the hardware modules, however,
it requires an anonymous routing infrastructure at the network level. Hao et
al. [81] present a scheme in which a user’s anonymity is achieved by changing
pseudonyms with the help of a TTP, while preventing disclosure of linkable
information to the TTP and other users. They show that their scheme reduces
the TTP’s RSA decryption operations and message overhead by more than half
as compared to the RuP scheme by Miranda and Rodrigues [71].

Nin et al. [82] present a reputation system that computes the reputation of
a user based on whether she correctly follows a set of rules for making trust-
based access control decisions. Fellow users are able to audit the decisions
made by a user and provide feedback accordingly. The privacy objective of the
reputation system is to keep the trust relationships between the users private.
The anonymization is derived through the multiplicative homomorphic property
of the ElGamal encryption scheme. Mármol et al. [83] describe TRIMS, a
privacy aware trust and reputation model for identity management systems.
The system addresses the problems that arise when a domain needs to decide
whether to exchange information with another domain to provide a service to
one of its users. According to the authors, this is one of the first approaches
dealing with trust and reputation management in a multi-domain scenario.

Zhang et al. [84] present STARS, a software component that can serve as an
add-on to an underlying non privacy preserving reputation system to achieve
anonymity and traceability. Kellermann et al. [85] present a privacy respecting
reputation system for wiki users. The system allows to assess the expertise
and the reliability of authors contributing to a wiki in order to foster trust in
the wiki content. Goodrich and Kerschbaum [86] introduce a privacy enhanced
reputation-feedback method, in which two transacting parties provide feedback
about each other to an escrow. Their system keeps the feedback escrowed and
thus private and publishes only the updated reputation scores. A randomized
feedback sampling mechanism provides privacy of individual feedback despite
immediate publishing of the reputation scores.

Hasan et al. present a number of privacy preserving reputation protocols
[56, 87, 88] that operate under the semi-honest adversarial model. The protocols
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have the advantage of providing more efficient computation than prior SMPC-
based protocols for the semi-honest adversarial model. Huang et al. [89] propose
a privacy preserving reputation system for participatory sensing. The system
includes an anonymization scheme based on the concept of k-anonymity, which
prevents adversaries from de-anonymizing users while minimizing the impact on
the usability of the application outputs. Au and Kapadia [90] present PERM, a
reputation-based anonymous blacklisting system. One of the key building blocks
used by the system is a signature scheme called BBS+ proposed by Au et al.
[91], which is used in the system for binding scores to transaction identifiers.

Wang et al. [92] propose ARTSense, a framework that addresses the problem
of anonymous reputation in mobile sensing. Their solution consists of a privacy
preserving provenance model, a data trust assessment scheme and an anonymous
reputation management protocol. The scheme does not require a trusted third
party and both positive and negative reputation updates can be applied. Clauß
et al. [93] define the concept of a k-anonymous reputation system, where a user
remains k-anonymous when obtaining a new independent random pseudonym,
even when other users may choose to retain their pseudonyms. Aldini et al.
[94] explore the trade off between trust, privacy, and cost in incentive-based
networks.

Brangewitz et al. [95] discuss a reputation system that enables the incorpo-
ration of reputation information into markets of composed services while pre-
serving the privacy of customers who provide feedback. The system caters to the
On-The-Fly (OTF) computing environment, where the goal is automated com-
position of flexibly combinable services. Michalas and Komninos [44] describe
Lord of the Sense (LotS), a privacy preserving reputation system for participa-
tory sensing applications. The system uses group signatures as a key building
block. A user is able to anonymously submit a sensing report. Other users
can vote about the validity of the submitted report. The system maintains the
reputation score of a user while respecting their anonymity.

Zhang et al. [96] describe a privacy friendly weighted reputation aggregation
protocol secure against malicious adversaries in cloud services. The problem
addressed is as follows: A server has a vector that comprises of weights for the
feedback of each of the feedback providers. The protocol is considered privacy
friendly if the server and the feedback providers can cooperate to compute the
weighted reputation while keeping all respective inputs private.

7 Fine-Grained Analysis and Comparison of Pri-
vacy Preserving Reputation Systems

In this section, we conduct fine-grained analysis of privacy preserving reputation
systems in the literature according to the frameworks established in Sections 2
through 5. The analysis is presented in the form of Tables 1 through 6. The
tables also permit side by side comparison of the systems.

We have analyzed 40 privacy preserving reputation systems in depth and
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summarized their properties in the given tables. We report information about
the systems as gleaned from the articles. In case of multiple variants of a system
presented in the same article, we have selected the variant that provides the
strongest security guarantees. The systems are grouped in the tables according
to the category of their security mechanisms. The categories are ordered by the
number of included systems and then alphabetically. Under each category, the
systems are ordered chronologically to allow observation of the evolution of the
systems.

Table 1 identifies the fundamental characteristics of each of the reputation
systems according to the analysis framework developed in Section 2. The archi-
tecture of the systems and the properties of their feedback and reputation are
presented.

Table 2 and Table 3 present the security related fundamentals of user anonymity
and feedback confidentiality oriented systems respectively. In accordance with
the analysis framework for privacy preserving reputation systems formulated in
Section 3, the properties reported include the adversarial model, the extent of
collusion resistance, reputation binding, the trust model, and the main security
building blocks. Multiple adversarial models are listed if a scheme uses different
adversarial models for different entities, for example, semi-honest for the server,
and malicious for the users. We note strong collusion resistance if t out of the
n users in the protocol must collude to breach security, where t < n, and t
is variable. For example, t = 1

2n, or t = 1
3n. Alternatively, we note partial

collusion resistance if a constant number of colluding entities, for example, two
partially trusted colluding servers, are able to breach security. Multiple trust
models are noted for the systems that rely on different models for their different
security properties. The aggregation model is stated as open where the system
is not constrained to one specific function.

The details of the security objectives of user anonymity and feedback confi-
dentiality oriented systems are presented in Table 4 and Table 5 respectively. As
discussed in Section 4, the security objectives of privacy preserving reputation
systems include those aiming to enforce privacy and those targeting integrity or
correctness.

The robustness of the reputation systems against the challenges discussed in
Section 2.5 is summarized in Table 6.

8 Blockchain-based Privacy Preserving Reputa-
tion Systems

In this section, we describe in greater detail some of the blockchain-based privacy
preserving reputation systems in the literature. We focus on their security
mechanisms as well as their use of blockchain. Moreover, we highlight salient
features that require further explanation or those that are not evident from the
analysis in Section 7.
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Table 1: Fundamentals.
Feedback Reputation
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Aggregation Model

Blockchain-based Systems

Schaub et al. 2016 D Z S R G Open

Bazin et al. 2017 D Z S R G Open

Azad et al. 2018 D {−,+} S Z G Beta reputation

Bag et al. 2018 D {0, 1} M [1, 10] L Mean

Dou et al. 2018 D S G Weighted mean

Lu et al. 2018 C {−1, 0, 1}, [0, 1] S R, [0, 1] G Polynomial

Owiyo et al. 2018 D S G Open

Jo and Choi 2019 H {−1, 1} S R G Sum

Liu et al. 2019 C [1, 10] S N G Sum

Schiedermeier et al. 2019 D {−1, 1} S Z G Sum

Zhao et al. 2019 C [0, 1] S [0, 1] G Mean

Azad et al. 2020 D {−1, 1} S Z G Weighted sum

SMPC-based Systems

Pavlov et al. 2004 D R M R, [0, 1] L Sum, beta reputation

Gudes et al. 2009 D R M R L Weighted sum, mean

Nithyanand and Raman 2009 D R, {0, 1} M R L Ordered weighted average

Gal-Oz et al. 2010 D R M R L Weighted sum, mean

Hasan et al. 2013 D [0, 1] M R, [0, 1] G Sum, mean

Dimitriou and Michalas 2014 D Z M Z G Sum

Dolev et al. 2014 D {1, 2, . . . , 10} M R L Weighted mean

Clark et al. 2016 D [0, vmax] M [0, vmax] L Mean

Token-based Systems

Androulaki et al. 2008 C {0, 1} S Z G Sum

Kerschbaum 2009 C {0, 1} S [0, 1] G Beta reputation

Schiffner et al. 2009 C {−1, 1} S Z G Sum

Schiffner et al. 2011 C {−,+} S R G Open

Zhang et al. 2014 H S R G Open

Busom et al. 2017 C Text S G Union

Proxy-based Systems

Ries et al. 2011 C {0, 1} M [0, 1] L Beta reputation

Petrlic et al. 2014 C Vector, {0, 1} S Z G Sum

Mousa et al. 2017 C {−1, 0, 1}, [0, 1] S [0, 1] G Bounded sum

Ma et al. 2018 C [0, 1] M [0, 1] G Weighted mean

Signature-based Systems

Bethencourt et al. 2010 H {0, 1} S Z G Sum

Guo et al. 2013 C {−1, 1} S Z G Sum

Lajoie-Mazenc et al. 2015 H {−,+}, Z S R G Open

Chen et al. 2016 C S {0, 1, . . . ,m} G Time discount function

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006 C S G Open

Steinbrecher 2006 C S G Open

Anceaume et al. 2013 D [0, 1] S [0, 1] G Beta reputation

Christin et al. 2013 C S G Open

Other Systems

Kinateder and Pearson 2003 D [0, 1] S R L Open

Bo et al. 2007 H S G Open

Legend
C – D – H Centralized – Decentralized – Hybrid Property satisfied

S – M Single – Multiple Property not satisfied
G – L Global – Local Property not specified or not applicable
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Table 2: User Anonymity Oriented Systems – Security Fundamentals and Build-
ing Blocks.
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Building Blocks

Blockchain-based Systems

Schaub et al. 2016 M P Trustless Okamoto / Chaum blind signatures, PoS blockchain

Bazin et al. 2017 M P A-k, TTP Merkle trees, blind signatures, non-interactive zero-knowledge proofs, blockchain

Dou et al. 2018 SH, M P A-k, TTP Additive homomorphic encryption, verifiable secret sharing, blockchain for feedback storage

Lu et al. 2018 SH, M I TTP Merkle trees, digital certificates, blockchain

Owiyo et al. 2018 SH P SMPC, blind signatures, blockchain

Jo and Choi 2019 SH, M I TTP Group signatures, blind signatures, blockchain, smart contracts

Liu et al. 2019 M I A-k, TTP PS signature, bulletproof system, non-interactive zero-knowledge proofs, PoS blockchain,

smart contracts

Token-based Systems

Androulaki et al. 2008 SH, M I A-k, TTP E-cash, anonymous credential system, blind signatures

Schiffner et al. 2009 SH, M I A-k, TTP E-cash, cryptographic signatures, one-show credentials

Schiffner et al. 2011 SH, M I A-k, TTP Symmetric key encryption, homomorphic encryption, DC-Net, Diffie-Hellman key exchange

Zhang et al. 2014 SH, M I TTP Bilinear maps, Camenisch and Lysyanskaya (CL) signatures, Pedersen commitment, non-

interactive zero-knowledge proofs

Busom et al. 2017 SH, M I TTP Chaum-Pedersen zero-knowledge proofs, Chaum-Pedersen blind signatures, verifiable secret

sharing, oblivious transfer

Proxy-based Systems

Petrlic et al. 2014 SH, M I TTP Paillier additive homomorphic encryption, zero-knowledge proofs

Mousa et al. 2017 SH, M I TTP Digital certificates

Signature-based Systems

Bethencourt et al. 2010 SH, M I TTP Homomorphic encryption, selective-tag weakly CCA-secure encryption, zero-knowledge

proofs, one-time signatures

Guo et al. 2013 SH, M I TTP Boneh-Boyen signature scheme, homomorphic encryption, selective-tag encryption, Groth-

Sahai non-interactive proofs

Lajoie-Mazenc et al. 2015 SH, M I A-k, TTP Verifiable secret sharing, non-interactive zero-knowledge proofs, anonymous proxy signa-

tures, SXDH commitments

Chen et al. 2016 SH, M P TTP Boneh-Boyen-Shacham (BBS) short group signature scheme

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006 SH, M I TTP Cryptographic signatures, blind signatures

Steinbrecher 2006 SH, M I TTP Identity management, cryptographic credentials, cryptographic signatures

Anceaume et al. 2013 M I A-k, TTP Overlay network, Distributed Hash Tables (DHTs), cryptographic commitments

Christin et al. 2013 SH, M I TTP Cryptographic signatures, blind signatures

Other Systems

Kinateder and Pearson 2003 SH, M I TTP Trusted Platform Module (TPM), cryptographic signatures

Bo et al. 2007 SH, M I TTP Smart cards, cryptographic signatures, hash chain, zero-knowledge proof of possession

Legend
SH – M Semi-Honest – Malicious

I – P Identity – Pseudonym
A-k – C-k – TTP Arbitrary k – Chosen k – Trusted Third Party

Strong resistance to collusion
Partial resistance to collusion
Weak or no resistance to collusion
Collusion resistance not specified or not applicable
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Table 3: Feedback Confidentiality Oriented Systems – Security Fundamentals
and Building Blocks.
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Building Blocks

Blockchain-based Systems

Azad et al. 2018 SH, M P A-k Homomorphic encryption, non-interactive zero-knowledge proofs, public bulletin board (may

be implemented by a blockchain)

Bag et al. 2018 M P A-k SMPC, homomorphic encryption, zero-knowledge proofs, Schnorr signature protocol, public

bulletin board (may be implemented by a blockchain)

Schiedermeier et al. 2019 M P A-k SMPC, secret sharing, homomorphic encryption, blockchain

Zhao et al. 2019 SH, M P TTP SMPC, additive secret sharing, blockchain, smart contracts

Azad et al. 2020 M P A-k SMPC, homomorphic encryption, zero-knowledge proofs, public bulletin board (may be

implemented by a blockchain)

SMPC-based Systems

Pavlov et al. 2004 M P A-k SMPC, Pederson verifiable secret sharing scheme, discrete-log commitment, zero-knowledge

proofs

Gudes et al. 2009 SH P A-k SMPC

Nithyanand and Raman 2009 SH P A-k SMPC, Paillier additive homomorphic encryption

Gal-Oz et al. 2010 SH P A-k SMPC, semantically-secure public-key encryption, homomorphic encryption

Hasan et al. 2013 M P C-k SMPC, Paillier additive homomorphic encryption, non-interactive zero-knowledge proofs

Dimitriou and Michalas 2014 M P A-k SMPC, Paillier additive homomorphic encryption, non-interactive zero-knowledge proofs

Dolev et al. 2014 M P A-k SMPC, Paillier additive homomorphic encryption, Polhig-Hellman commutative encryption,

ElGamal encryption

Clark et al. 2016 SH P C-k SMPC, secret sharing, digital signatures

Token-based Systems

Kerschbaum 2009 SH, M I A-k, TTP Homomorphic encryption, cryptographic pairings, zero-knowledge proofs

Proxy-based Systems

Ries et al. 2011 SH, M P TTP Homomorphic encryption, zero-knowledge proofs

Ma et al. 2018 SH P TTP Somewhat-homomorphic encryption, cloud

Legend
SH – M Semi-Honest – Malicious

I – P Identity – Pseudonym
A-k – C-k – TTP Arbitrary k – Chosen k – Trusted Third Party

Strong resistance to collusion
Partial resistance to collusion
Weak or no resistance to collusion
Collusion resistance not specified or not applicable
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Table 4: User Anonymity Oriented Systems – Security Objectives.
Privacy Integrity
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Blockchain-based Systems

Schaub et al. 2016

Bazin et al. 2017

Dou et al. 2018

Lu et al. 2018

Owiyo et al. 2018

Jo and Choi 2019

Liu et al. 2019

Token-based Systems

Androulaki et al. 2008

Schiffner et al. 2009

Schiffner et al. 2011

Zhang et al. 2014

Busom et al. 2017

Proxy-based Systems

Petrlic et al. 2014

Mousa et al. 2017

Signature-based Systems

Bethencourt et al. 2010

Guo et al. 2013

Lajoie-Mazenc et al. 2015

Chen et al. 2016

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006

Steinbrecher 2006

Anceaume et al. 2013

Christin et al. 2013

Other Systems

Kinateder and Pearson 2003

Bo et al. 2007

Legend
Property satisfied
Property partially satisfied
Property not satisfied
Property not specified or not applicable
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Table 5: Feedback Confidentiality Oriented Systems – Security Objectives.
Privacy Integrity
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Blockchain-based Systems

Azad et al. 2018

Bag et al. 2018

Schiedermeier et al. 2019

Zhao et al. 2019

Azad et al. 2020

SMPC-based Systems

Pavlov et al. 2004

Gudes et al. 2009

Nithyanand and Raman 2009

Gal-Oz et al. 2010

Hasan et al. 2013

Dimitriou and Michalas 2014

Dolev et al. 2014

Clark et al. 2016

Token-based Systems

Kerschbaum 2009

Proxy-based Systems

Ries et al. 2011

Ma et al. 2018

Legend
Property satisfied
Property partially satisfied
Property not satisfied
Property not specified or not applicable
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Table 6: Measures Against Challenges.
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Blockchain-based Systems

Schaub et al. 2016

Bazin et al. 2017

Azad et al. 2018

Bag et al. 2018

Dou et al. 2018

Lu et al. 2018

Owiyo et al. 2018

Jo and Choi 2019

Liu et al. 2019

Schiedermeier et al. 2019

Zhao et al. 2019

Azad et al. 2020

SMPC-Based Systems

Pavlov et al. 2004

Gudes et al. 2009

Nithyanand and Raman 2009

Gal-Oz et al. 2010

Hasan et al. 2013

Dimitriou and Michalas 2014

Dolev et al. 2014

Clark et al. 2016

Token-based Systems

Androulaki et al. 2008

Kerschbaum 2009

Schiffner et al. 2009

Schiffner et al. 2011

Zhang et al. 2014

Busom et al. 2017

Proxy-based Systems

Ries et al. 2011

Petrlic et al. 2014

Mousa et al. 2017

Ma et al. 2018

Signature-based Systems

Bethencourt et al. 2010

Guo et al. 2013

Lajoie-Mazenc et al. 2015

Chen et al. 2016

Transitory Pseudonym-based Systems

Miranda and Rodrigues 2006

Steinbrecher 2006

Anceaume et al. 2013

Christin et al. 2013
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8.1 Schaub et al. 2016

Schaub et al. [4] design a reputation system for real-world e-commerce applica-
tions. It is therefore assumed that a customer c’s real identity will be disclosed
to the service provider SP during a transaction. Instead of complete anonymity,
the system emphasizes user anonymity specifically for the feedback submission
stage. The system requires unlinkability of the user to the rating, unlinkabil-
ity of the rating to the transaction, and unlinkability of the rating to other
ratings by the same user. These properties ensure that c can submit a rating
without identification by the SP , and thus achieve user anonymity for feedback
submission.

In order to receive a rating from a customer, the service provider SP is
required to spend a certain amount of coins of the native cryptocurrency of the
system. This approach is advantageous in a number of ways. It discourages the
ballot stuffing attack, since the SP will need to spend coins proportional to the
number of artificial ratings. Moreover, the cryptocurrency allows the system to
incentivize mining its blockchain by rewarding the creation of new blocks with
coins. The service providers can either mine the coins themselves or they may
acquire the coins on open market from other miners. The system thus ensures
the continuity of the blockchain through incentivized mining, which in turn also
ensures the trustlessness property of the system.

A customer c can compute the reputation of a service provider SP by aggre-
gating the ratings about the SP available in the public blockchain of the sys-
tem. The ratings are aggregation function agnostic, therefore any aggregation
function of the customer’s choosing can be used for computing the reputation.
Moreover, the user can consult text reviews submitted along with the numerical
ratings. If the reputation is acceptable, c generates a one time private/public
key pair specifically for the transaction with SP .

After the transaction has taken place, c asks SP for a blinded token authen-
ticating the transaction. The SP can issue a token to c if the SP has at least
n coins available on his address on the blockchain. The n coins are necessary,
since this amount will be deducted from the SP upon submission of a rating
by the customer. c then verifies the token and unblinds it, breaking the link
between himself and the transaction. When c wishes to rate SP , he broadcasts
a message containing the SP ’s address, the unblinded token, and his rating. A
miner of the blockchain who creates a new block then verifies and includes this
rating in the block, which is eventually appended to the blockchain.

In addition to ballot stuffing, the system also offers resistance against bad
mouthing. In order to submit a feedback about SP , a real transaction needs to
take place and its cost needs to be paid to the service provider. It is therefore
not possible for an adversary to submit frivolous negative feedback about the
service provider without incurring a cost. A Sybil attack is not feasible for
either the customer or the service provider since owning multiple addresses in
the system does not provide any apparent adversarial advantage. The system is
also fairly immune to free riding because (other than potentially generating some
network traffic) consulting the blockchain for computing the reputation of a
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service provider does not directly draw any resources from the raters or the ratee.
Moreover, the system is robust against out of range feedback since feedback is
public and is verified by miners before integration into the blockchain.

8.2 Bag et al. 2018

Bag et al. [3] present PrivRep, a privacy aware decentralized and personalized
reputation system for electronic marketplaces. The system computes a person-
alized reputation score of a business entity by taking into account only the trust
scores from a set of personally trusted users. This is done so without disclosing
neither the identities of participants in the trusted set nor their trust scores.

The architecture of PrivRep comprises of the raters, the marketplace, and a
Public Bulletin Board (PBB). Although, not explicitly stated by the authors, the
public bulletin board described in the paper lends itself well to implementation
by a blockchain. In a more recent paper [11] by the same authors, they do
describe a blockchain as “essentially a public bulletin board with distributed
data storage and computing power”, which “hence can be used in our system
to realize the PBB”.

The feedback providers homomorphically encrypt their rating scores and
publish them on the public bulletin board. The feedback providers also publish
non-interactive zero-knowledge proofs to demonstrate that the encrypted rating
scores lie within the correct range. The reputation engine, which is operated by
the owner of the marketplace, runs a secure multi-party computation protocol to
compute personalized reputation scores. The reputation engine considers feed-
back from only personally trusted sources. The feedback providers do not learn
whether their submitted scores are included or discarded in the computation of
a particular reputation score. The set of trusted participants is constituted by
the reputation engine.

The system is shown to be secure under the malicious adversarial model.
The adversary may collude with up to ∆ − 2 users, where ∆ is the number
of trusted feedback providers in the protocol. ∆ is less than n, which is the
size of the set of all feedback providers in the protocol. Privacy is guaranteed
if there are at least 2 honest users who provide different feedback. The trust
model in this system is arbitrary k. The ∆ users in a protocol are selected
by the reputation engine. The privacy of the users depends on that set of ∆
users. The system provides partial resistance to Sybil attacks and ballot stuffing
since the reputation engine is able to select trusted feedback providers for the
computation of reputation.

8.3 Jo and Choi 2019

Jo and Choi [5] present BPRF, a blockchain-based privacy preserving reputation
framework for participatory sensing systems. The system has two concurrent
goals: 1) protecting the privacy of users who submit sensing data; and 2) en-
suring data trustworthiness by managing the reputation of users in the context
of the reliability of the data submitted. A participating user is able to submit a
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sensing report anonymously and in an unlinkable manner. However, fellow users
(e.g., those in the same location) can independently observe the environment
and can then submit feedback about the veracity of the sensing report. The
architecture of BPRF comprises of a smart contract on a blockchain that man-
ages the reputation of a participant user based on their sensing data and the
corresponding feedback. A reliable sensing report earns the participating user a
reward token, whereas a disputed one earns a penalty token. Reputation values
of users are transparently managed by the smart contract and the blockchain
and are thus publicly auditable.

Although, the reputation is managed by a smart contract on a decentralized
blockchain, the system overall has a hybrid architecture due to the inclusion of
centralized trusted parties, such as the application servers and a trace server.
An application server employs a group signature algorithm to maintain groups
corresponding to different reputation levels. Membership of a user in a group
represents association with the reputation of that group. Group signatures are
used for a group member to send sensing reports without revealing identity, yet
demonstrating reputation. Reputation is not transferable between members of
different groups.

Reputation is identity bound because users are authenticated using a PKI. If
they exit and re-enter the system, they can be recognized and re-assigned their
existing reputation. This mechanism provides strong resistance against Sybil
attacks and whitewashing. BPRF considers the users to operate under the
malicious adversarial model. However, the majority of users is considered to be
honest. Moreover, the relaxed semi-honest model is assumed for the servers and
they are required not to collude with each other. An application server and the
trace server may collaborate to reveal the identity of a misbehaving user, thus
providing accountability. The system provides protection against out of range
feedback since a trusted application server receives feedback directly.

8.4 Liu et al. 2019

Liu et al. [1] propose a reputation system that preserves user anonymity in
a retail marketing environment. The architecture of the system comprises of:
retailers whose reputation is managed by the system; consumers who transact
with the retailers and provide rating scores; an Identity Management entity
(IDM) that issues unique identities and credentials to the retailers and the
consumers; and a Proof of Stake (PoS) blockchain.

The design goals of the system include: 1) Bounded confidentiality – Even
though a rating score provided by a consumer is kept private, the consumer is
unable to submit a rating score that falls out of a predefined range. 2) Condi-
tional anonymity – The anonymity of a consumer is guaranteed for operations
such as providing a rating score. However, the IDM is able to retrieve the true
identity of a consumer in case of misbehavior. 3) Unforgeability – Consumers
are unable to forge credentials issued by the IDM and rating tokens issued by
retailers. 4) Confined unlinkability – An adversary cannot observe whether two
valid rating scores for two different retailers come from the same consumer.
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Yet, the rating scores can be linked to the consumer in case he submits multiple
scores for the same transaction. 5) Transparency – Rating score submission and
reputation computation is transparent and publicly verifiable.

The system operates as follows: Retailers and consumers must register them-
selves with the IDM using their true identity. The IDM issues anonymous iden-
tity credentials to consumers upon registration. A consumer can then transact
with a retailer using their anonymous credential and an anonymous payment
channel. After the transaction, the retailer issues an anonymous rating token to
the consumer. The IDM constitutes a committee of retailers for the rating gen-
eration and verification process. The consumer chooses a rating and encrypts
it using the public keys of the committee members. The consumer then con-
structs a zero-knowledge proof of correctness of the rating score. Additionally,
the consumer constructs zero-knowledge proofs of possession of a valid creden-
tial and a valid rating token. The committee of retailers receives the encrypted
rating score and the corresponding zero-knowledge proofs. After verifying its
correctness, the committee is able to aggregate the newly submitted rating with
the reputation score of the target retailer, while maintaining its confidentiality.
The system also enables the committee to detect repeat ratings (ballot stuffing).
The committee notifies the IDM in case of misbehavior, which in turn can reveal
the identity of the misbehaving consumer.

The rating generation, verification, and aggregation operations take place on
the PoS blockchain through smart contracts. This allows the system to provide
transparency and public auditability. In order to breach confidentiality, either
all committee members or the slot leader (the participant who creates a block on
the chain for a given time slot) must collude. A user needs to trust the committee
of retailers therefore the arbitrary k trust model applies. Additionally, the IDM
is a centralized trusted third party. The system is secure under the malicious
adversarial model.

8.5 Schiedermeier et al. 2019

Schiedermeier et al. [45] describe a protocol for holding referendums in trustless
networks. The protocol is a secure multi-party computation protocol assisted
by a blockchain that serves as a public communication channel among the par-
ticipants. A referendum protocol can serve as a reputation protocol where the
subject of the referendum is considered to be the ratee and the voters are con-
sidered to be the raters. The key objectives of the protocol are as follows: 1)
confidentiality of the votes; 2) transparency, that is, maintaining a public trace
of all operations performed and the information exchanged among the partici-
pants; 3) outcome verifiability, that is, any participant is able to autonomously
verify the correctness of the outcome of the referendum; and 4) immutability
of proceedings, that is, all published information regarding the execution of an
instance of the protocol is persisted and accessible permanently.

The participants of the protocol comprise of: 1) an initiator who initiates a
referendum and defines its parameters such as the referendum subject and the
list of voters (identified by their public keys); 2) voters, who submit their votes;
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and 3) workers, who perform intermediate computations for the execution of
the protocol. In order to vote, a voter generates n secret shares of his vote,
which are homomorphically encrypted with the public keys of the n workers
respectively. The shares are published on a blockchain to be retrieved by the
workers. After the expiration of the voting phase, each worker aggregates the
shares encrypted with her key. The worker does not gain access to the private
votes because she does not have access to sufficient number of decrypted shares
of any voter. The intermediate results are also placed on the blockchain by the
workers. Any querier can then aggregate the intermediate results to determine
the final result.

The protocol is analyzed to be secure against a number of threats posed by
malicious adversaries. Considering that the protocol uses a t out of n secret
sharing scheme, collusion would be possible between up to t − 1 workers. The
authors discuss some heuristics for minimizing the risk of collusion. The initia-
tor of the protocol authorizes the pseudonymous users that participate in the
referendum. The protocol therefore provides partial resistance to Sybil attacks
and ballot stuffing. An arbitrary set of workers need to be trusted by a voter
therefore the arbitrary k trust model applies. Other aspects of the protocol
(such as, information storage on the blockchain) are trustless.

9 Privacy Preserving Reputation Systems in the
Literature

In this section, we discuss in detail one or two systems in the literature for each
of the categories identified in Section 6. Blockchain-based systems are described
in the previous section.

9.1 SMPC-based Systems

9.1.1 Hasan et al. 2013

Hasan et al. [33] present Malicious-k-shares, a decentralized additive privacy
preserving reputation protocol based on SMPC, which is secure under the ma-
licious adversarial model. The adversarial agents in this model aim to learn
private information as well as to disrupt the protocol. This paper introduces
the chosen k trust model instead of the prior arbitrary k trust model for privacy
preservation.

In the Malicious-k-shares protocol, an agent is required to partially trust on
only k fellow feedback providers in order to preserve its privacy. Experimental
results in the paper obtained using real trust graphs demonstrate that a high
majority of agents can find k sufficiently trustworthy agents in a set of n − 1
fellow feedback providers such that k is small compared to n − 1. This idea
leads to a protocol that requires only O(n + log N) messages, where n and
N are the number of agents in the protocol and the environment respectively.
This approach improves on prior approaches (as proposed by Gudes et al. [34]
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and Pavlov et al. [18] for decentralized additive privacy preserving reputation
protocols) where an agent is required to partially trust on all arbitrary n − 1
fellow feedback providers to preserve its privacy, which results in a high commu-
nication complexity of O(n3 +N) messages. Moreover, before submitting their
feedback, agents in the Malicious-k-shares protocol can quantify the risk to their
privacy. The agents can thus abstain if the risk to their privacy is undesirably
high.

The Malicious-k-shares protocol includes mechanisms for preventing mali-
cious agents from taking two particularly disruptive actions. This is done so in
a decentralized manner without relying on trusted third parties. The two ac-
tions are as follows: 1) Taking advantage of private feedback, a malicious agent
can be tempted to submit a value that is outside the valid interval for feedback.
2) A malicious agent can disrupt the protocol by making erroneous computa-
tions and reporting false results. The above challenges are addressed through
constructions based on set-membership and plain-text equality non-interactive
zero-knowledge proofs and an additive homomorphic cryptosystem.

In order to compute the reputation of a target agent, the querier first obtains
the set of the source agents who can provide feedback about that target agent.
The set is obtained from the target agent’s source managers, who are assigned
and located using a Distributed Hash Table (DHT). The querier then initiates
the protocol by sending the set of agents to all the agents in the set.

Each source agent a selects k agents from the set based on his own subjective
knowledge of their trustworthiness in the context of preserving privacy. The
agent then sends each of them an additive share of his private feedback value,
encrypted with the recipient agent’s public key using an additive homomorphic
cryptosystem. Each source agent is required to prove that it has generated
correct shares. Correctness implies that the sum of all shares is a value that lies
in the correct interval for feedback. The querying agent q serves as a relay for
the shares.

Agent a also submits to q each of the shares encrypted with his own public
key. Additionally, the agent submits a set-membership zero-knowledge proof,
which shows that the sum of these shares belongs to the correct interval. The
querying agent verifies the correctness by using the additive homomorphic prop-
erty. This is done by adding the set of shares encrypted with agent a’s key and
then by verifying the proof. Moreover, agent a sends a plaintext-equality zero-
knowledge proof for each share, which demonstrates that the same plaintext is
contained in a share encrypted with the recipient’s public key and a share en-
crypted with the sender’s public key. The querying agent can verify the equality
of all pairs of shares and be assured that agent a indeed sent correct shares.

In addition to proving that a source agent a sent correct shares, the agent
must also prove that it has correctly computed the sum of the shares. The
agent a computes the sum and sends it to q encrypted with q’s public key.
Agent a also sends a plaintext-equality zero-knowledge proof. The querying
agent q computes the encrypted sum of the shares from the encrypted shares
that it had relayed to an agent a. The proof sent by agent a shows that the
encrypted sum that is computed independently by q and the encrypted sum
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sent by agent a contain the same plaintext. Verifying this proof satisfies q that
agent a correctly computed the sum of the shares.

When the querier has received the sums of shares and the proofs from all
agents in the set, it can compute the reputation of the target agent as the total
sum, as well as verify the correctness of each of the shares and the computed
sums.

9.1.2 Dimitriou and Michalas 2014

Dimitriou and Michalas [57] present StRM (Splitting the Random values in the
Malicious model), an SMPC-based protocol for privacy preserving trust com-
putation in decentralized environments in the presence of malicious adversaries.
A key characteristic of the StRM protocol is that their is no single node in a
protocol instance that serves as a relay. Moreover, the authors formally prove
that the protocol is resistant to collusion against as many as n − 1 corrupted
nodes.

The StRM protocol is based on a simpler protocol called StR presented in
the same paper, which is secure under the semi-honest adversarial model. In
the StR protocol, the querier creates the set of the n voters, orders them in a
circle, and sends each of them the identity of its successor in the circle. Each
node chooses a random blinding factor r, then splits it into n shares, and sends
a share to each node in the circle. After receiving the n − 1 shares from the
other nodes, a participant voter node computes its blinded vote. It subtracts
n shares from the value of its vote. These shares comprise of the n − 1 shares
received and its own nth share. It also adds its blinding factor r. The blinded
vote is then sent to the querier who can compute the trust as the mean of the
votes by summing up the received blinded votes.

In the StRM protocol, each node encrypts the shares with its own public
key in a homomorphic cryptosystem as well as the receiver’s public key. The
node also generates a zero-knowledge proof of plaintext equality to demonstrate
that the two encryptions contain the same share. Moreover, the node creates
a zero-knowledge proof of set membership for its vote. This is to prove that
the encrypted vote lies in the expected interval. The zero-knowledge proofs,
the encrypted shares, and the encrypted vote are broadcast to the network.
Each node receives the n − 1 shares encrypted with its public key. Each node
decrypts and subtracts the received shares from its vote. All nodes can verify the
computation performed by every other node in the network due to the messages
being broadcast and due to the homomorphic property of the cryptosystem
being used.

After the computation, each node encrypts its result with the querier’s public
key. The node also generates a zero-knowledge proof of equality. This proof is
used to demonstrate that the node’s blinded vote (which was encrypted by its
own public key, and could be verified by other nodes) and the encrypted vote
being sent to the querier, contain the same value. When the querier receives
all the values encrypted with its public key, it can decrypt them, and compute
the sum and then the trust as the mean. Since all the blinded votes and the
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zero-knowledge proofs were broadcast, the querier can also verify that the nodes
generated the blinded votes correctly.

9.2 Token-based Systems

9.2.1 Androulaki et al. 2008

The contributions of the work by Androulaki et al. [37] include formal defi-
nition and realization of a secure identity bound reputation system. The user
is allowed to switch to new pseudonyms, however, the reputation of the user is
maintained, while keeping their identity anonymous. The reputation system has
a hybrid architecture, with both centralized and decentralized elements. The
users interact with each other in a peer-to-peer manner. Whereas, reputation
management operations are centralized with an entity called the bank. The
building blocks employed include e-cash, anonymous credential systems, blind
signatures, and anonymous communication networks.

Two different adversarial models are considered for different sets of objectives
of the system. The malicious adversarial model is considered for the privacy
related objectives, such as unlinkability and anonymity. Whereas, the semi-
honest model is considered for the integrity related objectives of the system,
which include reputation correctness, reputation unforgeability, etc.

The reputation score of a user is computed as the sum of the repcoins that he
has received. However, the true reputation score is not revealed to the inquirer.
Instead, the user demonstrates his membership to one of the reputation groups
that are defined by the bank. A user U requests the bank for a credential called
cred for the group G. If the user U has sufficient repcoins for membership in G,
the bank issues to U the cred that U can use to demonstrate that it belongs to
the group G. A brief overview of the protocol is presented below.

Reputation granting process. 1) A user U withdraws a wallet W of repcoins
from the bank. Each repcoin is of the form (S, π), where S is a serial
number and π is a proof of the validity of the coin. 2) User U , via a
pseudonym PU , awards a repcoin (S, π) to PM , which is the pseudonym of
a user M . 3) User M , via PM , deposits the repcoin (S, π) to the bank. 4)
Upon successful deposit of the repcoin, the bank issues a blind permission
σ to PM . 5) User M deposits σ to the bank, who increases M ’s reputation
score by one.

Reputation demonstration process. 1) User M requests a credential for
the group G. 2) If M has enough reputation points for G, the bank issues
an anonymous credential cred to M . 3) M proves his membership in the
group G to PU by using cred via his pseudonym PM .

The system has a strong defense against Sybil attacks in the semi-honest
model. A user can create multiple pseudonyms, however, his number of rep-
coins and reputation points remain unaffected. A user cannot create multiple
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identities because the account is associated with his unique public key. How-
ever, if the malicious adversarial model is considered for the bank, the system
does not have a defense against Sybil attacks since the bank can allow multiple
accounts for the same user.

9.3 Proxy-based Systems

9.3.1 Ries et al. 2011

In this system by Ries et al. [65], a user U , who wishes to interact with a service
provider SP , chooses a set of other users, S = {S1, ..., Sn}, who will provide
their feedback about SP . A TTP Z then provides each Si with a public key from
a homomorphic cryptosystem, with Z the only one knowing the corresponding
secret key. When Si answers U ’s query for feedback, she also sends to Z her
encrypted feedback score, obfuscated by adding a random number shared with
a partner, and the trust score of U in Si.

Upon receiving all the feedback scores from the different users in S, U aggre-
gates the reputation score using the properties of the homomorphic cryptosys-
tem. U then sends the encrypted score to Z for verification and decryption.
Z computes the same aggregation and verifies its equality with the one com-
puted by U . If the two match, Z decrypts the sum and sends it to U , who can
then decide if she wishes to engage in a transaction with SP . Si’s feedback
confidentiality is thus guaranteed by Z.

Once the transaction is complete, the system proposes a way for U to update
the value of her trust in Si. User U compares her own feedback about SP to
the encrypted feedback of Si, and updates her trust in Si as a consequence.

9.4 Signature-based Systems

9.4.1 Lajoie-Mazenc et al. 2015

Lajoie-Mazenc et al. [70] propose a decentralized privacy preserving reputation
system for the client / Service Provider (SP) model. The system offers non-
monotonic reputation. This is in contrast to earlier systems in the signature-
based systems category, such as the one by Bethencourt [67], which only provide
monotonic reputation. The protocol aims to be secure against malicious adver-
saries. The protocol comprises of the following three main steps.

Commitment. This step takes place before the transaction between the client
and the service provider. They start by choosing n nodes that will consti-
tute the share carriers (SC). The client and the SP then follow a protocol
that enables them to compute an invariant of the tuple (client, SP ), de-
noted by inv. The SP first computes a pre inv and sends it to the client
along with a zero-knowledge proof of correctness. The client and the SP
also exchange signatures on their certificates (issued by a Certification Au-
thority) and zero-knowledge proofs of registration. The client can compute
masked inv upon receiving pre inv. Using pre inv and masked inv, the SP
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can determine inv. However, at this step, the SP can also deviate from
the protocol if the SP knows that the client has assigned him unfavor-
able feedback before. To prevent this, the SP shouldn’t learn the value of
masked inv before the transaction takes place. Therefore, the client com-
mits to masked inv by splitting this secret among the n share carriers, in
such a way that at least t < n of them must collude in order to retrieve
it. The authors suggest t = dn/3e as an optimal value.

Feedback submission. After the transaction has been completed, the client
chooses a rating ρ for the service provider. The client then commits to
the rating (for example, by hashing it with a random nonce) and then
transmits masked inv to the SP. The SP can now compute inv. The SP
sends it to the client, along with its identity, which can be divulged at this
stage. The SP also reveals the nonce that was used to compute pre inv
and opens the commitment on its pseudonym. If the client does not send
ρ and masked inv after a certain delay, the SP can contact the share
carriers. They in turn can convoke the client. If the client still does not
respond, they can retrieve masked inv from the shares of the secret. After
receiving the masked inv, the SP is able to compute inv and issue the
feedback report. If the service provider doesn’t respond to the client, the
client follows a similar protocol in order to retrieve the identifier of the SP
and compute inv in order to issue the feedback report.

Reputation computation. At the end of each round, the share carriers send
the reports they collected since the last round to the accredited signers,
which are entities that constitute a distributed trusted authority. The
rounds correspond to some fixed time duration or some fixed number of
transactions. The accredited signers verify the proofs and the signatures.
If they are valid, they keep the rating ρ, inv, the identifier of the SP and
the identifier of the transaction. The accredited signers then update the
reputation of the SP, sign it and send it to the SP.

Rater anonymity is achieved using pseudonyms that are commitments to the
identities. The commitment can be verified by the accredited signers but not
by the service providers. Linkability is achieved through the computation of
inv, an invariant unique to the tuple (client, SP ), but which does not reveal the
client’s identity. Robustness, in case of protocol abortion, is achieved through
the escrow mechanism for masked inv. After a transaction is performed, the
client is assured that it will be able to issue a rating, and the service provider is
assured that it will receive a rating. Due to the signatures and zero-knowledge
proofs, the integrity of the transmitted information is ensured. Registration of
new users is restricted by the certification authority. The authors suggest a fee
for new users in order to prevent Sybil attacks. The protocol is secure against
whitewashing if the certification authority delivers only one certificate for each
identity. In this case, dishonest service providers would not be able to leave the
network and re-enter with a different identity.
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9.5 Transitory Pseudonym-based Systems

9.5.1 Christin et al. 2013

IncogniSense, a reputation system proposed by Christin et al. [74], is based on
the the RuP (Reputation using Pseudonyms) system by Miranda and Rodrigues
[71].

We first give a brief description of the RuP system. In this system, a user is
uniquely identified by a certified pseudonym that is valid only for a predefined
time slot. A TTP, called pseudonym certification authority (PCA), is assumed
in the architecture, which issues certified pseudonyms. The TTP is not trusted
to learn the link between the real identity of the user and the pseudonym or
their multiple pseudonyms. The system therefore offers a scheme based on blind
signatures for a user to anonymously transfer reputation between pseudonyms.

In the RuP system, a user U receives a pseudonym valid for a time slot T
certified by the PCA. The PCA uses a probabilistic blinding method to assess
the validity of this pseudonym. U sends n different pseudonyms and then the
PCA randomly checks n− 1 pseudonyms. If they are all correct, it declares the
remaining pseudonym correct and blindly signs it, thus certifying its validity for
the next time slot. The blind signature of the pseudonym by the certification
authority enforces the unlinkability between U and its ratings.

IncogniSense is similar to RuP in the sense that users in IncogniSense also
use pseudonyms verified by a TTP, that are allocated for a certain time slot
T . However, Christin et al. propose an updated approach of transferring repu-
tation from one pseudonym to another, which further emphasizes unlinkability.
They introduce periodic signature keys and different transfer keys for reputation
tokens. This approach decouples the time interval of validity of the pseudonym
and the value of the reputation to transfer. The TTP signs a blinded reputation
token RT from a pseudonym used during the previous time slot. RT contains
a certain amount of reputation that U can then transfer to its pseudonym for
the new time slot. Giving RT back to the TTP links it to his new pseudonym,
without linking it to the previous one. IncogniSense proposes three ways to do
the reputation transfer: 1) flooring the reputation value; 2) dividing the repu-
tation value in several tokens and randomly discarding one; or 3) dividing the
reputation value in several tokens and randomly linking some of them to the
new pseudonym.

9.6 Other Systems

9.6.1 Kinateder and Pearson 2003

The decentralized reputation system proposed by Kinateder and Pearson [19]
requires a Trusted Platform Module (TPM) chip at each node. The TPM
enables a node to demonstrate that it is a valid node and a legitimate member
of the reputation system without disclosing its true identity. This permits the
node to provide feedback anonymously.
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A node in the system can take up one of following three roles at any given
time: recommender, requester, and accumulator. A recommender node has inter-
acted directly with other nodes and has feedback about them. An accumulator
node stores feedback about other nodes that it has received.

An attacker is unable to provide false feedback on an honest user’s behalf
since each feedback is digitally signed by the recommender. A requester node can
also verify through the recommender’s TPM that it has not been compromised
by the adversary. An attacker is unable to access an honest user’s private
database and modify data such as feedback, reputation, etc. This is achieved due
to the protected data storage functionality of the TPM. Therefore, a requester
can be certain that the given feedback is not false.

An attacker does not learn the true identity of a feedback provider since
only pseudonyms are used. The pseudonym is protected by the TPM and the
Certification Authority (CA) of the user. Moreover, the use of MIX cascades is
suggested to prevent the attacker from correlating the pseudonym with the IP
address of the user. In case of legal justification, the CA of a user can reveal
his true identity.

10 Discussion

The fine-grained analysis and comparison of privacy preserving reputation sys-
tems carried out in this survey, according to the proposed analysis frameworks,
reveal a number of insights into this field of research.

Our first observation concerns the utilization of blockchain by privacy pre-
serving reputation systems. We note from the literature studied that the advent
of the blockchain technology has provided a fresh impetus to research on pri-
vacy preserving reputation systems. A majority of the systems published since
2016 that are listed in this survey utilize blockchain as one of the building
blocks. We looked at 12 privacy preserving reputation systems since 2016 that
are blockchain-based. In contrast, we discovered only 5 systems that do not
utilize blockchain. The reasons for the adoption of blockchain are evident. For
example, in the case of Schaub et al.’s [4] system, using blockchain enables the
system to provide the property of trustlessness, which was not offered by any
prior systems. Another example is the system by Schiedermeier et al. [45], which
is able to guarantee transparency and immutability by employing a blockchain.
These properties are mostly absent in pre-blockchain systems.

Despite the successful application of blockchain, we do note that the de-
velopment of non-blockchain-based privacy preserving reputation systems still
holds importance. We can cite a couple of reasons. Firstly, blockchain can be
an expensive building block to rely on in terms of the resources consumed. The
computing cycles and the network bandwidth spent, and more worryingly the
carbon footprint of popular blockchain-based systems such as Bitcoin, remain a
significant concern [97]. Secondly, certain applications do not benefit as much
as others from the decentralization and the trustlessness that blockchain offers.
One such application is mobile participatory or crowd sensing. We note that
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two (Ma et al. [6] and Mousa et al. [7]) of the five non-blockchain-based privacy
preserving reputation systems since 2016 listed are for this application area.
Moreover, they both employ a centralized architecture due to the nature of the
application, which collects reports from mobile users and centralizes the data
for subsequent analysis and exploitation. We acknowledge that two (Jo and
Choi [5] and Zhao et al. [8]) of the blockchain-based systems included in the
survey also target the participatory sensing application area. These two sys-
tems benefit from the smart contract functionality of blockchain technology to
transparently manage the reputation of participants. However, we can observe
that both systems employ centralized TTPs in their architecture and thus do
not take full advantage of the decentralization and trustlessness properties of
blockchain.

Our above observations lead us to another notable and perhaps undesir-
able trend. Fully decentralized systems have existed since before blockchain. A
key advantage that blockchain is able to offer in addition to decentralization
is trustlessness. However, we remark that among all the blockchain-based sys-
tems studied, only one system (Schaub et al. [4]) benefits from this novel trust
model to propose a fully trustless privacy preserving reputation system. Other
blockchain-based systems do benefit in part from the trustlessness of blockchain
but end up proposing hybrid trust models that include arbitrary k trusted users,
chosen k trusted users, or even TTPs. We believe that one of the future direc-
tions in this area of research is to exploit the blockchain technology to its full
potential and build truly trustless systems.

Multiple Pseudonyms

User-Pseudo Unlinkability

Pseudo-Pseudo Unlinkability

Rater Anonymity

Ratee Anonymity

Inquirer Anonymity

Reputation Transfer

Unforgeability

Distinctness

Accountability

Authorizability

Verifiability

Figure 4: The number of user anonymity oriented systems (out of a total of 24)
that fully satisfy the given security objectives. Note: there are no systems that
partially satisfy the objectives.
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Next, we look at the success of the surveyed systems in guaranteeing the
security of users. As discussed earlier in Section 4, the objectives of security
include privacy and integrity. We first address user anonymity oriented sys-
tems. Figure 4 illustrates the 12 identified individual security objectives of user
anonymity oriented systems and the portion of the 24 systems included in the
literature that fulfill each of these objectives.

In terms of privacy properties, we can observe that all of the systems guaran-
tee user-pseudo unlinkability (24 systems). This is to be expected since this is a
vital goal of user anonymity oriented systems. Moreover, a high majority of the
systems enable multiple pseudonyms (21 systems), pseudo-pseudo unlinkability
(20 systems), and rater anonymity (20 systems). This is another positive sign
indicating success of the systems toward providing strong privacy to the users.
On the other hand, we can note that much fewer systems aim for guarantee-
ing ratee anonymity (12 systems) and inquirer anonymity (7 systems). These
properties have been ignored by most of the systems even though these are im-
portant properties for the privacy of roles other than the raters. We can identify
inclusion of these objectives in future privacy preserving reputation systems as
another direction of research. Reputation transfer and aggregation is another
property that is offered by some systems but not provided by most others. We
believe that this is an important property for long term sustainable privacy in
the system and should thus be given priority as well.

Moving to the properties of integrity, we are pleased to observe that almost
all systems (23) enforce unforgeability, an essential property for the correct func-
tioning of the user anonymity oriented systems. Unfortunately, the assessment is
not as bright for the rest of the integrity properties. There are 8 or less systems
implementing the properties of either distinctness, accountability, or verifiabil-
ity. The property of authorizability is offered by only 15 of the systems that we
have studied. This is a worrisome figure since we believe that authorizability
must be a critical feature of any anonymity oriented privacy preserving repu-
tation system. Absence of this property can allow an adversary to take unfair
advantage of anonymity and mount attacks such as ballot stuffing and slander-
ing. The encouraging news is that if we consider only the subset of systems since
2016, we can observe that 7 out of the 10 systems offer authorizability. Thus,
the trend is moving favorably in the direction toward including authorizability.

We now discuss the feedback confidentiality oriented systems and their suc-
cess in enforcing the listed security objectives. Figure 5 shows the 3 privacy
objectives and the 4 integrity objectives of feedback confidentiality oriented
systems and the fraction of the 16 systems that satisfy those objectives.

Considering the privacy objectives, we observe that all systems ensure that
feedback confidentiality is maintained even if the adversary has access to in-
termediate information revealed during the execution of the protocols. This is
the primary privacy objective of feedback confidentiality systems therefore this
property is the minimum expectation from any system. In contrast, we observe
that only half of the systems can guarantee to some degree that an adversary
will be unable to derive the feedback values from publicly available information,
which includes the computed reputation scores. However, this issue is generally
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Confidentiality (Intermediate Info)

Confidentiality (Public Info)

Privacy of Relationships

Correct Range

Correct Computation

Authorizability

Verifiability

Figure 5: The number of feedback confidentiality oriented systems (out of a
total of 16) that satisfy the given security objectives. Blue line: fully or partially
satisfied. Red line: fully satisfied.

of concern when the number of participants is low. Therefore, even if systems do
not ensure this property, they should be able to take measures to either warn
users when their privacy is at risk or prevent execution of protocol instances
with few participants. The third privacy related property, that is privacy of
relationships, concerns a subset of the systems that rely on relationships be-
tween users for privacy preservation. We observe that only 3 systems are able
to satisfy this property to some extent.

Looking at the integrity objectives, we appreciate that almost all systems
fully enforce correct computation as well as guarantee that submitted feedback
will respect the correct range. This is a reassuring trend since these two prop-
erties imply that systems are able to produce correct reputation scores despite
the confidentiality of the feedback values. Regrettably, similar to anonymity
oriented systems, the feedback confidentiality oriented systems also largely ig-
nore the properties of authorizability (5 systems) and verifiability (5 systems).
Even if we consider recent feedback confidentiality oriented systems since 2016,
we remark that only 3 out of the 7 systems fully satisfy this property. As we ar-
gued earlier, authorizability is an important property, therefore future work on
feedback confidentiality oriented privacy preserving reputation systems should
focus on its inclusion.

Lastly, we discuss the systems in terms of their measures against challenges
other than privacy as analyzed in Table 6. Figure 6 illustrates the number of
the 40 systems that propose defenses to the 7 listed challenges. We observe that
the number of systems implementing measures against these challenges is fairly
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Sybil Attack

Ballot Stuffing

Slandering

Whitewashing

Oscillation

Random Ratings

Free Riding

Figure 6: The number of systems (out of a total of 40) that propose measures
for the listed challenges. Blue line: strong or partial measures. Red line: strong
measures.

low all across the board. This is particularly true for systems that propose
strong measures. A majority of the systems shows some level of resistance
to the Sybil attack (29 systems), ballot stuffing (28 systems), slandering (27
systems), and whitewashing (23 systems). Defenses against other attacks are
mostly overlooked: oscillation (10 systems), random ratings (15 systems), and
free riding (6 systems). The figures are starkly lower when we consider only
systems that offer strong measures. For example, no more than 7 systems
implement strong measures against any of the following attacks: ballot stuffing,
slandering, oscillation, random ratings, and free riding.

Moreover, Table 6 reveals that only two systems (Mousa et al. [7] and
Benthencourt et al. [67]), out of the 40 systems analyzed, provide somewhat
comprehensive resistance to the challenges. However, both these systems employ
TTPs in their architecture. None of the systems with a fully decentralized
architecture or with less intrusive trust models offers resistance to the full range
of challenges. Table 6 further shows that their is no noticeable improvement in
recent systems toward offering better resistance to these challenges.

There is clearly more work that needs to be done in the field of privacy
preserving reputation systems in terms of defenses against attacks other than
breach of privacy. Privacy preserving reputation systems are fundamentally rep-
utation systems and their overall success thus relies on countering their basic
challenges as well. One possible reason for the non-inclusion of robust protection
against these challenges is that anonymity and privacy add further obstacles to
preventing attacks such as ballot stuffing, slandering, random ratings, free rid-
ing, and others. An adversary may exploit the anonymity and privacy offered
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by a system to mount these attacks while simultaneously foregoing accountabil-
ity. From these observations, an evident direction for future research in the
area that can be pointed out is conceiving systems that provide comprehensive
protection against the broad range of challenges faced by reputations systems.

11 Related Work

Bellini et al. [98] author a survey on blockchain-based distributed trust and
reputation management systems. The survey defines uniform taxonomies for
blockchain and for systems aimed at managing trust and reputation. Addi-
tionally, the survey employs the Formal Concept Analysis (FCA) technique to
analyze the literature. The authors provide recommendations for the utilization
of blockchain in the context of trust and reputation management. In contrast to
the work by Bellini et al., our survey focuses specifically on privacy preserving
reputation systems based on blockchain as well as other cryptographic building
blocks.

The survey by Michalas et al. [99] is one of the closest to our work as it
addresses privacy in decentralized additive reputation systems. Michalas et al.
identify and analyze the vulnerabilities of privacy preserving reputation systems
in the semi-honest and the malicious adversarial models. The survey covers three
sets of decentralized additive reputation systems (from Pavlov et al. [18], Hasan
et al. [33], and Dolev et al. [60]). In comparison, our survey aims to provide a
broader perspective of the field of privacy preserving reputation systems.

Schiffner et al. [25] present an analysis of some privacy preserving reputation
systems in the literature as part of their paper that describes a novel system
that preserves privacy as well as maintains liveliness. Their analysis compares
their own system with two others, namely those by Androulaki et al. [37] and
Voss [79]. On the other hand, our work establishes an analysis framework that
covers a wide array of privacy preserving reputation systems. Moreover, we
analyze and compare several privacy preserving reputation systems belonging
to the two different categories of user anonymity and feedback confidentiality.

A survey by Chang et al. [100] studies approaches for promoting honest
feedback in reputation systems, which include protecting the privacy of the
feedback providers as well as providing them incentives. The work is focused in
large part on the latter category, that is, providing incentives. However, four
privacy oriented systems (Pavlov et al. [18], Hasan et al. [33], Gudes et al. [34],
and Kinateder and Pearson [19]) are also analyzed and compared.

Hasan et al. [101] author a book chapter on privacy preserving reputation
management in the context of social networks that describes in detail some
privacy preserving reputation systems. However, this work does not establish
analysis frameworks as extensive as the current survey and discusses a much
smaller subset of the systems in the literature. Moreover, blockchain-based
systems are not covered.

Tran et al.’s position paper [102] on the challenges and opportunities of pri-
vacy preserving reputation management in fully decentralized systems includes
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a summary of the systems in this category.
Mousa et al.’s survey [103] describes trust management and reputation sys-

tems for mobile participatory sensing applications. Several reputation systems
specific to this application area including some that respect privacy are dis-
cussed. Moreover, the survey identifies participant privacy preservation as one
of the future research directions for reputation systems that serve mobile par-
ticipatory sensing applications.

Koutrouli and Tsalgatidou [104] present a survey describing the taxonomy of
attacks and defense mechanisms in peer-to-peer reputation systems. The con-
flict between privacy and trust is discussed as part of this survey. The authors
describe that estimating reputation and trust requires users to sacrifice their
privacy in terms of information regarding their transactions and their opinions.
The survey offers guidelines for building resilient peer-to-peer reputation sys-
tems including some recommendations for balancing the tension between privacy
and trust.

Hoffman et al. [24] present a survey of attack and defense techniques for
reputation systems. The survey describes a number of challenges that reputation
systems face and techniques that can resolve those challenges. However, their
survey does not address the issue of privacy in reputation systems. A survey by
Mármol and Pérez [105] also analyzes threat scenarios for reputation systems.
Their survey does not cover privacy preserving reputation systems either.

12 Conclusion

In this survey, we presented an in-depth analysis of a broad range of privacy
preserving reputation systems. To the best of our knowledge, this is the first
survey to have covered privacy preserving reputation systems in an extensive
manner.

The survey identified the various dimensions of privacy preserving reputa-
tion systems. An analysis framework that allows for the decomposition and
comparison of privacy preserving reputation systems in a normalized manner
is proposed. As a first step, we presented an analysis framework that covers
the fundamental elements that are common to all reputation systems and not
just those that preserve privacy. We identified the following elements for this
initial framework: the architecture of the system, the properties of the feed-
back, the properties of the reputation, the feedback aggregation model, the
challenges addressed, and the reputation query costs. We then presented the
analysis framework that specifically addresses privacy preserving reputation sys-
tems and decomposes them according to the following dimensions: the nature
of the adversary, reputation binding, the trust model, the security objectives of
the system, and the building blocks utilized.

Additionally, we identified the security requirements of privacy preserving
reputation systems that cut across multiple types of such systems. It is observed
that there are two main types of privacy preserving reputation systems: 1)
systems that preserve the anonymity of the users, and 2) systems that don’t

55



necessarily preserve the anonymity of the users but preserve the confidentiality
of their feedback. We noted that the security-related requirements can be further
subdivided into privacy requirements and integrity requirements.

The survey listed the building blocks of current privacy preserving reputa-
tion systems. We observed that the various strategies and associated building
blocks offer individual advantages and disadvantages. For example, the E-Cash
strategy can be used to preserve the anonymity of users, however, it requires a
centralized entity which makes it unsuitable for decentralized networks.

We presented a fine-grained analysis and comparison of 40 privacy preserving
reputation systems using our analysis frameworks. We established several cate-
gories of systems according to their security mechanisms and classified the pri-
vacy preserving reputation systems according to these categories. Our detailed
comparison of privacy preserving reputation systems in a normalized manner
using our analysis frameworks reveals the differences between the systems in
the literature as well as their chronological evolution.

The survey included detailed descriptions of a number of important and rep-
resentative systems from each of the security mechanism-based categories that
we defined. We discussed the details of their protocols and security approaches
as well as highlighted their individual strengths and other salient features. We
placed an emphasis on blockchain-based systems as they are a recent signif-
icant development in the area of privacy preserving reputation systems. We
discussed five individual instances of these systems including the first trustless
decentralized system by Schaub et al. [4] as well as more recent systems.

Our fine-grained analysis, comparison, and discussion led to the identifica-
tion of a number of insights into this field of research. We observed that the
advent of the blockchain technology has provided a fresh impetus to research
on privacy preserving reputation systems. A majority of the systems published
since 2016 that are listed in this survey utilize blockchain as one of the building
blocks. However, we also noted that one of the future directions is to exploit
the blockchain technology to its full potential and build truly trustless systems.
We looked at the success of the surveyed systems in guaranteeing the security
of users. It was observed that a high majority of both anonymity oriented and
feedback confidentiality oriented systems are able to guarantee their respective
essential privacy and integrity properties. However, there also exist many prop-
erties that have been mostly ignored. We identified authorizability as one of the
important such properties that needs to be addressed by systems in the future.
Lastly, analyzing the systems in terms of their measures against challenges other
than privacy, we remarked that conceiving systems that provide comprehensive
protection against a broad range of challenges is an evident direction for future
research in the area.
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The first author would like to thank Rémi Canillas for valuable suggestions,
including those regarding the categorization of the systems according to their

56



security mechanisms. Moreover, the first author would like to thank Dr. Sonia
Ben Mokhtar for helpful comments on an initial version of the manuscript.

References

[1] D. Liu, A. Alahmadi, J. Ni, X. Lin, X. Shen, Anonymous reputation sys-
tem for iiot-enabled retail marketing atop pos blockchain, IEEE Transac-
tions on Industrial Informatics 15 (6) (2019) 3527–3537.

[2] M. A. Azad, S. Bag, F. Hao, Privbox: Verifiable decentralized reputation
system for online marketplaces, Future Generation Computer Systems 89
(2018) 44–57.

[3] S. Bag, M. A. Azad, F. Hao, A privacy-aware decentralized and person-
alized reputation system, Computers & Security 77 (2018) 514–530.

[4] A. Schaub, R. Bazin, O. Hasan, L. Brunie, A trustless privacy-preserving
reputation system, in: IFIP International Conference on ICT Systems
Security and Privacy Protection, Springer, 2016, pp. 398–411.

[5] H. J. Jo, W. Choi, Bprf: Blockchain-based privacy-preserving reputa-
tion framework for participatory sensing systems, Plos one 14 (12) (2019)
e0225688.

[6] L. Ma, X. Liu, Q. Pei, Y. Xiang, Privacy-preserving reputation manage-
ment for edge computing enhanced mobile crowdsensing, IEEE Transac-
tions on Services Computing 12 (5) (2018) 786–799.

[7] H. Mousa, S. B. Mokhtar, O. Hasan, L. Brunie, O. Younes, M. Hadhoud,
Privasense: Privacy-preserving and reputation-aware mobile participatory
sensing, in: Proceedings of the 14th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services,
2017, pp. 38–47.

[8] K. Zhao, S. Tang, B. Zhao, Y. Wu, Dynamic and privacy-preserving repu-
tation management for blockchain-based mobile crowdsensing, IEEE Ac-
cess 7 (2019) 74694–74710.

[9] Z. Lu, W. Liu, Q. Wang, G. Qu, Z. Liu, A privacy-preserving trust model
based on blockchain for vanets, IEEE Access 6 (2018) 45655–45664.

[10] L. Chen, Q. Li, K. M. Martin, S.-L. Ng, Private reputation retrieval in
public–a privacy-aware announcement scheme for vanets, IET Information
Security 11 (4) (2016) 204–210.

[11] M. A. Azad, S. Bag, F. Hao, A. Shalaginov, Decentralized self-enforcing
trust management system for social internet of things, IEEE Internet of
Things Journal 7 (4) (2020) 2690–2703.

57



[12] M. A. Azad, S. Bag, F. Hao, M2m-rep: Reputation of machines in the
internet of things, in: Proceedings of the 12th international conference on
availability, reliability and security, 2017, pp. 1–7.

[13] P. Resnick, R. Zeckhauser, Trust among strangers in internet transactions:
Empirical analysis of ebay’s reputation system, The Economics of the In-
ternet and E-Commerce. Michael R. Baye, editor. Volume 11 of Advances
in Applied Microeconomics (2002) 127–157.

[14] N. Miller, P. Resnick, R. Zeckhauser, Eliciting informative feedback: The
peer-prediction method, Management Science 51 (9) (2005) 1359–1373.

[15] T. Minkus, K. W. Ross, I know what you’re buying: Privacy breaches
on ebay, in: International Symposium on Privacy Enhancing Technologies
Symposium, Springer, 2014, pp. 164–183.

[16] E. Ho, Why you should think twice before trusting airbnb reviews (May
2015).
URL \url{https://mashable.com/2015/05/18/airbnb-reviews/}

[17] M. Mulshine, After a disappointing airbnb stay, i realized there’s a major
flaw in the review system (June 2015).
URL \url{https://www.businessinsider.com/

why-airbnb-reviews-are-a-problem-for-the-site-2015-6}

[18] E. Pavlov, J. S. Rosenschein, Z. Topol, Supporting privacy in decentralized
additive reputation systems, in: Proceedings of the Second International
Conference on Trust Management (iTrust 2004), Oxford, UK, 2004.

[19] M. Kinateder, S. Pearson, A privacy-enhanced peer-to-peer reputation
system, in: Proceedings of the 4th International Conference on Electronic
Commerce and Web Technologies, 2003.

[20] R. Dingledine, N. Mathewson, P. Syverson, Reputation in p2p anonymity
systems, in: Proceedings of the Workshop on Economics of Peer-to-Peer
Systems, 2003.

[21] Y. Dou, H. C. Chan, M. H. Au, A distributed trust evaluation protocol
with privacy protection for intercloud, IEEE Transactions on Parallel and
Distributed Systems 30 (6) (2018) 1208–1221.

[22] D. D. S. Braga, M. Niemann, B. Hellingrath, F. B. D. L. Neto, Survey
on computational trust and reputation models, ACM Computing Surveys
(CSUR) 51 (5) (2018) 1–40.

[23] F. Hendrikx, K. Bubendorfer, R. Chard, Reputation systems: A survey
and taxonomy, Journal of Parallel and Distributed Computing 75 (2015)
184–197.

58



[24] K. Hoffman, D. Zage, C. Nita-Rotaru, A survey of attack and defense
techniques for reputation systems, ACM Computing Surveys 41 (4) (De-
cember 2009).

[25] S. Schiffner, S. Clauß, S. Steinbrecher, Privacy and liveliness for reputation
systems, in: Proceedings of the Sixth European Workshop on Public Key
Infrastructures, Services and Applications (EuroPKI’09), 2009, pp. 209 –
224.

[26] A. Josang, R. Ismail, C. Boyd, A survey of trust and reputation systems
for online service provision, Decision Support Systems 43 (2) (2007) 618
– 644.

[27] R. Levien, Attack-Resistant Trust Metrics (Chapter 5). Computing with
Social Trust., Springer London, 2008.

[28] S. D. Kamvar, M. T. Schlosser, H. GarciaMolina, The eigentrust algorithm
for reputation management in p2p networks, in: Proceedings of the 12th
International Conference on World Wide Web (WWW 2003), Budapest,
Hungary, 2003.

[29] R. Zhou, K. Hwang, Powertrust: A robust and scalable reputation system
for trusted peer-to-peer computing, IEEE Transactions on Parallel and
Distributed Systems 18 (4) (2007) 460–473.

[30] A. Whitby, A. Josang, J. Indulska, Filtering out unfair ratings in bayesian
reputation systems, in: Proceedings of the Workshop on Trust in Agent
Societies, at the Autonomous Agents and Multi Agent Systems Conference
(AAMAS2004), New York, 2004.

[31] J. R. Douceur, The sybil attack, in: Proceedings of the First International
Workshop on Peer-to-Peer Systems, 2002.

[32] O. Goldreich, The Foundations of Cryptography - Volume 2, Cambridge
University Press, 2004.

[33] O. Hasan, L. Brunie, E. Bertino, N. Shang, A decentralized privacy pre-
serving reputation protocol for the malicious adversarial model, IEEE
Transactions on Information Forensics and Security 8 (6) (2013) 949–962.

[34] E. Gudes, N. Gal-Oz, A. Grubshtein, Methods for computing trust and
reputation while preserving privacy, in: Proceedings of the 23rd Annual
IFIP WG 11.3 Working Conference on Data and Applications Security,
2009.

[35] M. Anwar, J. Greer, Reputation management in privacy-enhanced e-
learning, in: Proceedings of the 3rd Annual Scientific Conference of the
LORNET Research Network (I2LOR-06), Montreal, Canada, 2006.

59



[36] M. Anwar, J. Greer, Enabling reputation-based trust in privacy-enhanced
learning systems, in: Proceedings of the 9th International Conference on
Intelligent Tutoring Systems, Montreal, Canada, 2008.

[37] E. Androulaki, S. G. Choi, S. M. Bellovin, T. Malkin, Reputation systems
for anonymous networks, in: Proceedings of the 8th Privacy Enhancing
Technologies Symposium (PETS 2008), 2008.

[38] F. Kerschbaum, A verifiable, centralized, coercion-free reputation system,
in: Proceedings of the 8th ACM workshop on Privacy in the electronic
society (WPES’09), ACM, New York, NY, USA, 2009.

[39] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M. Y. Zhu, Tools for
privacy preserving distributed data mining, SIGKDD Explorations 4 (2)
(2003) 28–34.

[40] P. Paillier, Public-key cryptosystems based on composite degree resid-
uosity classes, in: Proceedings of the 17th International Conference on
Theory and Application of Cryptographic Techniques, 1999.

[41] T. ElGamal, A public-key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Transactions on Information Theory IT-31 (4)
(1985) 469–472.

[42] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of inter-
active proof systems, SIAM Journal on Computing 18 (1) (1989) 186–208.

[43] D. Chaum, Blind signatures for untraceable payments, in: Proc. Advances
in Cryptology (CRYPTO ’82), 1982.

[44] A. Michalas, N. Komninos, The lord of the sense: A privacy preserving
reputation system for participatory sensing applications, in: 2014 IEEE
Symposium on Computers and Communications (ISCC), IEEE, 2014, pp.
1–6.

[45] M. Schiedermeier, O. Hasan, L. Brunie, T. Mayer, H. Kosch, A trans-
parent referendum protocol with immutable proceedings and verifiable
outcome for trustless networks, in: International Conference on Complex
Networks and Their Applications, Springer, 2019, pp. 647–658.

[46] D. Chaum, Blind signature systems, in: Advances in Cryptology
(CRYPTO’83), 1983.

[47] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Kupcu, A. Lysyan-
skaya, E. Rachlin, Making p2p accountable without losing privacy, in:
Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society,
2007.

[48] J. Camenisch, A. Lysyanskaya, M. Meyerovich, Endorsed e-cash, in: Pro-
ceedings of the IEEE Symposium on Security and Privacy, 2007.

60



[49] C. Mitchell (Ed.), Trusted computing, Institution of Electrical Engineers,
2005.

[50] S. Pearson, B. Balacheff (Eds.), Trusted Computing Platforms: TCPA
Technology in Context, Prentice Hall, 2003.

[51] R. Bazin, A. Schaub, O. Hasan, L. Brunie, Self-reported verifiable rep-
utation with rater privacy, in: IFIP International Conference on Trust
Management, Springer, 2017, pp. 180–195.

[52] E. Owiyo, Y. Wang, E. Asamoah, D. Kamenyi, I. Obiri, Decentralized
privacy preserving reputation system, in: 2018 IEEE Third International
Conference on Data Science in Cyberspace (DSC), IEEE, 2018, pp. 665–
672.

[53] N. Gal-Oz, N. Gilboa, E. Gudes, Schemes for privately computing trust
and reputation, in: IFIP International Conference on Trust Management,
Springer, 2010, pp. 1–16.

[54] N. Gal-Oz, E. Gudes, D. Hendler, A robust and knot-aware trust-based
reputation model, in: Proceedings of the Joint iTrust and PST Confer-
ences on Privacy, Trust Management and Security (IFIPTM 2008), 2008.

[55] R. Nithyanand, K. Raman, Fuzzy privacy preserving peer-to-peer reputa-
tion management, Cryptology ePrint Archive, Report 2009/442 (2009).

[56] O. Hasan, L. Brunie, E. Bertino, k-shares: A privacy preserving reputa-
tion protocol for decentralized environments, in: Proceedings of the 25th
IFIP International Information Security Conference (SEC 2010), Bris-
bane, Australia, 2010, pp. 253–264.

[57] T. Dimitriou, A. Michalas, Multi-party trust computation in decentralized
environments in the presence of malicious adversaries, Ad Hoc Networks
15 (2014) 53–66.

[58] T. Dimitriou, A. Michalas, Multi-party trust computation in decentralized
environments, in: 2012 5th International Conference on New Technologies,
Mobility and Security (NTMS), IEEE, 2012, pp. 1–5.

[59] S. Dolev, N. Gilboa, M. Kopeetsky, Efficient private multi-party compu-
tations of trust in the presence of curious and malicious users, Journal of
Trust Management 1 (1) (2014) 8.

[60] S. Dolev, N. Gilboa, M. Kopeetsky, Computing multi-party trust pri-
vately: in o (n) time units sending one (possibly large) message at a time,
in: Proceedings of the 2010 ACM Symposium on Applied Computing,
2010, pp. 1460–1465.

[61] M. R. Clark, K. Stewart, K. M. Hopkinson, Dynamic, privacy-preserving
decentralized reputation systems, IEEE Transactions on Mobile Comput-
ing 16 (9) (2016) 2506–2517.

61



[62] S. Schiffner, S. Clauß, S. Steinbrecher, Privacy, liveliness and fairness for
reputation, in: International Conference on Current Trends in Theory and
Practice of Computer Science, Springer, 2011, pp. 506–519.

[63] K. Zhang, Z. Li, Y. Yang, A reputation system preserving the privacy
of feedback providers and resisting sybil attacks, International Journal of
Multimedia and Ubiquitous Engineering 9 (2) (2014) 141–152.
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