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Abstract. In this study, we describe different modeling approaches for ovarian follicle population
dynamics, based on either ordinary (ODE), partial (PDE) or stochastic (SDE) differential equations,
and accounting for interactions between follicles. We put a special focus on representing the population-
level feedback exerted by growing ovarian follicles onto the activation of quiescent follicles. We take
advantage of the timescale difference existing between the growth and activation processes to apply
model reduction techniques in the framework of singular perturbations. We first study the linear
versions of the models to derive theoretical results on the convergence to the limit models. In the
nonlinear cases, we provide detailed numerical evidence of convergence to the limit behavior. We
reproduce the main semi-quantitative features characterizing the ovarian follicle pool, namely a bimodal
distribution of the whole population, and a slope break in the decay of the quiescent pool with aging.

Résumé. Dans cette étude, nous décrivons différentes approches de modélisation de la dynamique
des populations de follicules ovariens, basées sur des équations différentielles ordinaires (EDO), aux
dérivées partielles (EDP) ou stochastiques (SDE), et tenant compte des interactions entre follicules.
Nous avons mis un accent particulier sur la représentation des rétro-actions exercées par les follicules en
croissance sur l’activation des follicules quiescents. Nous tirons parti de la différence d’échelle de temps
entre les processus de croissance et d’activation pour appliquer des techniques de réduction de modèle
dans le cadre des perturbations singulières. Nous étudions d’abord les versions linéaires du modèle afin
d’en déduire des résultats théoriques sur la convergence vers le modèle limite. Dans le cas non linéaire,
nous fournissons des arguments numériques détaillés sur la convergence vers le comportement limite.
Nous reproduisons les principales caractéristiques semi-quantitatives caractérisant le pool de follicules
ovariens, à savoir une distribution bimodale de la population totale et une rupture de pente dans la
décroissance du pool de follicules quiescents avec le vieillissement.
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Introduction

In mammals, the pool of oocytes (egg cells) available for a female throughout her reproductive life is fixed
very early, either during the fetal life or in the perinatal period. All along their maturation, oocytes are
sheltered within spheroidal somatic structures called ovarian follicles. Folliculogenesis is the process of growth
and maturation undergone by ovarian follicles from the time they leave the pool of quiescent, primordial follicles
until ovulation, when they release a fertilizable oocyte.
Follicle growth is first due to the enlargement of the oocyte, then to the proliferation of somatic cells organized
into successive concentric cell layers, and finally to the inflation of a fluid-filled cavity (antrum) that forms above
a critical size. The activation of primordial follicles can occur at any time once they are formed [15], even if they
can remain quiescent for up to tens of years [19]. Growing follicles can progress along the first developmental
stages (known as “basal development”) before puberty. The final developmental stages (known as “terminal
development”) can only occur after puberty ; they are related to the dynamics of ovarian cycles, involving
endocrine feedback loops between the ovaries on one side, and the hypothalamus and pituitary gland on the
other side. The whole sequence of development spans several months, as assessed by cell kinetics studies [10] or
grafts of ovarian cortex [3]. The terminal stages are the shortest ; they cover a few weeks at most.
Since follicle activation is asynchronous, all developmental stages can be observed in the ovaries at any time
during reproductive life. The follicle distribution (mostly studied using the size as a maturity marker) has a
characteristic bimodal pattern, which is remarkably preserved between species. This pattern remains similar
with ovarian aging, yet with a decreased amplitude [4], as a result of the progressive exhaustion of the quiescent
pool. Such a distribution is shaped not only by the differences in the follicle activation times, but also by the
hormonal interactions between follicles [17]. In particular, the activation and growth rates in the earliest stages
are moderated by the Anti-Müllerian Hormone (AMH) secreted locally by the subpopulation of “intermediary”
follicles (rigorously speaking: from the fully activated one-layer stage to the pre-antral and small antral stages)
[20]. At the other end, the selection of ovulatory follicles results from a competition-like process operating
amongst terminally developing follicles [1], which is mediated by endocrine controls and associated with a
species-specific number of ovulations. Namely, inhibin (a peptid hormone) and estradiol, produced by the
mature follicles, feedback onto the pituitary gland, leading to a drop in a pituitary hormone (the Follicle-
Stimulating Hormone, FSH) supporting follicle survival.
Less than one in a thousand of the follicles manage to reach the ovulatory stage. All others disappear through
a degeneration process (atresia) associated with the death of the somatic cells (during mid and terminal fol-
liculogenesis) or oocyte (in the quiescent pool and during early folliculogenesis). For instance, in humans, the
quiescent pool size is of the order of 1 million follicles, amongst which only some hundreds will reach ovula-
tion [16].

Experimentalist investigators have proposed classifying follicle development into different stages, according
to morphological and functional criteria such as follicle and oocyte diameters, number of cell layers, number
of somatic cells, antrum formation [10, 18]. Hence, a natural formalism to consider when modeling follicle
population dynamics is that of compartmental modeling, using either deterministic or stochastic rates for
transfer (λi) and exit (µi) rates (see Equation (1)). Pioneering studies (see e.g. [7]) have focused on fitting the
parameters entering these rates according to follicle numbers available in each developmental stage. However,
these studies remained rather descriptive and considered at best possibly time-varying (piecewise constant)
rates [8], yet with no follicle interaction.

F0
λ0−−−−→ F1

λ1−−−−→ · · · λN−1−−−−→ FNyµ0

yµ1

y··· yµN
∅ ∅ ∅ ∅

(1)
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Most of the classification criteria change in a continuous manner. In addition, the most common variable
available to monitor follicle development on the ovarian scale, follicle size, is an intrinsically continuous vari-
able. Hence, another suitable modeling formalism is that of PDE models for structured population dynamics.
Although the interest of such a formalism has been pointed out quite early [14], it has yet not been implemented.
Finally, in some situations, a discrete stochastic formalism can be useful both to handle finite-size effects
and follow individual follicle trajectories. This is especially true for the relatively small cohort of terminally
developing follicles, and for transient physiological regimes when follicle pools are either still replenishing, or, on
the contrary getting progressively exhausted. In any case, such a formalism gives insight into the fluctuations
around the average deterministic behavior.
In this study, we describe different modeling approaches for follicle population dynamics, based on either ODE,
PDE or SDE, and accounting for interactions between follicles. We put a special focus on representing the
population-level modulation exerted by growing ovarian follicles on the activation of quiescent, primordial
follicles. We take advantage of the timescale difference between the growth and activation processes to apply
model reduction techniques in the framework of singular perturbations (slow/fast systems).
The paper is organized as follows. We successively introduce the ODE, PDE and SDE formulation of the model
for follicle population dynamics. We describe the initial (non-rescaled) model in the ODE case. In each case,
we introduce (i) the model in rescaled timescale exhibiting a slow/fast structure with a small perturbation
parameter (ε > 0) and (ii) the model in the limit ε → 0. We discuss the well-posedness of the limit models in
two situations: the linear formulation and a weakly nonlinear formulation in which only the quiescent follicle
population is subject to a feedback from the remaining of the population. In the linear case, we prove the
convergence of the rescaled to the limit models. In the nonlinear case, we provide detailed numerical evidence
of convergence. The numerical illustrations are settled within a biologically-realistic framework, allowing us to
reproduce the main semi-quantitative features characterizing the dynamics of the ovarian follicle pool, namely
a bimodal distribution of the whole population and a slope break in the decay of the quiescent pool with aging.

1. Compartmental, ODE-based model

1.1. Initial model

Starting from the schematic model (see Eq. (1)), we formalize a system of nonlinear ordinary differential
equations (ODE) as follows. Let d ∈ N∗ and y = (y0, . . . , yd) be a function such that, for all i ∈ {0, . . . , d},
yi : t ∈ R+ 7→ yi(t) represents the time evolution of the number of follicles of maturity i. Follicles in the first
compartment (i = 0) are named quiescent follicles, and their maturation and death rates are denoted by λ̄0

and µ̄0, respectively. Follicles in the intermediate compartments (1 ≤ i ≤ d − 1) are the growing follicles, and
may either mature and go to the next maturation stage i + 1, at rate λi, or die at rate µi. Follicles in the
last compartment (i = d) are named the mature follicles and can only die at rate µd, i.e. λd = 0 (death in
this compartment corresponds to either degeneration or ovulation). All the rates (µi, λi) may depend on the
growing and mature follicles population (non-local interactions), which leads to the following nonlinear ODE
system 

dy0(t)

dt
= −

(
λ̄0(y(t)) + µ̄0(y(t))

)
y0(t) ,

dy1(t)

dt
= λ̄0(y(t))y0(t)−

(
λ1(y(t)) + µ1(y(t))

)
y1(t),

dyi(t)

dt
= λi−1(y(t))yi−1(t)−

(
λi(y(t)) + µi(y(t))

)
yi(t), i ∈ {2, . . . , d} ,

(2)
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where, for i = 0,

λ̄0(y) =
f̄0

1 +K1,0

d∑
j=1

ajyj

, µ̄0(y) = ḡ0

1 +K2,0

d∑
j=1

bjyj

 , (3)

with non-negative parameter constants f̄0, ḡ0, K1,0, K2,0, and aj ∈ [0, 1], bj ∈ [0, 1].
For i ∈ {1, . . . , d},

λi(y) =
fi

1 +K1,i

d∑
j=1

ω1,jyj

, µi(y) = gi

1 +K2,i

d∑
j=1

ω2,jyj

 , (4)

with non-negative parameter constants, fi (fd = 0), K1,i, gi, K2,i and ω1,j ∈ [0, 1], ω2,j ∈ [0, 1].
The formulation of the growth and death rates is based on the following, biologically-grounded principles, and
motivated by biological knowledge (see Introduction). Parameters fi (resp. f̄0) and gi (resp. ḡ0) set the “basal
levels” of growth or death rates, as they would be ideally observed in standardized situations where follicle
dynamics would be uncoupled from one another. Such a situation is rather well approximated by innovative
devices of in vitro culture of isolated ovarian follicles. From this basal situation, switching the coupling on
would result in lowering the growth rate and increasing the death rate. Parameters K1,i (resp. K2,i) tune the
sensitivity of the growth rate (resp. death rate) of a given developmental stage i to the other follicles’ feedback.
Parameters aj and ω1,j (resp. bj and ω2,j) are used to weight, or even filter (when their values are set to zero)
the contribution of follicles from any developmental stage j ≥ 1 to the control of the maturation rates (resp.
death rates) of quiescent and growing follicles. For instance, the maturation rates of the earliest stages are
slowed down by AMH, which is secreted by the small growing follicles. On the other end, the survival of the
terminally developing follicles is highly sensitive to the sufficient supply of FSH, whose levels are in turn down
regulated by hormones secreted by the cohort of terminally developing follicles itself.
With a non-negative vector yin ∈ Rd+1

+ as initial data, one can see that Eq. (2) generates a unique non-negative
solution for all times (the right-hand side is globally Lipschitz, with positive off-diagonal entries). Moreover,
one can obtain immediately the following conservation law,

d

dt

d∑
i=0

yi(t) = −µ̄0(y(t))y0(t)−
d∑
i=1

µi(y(t))yi(t) ≤ 0 , (5)

which shows that any follicle sub-population yi is globally bounded.

1.2. Rescaled model

As outlined in the Introduction, before reproductive senescence, quiescent follicles are very numerous compared
to the growing and mature follicles, follicle activation dynamics are much slower than growth dynamics, yet the
flow of follicles between each compartment is of the same order. In consistency with this timescale contrast, we
introduce a small positive parameter ε� 1, such that

f̄0 = εf0 , ḡ0 = εg0 , yin0 =
xin0
ε
, (6)

with non-negative constants f0, g0 and positive initial data xin0 , independent of ε. Note that the initial flow
f̄0y

in
0 = f0x

in
0 is preserved.

We then define the rescaled solution x = (x0, . . . , xd) by, for all t ≥ 0,

x0(t) = εy0(t/ε), and for all i ≥ 1 , xi(t) = yi(t/ε). (7)
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Then x is solution of the following system
dx0(t)

dt
= −

(
λ0(x(t)) + µ0(x(t))

)
x0(t) ,

ε
dxi(t)

dt
= λi−1(x(t))xi−1(t)−

(
λi(x(t)) + µi(x(t))

)
xi(t), i ∈ {1, . . . , d} ,

(8)

with initial condition given by x0(t = 0) = xin0 , and xi(t = 0) = xini := yini , for i ∈ {1, . . . , d}, and where, for
i = 0,

λ0(x) =
f0

1 +K1,0

d∑
i=1

aixi

, µ0(x) = g0

1 +K2,0

d∑
j=1

bjxj

 , (9)

and λi and µi, for i ∈ {1, . . . , d}, are defined in Eq. (4). We note that the conservation law (5) becomes

d

dt
x0(t) + ε

d

dt

d∑
i=1

xi(t) = −
d∑
i=0

µi(x(t))xi(t) ≤ 0 . (10)

We now consider the limit for which the small parameter ε tends to 0 and the associated sequence (xε) solution
of system (8). In such a case, system (8) is called a “slow-fast” system (xε0 is the slow variable, (xε1, . . . , x

ε
d) are

the fast variables) and the study of the limit behavior when ε → 0 is a singular perturbation problem (see for
instance [21]).

1.3. Limit model

Formally, setting ε = 0 in system (8) leads to the following system:{
dx̄0(t)

dt
= −

(
λ0(x̄(t)) + µ0(x̄(t))

)
x̄0(t) ,

0 = λi−1(x̄(t))x̄i−1(t)−
(
λi(x̄(t)) + µi(x̄(t))

)
x̄i(t), i ∈ {1, . . . , d} ,

(11)

with initial condition given by x̄0(t = 0) = xin0 , and x̄i(t = 0) = x̄ini ≥ 0, that satisfies the second line of Eq. (11)
at t = 0. Note that system (11) is a differential-algebraic system, in which the variable (x̄1, . . . , x̄d) can be seen
as reaching instantaneously (at any time t) a quasi-steady state, “driven” by the time-dependent variable x̄0(t).
System (11) is not necessarily well-posed, as there may be several solutions to the second line of Eq. (11). In
the next two specific examples, we can prove that system (11) does admit a single positive solution, which is a
natural limit candidate for the sequence xε.

Example 1 (Linear case). Let us suppose that K1,i = K2,i = 0 for all i ∈ {0, . . . , d}, and fi + gi > 0 for all
i ∈ {1, . . . , d}. Then, system (11) becomes linear, and has a unique solution given by x̄ = (x̄0, . . . , x̄d) such that
for all t ≥ 0, 

x̄0(t) = xin0 exp (−(f0 + g0)t) ,

x̄i(t) =

i−1∏
j=0

fj
fj+1 + gj+1

 x̄0(t), i ∈ {1, . . . , d} . (12)

Example 2 (Feedback onto quiescent follicle activation and death rates). Let us suppose that K1,i = 0, K2,i = 0
and fi + gi > 0 for i ∈ {1, . . . , d}, yet K1,0 > 0 and K2,0 ≥ 0. Then, system (11) with positivity requirement
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(xi ≥ 0 for i ∈ {0, . . . , d}) can be rewritten as:

dx̄0(t)

dt
= −

(
λ0(x̄(t)) + µ0(x̄(t))

)
x̄0(t) ,

x̄1(t) =
−(f1 + g1) +

√
(f1 + g1)2 + 4f0x̄0(t)(f1 + g1)K1,0

∑d
i=1 ai

∏i−1
j=1

fj
fj+1+gj+1

2(f1 + g1)K1,0

∑d
i=1 ai

∏i−1
j=1

fj
fj+1+gj+1

,

x̄i(t) =

i−1∏
j=1

fj
fj+1 + gj+1

 x̄1(t), i ∈ {2, . . . , d} ,

(13)

which admits a unique solution. Indeed, one can verify that x̄1 is the only positive root of a polynomial of
degree 2, namely

f0x̄0 = (f1 + g1)

1 +K1,0

d∑
i=1

ai

i−1∏
j=1

fj
fj+1 + gj+1

x̄1

 x̄1 .

1.4. Convergence in the linear case

In this paragraph, we assume that K1,i = K2,i = 0 for all i ∈ {0, . . . , d}, and fi + gi > 0 for all i ∈ {1, . . . , d}
as in Example 1. In such a case, one can solve system (8) explicitly for each ε > 0. The solution is given by,
using vectorial notations, for all t ≥ 0,

xε0(t) = xin0 exp (−(f0 + g0)t) ,

(xε1, · · · , xεd)T (t) = e−
B t
ε (xin1 , · · · , xind )T +

∫ t

0

1

ε
e−

B(t−s)
ε e1f0x

ε
0(s)ds,

(14)

where e1 = (1, 0, · · · , 0)T and

B =



(f1 + g1) 0 . . . 0

−f1
. . .

...

0
. . .

. . .
...

... 0
0 0 −fd−1 (fd + gd)


.

It is thus clear that xε0 = x̄0 is a constant sequence in ε (as both xε0 and x̄0 have same initial conditions, and
same evolution equation). For the fast variables, we prove the following

Proposition 1. Assume that K1,i = K2,i = 0 for all i ∈ {0, . . . , d}, and fi + gi > 0 for i ∈ {1, . . . , d}. Then,
for all η > 0, we have

lim
ε→0

sup
t>η

max
i∈{1,...,d}

| xεi (t)− x̄i(t) |= 0 , (15)

where (x̄1, · · · , x̄d) is given in Eq. (12).

Proof. From Eq. (14) and initial condition, and using integration by parts, we obtain∫ t

0

1

ε
e−

B(t−s)
ε e1f0x

ε
0(s)ds =

∫ t

0

B−1e−
B(t−s)

ε e1f0(f0 + g0)xε0(s)ds+B−1e1f0x
ε
0(t)−B−1e−

Bt
ε e1f0x

in
0 .
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As xε0 is uniformly bounded (both in ε and time) by xin0 , we obtain, taking the 1-norm,

∥∥∥∥∫ t

0

B−1e−
B(t−s)

ε e1f0(f0 + g0)xε0(s)ds

∥∥∥∥ ≤ f0(f0 + g0)xin0

∥∥∥∥∫ t

0

B−1e−
B(t−s)

ε e1ds

∥∥∥∥
≤ f0(f0 + g0)xin0 ε

∥∥∥B−2(Id− e−Btε )e1

∥∥∥ ≤ f0(f0 + g0)xin0 ε|||B−2|||(1 + e−min(fi+gi)
t
ε ) ,

with |||B−2||| = sup
x∈Rd,x 6=0

∥∥B−2x
∥∥

‖x‖
. The third inequality above was deduced from

∀t ≥ 0,
∥∥∥e−Btε e1

∥∥∥ ≤ ‖e1‖ e−min(fi+gi)
t
ε .

We verify that for all t ≥ 0, B−1e1f0x
ε
0(t) = (x̄1, · · · , x̄d)(t). Then, we obtain,

sup
t>η
‖(xε1, · · · , xεd)(t)− (x̄1, · · · , x̄d)(t)‖ ≤

(
‖(xin1 , · · · , xind )‖+ |||B−1|||f0x

in
0

)
e−min(fi+gi)

η
ε

+ 2f0(f0 + g0)xin0 |||B−2|||ε, (16)

which converges to 0 as ε converges to 0. �

Remark 1. The proof of Proposition 1 can also be obtained as a direct application of Tikhonov theorem [21].

Remark 2. It is apparent in formula (14) that one cannot hope to obtain a convergence on a time interval
starting from 0 (unless the initial data is “well-prepared”), and that standard Ascoli-Arzela theorem would not
apply in such a case, as the time derivative of (xε1, · · · , xεd)(t) is not uniformly bounded as ε → 0. However,
from estimate (16), one can see that convergence holds uniformly in time on any interval [ηε,∞) for ηε

ε → ∞
as ε→ 0. For instance, one can take ηε = ε ln(1/ε).

1.5. Numerical convergence

In this paragraph, we illustrate the convergence of (xε0, x
ε
1, · · · , xεd) towards (x̄0, x̄1, · · · , x̄d)(t) in a nonlinear

scenario. The chosen scenario and the parameter values are detailed in the Appendix (section 4).
In Figure 1, we plot the trajectories xi(t) in each maturity compartment (d = 10) for the rescaled and limit
models on a time horizon t ∈ (0, 1). In each compartment, the trajectories of the rescaled model get closer and
closer to the limit model as ε → 0. For ε = 0.001, they are almost indistinguishable. Note however that, for
the growing follicles, the initial conditions of the rescaled and limit models are different, and the convergence
holds only for positive times.
In Figure 2, using the same parameters as in Figure 1, we display the maturity distribution in the growing
follicle population, for various ε. We can expect from Figure 1 that the convergence gets better for larger times.
We confirm this fact in Figure 2 where we compare the maturity distribution in the growing follicle population
at two times, t = 0.1 and t = 1. We can quantify the error between the rescaled model and the limit model by
computing the l1 error at time t,

E1(t) =

d∑
i=0

| Xε
i (t)− X̄i(t) | , (17)

and the cumulative error on time interval [0, T ],

E2(T ) =

∫ T

0

d∑
i=0

| Xε
i (t)− X̄i(t) | dt , (18)
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Figure 1. Trajectories in each maturity compartment (d = 10), for the rescaled variables xεi ,
for different ε (solid colored lines, see legend insert) and the reduced limit variables x̄i (black
dashed lines). See the Appendix (section 4) for details on the parameter values used in the
numerical simulations.

which can be assessed numerically as

Ẽ2(T ) =

NT∑
k=0

δt

d∑
i=0

| Xε
i (tk)− X̄i(tk) | , (19)

where tk = kδt, for k = 0· · ·NT . From the right panel of Figure 2, we can see that, at least for a small enough ε,
the error is inversely proportional to ε, Ei ≈ Cteε−1, where the constant pre-factor may depend on the chosen
norm or the particular time t.

2. PDE model

When considering a continuous maturity variable, the PDE formalism is more suited for representing the follicle
population dynamics. In this section, we skip the rescaling procedure, which follows an analogous reasoning as
that detailed in section 1, and present directly the rescaled model.

2.1. Rescaled model

Denoting by ρ0(t) the number of quiescent follicles and by ρ(t, x) the population density of follicles of maturity
x, we consider the following coupled ODE-PDE system, for all t ≥ 0,
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Figure 2. Trajectories in the quiescent follicle compartment (top left panel) and distribution
of the growing follicle population according to the maturity index i at time t = 0.1 (center top
panel) and time t = 1 (center bottom panel), for the rescaled variables xεi , for different ε (solid
colored lines, see legend insert) and the reduced limit variables x̄i (black dashed lines). On the
right panel, we plot the discrete l1 norm error E1(t) at a fixed time t = 0.1 and t = 1 (solid
red and green lines, resp.) and the l1-cumulative error E2(1) on t ∈ (0, 1) (black solid line) as
a function of ε (see details in the text). The black dashed line is the straight line of slope 1
according to ε. See the Appendix (section 4) for details on the parameter values used in the
numerical simulations.


dρ0(t)

dt
= −(λ0(ρ(t, .)) + µ0(ρ(t, .)))ρ0(t) ,

ε∂tρ(t, x) = −∂x(λ(ρ(t, .), x)ρ(t, x))− µ(ρ(t, .), x)ρ(t, x) , for x ∈ (0, 1) ,
lim
x→0

λ(ρ(t, .), x)ρ(t, x) = λ0(ρ(t, .))ρ0(t) ,

(20)

where

λ0(ρ(t, .)) =
f0

1 +K1,0

∫ 1

0
a(y)ρ(t, y)dy

, µ0(ρ(t, .)) = g0

(
1 +K2,0

∫ 1

0

b(y)ρ(t, y)dy

)
, (21)

and, for all x ∈ (0, 1),

λ(ρ(t, .), x) =
f(x)

1 +K1(x)
∫ 1

0
ω1(y)ρ(t, y)dy

, µ(ρ(t, .), x) = g(x)

(
1 +K2(x)

∫ 1

0

ω2(y)ρ(t, y)dy

)
, (22)
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with initial condition

ρ0(t = 0) = ρin0 , ρ(t = 0, x) = ρin(x) , x ∈ (0, 1) . (23)

We assume that f, g,K1,K2, a, b, w1, w2, ρ
in are regular enough functions, and will admit the existence and

uniqueness of solutions of system (20). A standard fixed point argument, based on the mild formulation, could
be used (see for instance [2,5,6] and references therein), yet this is beyond the scope of this work. We can write
the following conservation law, that gives (at least formally)

d

dt
ρ0(t) + ε

d

dt

∫ 1

0

ρ(t, x)dx = −µ0(ρ(t, .))ρ0(t)−
∫ 1

0

µ(ρ(t, .), x)ρ(t, x)dx− lim
x→1

λ(ρ(t, .), x)ρ(t, x) ≤ 0 . (24)

In the following, we consider a sequence (ρε0, ρ
ε) of solutions of system (20) in the limit ε→ 0.

2.2. Limit model

Formally, setting ε = 0 in system (20) leads to the following system: for all t ≥ 0,
∂tρ̄0(t) = −(λ0(ρ̄(t, .)) + µ0(ρ̄(t, .)))ρ̄0(t) ,
∂x
(
λ(ρ̄(t, .), x)ρ̄(t, x)

)
= −µ(ρ̄(t, .))ρ̄(t, x) , for x ∈ (0, 1) ,

lim
x→0

λ(ρ̄(t, .), x)ρ̄(t, x) = λ0(ρ̄(t, .))ρ̄0(t) ,
(25)

with an initial condition given by ρ̄0(t = 0) = ρin0 , and ρ̄(t = 0, .) = ρ̄in, that satisfies the second and third
lines of Eq. (25) at t = 0. System (25) is not necessarily well-posed, as there may be several solutions ρ̄ for a
given ρ̄0. In the next two specific examples, we can prove that system (25) does admit a single positive solution,
which is a natural limit candidate for the sequence (ρε0, ρ

ε).

Example 3 (Linear case). Let us suppose that K1,0 = K2,0 = 0 and K1 ≡ 0, K2 ≡ 0. Assume furthermore
that f(0) > 0. Then, system (25) becomes linear, and has a unique solution given by ρ̄0(t) = ρin0 exp (−(f0 + g0)t) ,

ρ̄(t, x) =
f0

f(0)
ρ̄0(t)e−

∫ x
0
g(y)+f′(y)

f(y)
dy , for x ∈ (0, 1) .

(26)

Example 4 (Feedback onto quiescent follicle activation and death rates). Let us suppose that K1 ≡ 0, K2 ≡ 0,
and K1,0 > 0 and K2,0 ≥ 0. Assume furthermore that f(0) > 0. Then, system (25) with positivity requirement
ρ̄(t, x) ≥ 0 can be rewritten as

dρ̄0(t)

dt
= −

(
λ0(ρ̄(t, .)) + µ0(ρ̄(t, .))

)
ρ̄0(t) ,

ρ̄(t, 0) =
−f(0) +

√
(f(0))2 + 4f0ρ̄0(t)f(0)K1,0

∫ 1

0
a(x)e

∫ x
0
g(y)+f′(y)

f(y)
dydx

2f(0)K1,0

∫ 1

0
a(x)e

∫ x
0
g(y)+f′(y)

f(y)
dydx

,

ρ̄(t, x) = ρ̄(t, 0)e
∫ x
0
g(y)+f′(y)

f(y)
dy , for x ∈ (0, 1) ,

(27)

which admits a unique solution. Indeed, the functional expression of ρ̄ comes directly from solving the second
line of Eq. (25). Using the boundary condition in the third line of Eq. (25), one can verify that ρ̄(t, 0) is the
positive root of a polynomial of degree 2, namely

f0ρ̄0(t) = f(0)ρ̄(t, 0)

(
1 +K1,0ρ̄(t, 0)

∫ 1

0

a(x)e
∫ x
0
g(y)+f′(y)

f(y)
dydx

)
.
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The limit system (27) is a nonlinear ODE. To simplify notations, we introduce

H(x) = e
−

∫ x

0

g(y) + f ′(y)

f(y)
dy
, Ha =

∫ 1

0

a(x)H(x)dx, Hb =

∫ 1

0

b(x)H(x)dx ,

from which we rewrite system (27) as

dρ̄0(t)

dt
= −

(
λ0(ρ̄(t, .)) + µ0(ρ̄(t, .))

)
ρ̄0(t) ,

ρ̄(t, 0) =

−1 +

√
1 + 4ρ̄0(t)K1,0Ha

f0

f(0)

2K1,0Ha
,

ρ̄(t, x) = ρ̄(t, 0)H(x) , for x ∈ (0, 1) ,

λ0(ρ(t, .)) =
f0

1 +K1,0ρ̄(t, 0)Ha
,

µ0(ρ(t, .)) = g0 (1 +K2,0ρ̄(t, 0)Hb) .

We can thus solve ρ̄0(t) as the solution of an autonomous nonlinear ODE

d

dt
ρ̄0(t) = G(ρ̄0(t)), ρ̄0(0) = ρini0 , (28)

with

G(ρ) = −

 2f0

1 +

√
1 + 4

f0

f(0)
K1,0Haρ

+ g0

1 +K2,0

−1 +

√
1 + 4

f0

f(0)
K1,0Haρ

2K1,0Ha
Hb


 ρ ,

from which we then compute ρ̄(t, 0) and eventually ρ̄(t, x).

2.3. Convergence in the linear case

In this paragraph, we assume that K1,0 = K2,0 = 0, K1 ≡ 0, K2 ≡ 0, and f(0) > 0 as in Example 3. In such a
case, one can solve explicitly system (20) for each ε > 0 using the characteristics method. We obtain

ρε0(t) = ρin0 exp (−(f0 + g0)t) ,

ρε(t, x) =

e
−

∫ x
X(0;t,x)

g(y)+f′(y)
f(y)

dyρini(X(0; t, x)) , if t ≤
∫ x

0
ε

f(y)dy ,

f0
f(0)ρ

in
0 e−(f0+g0) (t−

∫ x
0

ε
f(y)

dy) e−
∫ x
0
g(y)+f′(y)

f(y)
dy , if t >

∫ x
0

ε
f(y)dy .

(29)

where X(0; t, x) is the location of the characteristic at time 0, given that it goes through the point x at time t,
namely:

d

ds
X(s; t, x) =

1

ε
f (X(s; t, x)) , X(t; t, x) = x . (30)

It is thus clear that ρε0 = ρ̄0 is a constant sequence in ε. For the population density ρε, which is here the fast
unknown, we prove the following

Proposition 2. Assume that K1,0 = K2,0 = 0, K1 ≡ 0, K2 ≡ 0, and f(0) > 0 with
∫ 1

0
1

f(x)dx < ∞ and∫ 1

0
g(x)+f ′(x)

f(x) dx <∞. Then, for all η > 0, we have

lim
ε→0

sup
t>η

sup
x∈(0,1)

|ρε(t, x)− ρ̄(t, x)| = 0 , (31)
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where ρ̄ is given in Eq. (26).

Proof. It is clear that for any η > 0, there exists ε′ such that for all ε < ε′, and all t > η we have

t >

∫ x

0

ε

f(y)
dy .

Then, comparing the solutions of Eq. (29) and Eq. (26) allows us to conclude that, for all t > η,

sup
t>η

sup
x∈(0,1)

|ρε(t, x)− ρ̄(t, x)| ≤ f0

f(0)
ρin0

(
sup

x∈(0,1)

e−
∫ x
0
g(y)+f′(y)

f(y)
dy

)(
e(f0+g0)ε

∫ 1
0

1
f(y)

dy − 1
)
→ 0 , as ε→ 0 .

�

Remark 3. As in Remark 1, we can see that during a time of order εt, we cannot get the convergence of the
rescaled model towards the reduced one, which precludes uniform convergence in time starting from t =0. Also,
as in Remark 2, from the representation formula (29), one can see that convergence holds uniformly in time on
any interval [ηε,∞) for ηε

ε →∞ as ε→ 0. For instance, one can take ηε = ε ln(1/ε).

2.4. Numerical study

In this paragraph, we detail the numerical schemes that we have designed to solve both systems (20) and (25),
and illustrate the consistency and convergence of these algorithms using the exact solutions.

2.4.1. Numerical scheme for the limit model

We design a finite difference scheme to compute a numerical solution to the PDE limit system (25). This system
is nonlinear due to the dependence of λ0, λ and µ upon the solution ρ̄(t, x), which itself depends on ρ̄0. We
propose to treat this nonlinearity with a fixed point scheme. At each time step tn = n∆t, for n = 0, . . . , N with
T = N∆t we build a sequence ρ`(tn, x) such that

lim
`→∞

ρ`(tn, x) = ρ̄(tn, x).

Let xk = k∆x, for k = 0, . . . ,M , with M∆x = 1. We introduce the discretized approximations

ρn,`k ≈ ρ`(tn, xk), ρ̄nk ≈ lim
`→∞

ρ`(tn, xk) and ¯̄ρn0 ≈ ρ̄0(tn) ,

which we compute as follows. Let η � 1.

(1) Initialization.

ρ0,0
k = ρ̄in(xk) and ¯̄ρ0

0 = ρin0 .

(2) For n = 0↗ N compute ρ̄nk = lim`→∞ ρ`,nk iteratively then update ¯̄ρn+1
0 as follows.

(a) Initialize residual Rn` = 1 and set ` = 0
(b) While Rn` > η do
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• Compute the PDE parameters λ̄n,`0 , λn,`k and µn,`k (for k = 0, . . . ,M) by standard trapezoidal
rules

λ̄n,`0 =
f0

1 +K1,0∆x

(
1
2a(0)ρn,`0 +

∑M−1
j=1 a(xj)ρ

n,`
j + 1

2a(xM )ρn,`M

) ,
λn,`k =

f(xk)

1 +K1(xk)∆x

(
1
2ω1(0)ρn,`0 +

∑M−1
j=1 ω1(xj)ρ

n,`
j + 1

2ω1(xM )ρn,`M

) ,
µn,`k = g(xk)

1 +K2(xk)∆x

1

2
ω2(0)ρn,`0 +

M−1∑
j=1

ω2(xj)ρ
n,`
j +

1

2
ω2(xM )ρn,`M

 .

• Enforce boundary condition at x = 0

λn,`0 ρn,`+1
0 = λ̄n,`0

¯̄ρn0 .

• Integrate numerically the PDE in x

λn,`k

(
ρn,`+1
k+1 − ρ

n,`+1
k

)
= −∆xµ

n,`
k ρn,`+1

k , k = 0, . . . ,M − 1 .

• Compute residual between ` and `+ 1 iterations

Rn` = max
k=0,...,M

|ρn,`+1
k − ρn,`k | .

(c) Set the new population density equal to the value obtained at the end of the fixed point procedure

ρ̄nk = ρn,`+1
k

(d) Compute the ODE parameters from the fixed point value, using standard trapezoidal rules

¯̄λn0 =
f0

1 +K1,0∆x

(
1
2a(0)ρ̄n0 +

∑M−1
j=1 a(xj)ρ̄nj + 1

2a(xM )ρ̄nM

) ,
¯̄µn0 = g0

1 +K2,0∆x

1

2
b(0)ρ̄n0 +

M−1∑
j=1

b(xj)ρ̄
n
j +

1

2
b(xM )ρ̄nM

 .

(e) Integrate numerically the ODE ¯̄ρ0 between tn and tn+1 with a classic explicit Euler scheme

¯̄ρn+1
0 = ¯̄ρn0 −∆t

(
¯̄λn0 + ¯̄µn0

)
¯̄ρn0 .

2.4.2. Convergence of the numerical scheme for the limit model.

For the nonlinear scenario described in Example 4 we obtain a “pseudo exact” solution using scipy library ODE
solver odeint to solve Eq. (28) and compute ρ̄0(t), and we use Eq. (27) to compute ρ̄(t, ·). We use this reference
solution to assess the performances of the numerical scheme described in paragraph 2.4.1. We display on Figure
3 the simulations performed with the parameter values detailed in the Appendix (section 4), on a time horizon
t ∈ (0, 1), and an increasingly fine discretization

∆x ∈ {0.05, 0.025, 0.0125, 0.00625, 0.003125} .

The top left panel shows the difference between the pseudo exact solution ρ̄0(tn) of Eq. (28) and the numerical
solutions ¯̄ρn computed with the fixed point algorithm, as a function of t ∈ [0, T ]. The bottom left panel shows
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Figure 3. Convergence of the numerical scheme for the limit model as a function of ∆x = ∆t.
Top left panel: relative error of ¯̄ρn0 ≈ ρ0(tn), computed by means of the fixed point algorithm,
compared the numerical solution of (28), computed with the odeint python ODE solver. Bottom
left panel: comparison of ρ̄Nk = ρ̄(t = 1, xk) and the numerical solution of (27). Top right panel:
relative errors with respect to the pseudo exact solution of (27). Bottom right panel: number
of iterations in the fixed point algorithm.

the pseudo exact solution ρ̄(T, xk) and the numerical solutions ρ̄Nk at final time T = 1, as a function of x ∈ [0, 1].
In the top right panel, we display the relative errors in L1 and L∞ norms between the pseudo exact and the
numerical solution ρ̄0(t), as a function of ∆t = ∆x = 1/N :

E0
1(∆x) =

∑N
n=0 |ρ̄0(tn)− ¯̄ρn|∑N

n=0 |ρ̄0(tn)|
,

E0
∞(∆x) =

maxn=0,...,N |ρ̄0(tn)− ¯̄ρn|
maxn=0,...,N |ρ̄0(tn)|

,



86 ESAIM: PROCEEDINGS AND SURVEYS

and the relative errors between the pseudo exact and the numerical solutions ρ̄(T, x)

E1(∆x) =

∑M
k=0

∣∣ρ̄(T, xk)− ρ̄Nk
∣∣∑M

k=0 |ρ̄(T, xk)|
,

E∞(∆x) =
maxk=0,...,M

∣∣ρ̄(T, xk)− ρ̄Nk
∣∣

maxk=0,...,M |ρ̄(T, xk)|
.

As expected, the errors are linear in ∆x, which means that the order of numerical convergence is one. In the
bottom right panel, we display the number of iterations performed in the inner loop of the fixed point algorithm,
as a function of time. The number of iterations needed to converge decreases with time and the number of time
points. This tendency is not really surprising, since, at each time step, we start with the solution obtained at
the previous time step as initial condition for the fixed point loop. Since the solution decreases with time, the
distance between the fixed point initial condition and the solution decreases with both the time and time step,
hence convergence requires less iterations.

2.4.3. Numerical scheme for the rescaled model

We design an explicit finite volume scheme to compute a numerical solution to the rescaled model (Eq. 20).
The discretized unknowns are at each time step tn = n∆t, for n = 0, . . . , N with T = N∆t

ρ̄ε,n0 ≈ ρε0(tn) ,

and, for xk = k∆x, k = 0, . . . ,M , with M∆x = 1,

ρε,nk ≈
∫ xk+1

xk

ρε(tn, x)dx, k = 0, . . . ,M − 1 .

We integrate numerically the PDE between tn and tn+1 and over [xk, xk+1] by freezing the nonlinear coefficients
λ(ρ̄(t, .), x) and µ(ρ̄(t, .)) at time tn

ρε,n+1
k − ρε,nk = − ∆n

t

ε∆x

(
λε,nk ρε,nk − λ

ε,n
k−1ρ

ε,n
k−1

)
− ∆n

t

ε
µε,nk ρε,nk , k = 1, . . . ,M . (32)

At each time step, we compute both the PDE and ODE coefficients using the midpoint rule and the numerical
solution (ρε,nk )k=0,...,M as a piecewise constant solution

λε,nk =
f(xk+1/2)

1 +K1(xk+1/2)∆x

∑M−1
j=0 ω1(xj+1/2)ρε,nj

,

λ̄ε,n0 =
f0

1 +K1,0∆x

∑M−1
j=0 a(xj+1/2)ρε,nj

,

µε,nk = g(xk+1/2)
(

1 +K2(xk+1/2)∆x

∑M−1
j=0 ω2(xj+1/2)ρε,nj

)
,

µ̄ε,n0 = g0

(
1 +K2,0∆x

∑M−1
j=0 b(xj+1/2)ρε,nj

)
.

(33)

For the explicit scheme (32), two stability conditions must be satisfied

• CFL-like stability condition:

∆n
t

ε∆x
λε,nk ≤ Ccfl < 1, k = 1, . . . ,M ,

which can be rewritten as
∆n
t

ε∆x
≤ Ccfl

maxk λ
ε,n
k

. (34)
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• Positivity conservation condition: 1+
∆n
t

ε

(
λε,nk
∆x
− µε,nk

)
≥ 0, k = 1, . . . ,M we impose that if ρε,ni = δik

then ρε,n+1
i ≥ 0 for all k and all i which leads to

1− ∆n
t

ε

(
λε,nk
∆x

+ µε,nk

)
≥ 0, k = 1, . . . ,M ,

which can be rewritten as
∆n
t

ε∆x
≤ 1

maxk (λε,nk + ∆xµ
ε,n
k )

. (35)

The overall numerical scheme proceeds as follows:

(1) Initialization :

ρε,0k = ρin(xk) and ρ̄ε,00 = ρin0 .

(2) For n = 0↗ N compute ρε,n+1
k for k = 1, . . . ,M then update ρ̄ε,n+1

0 and finally compute ρε,n+1
0 :

(a) Compute the PDE and ODE coefficients λ̄ε,n0 , µ̄ε,n0 , λε,nk and µε,nk (Eq. 33)
(b) Compute ∆n

t satisfying stability conditions (34) and (35)
(c) Integrate numerically the PDE in x at time tn using (32)
(d) Integrate numerically the ODE ρ̄0 between tn and tn+1

ρ̄ε,n+1
0 = ρ̄ε,n0 −∆n

t

(
λ̄ε,n0 + µ̄ε,n0

)
.

(e) Enforce the boundary condition at x = 0

λε,n+1
0 ρε,n+1

0 = λ̄ε,n+1
0 ρ̄ε,n+1

0 .

2.4.4. Convergence of the numerical scheme for the rescaled model.

We start by checking the convergence of the numerical scheme in a case where we know an exact solution, that
is the linear case K10 = K20 = K1 = K2 = 0. We test several discretizations

∆x ∈ {0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125},

for the parameter values of the linear scenario detailed in the Appendix (section 4). The results are displayed
in Figure 4. In the left panel, we see that ρ0(t) is computed exactly since all curves corresponding to different
discretizations are superimposed (as expected in the linear case). In the center panel, we display the solution at
a fixed time T as a function of x, which does depend on the discretization. The right panel shows the relative
error curves, which exhibit a convergence rate better than linear.

2.4.5. ε-convergence towards the limit model

So far we have proved the convergence of the rescaled model towards the limit model when ε→ 0 in the linear
case. We can only test it numerically in the general case. To minimize the numerical error arising from solving
the limit model numerically, we illustrate the ε-convergence of (ρε0, ρ

ε) towards (ρ̄0, ρ̄) in the nonlinear scenario of
example 4 (see details on the parameter values in the Appendix (section 4)), for which the pseudo-exact solution
of the limit model is available. As in Figure 3, pseudo exact solutions (ρ̄0, ρ̄) are simulated using Eq. (28) and
Eq. (27). The results are displayed in Figure 5 for a set of ε values and two discretizations M = N = 100
and M = N = 200. The agreement of ρ0(t) with the limit model solution (top left panel), and that of ρε(t, x)
(bottom left panel), are qualitatively good as soon as ε ≤ 10−2. The relative error for ρ0(t) (top right panel)
exhibits a linear behavior in ε. The error curves for the convergence of the solution ρε(t, x) in the domain
(bottom right panel) are not linear, and remain beyond a threshold when ε goes to 0. However, both the value
of ε for which the error approaches this threshold, and the value of the error itself decrease when we refine the
discretization. This indicates that we should refine the discretization when we decrease ε. Since our current
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Figure 4. Convergence of the numerical scheme for the rescaled model as a function of ∆x,
for ε = 0.5. Left panel: ρε0 as a function of time (exact and finite volume scheme), center panel:
ρε as a function of x at final time t = 1, right panel: L∞ and L1 relative errors with respect to
the exact solution.

numerical scheme is explicit in time, any refinement must be simultaneous in ∆x and ∆t, and as a consequence
the cost in CPU time depends quadratically in ε−1.
In practice, realistic values for ε should remain tractable. However this behavior is a good incentive to study a
more economical numerical scheme, namely an implicit one, which would provide accurate results with coarser
discretizations.
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Figure 5. Numerical assessment of the ε-convergence of the rescaled model towards the limit

model. Top left panel: ρ̄ε,n0 and ρ̄0. Bottom left panel: ρε,Nk and ρ̄(1, ·). Top right panel:
relative error in L1 and L∞ norms between ρε0(t) and ρ̄0. Bottom right panel: relative error in
L1 and L∞ norms between ρε(1, ·) and ρ̄(1, ·). In both right panels, solid lines correspond to
solutions computed with M = N = 100 and dashed lines to solutions computed with M = N =
200.
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3. SDE model

We now turn to a stochastic model for the follicle population dynamics. We skip the rescaling procedure, which
follows an analogous reasoning as that detailed in section 1, and present directly the rescaled model.

3.1. Rescaled model

We consider the following coupled Poisson-driven SDE system, given by, for all t ≥ 0,



Xε
0(t) = Xε,in

0 − εP+
0

(∫ t

0

λ0(Xε(s))

ε
Xε

0(s)ds

)
−εP−0

(∫ t

0

µ0(Xε(s))

ε
Xε

0(s)ds

)
Xε
i (t) = Xε,in

i + P+
i−1

(∫ t

0

λi−1(Xε(s))

ε
Xε
i−1(s)ds

)
,

−P+
i

(∫ t

0

λi(X
ε(s))

ε
Xε
i (s)ds

)
−P−i

(∫ t

0

µi(X
ε(s))

ε
Xε
i (s)ds

)
, i ∈ {1, . . . , d} ,

(36)

where Xε represents the vectorial process (Xε
0 , · · · , Xε

d) of the follicle number in each maturity stage, the
functions λi, µi, for i ∈ {0, · · · , d} are given by Eq. (4) and (9) and

(
P+
i , P

−
i

)
i∈{0,··· ,d} are independent standard

Poisson processes. In Eq. (36), Xε,in
0 is an εN-valued random variable, and each Xε,in

i , i ∈ {1, . . . , d}, is a N-
valued random variable.
SDE (36) defines uniquely (in law) a continuous time Markov chain in εN× Nd. We note the following conser-
vation law,

Xε
0(t) + ε

d∑
i=1

Xε
i (t) = Xε

0(0) + ε

d∑
i=1

Xε
i (0)− ε

d∑
i=0

P−i

(∫ t

0

µi(X
ε(s))

ε
Xε
i (s)ds

)
. (37)

In the following, we consider a sequence Xε of solutions to system (36) in the limit ε tends to 0.

3.2. Limit model

Formally, setting ε = 0 in system (36) leads to the following system for (x̄0, f̄t), coupling the dynamics of a
deterministic continuous function on R+, x̄0, with those of a time-dependent measure on Nd, f̄t, for all t ≥ 0,



d

dt
x̄0(t) = −(λ̄0 + µ̄0)x̄0(t), x̄0(0) = xin0 ,

λ̄0 =
∑
x∈Nd

λ0(x)f̄t(x),

µ̄0 =
∑
x∈Nd

µ0(x)f̄t(x),

0 =
∑
x∈Nd

Āx̄0(t)ψ(x)f̄t(x), ∀ψ ∈ B(Nd).

(38)

In system (38), xin0 is a real positive constant, and, for any x0 > 0, Āx0 is an operator, defined, for all bounded
functions ψ on Nd and for all x = (x1, · · · , xd) ∈ Nd, by
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Āx0
ψ(x) = λ0(x)x0 [ψ(x+ e1)− ψ(x)] +

d∑
i=1

λi(x)xi [ψ(x− ei + ei+1)− ψ(x)]

+

d∑
i=1

µi(x)xi [ψ(x− ei)− ψ(x)] , (39)

where, for i ∈ {1, . . . , d}, ei is a unit vector of Nd, with coordinate 1 in the ith position and zero elsewhere, and
ed+1 is the null vector.

Remark 4. Although the limit system (38) may appear quite different from its deterministic counterpart (11),
it has the same flavour: the fast variable is in a “quasi-equilibrium” at any time t. Its law ft thus needs to solve
the equilibrium of the Kolmogorov equations associated with SDE (36), which are written here with the help of
the infinitesimal generator of the fast variable to ease the notations. More precisely, let Aε be the infinitesimal
generator associated with the process Xε, solution of (36), then for all functions φ : R+×Nd → R bounded and
independent of the first variable ( ∀(x0, x) ∈ R+ × Nd, φ(x0, x) = ψ(x)), we have

∀(x0, x) ∈ R+ × Nd, Aεφ(x0, x) =
1

ε
Āx0

ψ(x).

Thus f t is the stationary solution corresponding to Aε when the slow variable is “frozen”.

System (38) is not necessarily well-posed, as there may be several solutions f̄t for a given x̄0. In the next two
specific examples, we can prove that system (38) does admit a single solution, which is a natural limit candidate
for the sequence Xε.

Example 5 (Linear case). Let us suppose that K1,i = K2,i = 0 for all i ∈ {0, . . . , d}, and (fi + gi) > 0 for all
i ∈ {1, . . . , d}. Then, system (38) becomes linear and has a unique solution. The invariant measure f̄t has a
product measure form

∀x ∈ Nd, f̄t(x1, . . . , xd) =

d∏
i=1

f̄ it (xi) , (40)

with f̄ it a Poisson law on N of mean parameter pix0(t), with

pi =

i−1∏
j=0

fj
fj+1 + gj+1

. (41)

System (38) then reduces to
x̄0(t) = xin0 exp (−(f0 + g0)t) ,

∀x ∈ Nd, f̄t(x) =

d∏
i=1

(pi x̄0(t))
xi e

−pix̄0(t)

xi!
.

(42)

It is classical that stationary distributions associated with the generator (39) are of product form for constant
coefficients λi, µi (see for instance [9, 11, 12]). Taking the product form in Eq. (40) for granted, the following
calculus shows that each marginal distribution has to be a Poisson law.
Indeed, for a function ψ which depends on the first variable only

∀x1, · · · , xd, ψ(x1, . . . , xd) = ψ1(x1) ,
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and for x̄0 > 0, we obtain, using expression (39),∑
x∈Nd

Āx̄0
ψ(x)f̄t(x) =

∑
x∈Nd
{ [f0x̄0(ψ1(x1 + 1)− ψ1(x1)) + (f1 + g1)x1(ψ1(x1 − 1)− ψ1(x1)) ]

f̄1
t (x1)

d∏
i=2

f̄ it (xi) } ,

=
(∑
x∈N
{ f0x̄0(ψ1(x+ 1)− ψ1(x)) + (f1 + g1)x(ψ1(x− 1)− ψ1(x))}f̄1

t (x)
)

( ∑
(x2,...,xd)∈Nd−1

d∏
i=2

f̄ it (xi)
)
.

Hence, the solution f̄t is such that for any bounded function ψ1

0 =
∑
x∈N

ψ1(x){ f0x̄0

(
f̄1
t (x− 1)1x≥1 − f̄1

t (x)
)

+ (f1 + g1)
(

(x+ 1) f̄1
t (x+ 1)− xf̄1

t (x)
)
} .

This holds in particular for ψ1(x) = 1x=n for any n ∈ N, so that we obtain after calculus

∀x ∈ N, f̄1
t (x) =

1

x!

( f0 x̄0

f1 + g1

)x
f̄1
t (0) ,

and then, by same arguments

∀i ∈ {1, · · · , d},∀x ∈ N, f̄ it (x) =
1

x!

(
pi x̄0

)x
f̄ it (0) ,

where pi is defined in Eq. (41).

Example 6 (A single feedback onto the quiescent follicle death rate). Let us suppose that K1,i = 0 for all
i ∈ {0, . . . , d} and K2,i = 0 for i ∈ {1, . . . , d} but K2,0 > 0. Then, system (38) can be simplified as

d

dt
x̄0(t) = −(f0 + µ̄0(x̄0(t)))x̄0(t),

µ̄0(x̄0) = g0(1 + x̄0K2,0

d∑
j=1

bjpj),

∀x ∈ Nd, f̄t(x) =

d∏
i=1

(pi x̄0(t))
xi e

−pix̄0(t)

xi!
,

(43)

where pi is defined in Eq. (41), and has a unique solution. The justification of system (43) follows that of
Example (5) for the measure ft, which is not directly modified by the feedback term onto the quiescent follicle
death rates.

3.3. Convergence in the linear case

In this paragraph, we assume that K1,i = K2,i = 0 for all i ∈ {0, . . . , d} as in Example 5, and we assume further

that the initial condition Xε,in =
(
Xε,in

0 , Xε,in
1 , · · · , , Xε,in

d

)
of system (36) is such that 1

εX
ε,in
0 , Xε,in

1 ,...,

Xε,in
d are independent Poisson random variables of mean respectively xin0 /ε, x

in
1 ,..., xind . Denoting by Gin the
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probability generating function of the integer-valued random vector
(

1
εX

ε,in
0 , Xε,in

1 , · · · , , Xε,in
d

)
, we thus have

Gin(z) = E

zXε,in0 /ε
0

d∏
j=1

z
Xε,inj

j

 = exp

(
xin0
ε

(z0 − 1)

) d∏
i=1

exp
(
xini (zi − 1)

)
. (44)

In such a case, one can solve explicitly system (36) for each ε > 0. We briefly sketch the formal argu-
ments and computations (see [9] for details). We define the probability generating function of the vector
(Xε

0(t)/ε,Xε
1(t), · · · , , Xε

d(t)), for z ∈ Rd+1, by

Gε(z, t) = E

zXε0 (t)/ε
0

d∏
j=1

z
Xεj (t)

j

 =

d∑
i=0

∞∑
ni=0

d∏
j=0

z
nj
j P {Xε

0(t) = εn0, X
ε
1(t) = n1, · · · , Xε

d(t) = nd} . (45)

The infinitesimal generator Ãε of the process X̃ε(t) := (Xε
0(t)/ε,Xε

1(t), · · · , , Xε
d(t)), is given, for all bounded

functions ψ on Nd+1 and for all n = (n0, n1, · · · , nd) ∈ Nd+1, by

Ãεψ(n) = f0n0 [ψ(n− e0 + e1)− ψ(n)] + g0n0 [ψ(n− e0)− ψ(n)]

+

d−1∑
i=1

fi
ε
ni [ψ(x− ei + ei+1)− ψ(x)] +

d∑
i=1

gi
ε
ni [ψ(x− ei)− ψ(x)] . (46)

Using the Kolmogorov backward equation,

d

dt
E
[
ψ
(
X̃ε(t)

)]
= E

[
Ãεψ

(
X̃ε(t)

)]
, (47)

with ψ(n) =
∏d
j=0 z

nj
j (a truncation procedure is required to deal rigorously with such test functions), we

obtain, using linearity of expectation, a first-order partial differential equation on Gε , given by

∂

∂t
Gε(z, t) = −(f0 + g0)(z0 − 1)

∂

∂z0
Gε(z, t) + f0(z1 − 1)

∂

∂z0
Gε(z, t)

+

d−1∑
i=1

(zi+1 − 1)
fi
ε

∂

∂zi
Gε(z, t)−

d∑
i=1

(zi − 1)
1

ε
(fi + gi)

∂

∂zi
Gε(z, t) . (48)

It turns out that the unique solution to (48) is given by

Gε(z, t) = exp

(
xε0(t)

ε
(z0 − 1)

) d∏
i=1

exp (xεi (t))(zi − 1)) . (49)

where (xεi (t))i=0,··· ,d is solution of the very same ODE as the linear version of Eq. (8) (whose solutions are given
by Eq. (14)), with initial condition xεi (t = 0) = xini , for all i = 0...d. Thus, at any time t, Xε

0(t)/ε, Xε
1(t),...,

Xε
d(t) are independent Poisson random variables of mean (respectively)

xε0(t)
ε , xε1(t), ..., xεd(t).

Proposition 3. Assume that K1,i = K2,i = 0 for all i ∈ {0, . . . , d}, that fi + gi is strictly positive for
i ∈ {1, . . . , d} and that the initial condition Xε,in is such that Eq. (44) holds. Then, for all t > 0, Xε

0(t)
converges (in law) towards the deterministic value x̄0(t) = xin0 exp(−(f0 + g0)t), and, for all i = 1, · · · , d, Xε

i (t)
converges (in law) towards a Poisson random variable of mean x̄i(t) = pix̄0(t), where pi is given by Eq. (41).
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Proof. The proof is a direct consequence of the explicit solution (49) for the probability generating function

Gε combined with Proposition 1. As Xε
0(t)/ε is a Poisson random variable of mean x̄0(t)

ε , it is clear that

E [Xε
0(t)] = x̄0(t) and var (Xε

0(t)) = εx̄2
0(t) ≤ εxin0 → 0 as ε → 0, which implies that Xε

0(t) converges in law
towards x̄0(t). For all i = 1, · · · , d, and t > 0, as xεi (t) converges to pix̄0(t) as ε→ 0, Xε

i (t) converges (in law)
towards a Poisson random variable of mean pix̄0(t). �

Remark 5. The slow variable Xε
0 is independent of the fast variables and its dynamics are reduced to a “death

and death” process with constant rate. Then convergence of this variable is given by Theorem 8.1 of [13], which
enables us to obtain stronger results with fewer hypotheses on the initial condition. Suppose that

lim
ε→0

Xε,in
0 = xin0 , a.s. ,

then

lim
ε→0

sup
s≤t
|Xε

0(s)− x̄0(s)| = 0 a.s for all t > 0.

3.4. Numerical convergence

In this paragraph, we illustrate the convergence of (Xε
0 , X

ε
1 , · · · , Xε

d) as ε → 0. The chosen scenario and the
parameter values are detailed in the Appendix (section 4).
In Figure 6, we plot the empirical mean trajectories (computed over 104 sampled trajectories) in each maturity
compartment (d = 10) for the rescaled model on a time horizon t ∈ (0, 1) in the nonlinear scenario (K1,0 > 0),
together with the trajectories of the analogous ODE rescaled system (8) and its limit (11). We observe that,
for each compartment, the empirical mean of the SDE seems to converge to a limit value, yet this limit does
not superimpose with the ODE limit solution (which is expected in a nonlinear scenario, as the ODE and SDE
limits are different).
In Figure 7, using the same parameters as in Figure 6, we display the maturity distribution in the growing
follicle population, for various ε. We empirically quantify the convergence rate using the following error, at time
t,

E1(t) =

d∑
i=0

| EXε
i (t)− EX̄i(t) | , (50)

and the cumulative error on time interval [0, T ],

E2(T ) =

∫ T

0

d∑
i=0

| EXε
i (t)− EX̄i(t) | dt , (51)

which can be assessed numerically as

Ẽ2(T ) =

NT∑
k=0

δt

d∑
i=0

| EXε
i (tk)− EX̄i(tk) | , (52)

where tk = kδt, for k = 0· · ·NT . In practice, we also replace the limit model X̄ by the numerically evaluated
limit model Xε with ε = 0.001. We then observe that the error decreases roughly linearly with ε.
In Figure 8, we use the linear scenario (K1,0 = 0) detailed in the Appendix (section 4) to visualize the convergence
of the fast variable of the rescaled SDE to the “quasi-stationary” distribution of the limit model. The marginals
of the rescaled model are evaluated over 104 sampled trajectories at time t = 0.1 and t = 1. The errors between
the marginal laws of the rescaled and limit models are quantified by the total variation (restricted on the support
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Figure 6. In the same way as in Figure 1, we plot the trajectories in each maturity compart-
ment (d = 10), for the rescaled variables Xε

i of the SDE system (36) (solid lines) and the ODE
system (8) (dashed lines), for different ε (see legend). For the SDE, we plot the empirical mean
computed over 10000 trajectories. The limit variable X̄i of the ODE system corresponds to the
black dashed line.

of the numerically assessed limit model):

E(t) =

d∑
i=1

dTV (Xε
i (t), X̄i(t)) , (53)

where

dTV (X,Y ) = max{| πX(i)− πY (i) | , i ∈ N} , (54)

and πX , πy are, respectively, the laws of X and Y . The error seems to decrease in a sub-linear manner with ε,
with a plateau for ε < 10−2, which is probably due to the limited finite sampling size (104).

4. Appendix - parameter values

In the numerical illustrations provided throughout the previous sections, we refer to either a linear or nonlinear
scenario. As far as parameter values, the only difference is that parameter K1,0 is set to 0 in the linear scenario.
All other parameters are identical and chosen as explained below.
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Figure 7. Trajectories in the quiescent follicle compartment (top left panel) and distribution
of the growing follicle population at time t = 0.1 (top center panel) and at time t = 1 (bottom
center panel), for the rescaled variables Xε

i , for different ε (solid colored lines, see legend insert)
and the limit variable X̄i (black dashed line). On the right panel, we plot the discrete l1 norm
error E1(t) at a fixed time t = 0.1 and t = 1 (solid red and green lines, resp.) and the l1-
cumulative error E2(1) on t ∈ (0, 1) (black solid line) as a function of ε (see details in body
text). The black dashed line is the straight line of slope 1 according to ε.

Numerical simulation of the PDE model

We begin by shaping the desired solution H(x) and we choose functions f and g accordingly:

H(x) = e
−

∫ x

0

g(y) + f ′(y)

f(y)
dy
.

Choosing g(x) = 1, we get f(x) =
c−

∫ x
0
H(y)dy

H(x)
.

Motivated by our biological application, we more specifically select a two-bump function

H(x) =
p1e
−

(x− x1)2

2s2 + p2e
−

(x− x2)2

2s2

p1e
−
x2

1

2s2 + p2e
−
x2

2

2s2

,
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Figure 8. Empirical law of Xε
i in each maturity compartment at time t = 1 for different ε in

colored bars (see legend insert) and the limit distribution X̄i (black solid lines). On the bottom
leftmost panel, we plot the total variation error E(t) at a fixed time t = 0.1 and t = 1 (solid
red and green lines, resp.). The black dashed line is the straight line of slope 1 according to ε.

with s = 0.1, x1 = 0.2, p1 = 0.7, x2 = 0.7 and p2 = 0.3.
Except K1,0, all coefficients weighting the nonlinear terms, K20, K1, K2, are set to zero. As a result, functions
b, ω1 and ω2, that were introduced for the sake of genericity, are not used in the numerical illustrations.
The basal activation rate f0 is set to f0 = 1, and the basal death rate in quiescent follicles g0 is set to g0 = 0.1.
Since the population feedback onto the activation rate is mainly exerted by follicles in an intermediate maturity
stage, we choose a(x) = 1[0.3,0.7], given that the state space lies in x ∈ [0, 1]. The feedback gain is set to
K1,0 = 2.
Finally, the time horizon covers t ∈ (0, 1), and the initial condition is given by ρini0 = 100 and ρini ≡ 0.
The parameter values are summed up in Table 1 and illustrated on Figure 9.

s p1 x1 p2 x2 c
0.1 0.7 0.2 0.3 0.7 2.61
f0 g0 K1,0 K2,0 ρ0

ini a K1,d, d 6= 0 K2,d, d 6= 0
1 0.1 2 0 100 1[0.3,0.7] 0 0

Table 1. Parameter values for the numerical simulations
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Figure 9. Parametric functions used in the numerical simulations, for the PDE (plain lines),
the ODE and the SDE (dot symbols).

Numerical simulation of the ODE/SDE model

For the ODE- and SDE-based models, we first set the number of compartments, d = 10, and define xi = i/d.
Then, we adapt the functions selected in the continuous PDE case and set, for i ∈ {1, d},

• ai = a(xi) ,
• fi = f(xi)/d ,
• gi = g(xi) ,
• K1,i = K2,i = 0 .

All other parameters are kept as in Table 1, while the initial condition is chosen as Y ini0 = 100 and Y inii = 0,
i ∈ {1, d}.
To simulate the ODE model, we use the standard python scipy.odeint, while, to simulate the SDE model, we
use an exact stochastic simulation algorithm (Gillespie).
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