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Potential energy surface and rovibrational bound states of the H2–C3N− van der

Waals complex

Miguel Lara-Moreno,1 Thierry Stoecklin,1 and Philippe Halvick1, a)

Université de Bordeaux, ISM, CNRS UMR 5255, 33405, Talence,

France

(Dated: 11 January 2019)

Since their recent detection in the interstellar medium, anions have raised the ques-

tion of their possible mechanisms of formation, destruction and excitation. This re-

quire the knowledge of their interaction with the most abundant interstellar species.

In the present work, a four dimensional rigid rotor model of the potential energy

surface is developed for the collision of C3N
− with H2. Ab initio calculations are

performed with explicitly-correlated coupled-cluster theory via CCSD(T)-F12/aug-

cc-pVTZ. Two linear equilibrium structures are found, different by the orientation

of C3N
−. Two more equilibrium structures, symmetrically equivalent, are obtained

by the permutation of H atoms. The vibrational dynamics is mainly controlled by

the considerable difference between the two bending frequencies which corresponds

to the hindered rotations of C3N
− and H2. This arises from the potential energy

surface which is soft for the rotation of C3N
− and stiff for rotation of H2, and also

from the large difference in mass between both monomers. Although a high barrier of

potential prevents the rotation of H2, a significant tunneling effect is observed which

causes a splitting in the degenerate energy levels. On the contrary, the rotation of

C3N
− is allowed since the energy of the saddle points is lower than the energy of the

bound states, but the wavefunctions remain localized around each linear structures

unless a large excitation energy is available.

a)E-mail:philippe.halvick@u-bordeaux.fr
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I. INTRODUCTION

Since the late 1900s, interstellar anions have been a controversial topic in the astrochem-

istry community1–7 as they are not only exotic molecules for such harsh environments, but

also could contribute to the growing of molecular complexity in the interstellar medium

(ISM). A keystone contribution to the field was the detection of the first interstellar anion

C6H
− in 20068. This discovery opened the gate to careful spectral explorations and subse-

quent detection of five more anions9–14, among them C3N
− which has a large dipole moment

and is remarkably stable since C3N has a large electron affinity15, 4.3 eV.

The anion-to-neutral ratios observed in the ISM are of the order of a percent16. The

column density of C3N
− is 0.5% that of C3N in IRC+1021614. An upper limit of 0.8%

of the latter ratio has been observed in TMC-114. These column densities are derived

under the assumption of the local thermodynamic equilibrium (LTE). However, in dilute

astrophysical environments, non-LTE excitation effects can be responsible for errors in the

determination of column densities. In the cold dense molecular clouds where C3N
− was

detected, the most abundant species is H2, and it is expected to induce rotational excitation

of C3N
− by collision. The knowledge of accurate rotational transition rate coefficients is

therefore required for predicting the rotational level populations in non-LTE environments.

Such calculations rely on the detailed knowledge of the potential energy surface (PES) of

the system formed by the two interacting molecules. In this paper, we report an accurate

PES for the H2–C3N
− system and investigate the properties of this PES by computing and

analyzing the bound states wavefunctions.

II. POTENTIAL ENERGY SURFACE

A. Ab initio calculations

As both C3N
− and H2 are linear closed shell molecules in their ground state, they are

well described by a mono-determinantal electronic wavefunction. This makes the coupled-

cluster method a reliable approach for calculating the interaction potential between these

two molecules. The explicitly-correlated coupled-cluster method with single and double ex-

citation complemented by a perturbative treatment of triple excitations (CCSD(T)-F12)

has been shown to provide an accurate description of the interaction between charged and
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FIG. 1. (color online) Body-fixed Jacobi coordinates used to describe the interaction between H2

and C3N
−.

neutral molecules17,18. Furthermore, the accuracy offered by the F12 approach when using a

triple-zeta basis set is comparable to the one of quintuple-zeta quality coupled-cluster calcu-

lation without F12. Therefore, this method has been widely used to map multidimensional

PES for a reduced computational cost.

Based on the aforementionned features, we have used in the present work the CCSD(T)-

F12 method with the aug-cc-pVTZ19 atomic orbitals basis set, the aug-cc-pVTZ/MP2FIT20

density fitting basis set and the cc-pVTZ/JKFIT21 resolution of the identity basis set, to

calculate the H2–C3N
− interaction energies on a 4D grid of points expressed in the body-

fixed Jacobi coordinates defined in Figure 1. Both monomers are assumed to be linear rigid

rotors. Since C3N
− is a long molecule, the interaction energy is strongly anisotropic for

small intermonomer separation. Therefore a large density of ab initio points was necessary

to describe properly this region. A total number of 28339 geometries expressed in Jacobi

coordinates were calculated with R ranging from 2 to 50 a0, θ1 from 0◦ to 90◦, θ2 from 0◦

to 180◦, and φ from 0◦ to 180◦.

For all these calculations carried out with the molpro package22, the H2 bond length

was fixed to its vibrationally averaged value in the rovibrational ground state rHH =

1.448736 a0 while the C3N
− bond lengths were set to their equilibrium values obtained from

CCSD(T)/aug-cc-pV5Z calculations23, namely, rC1C2 = 2.3653 a0, rC2C3 = 2.5817 a0, and

rC3N = 2.2136 a0. The basis superposition error (BSSE) was corrected by means of the

counterpoise procedure24 applied to the rigid monomer case.
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B. Analytical representation of the PES

The functional form used to fit the ab initio energy points is defined as the sum of

the two terms fSR and fLR associated with the short-range and long-range contributions,

respectively.

V (R, θ1, θ2, φ) = S(R)fSR(R, θ1, θ2, φ) + [1− S(R)]fLR(R, θ1, θ2, φ) (1)

where the switching function S(R) is defined as:

S(R) =
1

2
[1− tanh(A0(R−R0))] (2)

Each of the two long-range and short-range terms in equation (1) is expressed as a linear

combination of products of normalized associated Legendre polynomials P̄m
l and cosine

functions.

f(R, θ1, θ2, φ) =
∑
l1l2m

vml1,l2(R)P̄m
l1

(cos θ1)P̄
m
l2

(cos θ2) cos(mφ) (3)

In the latter expression, only even values of l1 are included as a result of the permutation

symmetry of the two H atoms.

For each point Ri of the radial grid, the short-range coefficient
[
vml1,l2(Ri)

]
SR

are obtained

through a weighted linear least squares fit of the ab initio data using equation (3). In this

step, we used the energy dependent weighting function w(E) in order to obtain the smallest

fitting errors in the low energy region of the PES,

w(E) = wmin +
wmax

2
[1− tanh(α(E − E0))] (4)

Additionally, an energy cut-off of 40 000 cm−1 was used in order to exclude from the fit the

highest energies arising from the monomers repulsion force at short distance of separation

and for θ2 close to 0◦ or 180◦. Then a cubic spline interpolation was performed to obtain

the short-range radial functions
[
vml1,l2(R)

]
SR

.

The discrete values of the long-range coefficients
[
vml1,l2(Ri)

]
LR

were obtained by applying

the same procedure, but using only the ab initio points for R ≥ 15 a0. Then the long-range

radial functions were obtained by a linear least squares fitting of the following expression

[
vml1,l2(R)

]
LR

=
8∑

k=3

tk(βR)

Rk
Cm

l1,l2,k
(5)
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TABLE I. Stationary points of the H2–C3N
− 4D PES. The angle φ is not defined (N/D) for the

collinear structures.

Point R (a0) θ1 (deg.) θ2 (deg.) φ (deg.) De (cm−1)

MIN1 9.39 0 or 180 180 N/D 769.75

MIN2 8.89 0 or 180 0 N/D 561.77

SP1 6.40 173.40 78.01 0 349.57

SP2 5.99 97.27 81.06 0 249.54

where tk is the Tang-Toennies damping function:

tk(x) = 1− e−x
k∑

i=0

xi

i!
(6)

A total of 243 angular functions, defined by {l1 ∈ [0, 6], l2 ∈ [0, 18], m ∈ [0, 4]}, were

needed to reproduce accurately the strong anisotropy of the short-range contribution while

only 25 angular functions, defined by {l1 ∈ [0, 2], l2 ∈ [0, 6], m ∈ [0, 2]}, were needed for the

accurate description of the long-range part. The non-linear parameters as well as those of

the weighting function (Eq. 4) were determined by the trial and error method, leading to

the following values: A0 = 1.8 a−10 , R0 = 20 a0, β = 6 a−10 , wmin = 0.001, wmax = 200,

E0 = 4000 cm−1, and α = 1.73× 10−3 cm−1.

The quality of the fitting procedure was checked by means of the root-mean-square (RMS)

error. The RMS error for negative interaction energies is 0.01 cm−1 while for energies in the

range 0—5000 cm−1 it is 0.06 cm−1. For energies above 5000 cm−1 the RMS error increases

more or less linearly with the energy. For instance, for energies in the range 5000—10000

cm−1 it is 59.6 cm−1 while the relative RMS error is only 0.66 %. These large errors are

located at high energy in the short-range repulsive region of the PES and are then expected

to have little to no consequences on the collisional dynamics at low temperatures which is

the main purpose of the present PES.

C. Features of the PES

Four types of stationary points have been found on the PES of the H2–C3N
− system

and are represented in Figure 2. These are the global minima MIN1, the secondary minima
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FIG. 2. (color online) 2D contour plot of the PES for φ = 0◦ and R relaxed. Contour lines are

equally spaced by 50 cm−1 and the energy zero corresponds to infinitely separated monomers.

MIN2, and the submerged saddle points SP1 and SP2. The geometries of the minima are

collinear while those of the saddle points are planar, as shown in Table I. The C end and the

N end of the C3N
− molecule are respectively pointing towards the H2 molecule in the MIN1

and MIN2 minima. Because of the exchange symmetry of the two H atoms, there are two

equivalent stationary points for each of the two minima MIN1 and MIN2 and also for each

of the saddle points SP1 and SP2. For the minima, the two equivalent stationary points are

related by the symmetry operation θ1 7→ θ1 ± π while for the saddle points SP1 and SP2,

the two equivalent stationary points are related by the symmetry operation θ1 7→ π − θ1

and φ 7→ φ ± π. Both types of saddle points correspond to the transition states for the

interconversion between a MIN1 and a MIN2 minima. In the case of the SP2 points, this

interconversion is accompanied by a permutation of H atoms. There is no saddle point

allowing a direct path from a MIN1 minimum to the other MIN1 minimum or from a MIN2

minimum to the other MIN2 minimum since the rotation of H2 is blocked by a large barrier

of potential. All these important features of the PES result from its strong anisotropy with

respect to the orientation of both monomers.
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D. Long-range intermolecular forces

In this section a physical analysis of the different contributions to the long-range in-

teraction potential is presented in order to get a better understating of the nature of the

interaction in the asymptotic region as well as to validate the extrapolation capabilities

of the present PES. The long-range potential is as usual defined as the sum of the three

electrostatic, induction and dispersion contributions,

V = Velec + Vind + Vdisp (7)

where each term is in turn expanded as in equation (3). Analytical forms of the leading

expansion coefficients for these three different kind of contributions were then obtained by

applying the approach of Buckingham25 and are shown in Table S1 (see supplementary

material).

The values of the multipole moments and polarizabilities appearing in these expressions

and which are used in the present work are given in Table II. They were calculated using

the finite field method implemented in molpro22 at the CCSD(T)/aug-cc-pVQZ level. Also

shown in Table II are the ionization energies of H2 and C3N
−, the later being considered to

be equal to the electron affinity of its neutral counterpart.

Figure 3 shows a comparison between the long-range fitted coefficients of the PES (equa-

tion 5) and their values obtained by using the formulae of Table S1 (see supplementary ma-

terial). A very good agreement is observed, although there are small differences at shorter

distances which probably result from the neglect of higher order induction and dispersion

terms which were excluded from our analysis. In the case of the dispersion contribution,

the disagreement may also result from the inaccuracy of the London formula. In any case,

the good agreement between both approaches demonstrates the good asymptotic physical

behaviour of the present PES which is then suitable for describing cold molecular collisions.

We furthermore conclude that the electrostatic charge–quadrupole interaction (∝ R−3), see

Figure 3 gives the largest contribution to the asymptotic regions of the potential apart in

a narrow θ1 interval where P̄ 0
2 (cos θ1) is close to zero and where the charge–induced dipole

interaction (∝ R−4) gives a larger contribution.
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TABLE II. Molecular properties of H2 and C3N
− needed in the calculation of long-range interac-

tions. The multipole moments and polarizabilities values have been calculated with the origin at

the center of mass. All values are in atomic units

Property H2 C3N
−

µ 0 1.38

Θ 0.48 -19.09

α‖ 6.72 83.93

α⊥ 4.74 38.1

A‖ 0 115.97

A⊥ 0 79.29

U 0.64a 0.16b

a Reference 26
b Reference 15

III. BOUND STATES

A. Method

The rovibrational energy levels Ei have been obtained by variationally solving the

space-fixed rigid rotor Schrödinger equation:

[
Ĥ(R, r̂1, r̂2)− Ei

]
ΨJM

i (R, r̂1, r̂2) = 0 (8)

Ĥ(R, r̂1, r̂2) =− h̄
2

2µ

[
1

R

∂2

∂R2
R +

l̂2

R2

]
+ Ĥ1(r̂1)

+Ĥ2(r̂2) + V (R, r̂1, r̂2) (9)

where R stands for the intermolecular separation vector, r̂1 and r̂2 for the angular coordi-

nates of H2 and C3N
−, respectively, µ is the reduced mass, while J and M are the total

angular momentum and its projection onto the space-fixed z-axis, respectively. The rigid

rotor Hamiltonian Hi of the linear molecule i obeys the Schrödinger equation

Ĥi(r̂i)Yjimi
(r̂i) = EjiYjimi

(r̂i) (10)
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FIG. 3. (color online) Comparison between the two methods of calculation of the expansion

coefficients vml1,l2(R) defined by equation (3). The coefficients are obtained from the fit of the ab

initio data (solid circles) or by the formulae of Table S1 (solid lines), see supplementary material.

where Eji = Biji(ji+1) and Yjimi
are spherical harmonic functions. The rotational constanst

Bi were set to their experimental values, namely 60.853 cm−1 for H2
27 and 0.186 cm−1 for

C3N
−23.

The rovibrational wavefunctions ΨJM
i are as usual expanded over a product of radial and

symmetry-adapted angular functions,

ΨJM
i =

∑
nk

cinkR
−1Gn(R)YJM

k (R̂, r̂1, r̂2) (11)

where k ≡ {j1, j2, j12, l}. The Sturmian functions Gi(R) are used to obtain a discrete variable

representation (DVR) of the radial part of these wave functions28 while the YJM
k (R̂, r̂1, r̂2)

are the coupled spherical harmonics defined by

YJM
k (R̂, r̂1, r̂2) =

∑
all m

〈j1m1j2m2|j12m12〉〈j12m12lml|JM〉

×Yj1m1(r̂1)Yj2m2(r̂2)Ylml
(R̂) (12)

The symmetry-adapted angular functions YJM
k (R̂, r̂1, r̂2) span the irreducible represen-

tations (irreps) of the group G4 (cf. supplementary material) which is the complete permu-

tation inversion group29 of the H2–C3N
− system. Since the Gi(R) radial functions belong

to the totally symmetric representation, thus the rovibrational wavefunctions ΨJM
i belong

9



TABLE III. Classification of the symmetry-adapted angular basis set according to G4 irreps as a

function of the parity, even (e) or odd (o), of j1 and j2 + l.

j1 j2 + l Γi

e e A1

e o A2

o e B1

o o B2

to the same representation than the YJM
k (R̂, r̂1, r̂2) functions over which they are expanded

(see Table III).

The final energies are obtained by a sequential diagonalization-truncation procedure30.

First, for each point of the radial DVR, the angular dependent part of the Hamiltonian is

diagonalized in the angular basis defined by equation (12), and then truncated by retaining

only the eigenfunctions whose eigenvalues are smaller than Ecut = 2000 cm−1. Secondly, the

truncated angular basis set and the radial DVR are used to represent the full Hamiltonian

which is then diagonalized. The convergence of the rovibrational energies with respect to

the size of the basis set was then checked. By setting the convergence criterion at 0.001

cm−1, we found that for each symmetry, 30 and 4 rotational functions for C3N
− and H2,

respectively, together with a 50 points radial DVR in the range 5–20 a0 are required to reach

convergence.

B. Vibrational levels and wavefunctions

The bound states energies for J = 0 are shown in Tables IV and V. The rovibrational

ground state is largely above the SP1 saddle points and slightly lower than the SP2 saddle

points by 7.7 cm−1. All other bound states are above all the saddle points, therefore the

rovibrational wavefunctions are expected to be delocalized over all minima.

Some physical insight on the nature of the vibrational wavefunctions can be extracted

from a normal mode analysis based on the Jacobi coordinates defined in Figure 1. The

coordinate φ is however not defined for all the minima which have a linear geometry. There-

fore the harmonics frequencies and normal modes of the minima have been obtained using
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TABLE IV. Lowest A1 energy levels for J = 0, lv = 0, and v3 = 0, with their assigned vibrational

quantum numbers v1 and v2 . The wavefunctions can be localized in MIN1 minima or in MIN2

minima or delocalized over all minima. Energy is given in cm−1.

Level MIN1 MIN2 Global Energy

v1 v2 v1 v2 v1 v2

0 0 0 0 0 -257.22

1 2 0 2 0 -232.95

2 4 0 4 0 -216.34

3 6 0 6 0 -203.00

4 8 0 8 0 -189.93

5 10 0 0 0 10 0 -174.95

6 10 0 0 0 12 0 -174.76

7 12 0 2 0 14 0 -160.57

8 12 0 2 0 16 0 -157.08

9 0 1 0 1 -153.89

10 18 0 -146.80

11 20 0 -137.43

12 2 1 2 1 -134.08

13 22 0 -125.76

14 4 1 4 1 -120.79

15 24 0 -113.17

16 6 1 6 1 -109.80

17 8 1 8 1 -99.17

18 26 0 -98.14

21 0 2 0 2 -83.73

22 28 0 -80.74

the Wilson’s FG method31 restricted to the 3D space spanned by the coordinates R, θ1

and θ2. The results are given in Table VI. Since the PES is highly anharmonic, the FG

harmonic frequencies are significantly different from the accurate fundamental frequencies.

However, it is still possible to establish a correspondence between both types of frequencies

and therefore to associate the normal mode displacements to the fundamental frequencies,

except for the ν3 mode for which the harmonic frequency is larger than the dissociation

energy. The high frequency of the ν3 mode can be understood if we observe the Figure 2.

Indeed, for θ2 = 0◦ or θ2 = 180◦, the motion along θ1 is blocked by a large potential barrier.
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TABLE V. Lowest B2 energy levels for J = 0, lv = 0, and v3 = 0, with their assigned vibrational

quantum numbers v1 and v2 . The wavefunctions can be localized in MIN1 minima or in MIN2

minima or delocalized over all minima. Energy is given in cm−1.

Level MIN1 MIN2 Global Energy

v1 v2 v1 v2 v1 v2

0 0 0 0 0 -242.50

1 2 0 2 0 -214.84

2 4 0 4 0 -193.29

3 6 0 6 0 -174.67

4 8 0 8 0 -156.44

5 0 0 [10] 0 -141.71

6 10 0 [12] 0 -137.29

7 0 1 0 1 -125.74

8 2 0 [14] 0 -120.00

9 12 0 [16] 0 -116.38

10 4 0 [18] 0 -101.76

11 2 1 2 1 -101.45

12 14 0 6 0 20 0 -95.02

13 14 0 6 0 22 0 -84.47

14 4 1 4 1 -82.69

15 24 0 -71.89

16 6 1 6 1 -66.53

17 26 0 -59.89

20 0 2 0 2 -39.41

22 0 1 1 -33.47

We furthermore note that the bending modes ν1 and ν3 are doubly degenerate as a result of

the linear geometry of the equilibrium structures.

The molecular symmetry group29 for linear molecules without a center of symmetry is

called C∞v(M) and is made of the two elements E and E∗. The harmonic vibrational

wavefunctions, which are localized in a single potential well, can be classified according

to the C∞v(M) group irreps as Σ+ or Σ− if they are symmetric or antisymmetric with

respect to the inversion operation E∗. The connection between the harmonic model and the

full variational calculation can be deduced by invoking the permutation between the two

identical H atoms. This operation transforms a minimum structure associated with θ1 = 0◦

12



TABLE VI. Frequencies and normal modes coordinates for the global (MIN1) and secondary

(MIN2) minima of H2–C3N
−.

MIN1 MIN2

Mode Displacement Harmonic Fundamental Harmonic Fundamental

ν1 ∆θ2 49.9 14.4 44.8 8.8

ν2 ∆R 196.8 103.3 201.5 –

ν3 ∆θ1 540.5 – 420.7 –

into another equivalent one with θ1 = 180◦ or inversely. Therefore, the global wavefunctions

can be expressed as linear combinations of two equivalent local wavefunctions:

Ψ1 =
1√
2

(ϕ0◦ + ϕ180◦) (13)

Ψ2 =
1√
2

(ϕ0◦ − ϕ180◦) (14)

These combinations lead to the following correspondence between the irreps of the

C∞v(M) and G4 groups:

2Σ+ = A1 ⊕B2

2Σ− = A2 ⊕B1 (15)

In our case, the normal modes coordinates and the harmonic vibrational wavefunctions

are invariant with respect to inversion. Thus they belong to the Σ+ irrep. Hence, for J = 0,

we can obtain only global vibrational wavefunctions belonging to the A1 and B2 irreps.

In the harmonic approximation, vibrational energies levels belonging to A1 are degenerate

with those of the B2. In the variational approach, which is based on a realistic PES, these

levels are no longer degenerate since they are coupled by the PES. For instance, the energy

splitting is about 15 cm−1 between the ground state of the symmetry A1 (denoted by A1.0)

and the corresponding ground state of the symmetry B2 (denoted by B2.0). Hereinafter,

the levels are denoted by the symbol of the irrep followed by the number of the state in the

series of states belonging to the same irrep, ordered by increasing energy.

Contour plots of selected wavefunctions for J = 0 are shown in Figure 4. Let us remind

that the two equivalent global minima MIN1 are located at θ2 = 180◦ while the two equiv-
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FIG. 4. (color online) 2D contour plots for selected J = 0 rovibrational wavefunctions. Red

contours correspond to positive amplitude and blue contours to negative amplitude. a–d) R is

relaxed and φ = 0◦; The shaded areas show the classically forbidden regions at the energy of the

vibrational level. e–h) θ1 = 0◦ and φ = 0◦.

alent secondary minima MIN2 are at θ2 = 0◦. The panels (a) and (b) of Figure 4 show the

ground state of each symmetry, A1 and B2. Although their energies are above the saddle

points, these wavefunctions are noticeably localized in the MIN1 region. In the panels (c)

and (d) are shown the wavefunctions which can be described as the ground states of the sec-

ondary minima since they are the lowest levels clearly localized in the MIN2 region. These
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levels are labeled as A1.5 and B2.5. Again, although their energies are significantly above

the MIN1↔MIN2 interconversion barriers, these wavefunctions remain mostly localized in

the MIN2 region. One can however observe in Figure 4 (c) a mixing with a ν1 overtone

localized in the global minimum MIN1. Such anharmonic resonances can be seen in many

A1 rovibrational levels, while in contrast they have a low occurrence for the B2 states. Fig-

ure 4 (c) shows also that the A1.5 wavefunction span the whole range of variation of θ1, thus

revealing a strong tunneling effect between the two equivalent MIN2 minima, even though

the potential barrier is higher by about 125 cm−1 than the vibrational level A1.5.

The first excited levels localized around the global minima MIN1, labeled by A1.1 and

B2.1, correspond to a vibrational excitation in the mode ν1. The corresponding levels for the

secondary minima MIN2 are A1.7 and B2.8. The levels A1.1 and B2.8 are shown in Figure 4

(e) and (f), respectively. Because of the small value of the ν1 frequency for both MIN1 and

MIN2 minima, many of the rovibrational levels are either pure or mixed ν1 overtones.

The fundamental stretching mode is identified in levels A1.9 and B2.7 for the global

minima MIN1, while for the secondary minima MIN2, it appears in levels A1.20 and B2.22.

The levels A1.9 and B2.22 are shown in Figure 4 (g) and (h), respectively. Overtones and

combination tones of the stretching mode ν2 also occur although in a minor extent because

of the high frequency of this mode.

The list of the lowest levels for which it is possible to assign vibrational quantum numbers

is shown in Tables IV and V. Only levels with J = 0 are shown, and therefore the vibrational

angular momentum lv associated to each doubly degenerate bending motion is also equal

to zero. This imply an equal number of quanta in both states of each doubly degenerate
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bending motions. Only the v1 and v2 quantum numbers are reported in Tables IV and V

since no excited state was found for the ν3 bending motion. As a matter of fact, this mode

has a very large harmonic vibrational frequency, much larger than the dissociation energy.

Four cases appear when we examine the nodal pattern of the wavefunctions with respect

to the rotation of C3N
−, i.e. the coordinate θ2. In case 1 or 2, the wavefunction is localized

in MIN1 or in MIN2 minima respectively, as shown in panels (a) and (d) of Figure 4. In case

3, the wavefunction is a combination of two local wavefunctions in MIN1 and MIN2 minima

as for example shown in panel (c) of Figure 4. In case 4, the wavefunction is spanning the

whole range of variation of θ2, as shown in Figure 5. In order to distinguish between these

cases, three different lists of quantum numbers v1 and v2 are reported in Tables IV and

V. When the vibrational wavefunction is clearly localized in the MIN1 minima, or in the

MIN2 minima, or in both, then we assign quantum numbers to these local wavefunctions.

The third list of quantum numbers is associated to the global wavefunction, which can be a

wavefunction belonging to any of the four cases.

Table IV shows that levels 0–4 are localized only in MIN1 while levels 5–8 are localized

in MIN1 and MIN2 and are associated in symmetric or antisymmetric combinations, the

antisymmetric combination adding one nodal plane in both degenerate states of the bending

motion ν1. Some higher levels, such as levels 10, 11 and 13 for example, are fully delocalized

(see Figure 5) and therefore only global quantum numbers can be assigned to these levels.

Whereas global quantum numbers can be assigned to all the A1 levels listed in Table IV,

such an assignation does not appear to be possible for all the B2 levels listed in Table V as

the wavefunctions of these levels which are localized in the MIN2 minima are not mixed with

those localized in the MIN1 minima or vice versa. This is the case of the B2.5, B2.6, B2.8,

B2.9, and B2.10 levels. However, if we assume that the states are mixed, for example B2.5

and B2.6, then symmetric and antisymmetric combinations can be done and a hypothetical

v1 global quantum number can be defined. In Table V, the hypothetical quantum numbers

are marked with square braket.

Another important feature of this system is that a significant fraction of the vibrational

wavefunctions are localized in small regions of the coordinate space although they could be

delocalized over large regions since their energy is well above the interconversion barriers.

This can be understood by analyzing the distribution of the vibrational energy among the

mode of motions. The vibrational stretching motion frequency ν2 is relatively large, around
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103 cm−1, while the frequency ν3 which corresponds to the hindered rotation of H2, is even

larger. Therefore, these two modes of motion withhold a large part of the vibrational energy,

but they are not efficient for triggering the MIN1↔MIN2 interconversion since this needs

a rotation of C3N
−. It is mainly the bending mode ν1 which triggers the interconversion.

Only the levels with enough energy in this last mode of motion are delocalized over both

minima, MIN1 and MIN2, such as, for instance, the level A1.5 shown in Figure 4 (c) .

a. Vibrational frequencies The ν2 fundamental frequency associated with the MIN1

minima can be extracted from Table IV, but not the ν1 fundamental frequency since the

level v1 = 1 is not allowed for J = 0. Indeed, v1 = 1 implies lv = ±1, which in turn implies

J ≥ 1. We have thus computed the J = 1 bound states and obtained the ν1 fundamental

frequency for both MIN1 and MIN2 minima. These results are shown in Table VI along

with the harmonic frequencies. The differences between both sets of data reveal the strong

anharmonicities of the vibrational motions. A rough estimate of the ν3 fundamental fre-

quency can also be obtained from the equation ν3 = ZPE - ν1 - ν2/2. This gives a frequency

value of 446 cm−1, which is much larger than the dissociation energy, 257 cm−1.

b. Rotational Constants Since the MIN1 and MIN2 equilibrium structures of H2–C3N
−

are linear, there are only two equal rotational constants for each structure which can be

calculated either by diagonalizing the inertia tensor or from the evaluation of the energy

differences between the J = 0 and J = 1 ground levels. In the first case, we obtain 0.111

cm−1 and 0.115 cm−1 for the MIN1 and MIN2 equilibrium structures, respectively while in

the second case, we obtain 0.165 cm−1 and 0.265 cm−1. However for the MIN2 structure,

the energy difference between the J = 0 and J = 1 levels involve mixed states, i.e. states

which are not fully localized in the MIN2 potential wells, as shown in panel (c) of Figure 4.

C. Para and ortho states

Since the nuclear spin of hydrogen atom is IH = 1
2
, the wavefunction of H2 must be anti-

symmetric under the exchange of the two nuclei, as required by the Pauli’s principle. There-

fore, the total wavefunction of H2–C3N
− which is given by the product Ψelec×Ψrovib×Ψspin

must belong to the irreps B1 or B2 of the group G4. The electronic ground state wavefunc-

tion Ψelec belongs to the totally symmetric representation. The rovibrational wavefunctions

Ψrovib can belong to any of the G4 irreps for J ≥ 1 and only to A1 and B2 for J = 0. We can
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obtain the symmetry representation of the spin wavefunctions Ψspin by considering the most

abundant isotopes 1H, 12C, 14N whose nuclear spin are IH = 1
2
, IC = 0, IN = 1. Hence, the

C3N
− nuclear spin is I = 1 while the nuclear spin of H2 can be I = 0 for (para-H2) or I = 1

for (ortho-H2). The coupling of the singlet spin state of H2, which is antisymmetric under

the exchange of nucleus, with the triplet spin state of C3N
− gives an antisymmetric triplet

spin state for H2–C3N
−. On the other side, the coupling of the triplet spin state of H2,

which is symmetric under the exchange of nucleus, with the triplet spin state of C3N
− gives

a singlet, a triplet, and a quintet spin states for H2–C3N
− which are all symmetric under

H exchange. Using now the table of characters of the G4 group and noting that all spin

functions are symmetric under the inversion operator E∗, we see that the symmetric (under

exchange) spin functions of H2–C3N
− belong to the A1 irrep, while the antisymmetric spin

functions belong to the B2 irrep.

Therefore, the spin states with symmetry A1 (I = 0, 1, 2) are combined with the B1

and B2 rovibrational states to give the ortho states of H2–C3N
− while the B2 spin states

(I = 1) are combined with the A1 and A2 rovibrational states to give the para states. The

name ortho(para) is given to the states of the complex that asymptotically correlate with

the dissociation limit ortho–H2(para–H2) + C3N
−. Since transitions between ortho and

para states are forbidden one can consider them as two different species of the H2–C3N
−

complex. The rovibrational ground state of the para form is more stable than the ortho one

by approximately 15 cm−1.

IV. CONCLUSION

A new 4D PES which accounts for the interaction between H2 and the rigid C3N
− has

been presented. This PES has been designed for the study of collisional dynamics at low

temperatures. We carefully checked the accuracy of the PES taking a peculiar care of

the long-range interactions which accurately describe the asymptotic limit of dissociation.

Two different linear equilibrium structures have been found, one with the C end of C3N
−

pointing towards H2 which is the global minimum, and the other one with the N end of

C3N
− pointing towards H2 which is the secondary minimum. Since the PES is symmetric

under the exchange of the two H atoms, there is a total a four minima in the PES.

The rovibrational dynamics of the H2-C3N
− van der Waals complex has been investi-
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gated, considering H2 and C3N
− as linear rigid rotors. The examination of the rovibrational

wavefunctions has revealed some quantum features such as unexpected wavefunction local-

ization, tunneling effect and anharmonic resonances. The H2–C3N
− system exhibits two

doubly degenerate bending modes. One corresponds mainly to the hindered rotation of

C3N
− and the other mainly to the hindered rotation of H2. The vibrational dynamics of

H2–C3N
− is principally controlled by the considerable difference between the two bending

frequencies. This difference results on one side from the large difference in mass between

H2 and C3N
− and on the other side from the potential which is soft for the rotation of

C3N
− and stiff for the rotation of H2. The bending/rotation of C3N

−, which triggers the

interconversion MIN1↔MIN2, is largely allowed since the saddle points energies are below

those of almost all vibrational levels. But since much of the available vibrational energy is

withholded by the bending/rotation motion of H2 and also by the stretching motion, the

wavefunctions remain localized in the MIN1 minima or in the MIN2 minima. In contrast,

the bending/rotation of H2, which should allow transforming one MIN1 minimum into the

other or one MIN2 minimum into the other, is blocked by a high potential barrier. But since

H2 is light, a significant tunneling effect is observed which causes a lifting of the degeneracy

between symmetric and antisymmetric wavefunctions localized in equivalent potential wells

by about 15 cm−1.

Fundamental frequencies and rotational constants have been determined for both type of

minima of the complex. For the MIN1 and MIN2 equilibrium structures, the fundamental

frequencies of the mode of motion which corresponds mainly to the hindered rotation of

C3N
− are 14.4 cm−1 and 8.8 cm−1, respectively. For the MIN1 equilibrium structure, the

fundamental frequency of the intermonomer stretching mode of motion is 103.3 cm−1 . The

rotational constants, calculated by the difference of energy between rovibrational levels, are

0.165 cm−1 and 0.265 cm−1 for the MIN1 and MIN2 equilibrium structures, respectively.

SUPPLEMENTARY MATERIAL

See supplementary material for a Fortran subroutine that computes the H2–C3N
− PES

and also for four tables: the long-range interaction formulae, the character table of the G4

group and the complete lists of the vibrational energy levels supported by the H2–C3N
−

PES for J = 0 and J = 1.
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