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Abstract
Observational evidence of precipitation extremes is vital to better understand how these eventsmight
change in a futurewarmer climate. Over the terrestrial regions of a quasi-global domain, we assess the
representation of annualmaxima of daily precipitation (Rx1day) in 22 observational products gridded
at 1°×1° resolution and clustered into four categories: station-based in situ, satellite observations
with orwithout a correction to rain gauges, and reanalyses (5, 8, 4 and 5 datasets, respectively).We also
evaluate the interproduct spread across the ensemble andwithin the four clusters, as ameasure of
observational uncertainty.Wefind that reanalyses present a heterogeneous representation of Rx1day
in particular over the tropics, and their interproduct spread is the highest compared to any other
cluster. Extreme precipitation in satellite data broadly compares well with in situ-based data.Wefind a
general better agreement with in situ-based observations and less interproduct spread for the satellite
products with a correction to rain gauges compared to the uncorrected products. Given the level of
uncertainties associatedwith the estimation of Rx1day in the observations, none of the datasets can be
thought of as the best estimate. Our recommendation is to avoid using reanalyses as observational
evidence and to consider in situ and satellite data (the corrected version preferably) in an ensemble of
products for a better estimation of precipitation extremes and their observational uncertainties. Based
on this we choose a subsample of 10 datasets to reduce the interproduct spread in both the
representation of Rx1day and its timing throughout the year, compared to all 22 datasets.We
emphasize that the recommendations and selection of datasets given heremay not be relevant for
different precipitation indices, and other grid resolutions and time scales.

1. Introduction

Precipitation is heterogeneous in space and time and its
measurement is further complicated by the heterogene-
ity of the ground-based measurement network. While
most of the mid-latitudinal terrestrial regions are well
monitored, in the tropics the station density is sparse, of
lower quality and data availability is limited (Alexan-
der 2016). Overall, the observation of extreme precipi-
tation from ground-based instruments is challenging.
Better spatial coverage is achieved by interpolating

in situ-based data onto a grid, however, gridded datasets
represent an area-averaged measure of precipitation
and are therefore intrinsically different to a station-
based measure (Chen and Knutson 2008, Gervais et al
2014a). Uncertainties arise due to the different gridding
methods applied (Dunn et al 2014, Avila et al 2015), but
the advantage of gridded datasets is that they allow
comparison with other observational products (such as
satellite datasets) and are useful formodel validation.

Observational datasets created from satellite
retrievals generally provide better spatial coverage
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compared to station-based gridded products, and this
allows the assessment of precipitation in data-sparse
areas of the globe. However, as the satellite era is rela-
tively new, there is little guidance on the reliability of
these observations to the study of long-term changes
in precipitation extremes. Reanalysis data provide an
alternative to ground-based and satellite-only obser-
vations. Using a model constrained by assimilated
observations, they allow a complete spatio-temporal
characterization of precipitation and other atmo-
spheric fields to investigate the mechanisms at play.
However, precipitation is generally not assimilated
and is a result of themodel physics although guided by
the other assimilated variables. There is generally less
agreement between different reanalyses datasets than
between in situ datasets (Bosilovich et al 2009, Donat
et al 2014, Sun et al 2018).While we recognise that rea-
nalyses are not strictly observations, they are used
widely enough in the literature as a proxy for pre-
cipitation observations especially in trend analyses and
model evaluation studies (e.g. Kharin et al 2013,
IPCC 2013, Sillmann et al 2013, Donat et al 2014, Sun
et al 2018). Furthermore, studies focusing onmechan-
isms often opt for reanalyses because they provide a
consistent multi-variate framework that is harder to
obtain from observations alone. Therefore, reanalyses
are incorporated in this study for intercomparison
purposes.

In order to estimate how diverse the representa-
tion of extreme precipitation is across observational
products, an ensemble of datasets can be considered.
Most studies intercomparing extreme precipitation in
observational products are regional in scale and often
in regions of high data-density (e.g. Gervais et al
2014b, Yin et al 2015, Timmermans et al 2019) while
less effort has been made to characterize regions of
various spatial coverage at the global scale (e.g. Donat
et al 2014, Herold et al 2017). At present, a large num-
ber of observational datasets exist for precipitation,
from a variety of observational sources. This is mainly
explained by an increasing number of satellite and rea-
nalyses datasets as well as new product versions being
released regularly. This study aims to comprehensively
examine the representation of a measure of precipita-
tion extremes in a large number of observational data-
sets commonly used in the climate community.

Extreme precipitation is defined here as the annual
maxima of daily precipitation, and we focus on quasi-
global land areas (50 °S:50 °N, 130 °W:180 °E). The
observational products used in this study are available
through the Frequent Rainfall Observations on Grids
(FROGS) database (Roca et al 2019a), which provides a
variety of gridded observational precipitation datasets
(at 1°×1° resolution). We consider 22 datasets from
different sources: station-based in situ data, satellite
retrievals with or without a correction to rain gauges,
and reanalyses.We define observational uncertainty as
the spread across the large ensemble of observational
products, and the respective uncertainty for each data

source. We further aim to give guidance on the use of
these different observational products specifically as it
relates to annual maxima of daily precipitation at the
(quasi) global scale and over land. The observational
datasets used in this study are presented in section 2
with the definition of extreme precipitation. Section 3
describes the results. The findings are discussed in
section 4 and conclusions are given in section 5.

2.Data and indices for observed extreme
precipitation

2.1.Observational datasets of daily precipitation
We consider 22 datasets with a quasi-global coverage
(50 °S:50 °N; 130 °W:180 °E) and we focus on land
only. All datasets were gathered and reformatted onto
1°×1° daily grids for the FROGS database (Roca et al
2019a) with a common land-sea mask (from REGE-
N_ALL_v2019) applied. Roca et al (2019a) describe
the estimation of daily precipitation accumulation in
all these datasets (see table 1). In addition to analysing
each dataset separately with every other dataset, we
also form product ‘clusters’: in situ-based (5 datasets),
satellite with (8 datasets) or without (4 datasets) a
correction to rain gauges and reanalyses (5 datasets).

2.2. Precipitation extremes
We define extreme precipitation as the annual max-
imum 1 day precipitation amount (in mm), or Rx1day
(Zhang et al 2011). This gives information on the
magnitude rather than frequency of extreme precipita-
tion events, but we compare the timing of these annual
maxima throughout the year between the datasets in
figure 3 (and related text). Annual extreme precipita-
tion is compared to annual total wet-day precipitation
(i.e. total from days with precipitation>1mm), or the
prcptot index. Both precipitation indices were char-
acterized and are recommended by the WMO/
WCRP/JCOMM Expert Team on Climate Change
and Detection Indices (ETCCDI, Zhang et al 2011).
They are calculated using the ClimPACT software
(Alexander and Herold 2015, https://climpact-sci.
org/) from daily precipitation fields. This ensures
consistency in the calculation of the indices across all
datasets, and in particular how missing values are
treated.

By definition, Rx1day spans one value per year
(wettest day of year), which is a common criticism of
this index in that it can miss other ‘extremes’. Indices
based on the exceedance of a threshold such as the
95th or the 99th percentile (i.e. R95p and R99p)might
be preferable but the drawback with these percentile-
based indices is the requirement of a base period for
the percentile calculation. Base periods are recom-
mended to be at least several decades long (for exam-
ple, WMO uses a 30 year standard—currently
1961–1990). However, the longest overlapping period
for the 22 datasets used here is 13 years (2001–2013),
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Table 1. List of the 22 observational datasets of daily precipitation used in this study and grouped in 4 clusters with regards to their type of data. See Roca et al (2019a) for a detailed description of each product.

Type of data Dataset Temporal coverage Spatial coverage Native resolution prior to regridding onto a 1°× 1° grid References

In situ-based (5) 1 REGEN_ALL_v2019 1950–2016 60 °S-90 °N 1°×1° Contractor et al (2019)
2 REGEN_LONG_v2019 1950–2016 60 °S-90 °N 1°×1°
3 GPCC_FDD_v1.0 1988–2013 60 °S-90 °N 1°×1° Becker et al 2013

4 GPCC_FDD_2018 1982–2016 60 °S-90 °N 1°×1°
5 CPC_v1.0 1979–2017 90 °S-90 °N 0.5°×0.5° Xie et al (2010)

Satellites with correction to in situ (8) 6 GPCP_CDR_v1.3 1997–2017 90 °S-90 °N 1°×1° Huffman et al (2001)
7 CMORPH_v1.0_CRT 1998–2017 60 °S-60 °N 8km×8 km Xie et al (2017)
8 CHIRPS_v2.0 1981–2016 50 °S-50 °N 0.05°×0.05° Funk et al (2015)
9 3B42_v7.0 1998–2016 50 °S-50 °N 0.25°×0.25° Huffman et al (2007)
10 3B42RT_v7.0 2000–2016 50 °S-50 °N 0.25°×0.25° Huffman et al (2007)
11 GSMAP-gauges-RNLv6.0 2001–2013 60 °S-60 °N 0.1°×0.1° Kubota et al (2007)
12 GSMAP-gauges-NRT-v6.0 2001–2017 60 °S-60 °N 0.1°×0.1° Kubota et al (2007)
13 PERSIANN_v1_r1 1983–2017 60 °S-60 °N 0.25°×0.25° Ashouri et al (2015), Sorooshian et al (2014)

Satellites uncorrected (4) 14 CMORPH_v1.0_RAW 1998–2017 60 °S-60 °N 8km×8 km Xie et al (2017)
15 CHIRP_V2 1981–2016 50 °S-50 °N 0.05°×0.05° Funk et al (2015)
16 3B42_IR_v7.0 1998–2016 50 °S-50 °N 0.25°×0.25° Huffman et al (2007)
17 3B42RT_UNCAL_v7.0 2000–2016 50 °S-50 °N 0.25°×0.25° Huffman et al (2007)

Reanalyses (5) 18 CFSR 1979–2017 90 °S-90 °N T382 (∼38 km) Saha et al (2010)
19 ERAi 1979–2017 90 °S-90 °N T255 (∼79 km) Dee et al (2011)
20 JRA-55 1958–2017 90 °S-90 °N TL319 (∼55 km) Kobayashi et al (2015)
21 MERRA1 1979–2015 90 °S-90 °N 0.66°×0.5° Rienecker et al (2011)
22 MERRA2 1980–2017 90 °S-90 °N 0.625°×0.5° Gelaro et al (2017)
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which is therefore probably too short to use percen-
tile-based indices. As an illustration, we compare the
mean global R99p values in two datasets (REGE-
N_ALL_v2019 and JRA-55) but using three base peri-
ods of different lengths (15, 30 and 50 years) and we
show large differences in particular after 1990 (up to
above 12 and 17 mm respectively; see supplementary
figure 1 is available online at stacks.iop.org/ERL/15/
035005/mmedia). This shows that the sensitivity to
the choice of the base period is amplified in the pre-
sence of a trend, i.e. when the base period is calculated
prior to the start of a trend, the trend estimate will be
higher compared to if the base period spans years
when there is a trend.

3. Results

The global distribution of Rx1day values is first
compared to the global distribution of annual total

wet-day precipitation (prcptot) for all years during
2001–2013 (figure 1). We start by making a point on
the use of GPCP_CDR_v1.3 dataset. This satellite
product is provided with a ‘valid range attribute’
included in the file, and we compare here Rx1day and
prcptot distributions with (panel f) and without (panel
g) this valid range applied to the data. This shows that
the use of valid range masks all values above 100 mm.
It is worth noting that this is not perceivable from the
distribution of prcptot values, as they consist in the
sum of daily precipitation amounts in a year. It is also
not perceivable if the climatological Rx1day values are
considered instead of the values of all years over the
2001–2013 period (supplementary figure 2 versus
figure 1). In addition, comparing 50% of the global
distribution of Rx1day (through the 25th and 75th
percentiles; horizontal dashed lines on figure 1) across
the datasets shows that GPCP_CDR_v1.3 has among
the narrowest distribution (MERRA1 has the

Figure 1. Scatterplot of Rx1day values versus prcptot values (both inmm) in an ensemble of 22 observational datasets (see on panels
and table 1). Values from all years between 2001 and 2013 and all grid cells of the quasi-global land domain are considered. The
datasets are clustered into 4 groups: in situ-based data (blue label), satellite datawith or without a correction to rain gauges (orange or
red label), and reanalyses (green label). Horizontal and vertical solid (dashed) lines indicate themedian value (the 25th and 75th
percentiles) of the distribution of Rx1day and prcptot, respectively, and their values arewritten on each panel. Note that a common
range is applied toX- andY-axes for an easier intercomparison and that it canmask highest data of some datasets.
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narrowest). However, all other datasets have values
above 100 mm and it thus seems reasonable to
conclude that GPCP_CDR_v1.3 data should be used
without applying the valid range as it hinders the study
of extreme precipitation by excluding the most
extreme values over the globe. In the rest of this study,
we therefore only consider the raw data of
GPCP_CDR_v1.3.

The scatterplots form different ‘data clouds’ for each
datasets. Some indicate that the largest values of Rx1day
are found for the largest values of prcptot (e.g.most of the
in situ-based datasets), while others indicate the largest
values of Rx1day occur around the 75th percentile of the
prcptot distribution (e.g. n, o, q, r, t, u; rightmost vertical
dashed line). The median of the Rx1day distributions
(horizontal solid lines in figure 1) indicates that the driest
datasets are (in decreasing order) CHIRP_V2, MERRA1,
ERAi, PERSIANN_v1_r1, CHIRPS_v2.0 and the wettest
are (in decreasing order) MERRA2, 3B42_IR_v7.0,
GPCC_FDD_v2018, CFSR, 3B42RT_v7.0. The median
values range from 26.7 to 59.1 mm, showing large inter-
product spread, which is even larger for the 25th (from
12.5 to 32.6mm) and 75th (from 42.7 to 102.7mm) per-
centile values. On the contrary, prcptot values compare
much better across the 22 datasets.We find a better com-
parisonbetween the datasets for themedian and25th and
75thpercentiles of theglobal distributionsofprcptot (ver-
tical lines in figure 1), in agreement with the findings of
Alexander et al (2020) andRoca (2019b).

We cannot conclude which of these ‘data clouds’ is
the most realistic but we observe less difference
between in situ-based datasets than within any other
clusters, and in particular between the reanalyses
which exhibit the largest differences. In situ-based
observations (blue labels in figure 1) show a similar
representation of Rx1day and prcptot global distribu-
tion with the exception of GPCC_FDD_2018 that
shows higher values for Rx1day, and among the high-
est values of the ensemble. Compared to the in situ
-based cluster, we find more spread (e.g. among the
median values) within the satellites clusters, either
with or without correction to rain gauges (orange and
red labels infigure 1, respectively).

Cluster-averaged 2001–2013 climatological values
of Rx1day show differences across the four clusters, or
the four types of observations (figures 2(a), (d), (g),
(j)). Extreme precipitation intensity over the driest
regions varies across the four clusters (e.g. central Asia,
Arabian Peninsula, western US), as previously high-
lighted by Donat et al (2014). The intercluster differ-
ences are also large over the wettest regions and in the
tropics in general (figures 2(a), (d), (g), (j) and (n), (o)).
Extreme precipitation intensity on the leeward side of
extratropical northern and southern America is con-
trasted between the clusters, and in particular between
the corrected and uncorrected satellite products, with
a tendency towards lower estimates in the corrected
datasets (i.e. closer to in situ-based data). Note that for
an easier intercomparison, values are plotted up to 160

mm but cluster-averaged in situ-based data indicate
higher values (up to 260 mm) compared to reanalyses
(up to 180 mm), satellite with correction (up to 160
mm) and satellite without correction (up to 150 mm).
This cannot be explained by scaling issues as all data
were first interpolated onto a common grid but could
be explained by structural differences in the measure-
ment of precipitation and/or by interproduct spread
within each cluster, which is further investigated as
follows.

We then examine howmuch interproduct spread is
associated to each source of observation using the mul-
tiproduct standard deviation and coefficient of
variation (i.e. standard deviation normalized by the
multiproduct mean of climatological Rx1day;
figures 2(b), (e), (h), (k) and (c), (f), (i), (l)). Reanalyses
show the largest spread while in situ-based data show
the smallest (see also supplementary figures 3 and 4), in
agreement with Donat et al (2014). Satellite data lie in
between with generally more spread within the uncor-
rected than the corrected product clusters (figures 2(e),
(f), (h), (i)). Within the reanalyses cluster, the largest
interproduct differences are located in the tropics with
multiproduct standard deviation values generally over
50 mm (coefficient of variation values above 50%;
figures 2(k), (l)) or more for regions like central Africa
for instance. In the extra-tropics, uncertainties in reana-
lyses are lower, yet generally higher than for any other
observational source. On the contrary, in situ-based
data show little interproduct spread with the highest
uncertainties in the tropics and in particular in the
Sahara desert, where there are few rain gauges
(figures 2(b), (c)). The spread within the in situ-based
cluster is mainly explained by large differences between
GPCC_FDD_v2018 and the other datasets (see also
supplementary figures 3 and 4). Satellite data show
interproduct spread levels closer to in situ-based than
reanalyses except over a dry region extending from
northern Africa to Central Asia where interproduct dif-
ferences are large (figures 2(f), (i)). Over such semi-arid
regions, satellite products tend to show large uncer-
tainty due to low detection skill (Maggioni et al 2016).
These results agree with those of Herold et al (2017),
and they are generally in line with those for annual total
wet-day precipitation (prcptot; supplementary figures
5–7) yet of weaker intensity compared to annual
extremeprecipitation.

Finally, the cluster-averaged representation of cli-
matological Rx1day in the in situ-based and corrected
satellite clusters are themost similar and show reduced
interproduct spread compared to the uncorrected
satellite data and reanalyses clusters. We further show
that selecting only these two groups of data instead of
considering all four reduces the uncertainties (bottom
panels of figure 2). Some areas still present a relatively
high spread, but these can be either dry or data-spare
regions, or both. Furthermore, figure 1 highlighted
PERSIANN_v1_r1 as one of the driest datasets (see
above) and indeed it presents a pronounced
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widespread dryness compared to other products (sup-
plementary figures 3 and 4(m)), as well as large regions
of missing values (especially at the beginning of the
2001–2013 period). Therefore, in the context of
this study, we do not recommend using PER-
SIANN_v1_r1. Finally, these results point to a subset
of 5 in situ-based and 7 satellite datasets that present
reduced interproduct differences in the estimation of
annual daily precipitation maxima over global land
compared to the initial 22 products.

We further investigate how the timing of extremes
in a year compares across the selected 12 datasets
(figure 3). We first intercompare their climatological
annual cycle and find that interproduct spread is gen-
erally higher in the tropical band (up to 1.1 mm d−1)
than in the extra-tropics (up to 0.8 and 0.9 mm d−1 in
the Southern and Northern hemisphere, respectively;
first column of figure 3; note that a 21 d running aver-
aged is applied). The satellite product 3B42RT_v7.0
indicates the highest values ofmean daily precipitation

during the wet season in the Northern Hemisphere
extra-tropics, leading to larger interproduct spread.
Except for this, results show a relatively similar annual
cycle between the 12 selected datasets, in particular in
the extra-tropics, with little differences between the
in situ-based and satellite clusters. This is however very
different when all 22 datasets are considered (supple-
mentary figure 8). The interproduct spread is much
higher (up to 1.0 mm d−1 in both extra-tropical bands
and 2.8 mm d−1 in the tropics) and the reanalyses pre-
sent higher values of mean daily precipitation, in part-
icular in the tropics.

Next, we compare the timing of extreme precipita-
tion through the distribution of the month of occur-
rence of Rx1day (i.e. distribution of the months when
annual maxima of daily precipitation are recorded
between 2001 and 2013 for each grid cell; right column
of figure 3). These distributions are estimated in latitu-
dinal bands and we find that distributions are rela-
tively comparable across the selected datasets. In the

Figure 2.Top 12 panels: average over the datasets of each cluster of 2001–2013 climatological Rx1day (mm; (a), (d), (g), (j)) and its
corresponding standard deviation (mm; (b), (e), (h), (k)) and coefficient of variation (standard deviation normalized by the
climatology, in%; (c), (f), (I), (l)). The datasets are clustered into 4 groups: in situ-based data (blue label;first line), satellite with
(orange label; second line) orwithout (red label; third line) correction to rain gauges, and reanalyses (green label; bottom line). The
number of datasets varies between clusters (as indicated on panels (a), (d), (g), (j) and in table 1). Bottom6 panels: average over the
datasets from all clusters (m) and two clusters (in situ-based and satellite with correction; (p) of 2001–2013 climatological Rx1day
(mm) and its corresponding standard deviation (mm; (n), (q)) and coefficient of variation (%; (o), (r)). Note that by definition, spread
measured by standard deviation gives higher emphasis for thewettest regions and spreadmeasured by coefficient of variation gives
higher emphasis for the driest regions. A common range is applied and this canmask values higher than 160mm.
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extra-tropics, selected datasets agree on a higher
occurrence of extremes during the wet season
(figures 3(b), (f)), and in the tropics they indicate a flat-
ter distribution peaking in August (the Indian mon-
soon imprint; figure 3(d)). Interestingly, uncertainties
are higher in both extra-tropical bands compared to
the tropical band, where little interproduct spread
exists and only CHIRPS_v2.0 presents a slightly higher
peak in August. Previously, we highlighted higher
interproduct spread in extreme precipitation intensity
in the tropical band. We show here that it is certainly
not explained by different timings of extremes across
the datasets, i.e. that we are comparing annualmaxima
of precipitation that generally occur in similar months
but have intensity values that differ between products.
Over extra-tropical land in the Southern Hemisphere,
the occurrence distributions are relatively similar
across the datasets however with higher interproduct
spread for the satellite than the in situ-based cluster,
and again CHIRPS_v2.0 showing slightly higher
occurrences during the wet season. In the extra-tropi-
cal Northern Hemisphere, the satellite products gen-
erally indicate a flatter distribution compared to in situ

-based datasets, and their cluster presents higher inter-
product spread than the in situ-based cluster.

In extra-tropical Northern Hemisphere (and the
Southern Hemisphere to a lesser extent), GSMAP-
gauges-NRT-v6.0 shows the least variation over the
months in comparison to the other datasets and to
GSMAP-gauges-RNLv6.0 whose distribution peaks in
summer and early autumn (months 6–10), in agree-
ment with in situ-based observations (figure 3(b)).
Therefore, for purpose of our study investigating
Rx1day at the global scale, we suggest using the RNL
preferably over the NRT version for GSMAP-gauges
products in order to ensure that the extremes occur in
a reasonably similar period throughout the year (com-
pared to other datasets). In the Northern Hemisphere
(and the Southern hemisphere to a lesser extent), the
timing of extremes is relatively similar between both
3B42 versions, whereas 3B42RT_v7.0 shows higher
mean precipitation values than 3B42_v7.0 throughout
the year and in particular during the wet season
(figures 3(a), (b)). While it is difficult to conclude whe-
ther or not the 3B42RT_v7.0 version is overestimating
daily mean precipitation, we can suggest the use of the

Figure 3.Climatological (2001–2013) annual cycle of daily precipitation (inmm d−1; left panels), andmonthly distribution of Rx1day
occurrence (i.e. distribution of themonthswhen annualmaxima of daily precipitation are recorded between 2001 and 2013 for each
grid cell, in%; right panels). Land values in three latitudinal bands are considered: (a)–(b) 20 °N:50 °N, (c)–(d) 20 °S:20 °Nand (e)–(f)
20 °S:50 °S. A subset of 12 selected datasets are considered here based on results fromfigures 1 and 2: 5 in situ-based (blue label) and 7
satellite products with correction to in situ (orange label; see legend on panel (f)).
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3B42_v7.0 preferably over the 3B42RT_v7.0 version
for the 3B42 products as the former benefits from
much more rain gauges information than the latter.
Finally, we cannot conclude that there is a best version
among the REGEN and GPCC in situ-based products
but we have previously highlighted more intense pre-
cipitation extremes in GPCC_FDD_v2018 compared
to the other in situ-based products (and to most of the
datasets used here). Based on this intercomparison
and within the context of this study, we suggest a final
selection 10 observational datasets that enable reduced
interproduct spread in the estimation of Rx1day over
quasi-global land.

4.Discussion

We find a better general agreement within the in situ
-based cluster compared to any other cluster. This is
partly explained by some interproduct dependencies.
Out of 5 in situ-based datasets, there are two pairs from
a common center and indeed the two REGEN datasets
are largely similar (see also supplementary figure 4).
They are also generally similar to GPCC_FDD_v1.0
as they share the most of their rain gauges but
present lower estimates of Rx1day compared to
GPCC_FDD_v2018. Differences are likely to be due to
additional station data and improved quality control
in the later version of the GPCC dataset (pers comms
U. Schneider) but also might be related to changes in
the gridding method employed. The fifth in situ-based
dataset (CPC_v1.0) shares less with the four others,
but complete independence can never really be
achieved with station-based gridded products that
need to span asmany gauges as possible. Independence
for observations in general is very difficult to obtain as
most of the satellite products correct their estimates to
rain gauges and share the data from the same instru-
ments (radiosondes, satellite observations, etc).

An important limitation to our knowledge and our
ability to estimate observed extreme precipitation over
the globe is the lack of rain gauges in many regions
such as Africa, South-America and South-East Asia.
This is an evident limitation for products gridded from
in situ data but more generally for any type of observa-
tional dataset as most of them rely on station-based
estimates or use them for validation. The quantity of
stations is insufficient and heterogeneously dis-
tributed over the globe but coverage is also limited in
time (Kidd et al 2017). The two versions of the REGEN
dataset (Contractor et al 2019) allow the evaluation of
the impacts of temporal limitations. Indeed,
REGEN_LONG_v2019 only considers stations with at
least 40 years of data to generate the final gridded pro-
duct while REGEN_ALL_v2019 considers all available
stations. We find higher amounts of annual precipita-
tion extremes in REGEN_LONG_v2019 compared to
REGEN_ALL_v2019 (figures 1(a), (b)), with the lar-
gest differences over north-western South-America

and south-east Asia (supplementary figures 5(a), (b)),
but no such impacts for total annual precipitation
(supplementary figures 6 et 7(a), (b)). Furthermore,
the longest period of overlap among all datasets used
in this study is 13 years, which hinders the inter-
comparison of trends in observed extremes.

Based on this quasi-global intercomparison of
observations for Rx1day, we suggest (upon avail-
ability) using the version of a satellite product cor-
rected to rain gauges rather than the uncorrected
version. However, such suggestion might not hold for
all land regions of the globe or other grid resolutions.
Over south-east Asia and tropical Africa and South-
America for instance, we do not have sufficient sta-
tions and the available data quality is doubtful. Hence,
it remains to be verified if, over these regions of poor
coverage, it is best to consider the corrected or uncor-
rected version of a satellite product. Interestingly,
comparing such pairs of products over south-east Asia
for instance shows significant differences between the
two versions (e.g. CMORPH_v1.0_CRT versus
CMORPH_v1.0_RAW, CHIRPS_v2.0 versus
CHIRP_V2 and 3B42RT_v7.0 versus 3B42RT_UN-
CAL_v7.0; supplementary figure 5(g) versus (o), (h)
versus (p), (j) versus (r)), while only a few rain gauges
exist over this area. Similarly, we also find important
differences for annual total precipitation between the
corrected and uncorrected versions of a satellite pro-
duct over tropical regions poorly sampled on the
ground (supplementary figures 7(j), (r)). The accuracy
of such correction to rain gauges and its value should
then be further investigated region by region and indi-
vidually for each dataset.

5. Conclusion

This study focuses on the estimation of the annual
maximum 1 day precipitation amount (Rx1day index)
in a variety of observations and the assessment of the
observational uncertainty (defined as interproduct
spread) over land at the (quasi) global scale. We have
conducted an intercomparison of 22 gridded products
(at 1°×1° daily resolution) that we have clustered
into four groups: in situ-based (5), satellite with (8) or
without (4) a correction to rain gauges and reanalyses
(5). We have compared the climatology of annual
maxima 1 day precipitation over the 2001–2013 per-
iod (overlapping all datasets) and have evaluated the
interproduct spread across the ensemble and within
each cluster. Compared to annual total daily precipita-
tion, annual extreme precipitation shows higher inter-
product spread. This is not sensitive to the use of
Rx1day as Alexander et al (2020) find that other
extreme precipitation indices (e.g. R99p) show similar
levels of interproduct spread (see also Herold et al
2017 andMasunaga et al 2019).

Reanalyses present a heterogeneous representa-
tion of extreme precipitation and in particular over the
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tropics with either a widespread wet (MERRA2 and
CFSR) or dry (MERRA1 and JRA-55) state -or a spa-
tially contrasted state for ERAi- compared to in situ
-based data. The interproduct spread is the highest
within the reanalyses cluster compared to any other
cluster. Our main recommendation is therefore to
avoid using reanalyses for observational evidence
when investigating extreme precipitation at the global
scale. Furthermore, we recommend the use of
GPCP_CDR_v1.3 without applying the valid range
provided in the file as it disregards all values above
100 mm. Finally, we do not recommend PER-
SIANN_v1_r1 because of a widespread dryness com-
pared to in situ-based data in addition to large areas of
missing values for some years. We emphasize that
these recommendations are relevant to the context of
this study, i.e. the estimation of annual maxima of
daily precipitation over quasi-global land.

Extreme precipitation intensity in satellite data
broadly compares well with in situ-based data. At the
quasi-global scale and at a 1°×1° grid resolution, our
results thus indicate that satellite data can be used with
in situ-based observations when assessing Rx1day.
Some satellite data provide different versions, with and
without a correction to rainfall gauges. Our work has
shown a general better agreement with in situ-based
observations and less interproduct spread for the cor-
rected datasets, which is therefore preferred to the
uncorrected version for broad-scale studies assessing
annualmaxima of daily precipitation.

Based on the level of observational uncertainty
associated with Rx1day over global land, we cannot
conclude in any product emerging as the best observa-
tional evidence (in agreement with Herold et al 2017).
We strongly encourage using an ensemble of observa-
tions from different sources and centers to estimate
precipitation extremes and better assess their asso-
ciated uncertainties. The interproduct spread in the
observations is probably underestimated in many stu-
dies focusing on observations or on model evaluation.
Herold et al (2016) show that this spread is similar to
the uncertainties (intermodel and internal variability)
of the Coupled Model Intercomparison Project Phase
5 (CMIP5, Taylor et al 2012) with regards to a pre-
cipitation index representing themean daily precipita-
tion amount when it rains (i.e. SDII index).
Furthermore, Herold et al (2017) show that Rx1day is
sensitive to different resolution. The interproduct
spread in the observations is significantly higher at a
resolution of 1°×1° than 2°×2°, which are, respec-
tively, the resolutions that the next generation of glo-
bal climate models (i.e. CMIP6) is likely to have and
the resolution of the last generation of models (i.e.
CMIP5). We therefore encourage model evaluation
studies to consider product sensitivity as higher model
resolutionwill certainly continue to be sought after.

For studying annualmaximum 1 day precipitation
over land at the (quasi) global scale, we suggest using
an ensemble of observations from the FROGS data-
base. Indeed, based on our results we recommend a
selection of in situ-based and satellite products (speci-
fically REGEN_ALL_v2019, REGEN_LONG_v2019,
GPCC_FDD_v1.0, GPCC_FDD_v2018, CPC_v1.0
(in situ-based) and GPCP_CDR_v1.3 –no valid range
applied-, CMORPH_v1.0_CRT, CHIRPS_v2.0, 3B42_
v7.0, GSMAP-gauges_RNL_v6.0 (corrected satellite)).
We find greater similarity in extreme precipitation
intensity and the timing of these extremes (i.e. distribu-
tion ofmonth of occurrence of thewettest day in a year)
within these selected datasets compared to all 22 pro-
ducts, giving some confidence to the use of this selection
of datasets. It is important to acknowledge that this
selection is relevant for the purposes of estimating
annual precipitation maxima over quasi-global land
butmight not be relevant to other precipitation indices,
grid resolutions or time scales. This reinforces the
need for more wide ranging extreme precipitation
intercomparisons.
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