Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue ACS Nano Année : 2020

Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition

Xin Li
  • Fonction : Auteur
  • PersonId : 758835
  • IdRef : 193139367

Résumé

Realizing high-performance nanoelectronics requires control of materials at the nanoscale. Methods to produce high quality epitaxial graphene (EG) nanostructures on silicon carbide are known. The next step is to grow Van der Waals semiconductors on top of EG nanostructures. Hexagonal boron nitride (h-BN) is a wide bandgap semiconductor with a honeycomb lattice structure that matches that of graphene, making it ideally suited for graphene-based nanoelectronics. Here, we describe the preparation and characterization of multilayer h-BN grown epitaxially on EG using a migration-enhanced metalorganic vapor phase epitaxy process. As a result of the lateral epitaxial deposition (LED) mechanism, the grown h-BN/EG heterostructures have highly ordered epitaxial interfaces, as desired in order to preserve the transport properties of pristine graphene. Atomic scale structural and energetic details of the observed row-by-row, growth mechanism of the 2D epitaxial h-BN film are analyzed through first-principles simulations, demonstrating one-dimensional nucleation-free-energy-barrierless growth. This industrially relevant LED process can be applied to a wide variety of van der Waals materials.
Fichier principal
Vignette du fichier
Gigliotti_BN_EG.pdf (24.94 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03037159 , version 1 (15-12-2020)

Identifiants

Citer

James Gigliotti, Xin Li, Suresh Sundaram, Dogukan A Deniz, Vladimir Prudkovskiy, et al.. Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition. ACS Nano, 2020, 14 (10), pp.12962-12971. ⟨10.1021/acsnano.0c04164⟩. ⟨hal-03037159⟩
104 Consultations
26 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More