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Abstract
A range of in situ, satellite and reanalysis products on a commondaily 1°×1° latitude/longitude
gridwere extracted from theFrequent RainfallObservations onGrids database tohelp facilitate
intercomparison and analysis of precipitation extremes on a global scale. 22productsmet the criteria for
this analysis, namely that daily datawere available over global land areas from50°S to 50°Nsince at least
2001. From these daily gridded data, 10 annual indices that represent aspects of extremeprecipitation
frequency, duration and intensitywere calculated. Results were analysed for individual products and
also for four cluster types: (i) in situ, (ii) corrected satellite, (iii)uncorrected satellite and (iv) reanalyses.
Climatologies based ona common13-year period (2001–2013) showed substantial differences between
someproducts. Timeseries (which ranged from13years to 67 years) alsohighlighted some substantial
differences betweenproducts. A coefficient of variation showed that the in situproductsweremost
similar to eachotherwhile reanalysis products had the largest variations. Reanalyses however agreed
betterwith in situobservations over extra-tropical land areas compared to the satellite clusters, although
reanalysis products tended to fall into ‘wet’ and ‘dry’ campsoverall. Some indicesweremore robust than
others across productswithdaily precipitation intensity showing the least variationbetweenproducts
anddays above 20mmshowing the largest variation. In general, the results of this study show that global
space-basedprecipitation products show the potential for climate scale analyses of extremes.Whilewe
recommend caution for all products dependent on their intended application, this particularly applies to
reanalyseswhich show themost divergence across results.

Introduction

Precipitation indices (e.g. annual wettest day, consecu-
tive dry days, days above 20 mm) are widely used in the
climate literature to assess global and regional trends in
precipitation extremes (e.g. Alexander et al 2006, Donat
et al 2013, Sillmann et al 2013, Zhou et al 2016). Indeed,
the last three Intergovernmental Panel on Climate
Change Assessment Reports (IPCC 2001, IPCC 2007,
IPCC 2013) have drawn global conclusions on extreme
precipitation trends using such indices. While indices
limit some inferences regarding the full distribution of

daily data, they offer amechanism to increase the quality
and amount of data that can be shared among
researchers to examine extremes (e.g. Alexander 2016,
Alexander et al 2019 (in this Focus Collection)). Most of
the literature to-date has been primarily focused on
in situ data because this has offered a sufficiently long
record to determine climate-scale trends although
spatial coverage is limited. However, some satellite
records are now reaching several decades long, poten-
tially making them suitable for long-term global assess-
ment (Roca et al 2019, others). In addition, reanalysis
products are available that have been assessed for their
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suitability to study long-term changes in precipitation
extremes (Donat et al 2014,Donat et al 2016), however it
has generally been recommended to use these products
with caution for longer-term assessments due to inho-
mogeneities in the data network used for assimilation
(Thorne and Vose 2010, Bosilovich et al 2011). Despite
limitations, each of these products i.e. in situ-based,
satellite and reanalyses are used widely in the scientific
literature and all offer advantages over the other in terms
of e.g. temporal resolution, spatial representativeness,
accuracy of measurement, homogeneity etc. Therefore,
it seems necessary to evaluate each product with respect
to the other and to make recommendations for the
assessment of global precipitation extremes. However,
this type of intercomparison has not previously been
easy because of the lack of standardisation across
products (e.g. resolution, formats etc) and in how
precipitation extremes are defined and analysed by
different research groups. Some groups have focussed
on a small subset of available products (globally e.g.
Herold et al 2016, Beck et al 2017, Herold et al 2017 and
regionally e.g. Contractor et al 2015, Harrison et al 2019,
Kim et al 2019) or have analysed multiple products but
with limited focus on extremes (e.g. Sun et al 2018). As
part of the International Precipitation Working Group
(IPWG; http://isac.cnr.it/~ipwg/), GEWEX Data and
Analysis Panel (GDAP; https://gewex.org/panels/
gewex-data-and-analysis-panel/), and World Climate
Research ProgrammeGrandChallenge onWeather and
Climate Extremes (WCRPGC Extremes; https://wcrp-
climate.org/gc-extreme-events), a database has been
developed which enables a comparison of multiple

products on a daily 1°×1° resolution (Roca et al 2019).
This database named Frequent Rainfall Observations on
GridS (FROGS) is freely available from ftp://ftp.
climserv.ipsl.polytechnique.fr/FROGs/ and contains
data from in situ, satellite, blended and reanalysis
datasets. Here we assess how these products compare
using a standard suite of precipitation indices in order to
determine whether these products can be used for long-
term assessment of precipitation extremes (over land).
We start by introducing the data used, followed by a
description of the methods employed and end by
analysing product spread using a range of standard
metrics.

Data andmethods

We extract data products from FROGS (Roca et al
2019) that have global land coverage (or at least cover a
minimum land area from 50°S to 50°N). Table 1
shows the 22 products that meet these criteria,
with 13 years being the shortest time period covered
(GSMAP-gauges-RNLv6.0) and 67 years being the
longest time period covered (REGEN_ALL_v1.1/
REGEN_LONG_v1.1). All products share a common
overlapping period of 2001–2013. For each product a
suite of 10 ‘ETCCDI’ precipitation indices (Zhang et al
2011) are calculated (table 2) resulting in one value per
year and representing annual measures of frequency,
duration and intensity (see also figure 1 of Alexander
et al 2019 in this SI is available online at stacks.iop.org/
ERL/15/055002/mmedia). Our aim is to intercom-
pare datasets using some basic statistics to determine if

Table 1.Datasets downloaded from the FROGS database (Roca et al 2019) and analysed in this study. Products are organised into four cluster
groups representing those that contain (1) only station (in situ) data, (2) satellite data that has been corrected using in situ data (3) satellite-
onlymeasurements and (4) reanalysis data. The number of products in each product cluster is indicated in thefirst column.

# Dataset name Years available References

In situ-based (5) 1 REGEN_ALL_2019 1950–2016 Contractor et al (2019)
2 REGEN_LONG_2019 1950–2016 Contractor et al (2019)
3 GPCC_FDD_v1.0 1988–2013 Schamm et al (2014)
4 GPCC_FDD_2018 1982–2016 Ziese et al (2018)
5 CPC_v1.0 1979–2017 Xie et al (2010)

Satellite with correction to in situ (8) 6 GPCP_CDR_v1.3 1997–2017 Huffman et al (2001)
7 CMORPH_v1.0_CRT 1998–2017 Xie et al (2017)
8 CHIRPS_v2.0 1981–2016 Funk et al (2015)
9 3B42_v7.0 1998–2016 Huffman et al (2007)
10 3B42RT_v7.0 2000–2017 Huffman et al (2007)
11 GSMAP-gauges-RNLv6.0 2001–2013 Kubota et al (2007)
12 GSMAP-gauges-NRT-v6.0 2001–2017 Kubota et al (2007)
13 PERSIANN_v1_r1 1983–2017 Ashouri et al (2015), Sorooshian et al (2014)

Satellite uncorrected (4) 14 CMORPH_v1.0_RAW 1998–2017 Xie et al (2017)
15 CHIRP_V2 1981–2016 Funk et al (2015)
16 3B42_IR_v7.0 1998–2016 Huffmann et al (2007)
17 3B42RT_UNCAL_v7.0 2000–2016 Huffmann et al (2007)

Reanalyses (5) 18 CFSR 1979–2017 Saha et al (2010)
19 ERA-Interim 1979–2017 Dee et al (2011)
20 JRA-55 1958–2017 Kobayashi et al (2015)
21 MERRA1 1979–2015 Rienecker et al (2011)
22 MERRA2 1980–2017 Gelaro et al (2017)
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Table 2.Extreme precipitation indices recommended by the ETCCDI and analysed in this study. The full list of all recommended indices and precise definitions is given at http://etccdi.pacificclimate.org.

ID Indicator name Indicator definitions UNITS

Intensity RX1day Max 1 d precipitation amount Annualmaximum1 d precipitation (index also available asmonthlymaximum) mm

RX5day Max 5 d precipitation amount Annualmaximumconsecutive 5 d precipitation (index also available asmonthlymaximum) mm

SDII Simple daily intensity index The ratio of annual total precipitation to the number of wet days (>= 1mm) mm/day

R95p Verywet days Annual total precipitation fromdays>95th percentile mm

R99p Extremelywet days Annual total precipitation fromdays>99th percentile mm

PRCPTOT Annual total wet-day precipitation Annual total precipitation fromdays�1mm mm

Frequency R10mm Number of heavy precipitation days Annual countwhen precipitation>= 10mm days

R20mm Number of very heavy precipitation days Annual countwhen precipitation>= 20mm days

Duration CDD Consecutive dry days Annualmaximumnumber of consecutive dayswhen precipitation<1mm days

CWD Consecutive wet days Annualmaximumnumber of consecutive dayswhen precipitation�1mm days
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conclusions with respect to extreme precipitation
climatologies and trends are robust and product
independent. If so, this could inform e.g. IPCC as to
the reliability of studies using products other than
those that are in situ-based for long-term climate
assessment. To achieve our goal we first calculate
climatologies for each product over the common 13-
year period (2001–2013) when all products have data
(figure 1). Then timeseries are intercompared over
their full period of record. For this analysis we also
group the datasets by product type: (i) in situ data, (ii)
satellite products that have been corrected using in situ
data, (iii) uncorrected satellite products and (iv)
reanalyses (figure 2). A coefficient of variation (cov) is
calculated for each cluster (that is, the interproduct
spread in%)with covs shown for a selection of indices
that cover precipitation intensity (SDII), frequency
(R10mm) and duration (CDD) (figure 3). The covs are
then calculated as a regional land average for the globe

(50S–50N), the Extratropics (20S–50S and 20N–50N)
and the Tropics (20S–20N) for all indices from table 2
(figures 4(a)–(c)). Finally, we compare trends from
1988 to 2013 for each product that covers this period
with a sufficient amount of non-missing data.

Results

Climatology
Figures 1 and S1–S9 show a 13-year climatology for
each of the indices from table 2 for all 22 precipitation
products considered. Globally spatial patterns are
similar across climatic zones over the 2001–2013
period. However, there are many important caveats.
For annual total wet-day precipitation (PRCPTOT),
for example, the ‘wettest’ product is>50%wetter than
the ‘driest’ product (1256.5 mm (MERRA2) versus
821.1 mm (CPC_v1.0) globally averaged over the
13-year period). Overall extreme precipitation indices

Figure 1.Climatology calculated over 2001–2013 for annual total wet-day precipitation inmm (PRCPTOT—table 2) for each product
in the FROGS database (Roca et al 2019) that has land coverage from at least 50°S–50°N.Values in each panel represent the land-based
areamean climatology calculated from50°S to 50°N.
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in reanalyses tend to be less spatially consistent than
the in situ and satellite datasets with, for example,
tropical Africa being very wet in some reanalyses and
much drier in others (figures 1, S1–S9). Thismasks the
fact, however, that reanalysis products often fall into
two groups (‘wet’ and ‘dry’). This can be seen more
clearly in table 3 where all the datasets are ranked for
each index from driest to wettest on average over the
2001–2013 period based on the global (50°S–50°N)
land average. Interestingly MERRA2 mostly falls into
the wet group and MERRA1 mostly falls into the dry
group (see also figure 2). This means that the spread of

actual values across reanalyses is larger on the whole
than any of the other product clusters. MERRA2 and
CFSR are the wettest products overall, ranking highest
and second highest in 6 out of the 10 precipitation
indices and all but one of the precipitation intensity
metrics respectively. The uncorrected satellite pro-
ducts tend to fall in the dry end of the scale except for
3B42_IR_v7.0 which is much wetter. CHIRP_v2 has
some of the driest precipitation intensity, frequency
and duration measures. Despite this it also has one of
the longest durations of consecutive wet days (CWD)
compared to other products. The in situ corrected

Figure 2. Spatially-weighted global land (50°S–50°N) average timeseries for each product in the FROGS database (Roca et al 2019)
used in this study for each index in table 1. Box andwhiskers in each panel provide information on the distribution of each index over
the 2001–2013 climatological period for all products while vertical coloured lines indicate the range of climatologicalmean values for
each product ‘cluster’ i.e. in situ (blue), satellite corrected (orange), satellite uncorrected (red) and reanalyses (green). Short horizontal
lines on each vertical coloured line represent the climatologicalmean for each product. Seemain text and table 1 formore
information.
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version, CHIRPS_v2.0 tends not to be quite so dry and
is wetter in most metrics except R95p, R99p and
CWD. In general, the satellite products that are
corrected to in situmeasurements are somewhat more
mixed in terms of rankings and tend to vary from
index to index although 3B42RT_v7.0 stands out as
being particularly wet (although note this product has
minimal correction compared to others in this clus-
ter). The in situ-based products tend to have very
similar spatial patterns and global means although
GPCC_FDD_2018 is distinct as being wetter than the
other in situ products and indeed most of the other
satellite-based products. This is particularly evident in
the intensity-based metrics such as Rx1day (figure S7),
with the wettest day in GPCC_FDD_2018 being
around 40% wetter on average than the other in situ
products (see climatological global averages inserted
in figure S7). Differences are clearest in the tropics as
also highlighted in Bador et al (2020) and Roca (2019).
Indeed GPCC_FDD_2018 has the largest land-based
daily precipitation intensity (9.3mm d−1) of any other
product (figure S9), the other products ranging
from 5.5 mm d−1 (CHIRP_v2) to 9.0 mm d−1

(3B42_IR_v7.0) on average over the 2001–2013 per-
iod. Overall CHIRP_v2 has the lowest average ranking
(driest) and MERRA2 has the highest average ranking
(wettest). While not shown, difference plots between
all products and REGEN_All_2019 were created for
each index (similar to figures S4 and S7 in Bador et al
(2020) for Rx1day and PRCPTOT respectively) to
determine whether the products that were consistently
wetter/drier in table 3 had a global or more regional
difference signature. What we found was that for the

more extreme indices (e.g. Rx1day, R99p), products
are broadly classified as wetter/drier everywhere i.e.
there is a global-scale signature. However for some of
the more ‘moderate’ extremes (e.g R10mm) there is
some regional variation. While these regions vary, the
Amazon, central Africa and south-east Asia often
stand out as areas of high contrast.

Table 3 also highlights other interesting features of
the data such as the contrast between CDD and CWD
for some products. For example, GPCC_FDD_2018 is
ranked ‘dry’ for both CDD and CWD while MERRA2
is ranked ‘wet’ for both. In the former this implies long
dry spells interspersed with short wet spells while the
latter implies long wet spells interspersed with short
dry spells. Other products have contrasting features in
these indices (e.g. CDD is dry while CWD is wet
in CHIRP_v2 and CDD is wet while CWD is dry in
3B42_IR_v7.0) which implies for some products
long/short dry spells alternating with long/short wet
spells. Some further work is planned to try and address
these intriguing features both within and between
products.

Timeseries and interproduct spread
Figure 2 shows the global (50°S–50°N) land average
timeseries for each product (table 1) and each precipita-
tion index (table 2) over the period of available data.
Note that due to the fact that the calculation of CDD
and CWD can cross over the year end (in order not to
artificially break a dry or wet season), we do not include
the final year of each product in the timeseries plots
for those two indices. All other indices include all the

Figure 3.Coefficient of variation (%) calculated over the 2001–2013 climatologies from the different datasets for (left) simple daily
intensity index (SDII), (middle) consecutive dry days (CDD) and (right) days above 10mm (R10mm) across precipitation products
arranged by product type: in situ, satellite corrected, satellite uncorrected and reanalyses. The number of products consideredwithin
each cluster is indicated.
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years noted in table 1. Some things of note are that
reanalyses generally have a larger spread than the other
product clusters (especially for CWD, PRCPTOT,
R20mm,R95p, R99p, Rx1day and Rx5day) and seem to
form into wet and dry camps (as noted above). The
in situ products (perhaps with the exception of
GPCC_FDD_2018) tend to band in the middle of the
multi-product ensemble and are well-aligned with
the median of the boxplot although they have some
of the highest consecutive dry days (CDD) (figure 2(a))
and fewestCWD (figure 2(b)). In fact there is nooverlap
between the range of in situ and reanalyses CWD (rhs of
figure 2(b)). Many of the multi-product distributions
are heavily skewed (e.g. CWD, PRCPTOT) but this can
mostly be explained by the inclusion of the reanalysis
data which might be affected by the excessive drizzle
that is found in atmospheric models (e.g. Stephens et al
2010). Thiswould certainly seem to be the case based on
the results from Herold et al(2016) who found that
reanalysis products generally had more wet days than
in situ-based products. Overall the in situ and two

satellite-based clusters are more closely aligned with
each other than the reanalyses. Other points of note are
that there are clear inhomogeneities in some of the
products that would require further investigation. For
example, PERSIANN_v1_r1 has an obvious jump
around themid-1980s (also noted byHerold et al 2016)
and CHIRP_v2 shows what looks like a shift around
2012. In addition, there are clear trends in some of the
timeseries which are not apparent in other products.
For example, in R95p and R99p, MERRA2 has an
increasing trend throughout the timeseries while
CFSR appears to show a trend starting in about 2000.
These trends are likely data artefacts as they are not
present in any of the other products and could be
responsible for the non-stationary systematic errors
identified in Funk et al(2019) in this Focus Collection.
These issues will be investigated further as part of the
wider remit of the IPWG/GDAP/WCRP extreme
precipitation project.

To investigate some of the product differences
from a more regional perspective we calculate the

Figure 4.Average coefficient of variation (%) calculated over 2001–2013 for each product cluster (in situ, satellite corrected, satellite
uncorrected and reanalyses) for each precipitation index in table 1 for (a)Global (50S–50N) (b) extratropical and (c) tropical (20S–
20N) land regions.
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coefficient of variation (cov)within each product clus-
ter over the period 2001–2013 for each index in table 2.
Figure 3 shows the results for SDII, CDD and R10mm.
Figures S10, S11 show the same information for the
remaining precipitation indices studied. As we move
through the product clusters from in situ to corrected
satellite to uncorrected satellite to reanalyses the cov
increases, particularly in the tropics and high-altitude
regions. In addition, it is clear that some indices agree
better than others, that is, they are less sensitive to the
choice of dataset. For example, SDII is not as sensitive
as CDD and similarly CDD is not as sensitive as
R10mm to dataset choice. This agrees well with the
results of Herold et al (2017) who used a smaller satel-
lite-only subset of products. The cov should be read as
the interproduct spread in the sense that just because a
cov is small that does notmean that those products are
closer to the ‘truth’. Simply they tend to agree better

because they may rely on similar source data (in the
case of the in situ-based products and satellite-based
datasets). It is clear though that there are regional dif-
ferences in howwell products agree. In regions of high
station density e.g. North America, Europe, East Asia
and Australia products and indices are in much closer
agreement. Conversely in regions of low station
density e.g. the Sahel there is a very large range of pre-
cipitation index values (>100% in many cases). How-
ever even in regions of high station density, reanalyses
and satellites can have large interproduct spread
meaning that caution should be applied to how results
should be assessed and interpreted at the regional
scale.

Figure 4 intercompares the average covs for each
index and each product cluster for global land regions,
tropical land and extratropical land. The broad mes-
sage here is that in general in situ-based products have

Table 3.Ranking of precipitation datasets (table 1) averaged over global land areas from50°S to 50°N for each precipitation index (table 2)
fromdriest (dark brown) towettest (dark green) globally averaged over the period 2001–2013.
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the least interproduct spread while reanalyses have the
largest spread, apart from the extratropical land values
where reanalyses in many cases are much closer to
each other than the satellite products.

Finally we calculate trends for each product that
have at least 25 years of data available over the period
1988–2013 (table 4). This period is chosen to max-
imise the length of record and number of products
available for comparison and to ensure that all
in situ-based products are included. We find that the
majority of products show significant increases in the
wettest day (Rx1day), wettest consecutive five days
(Rx5day), daily precipitation intensity (SDII), total
precipitation (PRCPTOT), days above 10 mm
(R10mm) and days above 20 mm (R20mm) despite
the different data sources. It should be noted though
that the magnitudes of the trends can be quite differ-
ent. For example, for indices where all but one of the
trends are significantly increasing (R95p, R20mm)
there is a factor of ∼4–5 magnitude difference from
the lowest to the highest trends. The coherence in
trend signatures tends to break down for CDD and
CWD with mixed sign and significance of trends
across products. This is even the case across the
in situ-based products with, for example CDD, the
two REGEN datasets and GPCC_FDD_v2018 having
non-significant decreasing trends (−0.41 days/dec-
ade, −0.41 days/decade, −0.65 days/decade) while
GPCC_FDD_v1.0 has a significant increasing trend
(1.68 days/decade).

Discussion and conclusions

We have compared the largest available, consistent
database of daily gridded land-based precipitation
products for their representation of a range of annual
precipitation indices and extremes. We conclude that
taken on global average products can appear reason-
ably similar in terms of their spatial patterns but in
terms of the range of values of precipitation extremes
over space and time they can have quite different
forms. Splitting the 22 products available from the
FROGS database that met our selection criteria into
products clusters we found that in situ-based products
are most similar to each other compared to other
product clusters and reanalyses are least similar. The
largest differences between products occur in the
tropics, the driest regions and areas with high topo-
graphic contrasts (where there is limited in situ data)
and differences are particularly marked in South-East
Asia and Africa. Some products are particularly ‘wet’
or ‘dry’ especially in the tropics and such differences
are particularly marked in reanalysis products.
CHIRP_v2 and CHIRPS_v2.0 are among the driest
products. Reanalyses fall into two camps: ‘dry’ or ‘wet’
and interestingly the same product family (e.g.
MERRA) fall into one of each. Similarly, the GPCC
family of in situ-based products fall into two camps
with GPCC_FDD_2018 much wetter than its prede-
cessorGPCC_FDD_v1.0. The inclusion ofmuchmore
data and improved quality control could be part of the

Table 4.Trends per decade (see table 1 for units) for each product that has data covering the period 1988–2013. Products that have toomuch
missing data over this period are not included (e.g. PERSIANN). Trends were calculated using a Sens slope estimator and significance was
tested at the 5% level using aMann-Kendall test. Dark (blue/orange) grid cells indicate significant trends (increases/decreases) in each index
except for CDDwhere the colours are swapped.
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reason but this unlikely explains the global scale
‘wettening’ between the products. The other
main difference between GPCC_FDD_v1.0 and
GPCC_FDD_2018 is the change in interpolation
algorithm from kriging to spheremap. Investigating
only monthly precipitation averages and PRCPTOT
for example does not always highlight some of the
‘quirks’ that we have discovered in analysing the more
extreme ends of the precipitation distribution but all
of the differences between the products highlighted
here requiremuch further investigation.

There are obviously issues which we have not
addressed in this paper such as the timing of extremes
or how the ‘drizzle effect’ (Stephens et al 2010) might
impact some of the indices. In addition, we have not
discussed in detail the problems associated with
remote sensing of precipitation extremes (such as
instrument sensitivity to capturing all types of pre-
cipitation or retrievalmethod uncertainties) or the fact
that satellites measure instantaneous rain rates while
the in situ products generally measure 24 h accumula-
tions. Another issue is the mismatch between station-
based products which convert points to grids and areal
average precipitation (such as produced by reana-
lyses). Indeed we broadly assume that the indices cal-
culated from each product aremeaningful and directly
comparable between the product types. Also we have
not included dataset uncertainties in this analysis (that
is the uncertainties that are often provided by the data-
set developers associated with their products) mainly
due to the fact that not all datasets come with such
information and/or what information is provided e.g.
interpolation errors might not be comparable across
products. It should also be remembered that FROGS is
a ‘living database’ so, for example, not all freely avail-
able products are currently included. One perspective
of this work would be to refine the clustering of the
products (using new products added to FROGS as
they become available, like IMERG from NASA,
CMORPH-2 from NOAA or precipitation from ERA-
5) in particular to explore within the satellite ensem-
bles the sensitivity to the use of constellation data ver-
sus single platform. This could further reduce the
cluster spread as shown for the tropics over a short
period of time (Roca 2019 this FocusCollection).

However, based on the information that we have
gathered we can make some recommendations on the
use of global products for understanding observed
precipitation extremes.

• First, know the product you are using and its
inherent issues (e.g. GPCP has a parameter setting
that if used limits daily values to a maximum of 100
mmwhichwe know in some regions is an unreason-
ably low value, see Bador et al 2020 for more details
on the impacts on precipitation extremes).

• Second, note that some indices aremore robust than
others in terms of their similarity amongst products.

For example, SDII, shows the most interproduct
consistency while R20mm shows the least, and
broadly speaking precipitation intensity measures
are more robust than frequency or duration
measures.

• Thirdly, despite the fact that the magnitude of
trends can vary substantially, all product types
(in situ-based, satellite uncorrected, satellite cor-
rected and reanalyses) show broad consistency in
the sign of the trends for most extremes indices
especially those that are intensity-based. This should
give us some comfort in at least the robustness of the
sign of the thermodynamic component of global
precipitation extremes trend estimates if not their
magnitude.

• Lastly, and not surprisingly, we have more con-
fidence in regions with an abundance of in situ
observations and conversely our largest uncertain-
ties are over regions that are poorly sampled. In the
latter regions, it is possible that the uncorrected
satellite products might offer a generally more
realistic view of precipitation extremes in these
regions due to problems with bias correction algo-
rithms, although this is yet to be thoroughly tested.

Overall our results indicate that satellite-derived
precipitation datasets, if properly assessed, could pro-
vide useful information to inform long-term trends
and can fill in useful gaps in regions with limited gauge
density if long-term homogeneous satellite-based data
can be provided. It is recommended that IPCC reports
make more use of these data in current and future
assessments of extreme precipitation while acknowl-
edging the shortcomings in all observational-based
datasets especially reanalyses.
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