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To best interact with the external world, humans are often required to consider the quality of their actions. Sometimes the environment furnishes rewards or punishments to signal action efficacy. However, when such feedback is absent or only partial, we must rely on internally generated signals to evaluate our performance (i.e., metacognition). Yet, very little is known about how humans form such judgements of sensorimotor confidence. Do they monitor their actual performance or do they rely on cues to sensorimotor uncertainty?

We investigated sensorimotor metacognition in two visuomotor tracking experiments, where participants followed an unpredictably moving dot cloud with a mouse cursor as it followed a random horizontal trajectory. Their goal was to infer the underlying target generating the dots, track it for several seconds, and then report their confidence in their tracking as better or worse than their average. In Experiment 1, we manipulated task difficulty with two methods: varying the size of the dot cloud and varying the stability of the target's velocity.

In Experiment 2, the stimulus statistics were fixed and duration of the stimulus presentation was varied. We found similar levels of metacognitive sensitivity in all experiments, which was evidence against the cue-based strategy. The temporal analysis of metacognitive sensitivity revealed a recency effect, where error later in the trial had a greater influence on the sensorimotor confidence, consistent with a performance-monitoring strategy. From these

Introduction

Sensorimotor decision-making is fundamental for humans and animals when interacting with their environment. It determines where we look, how we move our limbs through space, or what actions we select to intercept or avoid objects. In return, we may receive decision feedback from the environment, such as resources, knowledge, social standing, injury, or embarrassment. The outcomes of an action are often crucial for determining subsequent sensorimotor decision-making, particularly in dynamic scenarios where a series of actions are chained together to achieve a sensorimotor goal (e.g., dancing or tracking a target). But what happens if external feedback is absent, partial, or significantly delayed? How then do we judge if an action has been performed well? One possible solution is for the person to form their own subjective evaluation of sensorimotor performance using whatever sensory or motor signals are available. These metacognitive judgements reflect the person's confidence Figure 1: Components of sensorimotor control (left) and related topics in the literature (right). Sensorimotor confidence is a subjective evaluation of how well behaviour fulfilled the sensorimotor goal, considering both sensory and motor factors. The topic of sensorimotor confidence is complementary to the discussions of cognitive control, perceptual confidence, motor awareness, uncertainty, and self-generated feedback. It is likely that cues to difficulty and performance, that are responsible for the computation of sensorimotor confidence, originate both from sensory and motor sources. The former cues are prospective as they are related to how well the acting agent can potentially perform, whereas the latter are retrospective, they become available only after the action has occurred. incurs additional noise, on top of the sensory noise that impairs perceptual performance (Type-1 decisions) [START_REF] Maniscalco | The signal processing architecture underlying subjective reports of sensory awareness[END_REF]. More recently, researchers have considered the contribution of motor factors in perceptual confidence [START_REF] Yeung | Metacognition in human decision-making: Confidence and error monitoring[END_REF][START_REF] Kiani | Choice certainty is informed by both evidence and decision time[END_REF][START_REF] Fleming | Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation[END_REF]. Such elements are crucial, for example, for the observer to respond "low confidence" on lapse trials where they are sure they mistakenly pressed the wrong key. In other examples, motor behaviour is used as an index of perceptual confidence by tracking hand kinematics while observers report their perceptual judgement [START_REF] Resulaj | Changes of mind in decision-making[END_REF][START_REF] Patel | Inferring subjective states through the observation of actions[END_REF][START_REF] Dotan | On-line confidence monitoring during decision making[END_REF]. However, these noted contributions are often restricted to simple motor behaviours, and do not take into account sources of response variability from action execution.

Motor awareness, the degree to which we are conscious of the actions we take [START_REF] Blakemore | Abnormalities in the awareness of action[END_REF][START_REF] Blakemore | Self-awareness and action[END_REF], is also likely to contribute to sensorimotor confidence. Not all actions are consciously monitored, and it is a common experience to act without conscious control. For example, when we are walking, we are not always thinking 6 of exactly how to place one foot in front of the other. Yet, for other actions, we must consciously attend to them, such as threading a sewing needle. A seminal study on motor awareness by [START_REF] Fourneret | Limited conscious monitoring of motor performance in normal subjects[END_REF] found poor introspective ability for the action made when an unseen hand movement is perturbed by a horizontal displacement in the visual feedback signal. Participants discount their compensatory actions and instead indicated that their hand position followed a trajectory much like the perturbed cursor.

Follow-up studies have modified the response to be a binary motor-awareness decision (e.g., "Was feedback perturbed or not") followed by a confidence rating [START_REF] Sinanaj | Inter-individual variability in metacognitive ability for visuomotor performance and underlying brain structures[END_REF][START_REF] Bègue | Metacognition of visuomotor decisions in conversion disorder[END_REF]. Another motor-awareness study measured confidence ratings following a judgement of whether a visual dot was flashed ahead or behind their finger position during up-down movement [START_REF] Charles | Evidence for metacognitive bias in perception of voluntary action[END_REF]. However, we shall argue that none of these measurements of confidence correspond to sensorimotor confidence as we have defined it.

Motor-awareness confidence reflects the knowledge held about the executed actions, but lacks the sensory and goal components of sensorimotor confidence. To our knowledge, the only study to ask participants to explicitly reflect on their sensorimotor performance was by [START_REF] Mole | Metacognitive judgements of perceptual-motor steering performance[END_REF], who had participants perform a virtual driving task. Green lines were placed on the road to indicate a good-performance zone, and after completing the trial, they were asked to report the percentage of time they spent in the green zone (i.e., a continuous measure of sensorimotor confidence). They found that correspondence between objective performance and sensorimotor confidence roughly followed difficulty of the task but was otherwise limited.

The study of sensorimotor confidence should also be contrasted with the mere knowledge of sensorimotor uncertainty in the absence of any particular instance of sensorimotor control [START_REF] Augustyn | Metacognitive control of action: Preparation for aiming reflects knowledge of Fitts's law[END_REF]. In theory, this can be studied by examining how knowledge of variability from sensory, motor, and task sources, influences the actionselection process in motor decision-making [START_REF] Wolpert | Motor control is decision-making[END_REF]. The majority of studies support the hypothesis that humans plan actions consistent with accurate knowledge Locke, S. M., Mamassian, P., & Landy, M. S. (2020), Cognition, 205:104396. https://doi.org/10.1016/j.cognition.2020.104396 7 of their sensorimotor uncertainty (e.g., [START_REF] Augustyn | Metacognitive control of action: Preparation for aiming reflects knowledge of Fitts's law[END_REF][START_REF] Trommershäuser | Decision making, movement planning and statistical decision theory[END_REF][START_REF] Stevenson | Bayesian integration and non-linear feedback control in a full-body motor task[END_REF][START_REF] Bonnen | Continuous psychophysics: Target-tracking to measure visual sensitivity[END_REF], with some exceptions (e.g., [START_REF] Mamassian | Overconfidence in an objective anticipatory motor task[END_REF][START_REF] Zhang | Testing whether humans have an accurate model of their own motor uncertainty in a speeded reaching task[END_REF]. However, the degree to which this knowledge is consciously available to the person is highly debatable [START_REF] Augustyn | Metacognitive control of action: Preparation for aiming reflects knowledge of Fitts's law[END_REF]. Furthermore, judgements of one's uncertainty in a planned action only allow one to predict the probability of a successful outcome. In this sense, they can act as prospective confidence judgements before the action is taken, but do not constitute retrospective confidence judgements made by reflecting on sensorimotor behaviour from performance monitoring. For example, one would typically have more prospective confidence for riding a bicycle than a unicycle. This belief is not derived from performance monitoring but rather from experience-informed expectation. In other areas of metacognitive research, such use of uncertainty information or other predictions of task difficulty are considered heuristics that can even impair the relationship between objective performance and confidence (e.g., [START_REF] Spence | Computations underlying confidence in visual perception[END_REF][START_REF] De Gardelle | Weighting mean and variability during confidence judgments[END_REF][START_REF] Mole | Metacognitive judgements of perceptual-motor steering performance[END_REF][START_REF] Charles | Evidence for metacognitive bias in perception of voluntary action[END_REF]. Thus, it is desirable to identify the degree to which sensorimotor confidence is based on conscious monitoring of performance from feedback cues versus prospective judgements of performance based on uncertainty cues.

Here, we report on two experiments explicitly measuring sensorimotor confidence in a visuomotor tracking task using a computer display and mouse. In both experiments, participants manually tracked an invisible target that moved horizontally by inferring its location from a noisy sample of evidence in the form of a twinkling dot cloud. The trajectory of the target was unpredictable, as its velocity profile was generated by a random-walk algorithm.

A dynamic task was selected to mirror the sensorimotor goals typically encountered in the real world.

After tracking, participants reported their sensorimotor confidence by subjectively evaluating their tracking performance with a relative judgement of "better" or "worse" than their average. This confidence measure differs from that typically used in perceptual confidence 8 [START_REF] Mamassian | Confidence forced-choice and other metaperceptual tasks[END_REF]. For a perceptual judgement in a typical psychophysical experiment, there are only two choice outcomes, correct or incorrect, and the confidence report solicited by the experimenter reflects the belief in the correctness [START_REF] Pouget | Confidence and certainty: distinct probabilistic quantities for different goals[END_REF]. If given a fullscale confidence measure ranging from 0% to 100% [START_REF] Weber | The effect of judgment type and confidence scale on confidence-accuracy calibration in face recognition[END_REF], participants can use the low end of the scale to report they are sure to be incorrect. In contrast, when given a half-scale ranging from 50% to 100%, the low end of the scale collapses both the ?correct-unsure? and ?incorrect-sure? responses. Sensorimotor decisions, however, do not produce binary outcomes (correct/incorrect). Rather, they produce continuous outcomes (e.g., 1 degree of error, 2 degrees, etc.) and will almost always have some amount of error.

Knowing that interpreting calibration judgements is not very straightforward [START_REF] Fleming | How to measure metacognition[END_REF], we did not ask participants to report perceived error on a continuous scale.

Instead, we opted for the simpler request that participants perform a median split of better/worse performance, turning the confidence judgement into a binary judgement. How does this map onto low-error/high-error (like correct and incorrect for perceptual decisions) and sure/unsure? If they are sure of lower-than-average error or higher-than-average error they would just report ?worse? or ?better?. In the case they were unsure, they should essentially flip a coin, because they do not know. Thus our measure is more akin to a full-scale judgement with only two choice categories, and not the half scale you would get for a high/low confidence judgement. Our measure allowed us to assess the correspondence between true performance and subjective performance.

In Experiment 1, trials differed in terms of the uncertainty in target location. We used two manipulations to achieve this: varying the size of the dot cloud (i.e., dot-sample noise), and varying the stability of the target's velocity (i.e., random-walk noise). In Experiment 2, we manipulated only the stimulus-presentation duration to introduce uncertainty about when the confidence response would be required. We had several goals in this study: 1) to test whether humans are able to make reasonable sensorimotor confidence judgements from monitoring performance-error signals rather than relying only on uncertainty-based expec-Locke, S. M., Mamassian, P., & Landy, M. S. (2020), Cognition, 205:104396. https://doi.org/10.1016/j.cognition.2020.104396 10 using custom-written code in MATLAB version R2014a (The MathWorks, Natick, MA), using Psychtoolbox version 3.0.12 [START_REF] Brainard | The Psychophysics Toolbox[END_REF][START_REF] Pelli | The Video Toolbox software for visual psychophysics: Transforming numbers into movies[END_REF][START_REF] Kleiner | What's new in psychtoolbox-3[END_REF]. Dot-cloud stimulus: On every frame, the horizontal and vertical coordinates of two white dots were drawn from a 2D circularly symmetric Gaussian generating distribution with standard deviation σ cloud . The mean of the distribution was the tracking target, which was invisible to observers and must be inferred from the dot cloud. Each dot had a oneframe lifetime and two new dots were drawn every frame. Due to the persistence of vision, participants had the impression of seeing up to 10 dots at any one time (Figure 2A). Dots had a diameter of 0.25 deg and were presented on a mid-grey background. Dots were generated using Psychtoolbox functions that rendered them with sub-pixel dot placement and high quality anti-aliasing. The horizontal position of the target changed every frame according to a random walk in velocity space (Figure 2B): v t+1 = v t + and ∼ N (0, σ walk ) deg/s.

This gave the target momentum, making it more akin to a real-world moving target (Figure 2C). Both the target and the black cursor dot (diam.: 0.19 deg) were always centred vertically on the screen. The cursor could not deviate vertically during tracking (i.e., any vertical movements of the mouse were ignored in the rendering of the cursor icon) and participants were informed of this during training. Trajectories that caused the target to move closer than 2 × max(σ cloud ) from the screen edge were discarded and resampled prior to presentation.

Task: The trial sequence (Figure 2D) began with a red dot at the centre of the screen.

Participants initiated the tracking portion of the trial by moving the black cursor dot to this red dot, causing the red dot to disappear. The dot-cloud stimulus appeared immediately, with the target centred horizontally. The target followed its horizontal random walk for 10 s. Then, the participant made a subjective assessment of tracking performance while viewing a blank grey screen, reporting by keypress whether they believed their tracking performance was better or worse than their session average.

The experiment was conducted in two 1-hour sessions on separate days. In the "cloud in temporal averaging and motor constraints, it is not possible to estimate motor noise just yet and analysis will be restricted to the computational lag.

Results & Discussion

A cross-correlation analysis was performed to determine the lag between the target location and the cursor placement for every single trial. The cross-correlation values were normalised to produce a correlation coe cient by subtracting the mean and dividing by the standard deviation for each lag value examined. Cross-correlograms were first averaged within subjects, with the peak used as the estimate of the subject's preferred tracking lag, ⌧ , for the model fitting(see Figure 4a). Averaging these cross-correlograms indicates that normal, healthy adult is expected to have a ⌧ of approximately 400 ms.

Shown in Figure 4b is the distribution of peak lags across trials for each subject. The histograms are all positively skewed and resemble those observed for reaction times in traditional psychophysics tasks [START_REF] Usher | The time course of perceptual choice: The leaky, competing accumulator model[END_REF]. However, a one-sample ttest on the Pearson moment coe cient of skewness for each subject's sample of peak lags did not reveal a significant e↵ect (t(4)=2.24 , p =0 .09). This result is not unexpected given the small sample size of this pilot experiment. Subjects are encouraged by the points system of the experiment to track the target quickly, but doing so may reduce Figure 5: A comparison of the lag in tracking for one subject in a task where the target is inferred from the dot cloud ("cloud", blue), and a task where the target is visible ("target", orange). The dashed lines indicate peak of the mean cross-correlation from each of the tasks. The distance between these peaks corresponds to the time to compute the centroid, ⌧centroid (abbr. in figure), assuming that temporal lag due to sensory processing and motor execution are the same in both tasks.

the accuracy of their tracking for various reasons such as reduced time in estimating the centroid or planning and executing a movement. Therefore, peak tracking time may be a useful measure of speed in a speed-accuracy trade-o↵ analysis. Current attempts at this analysis suggest that more data needs to be collected.

The same cross-correlation analysis was applied to the tracking data from the task where the target was made visible (see Figure 5). As expected, the peak lag for the explicit target experiment is lower than for the peak lag for the experiment requiring the subject to infer target location from the dot cloud. This indicates the subject takes approximately 70 ms to compute the centroid of the dot cloud and 300 ms to both process the sensory information and execute a movement. Another noticeable di↵erence between the two distributions of peak lags is that the target visible distribution has a smaller variance, indicating that computing the centroid contributes considerably to the variability in tracking delays. Viewing the results in another way, one could say that decreasing the di culty of the task by providing the target's true location led to faster responses. This is consistent with traditional decision-making experiments (Gold & Shadlen, 2007). Further experiments are needed to see if manipulating the quality of the sensory information in the dot cloud (i.e. the number of dots) will similarly a↵ect tracking lag. Part 2. This model is equivalent to a human that has no temporal averaging or internal sensory noise and can instantaneously place the cursor on the estimated target location without any motor noise. Figure 6ashowsthatthehumanperformanceisapproximately three times worse than this model when assessed in terms of the Root Mean Square Error (RMSE). If, however, the output of this Kalman filter is shifted by ⌧ estimate of the corresponding subject, the performance is indistinguishable from that of the human4. It is unlikely that more tracking trial will reduce the spread of errors as Subject 1 in the plot completed 2.5 times more trials than the other subjects. Figure 6bp l o t st h ed i ↵erence between the subject's tracking and the two models on a per trial basis. Again, it is not possible to di↵erentiate the lagged Kalman filter and human performance. This suggests adding in the additional components of the model may be tricky if RMSE is used as the metric of fit.

To conclude, a lagged version of the standard Kalman filter did very well at fitting human performance. The average tracking lag was very consistent across subjects, and the distributions of peak tracking lag tended to follow the pattern observed for reaction times in non-tracking experiments.

4Do you think it is a problem I am using the same sequences to estimate tracking lag and assess the fit of the model?

Part 2. Modelling Approach

This section outlines the development of a Bayesian ideal observer model for a tracking task where subjects track a moving cloud of dots as moves along a one-dimensional random walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal recursive linear estimator suited to dynamic environments assuming all noise in the system is Gaussian. This is the "decision" component of the model. The Kalman filter is biologically plausible is because it does not require infinite memory, yet considers every piece of sensory evidence given.

The decision, "where to move next?", is answered by this model, but requires realistic inputs and outputs. We consider several human perception factors that act on the sensory input and motor outputs, as well as modify variables in the decision-making machinery. A schematic diagram of the final model is shown at the end of this section (Figure 3). This model gives, for a particular sensory input, the ideal tracking performance achievable. 
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The decision, "where to move next?", is answered by this model, but requires realistic inputs and outputs. We consider several human perception factors that act on the sensory input and motor outputs, as well as modify variables in the decision-making machinery. A schematic diagram of the final model is shown at the end of this section (Figure 3). This model gives, for a particular sensory input, the ideal tracking performance achievable. In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt = Pt 1 + 2 walk Pt 1 + 2 walk + 2 cloud (2)
where cloud is the standard deviation of the generating Gaussian distribution for dot locations and walk is the standard deviation in the random walk. This Kalman gain term describes the previous estimate of target location, xt 1, is combined with the incoming measurements to update the estimate of target location xt:

xt =xt 1 + Kt(zt xt 1) ( 3 ) 
With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated as follows

Pt =( 1 Kt)(Pt 1 + 2 walk) ( 4 ) 

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be easily able to identify their locations. However, it is still likely that internal sensory noise is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual discrimination task, where two dots are sequentially presented and subjects have to judge In the one-dimensional case of horizontal tracking, the Kalman gain is simply
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The dots presented in the task are intentionally high contrast, so the subjects will be easily able to identify their locations. However, it is still likely that internal sensory noise is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual discrimination task, where two dots are sequentially presented and subjects have to judge if the second dot was to the left or right of the first. The internal sensory noise estimate would be calculated from the Just Noticeable Di↵erence (JND)

internal = JND p2 (5) 
We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the Page 4

Second Year Paper 25th September 2016 in the following manner1

ct = 8 > > < > > : 0+✏motor, if t ⌧  0 xt ⌧ + ✏motor, otherwise (9) 
We can estimate ⌧ by finding the delay which produces the highest correlation between target location and mouse cursor in the tracking task. A simple addition to the main tracking task, however, can reveal more about these temporal delays as well as provide 1I haven't thought of a good way to express the cursor placement prior to acting on sensory information. Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so it should be around 0, but then they might move it about a bit, and then of course those movements are not independent of each other... 2I'm not entirely convinced if this is correct. In this version of the task dot = 0, and so the Kalman gain will be di↵erent in the sense they will move closer to their estimate than in the version where the target is invisible. Would this correspond to a di↵erent lag? Let's begin by redefining the centroid computation

gt = 1 J J X j=1 ✓d jt + ✏internal◆ (12) zt = t t X i=0 ✓w igt i t ◆ ( 13 
)
where t is the time step of the sampling and wi is the weight from the temporal weighting function and must be such that

t t X i=0 wi =1
( 1 4 )

The first weighting function we will consider is one where all dots which appear to be simultaneously presented on the screen are given equal weight (i.e. a step function):

wi = 8 > > < > > : 1 ⌧blur t , if i t  ⌧blur 0, otherwise (15) 
where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself.
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Temporal Averaging Dot clouds are presented very rapidly in the tracking task. The perceptual consequence of this is that several dot clouds will appear on the screen together due to the temporal averaging of the visual system. I can imagine modelling this using a temporal weighting function which includes the previous dot locations in the computation of the centroid.
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zt = 1 J J X j=1 ✓d jt + ✏internal◆ (6)
where ✏internal ⇠ N (0, internal), and the Kalman gain would also include the internal noise in addition to the external noise from the dot cloud

Kt = Pt 1 + 2 walk Pt 1 + 2 walk + 2 cloud + 2 internal (7)
Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also be spatial blurring of the output due to motor noise. That is, the cursor ct is placed at the target's estimated location, but the movement is corrupted by Gaussian noise ✏motor ⇠ N (0, motor):

ct =xt + ✏motor (8) 
An experiment that would provide an estimate of motor is described in the next section.
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Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also be spatial blurring of the output due to motor noise. That is, the cursor ct is placed at the target's estimated location, but the movement is corrupted by Gaussian noise ✏motor ⇠ N (0, motor):
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An experiment that would provide an estimate of motor is described in the next section.
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Results & Discussion

A cross-correlation analysis was performed to determine the lag between the target location and the cursor placement for every single trial. The cross-correlation values were normalised to produce a correlation coe cient by subtracting the mean and dividing by the standard deviation for each lag value examined. Cross-correlograms were first averaged within subjects, with the peak used as the estimate of the subject's preferred tracking lag, ⌧ , for the model fitting(see Figure 4a). Averaging these cross-correlograms indicates that normal, healthy adult is expected to have a ⌧ of approximately 400 ms.

Shown in Figure 4b is the distribution of peak lags across trials for each subject. The histograms are all positively skewed and resemble those observed for reaction times in traditional psychophysics tasks [START_REF] Usher | The time course of perceptual choice: The leaky, competing accumulator model[END_REF]. However, a one-sample ttest on the Pearson moment coe cient of skewness for each subject's sample of peak lags did not reveal a significant e↵ect (t(4)=2.24 , p =0 .09). This result is not unexpected given the small sample size of this pilot experiment. Subjects are encouraged by the points system of the experiment to track the target quickly, but doing so may reduce The distance between these peaks corresponds to the time to compute the centroid, ⌧centroid (abbr. in figure), assuming that temporal lag due to sensory processing and motor execution are the same in both tasks.

the accuracy of their tracking for various reasons such as reduced time in estimating the centroid or planning and executing a movement. Therefore, peak tracking time may be a useful measure of speed in a speed-accuracy trade-o↵ analysis. Current attempts at this analysis suggest that more data needs to be collected.

The same cross-correlation analysis was applied to the tracking data from the task where the target was made visible (see Figure 5). As expected, the peak lag for the explicit target experiment is lower than for the peak lag for the experiment requiring the 

Part 2. Modelling Approach

This section outlines the development of a Bayesian ideal observer model for a tracking task where subjects track a moving cloud of dots as moves along a one-dimensional random walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal recursive linear estimator suited to dynamic environments assuming all noise in the system is Gaussian. This is the "decision" component of the model. The Kalman filter is biologically plausible is because it does not require infinite memory, yet considers every piece of sensory evidence given.

The decision, "where to move next?", is answered by this model, but requires realistic inputs and outputs. We consider several human perception factors that act on the sensory input and motor outputs, as well as modify variables in the decision-making machinery. A schematic diagram of the final model is shown at the end of this section (Figure 3). This model gives, for a particular sensory input, the ideal tracking performance achievable. 
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ct = 8 > > < > > : 0+✏motor, if t ⌧  0 xt ⌧ + ✏motor, otherwise (9) 
We can estimate ⌧ by finding the delay which produces the highest correlation between target location and mouse cursor in the tracking task. A simple addition to the main tracking task, however, can reveal more about these temporal delays as well as provide 

1I

haven't thought of a good way to express the cursor placement prior to acting on sensory information. Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so it should be around 0, but then they might move it about a bit, and then of course those movements are not independent of each other...

2I'm

not entirely convinced if this is correct. In this version of the task dot = 0, and so the Kalman gain will be di↵erent in the sense they will move closer to their estimate than in the version where the target is invisible. Would this correspond to a di↵erent lag? Let's begin by redefining the centroid computation

gt = 1 J J X j=1 ✓d jt + ✏internal◆ (12) zt = t t X i=0 ✓w igt i t ◆ ( 13 
)
where t is the time step of the sampling and wi is the weight from the temporal weighting function and must be such that

t t X i=0 wi =1 ( 1 4 )
The first weighting function we will consider is one where all dots which appear to be simultaneously presented on the screen are given equal weight (i.e. a step function):

wi = 8 > > < > > : 1 ⌧blur t , if i t  ⌧blur 0, otherwise (15) 
where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself.
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1I

haven't thought of a good way to express the cursor placement prior to acting on sensory information. Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so it should be around 0, but then they might move it about a bit, and then of course those movements are not independent of each other...

2I'm

not entirely convinced if this is correct. In this version of the task dot = 0, and so the Kalman gain will be di↵erent in the sense they will move closer to their estimate than in the version where the target is invisible. Would this correspond to a di↵erent lag? Let's begin by redefining the centroid computation

gt = 1 J J X j=1 ✓djt + ✏internal◆ (12) zt = t t X i=0 ✓wigt i t◆ ( 13 
)
where t is the time step of the sampling and wi is the weight from the temporal weighting function and must be such that

t t X i=0 wi =1 ( 1 4 )
The first weighting function we will consider is one where all dots which appear to be simultaneously presented on the screen are given equal weight (i.e. a step function):

wi = 8 > > < > > : 1 ⌧blur t , if i t  ⌧blur 0, otherwise (15) 
where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself.
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Temporal Averaging Dot clouds are presented very rapidly in the tracking task. The perceptual consequence of this is that several dot clouds will appear on the screen together due to the temporal averaging of the visual system. I can imagine modelling this using a temporal weighting function which includes the previous dot locations in the computation of the centroid.
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zt = 1 J J X j=1 ✓djt + ✏internal◆ (6) 
where ✏internal ⇠ N (0, internal), and the Kalman gain would also include the internal noise in addition to the external noise from the dot cloud

Kt = Pt 1 + 2 walk Pt 1 + 2 walk + 2 cloud + 2 internal (7)
Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also be spatial blurring of the output due to motor noise. That is, the cursor ct is placed at the target's estimated location, but the movement is corrupted by Gaussian noise ✏motor ⇠ N (0, motor):

ct =xt + ✏motor (8) 
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Moving dot cloud stimulus:

Follows a ! random walk:

Colour scheme: target (red), cursor (), mean across Ss (red), high conf (purple), low conf (pink) The "twinkling" dot cloud stimulus (white), generated by drawing two dots per frame from a 2D Gaussian generating distribution. Red: mean and 1 SD circle, which were not displayed. Black: mouse cursor. The dots provided sensory evidence of target location (generating distribution mean). As illustrated, more than two dots were perceived at any moment due to temporal averaging in the visual system. B: Example target random-walk trajectory in velocity space. C: The corresponding horizontal trajectory of the target. D: Trial sequence. Trials were initiated by the observer, followed by 10 s of manual tracking of the inferred target with a computer mouse. Then, participants reported their sensorimotor confidence by indicating whether their performance on that trial was better or worse than their average. Objective performance feedback was provided intermittently including average points awarded and a final leaderboard. Difficulty manipulations: cloud size (σ cloud ) and velocity stability (σ walk ) were varied in separate sessions. the stimulus and set-up, and to form an estimate of their average performance. The main testing session followed (250 trials, 50 per stimulus level in random order). For the second session, participants were instructed to form a new estimate of average performance, and not to rely on their previous estimate.

Grading objective performance: For our analyses, we used root-mean-squared-error (RMSE) in deg as our measure of tracking error, calculated from the horizontal distance between the target (i.e., the current distribution mean) and the cursor. For the purposes of feedback, the tracking performance on each trial was converted to a score according to the formula points = 100 -30 * RM SE. Typical scores ranged from 60 to 80 points.

Every 5 trials, the average score for the previous 5-trials was reported. This feedback was provided for both training and test trials. Presenting the average score served several purposes. The primary purpose of the feedback was to focus the efforts of participants on their tracking, thus discouraging them choosing ahead of time whether the trial was to be "better" or "worse" and executing tracking to match their metacognitive rating.

Feedback also could have encouraged consistent performance across the session and helped participants to maintain a calibrated internal estimate of average performance. At the end of a session, participants were shown their cumulative score for that session and ranking on a performance leaderboard.

Metacognitive sensitivity metric: To examine sensorimotor confidence, we sought 13 a metacognitive sensitivity metric that reflected how well the confidence reports discriminated good from bad tracking performance (i.e., low versus high RMSE). This concept is similar to the one used in perceptual confidence, where metacognitive sensitivity refers to a person's ability to distinguish correct from incorrect decisions [START_REF] Fleming | How to measure metacognition[END_REF]. As the outcome of tracking was not binary (e.g., correct vs. incorrect), we considered the objective tracking performance within a trial relative to all trials within the session performed by that participant. We constructed two objective-performance probability distributions conditioned on the sensorimotor confidence: one distribution for trials followed by a "better than average" response and one for "worse than average" responses (Figure 3A-B). A high overlap in these conditional distributions would reflect low metacognitive sensitivity as this means objective performance is a poor predictor of the participant's evaluation of their performance. Conversely, low overlap indicates high metacognitive sensitivity. We used an empirical Receiver Operating Characteristic (ROC) curve, also known as a quantile-quantile plot (Figure 3C), for a non-parametric measure of metacognitive sensitivity that reflected the separation of these distributions, independent of any specific criterion for average performance. As shown in Figure 3D, completely overlapping distributions would fall along the equality line in an ROC plot, resulting in an Area Under the ROC curve (AUROC) of 0.5.

In contrast, complete separation would yield an AUROC of 1. An advantage of this technique over methods that rely on averaging (e.g., classification images) is that this method is suitable for continuous performance distributions of any shape (e.g., skewed). There are two things worth noting about the interpretation of this metric. First, this is not the ROC method other researchers typically use to measure perceptual confidence [START_REF] Barrett | Measures of metacognition on signaldetection theoretic models[END_REF][START_REF] Fleming | How to measure metacognition[END_REF]. AUROC has, however, been used previously to explore the relationship between choice correctness and continuous confidence ratings as well as reaction times [START_REF] Faivre | Behavioral, modeling, and electrophysiological evidence for supramodality in human metacognition[END_REF]. Second, our AUROC measure has the following interpretation:

if the experimenter was given the RMSE of two trials and was told one was rated "worse" and the other "better", the AUROC would reflect the probability of correctly inferring that Root-mean-squared-error (RMSE, dashed line) was the objective performance measure. B: Example participant's objective-error distributions, conditioned on sensorimotor confidence, for all trials in the variable cloud-size session. True average performance (dashed line) indicates the ideal criterion. Smaller RMSE tended to elicit "better" reports, and larger RMSE "worse". C: Metacognitive sensitivity was quantified by the separation of the conditional objective-error distributions with a non-parametric calculation of the Area Under the ROC (AUROC) using a quantile-quantile plot. At every point along the objectiveperformance axis, the cumulative probability of each conditional error distribution was contrasted. D: The area under the resulting curve is the AUROC statistic, with 0.5 indicating no meta-cognitive sensitivity and 1 indicating maximum sensitivity. The greater the separation of the conditional distributions, the more the objective tracking performance was predictive of sensorimotor confidence, and thus the higher the metacognitive sensitivity.

the objectively better trial of the two was rated as "better" by the participant.

Results

Confirming the difficulty manipulation: We first examined whether the difficulty manipulation affected objective tracking performance. Figure 4A shows the mean RMSE for each stimulus level for the two difficulty manipulations. Qualitatively, the difficulty levels appear matched for most participants: performance curves follow the equality line. To check this result, we fit a linear mixed-effects model (LMM) to the RMSE values of each trial. 
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The fixed effects in the model were difficulty manipulation (cloud-size or velocity-stability), stimulus difficulty (five levels), trial number, and an intercept term. The random effect was the participant affecting only the intercept term. Trial number was included to test whether learning occurred during the experiment. An analysis of deviance was performed using Type II Wald chi-square tests, revealing several significant effects. As expected, difficulty level had a significant effect on tracking performance (χ 2 = 3044.40, p < 0.05), with larger RMSE for more difficult trials. This confirms that the difficulty manipulations had the desired effect on tracking performance. We also found that the cloud-size difficulty manipulation had significantly higher tracking error than velocity-stability (χ 2 = 15.34, p < 0.05), indicating that tracking in the velocity-stability session was easier than in the cloud-size session. There was no significant interaction between difficulty manipulation and stimulus level (p > 0.05). Trial number also had a significant effect on performance (χ 2 = 5.25, p < 0.05), with later trials having larger error. This suggests training trials were likely sufficient for performance to stabilise prior to the main task, but fatigue likely affected performance later in the session.

Overall metacognitive accuracy: Next, we examine metacognitive accuracy, which is the percentage of trials correctly judged as better or worse than average. Performance in both sessions was significantly better than chance (cloud-size session: 64.4 ± 1.2% correct; velocity-stability session: 64.7 ± 2.3%). The accuracy results for each session are contrasted in Figure 4B. Four participants had significantly higher accuracy in the cloud-size session, according to the 95% binomial error confidence intervals, and four participants were significantly more accurate in the velocity-stability session. Overall, evaluation of tracking performance was similar in the two conditions. However, this accuracy metric may be subject to response bias. Therefore, we examined meta-cognitive sensitivity.

Overall metacognitive sensitivity: The pattern of results for metacognitive sensitivity (AUROC, see Methods) was similar to the one found for metacognitive accuracy.

Metacognitive sensitivity is contrasted between the sessions in Figure 4C and the individual and4E, respectively. Almost all participants displayed some degree of metacognitive sensitivity in both sessions (i.e., have ROC-style curves above the equality line). On average, the AUROC in the cloud-size session was 0.68 ± 0.02 (mean±SEM) and was 0.68 ± 0.03 for the velocity-stability session. At the group level, a Wilcoxon's Matched-Pairs Signed-Ranks Test revealed no significant difference between AUROCs from the two sessions (n = 13, T = 45, p > 0.05). To examine the sensitivity at the individual subject level, we performed a bootstrap procedure in which the AUROC was computed for each participant 1000 times, sampling from their trial set with replacement, allowing us to calculate 95% confidence intervals for our estimates (Figure 4C). Four participants were significantly more sensitive in the velocity-stability session, three were significantly more sensitive in the cloud-size session, and the remaining six showed no significant difference between the two conditions. It is unlikely that these results are due to a learning effect across sessions: four of the seven significant results come from greater meta-cognitive accuracy in the first session completed.

Another consideration is the amount of variability in performance for each individual and session. A highly variable participant may have a higher metacognitive sensitivity score because distinguishing better from worse performance is easier if a better trial differs more, on average, from a worse trial [START_REF] Rahnev | How experimental procedures influence estimates of metacognitive ability[END_REF]. Also, variance could have differed between the two difficulty manipulations, affecting within-participant comparisons of metacognitive sensitivity. To examine this we fit a GLMM of the AUROC with participant as the random effect (intercept term only), and fixed effects of RMSE variance (pooled across difficulty levels), difficulty manipulation, and an intercept term. We found no significant effect of any of our predictors. To check the strength of the non-significant relationship between variance and metacognitive sensitivity, we calculated the Bayesian Information Criterion (BIC) for this linear model and compared it to the same model without trial variance as a predictor. This simplified model had a lower BIC score (∆BIC = 5.35), supporting the claim that performance variance has little influence on metacognitive sensitivity. 
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Temporal profile of metacognitive sensitivity: We conducted an analysis of metacognitive sensitivity for each 1 s time bin within the 10 s trial to examine the degree to which each second of tracking contributed to the final sensorimotor confidence judgement. An AUROC of 0.5 indicates that error in that 1 s time bin has no predictive power for the metacognitive judgement; an AUROC of 1 indicates perfect predictive power. Figure 5A shows the results of this analysis. In both the cloud-size and the velocity-stability sessions there was a noticeable recency effect: error late in the trial was more predictive of sensorimotor confidence than error early in the trial. There was no discernible difference between the two difficulty manipulations, except for the first few seconds where early error was more predictive for the velocity-stability session.

For comparison, we also computed the temporal AUROCs, replacing the participant's responses with simulated sensorimotor confidence judgements under two strategy extremes.

Figure 5B shows the AUROC time course for an ideal observer that had perfect knowledge of performance (RMSE) and based the confidence judgement on whether the RMSE was truly better or worse than average (i.e., weighted all time points equally). After the first two seconds of tracking, the temporal AUROC is relatively level. Note that no time bin was perfectly predictive of the confidence judgement, because the error within one second is not equivalent to the total error across the entire trial. Figure 5C shows the AUROC time course for an observer that perfectly uses uncertainty cues (i.e., cloud-size, velocity-stability) to judge the difficulty level of the trial, and computes prospective confidence rather than basing the confidence judgement on performance monitoring. Again, no single time bin should be particularly informative if one is assessing a cue that does not disproportionately occur at or affect performance for one particular portion of the trial, such is the case with our difficulty manipulations. Note that for the heuristic-evaluation simulation, confidence was coded as "worse" for the two hardest difficulty levels, "better" for the two easiest, and flipping a 50-50 coin for the middle difficulty level. Again, both temporal profiles are flat after the first 2 s. Neither perfect monitoring nor prospective confidence based on Weighing all time points equally is only an optimal strategy if all time bins are equally predictive of trial-averaged performance. Error variability is one factor that can affect that: periods of low error volatility have less impact on the predictive validity of a time bin for overall RMSE. Thus, a recency effect might be an optimal strategy if there is higher error volatility late in the trial. We found that error is overall lower and less variable before 2 s (Figure 5D). This is because participants begin the trial by placing their cursor at the centre of the screen, where the target is located. After this initial 2 s, however, tracking error variability is relatively constant, indicating that all these time points are similarly informative about the final RMSE. Thus, error variance may explain why metacognitive sensitivity was reduced for the initial 2 s for the measured and simulated sensorimotor confidence, but it cannot explain the observed recency effect. Figure 5E shows the auto-correlation of the signed error signal for each participant averaged across difficulty levels. This graph reveals that error is correlated up to ±1 s, and is slightly anti-correlated thereafter. Errors are necessarily related from moment to moment, due to the continuous nature of tracking. To resolve a tracking error, one needs to make a corrective action to compensate. The anticorrelation is likely a result of such corrective actions. Figure 5F shows that this salient auto-correlation up to ±1 s is also present between the RMSE of neighbouring 1 s time bins. These results indicate that some of the predictive power of error in one time bin may be attributed to weighting of error in a neighbouring bin. Thus, if we ask for what additional variance is accounted for, starting with last bin, the recency effect would appear even stronger.

Other performance metrics: Our modelling thus far has been based on the error between the location of the target and the cursor placement. However, this is not a realistic model of how the participant perceives their error as they imperfectly infer target location 6A), we opted for a simple exponential filtering of the centroid signal (i.e., the mid-point of the two dots presented on each frame). The true centroid position is a reasonable input, given that humans perform well at static centroid estimation [START_REF] Mcgowan | Saccadic localization of random dot targets[END_REF][START_REF] Juni | Robust visual estimation as source separation[END_REF]. The smoothing aims to capture both the temporal averaging in the visual system, which causes a cloud of 10 or so dots to be perceived, as well as the averaging across time for strategic decision-making [START_REF] Kleinman | Optimal control of linear systems with time-delay and observation noise[END_REF][START_REF] Bonnen | Continuous psychophysics: Target-tracking to measure visual sensitivity[END_REF]. The current estimate of target position, xt , is obtained by computing the weighted average at time t of the horizontal component of the current centroid, c t , with the previous estimate, xt-1 :

xt = αc t + (1 -α)x t-1 . (1) 
The smoothing parameter, α, controls the steepness of the exponential. Larger α mean that current sensory evidence is weighted more than previous target estimates, and vice versa. The weighting is a trade-off that has to be balanced: averaging improves the amount of information contributing to the estimate, but too much averaging into the past leads to biased estimates.

We selected the value of α that minimised the sum of squared errors between true target location and the model's estimate as a stand in for the observer's estimate of the current location of the target. This was calculated separately for each stimulus level and condition (Figure 6B). As expected, there is less smoothing (larger α) for the easy, small dot clouds than the more difficult, large dot clouds (smaller α). This is because accepting some history bias only makes sense when dealing with the noisier large dot clouds. The opposite pattern is true for the velocity-stability condition. If velocity stability is high (easy), it is safer to average further into the past to improve the estimate than if velocity stability is low (difficult). It is not simple to use the tracking time series to estimate the true perceptual smoothing performed by the observer as tracking actions are not smooth and continuous in temporal averaging and motor constraints, it is not possible to estimate motor noise just yet and analysis will be restricted to the computational lag.

Results & Discussion

A cross-correlation analysis was performed to determine the lag between the target location and the cursor placement for every single trial. The cross-correlation values were normalised to produce a correlation coe cient by subtracting the mean and dividing by the standard deviation for each lag value examined. Cross-correlograms were first averaged within subjects, with the peak used as the estimate of the subject's preferred tracking lag, ⌧ , for the model fitting(see Figure 4a). Averaging these cross-correlograms indicates that normal, healthy adult is expected to have a ⌧ of approximately 400 ms.

Shown in Figure 4b is the distribution of peak lags across trials for each subject. The histograms are all positively skewed and resemble those observed for reaction times in traditional psychophysics tasks [START_REF] Usher | The time course of perceptual choice: The leaky, competing accumulator model[END_REF]. However, a one-sample ttest on the Pearson moment coe cient of skewness for each subject's sample of peak lags did not reveal a significant e↵ect (t(4)=2.24 , p = 0.09). This result is not unexpected given the small sample size of this pilot experiment. Subjects are encouraged by the points system of the experiment to track the target quickly, but doing so may reduce the accuracy of their tracking for various reasons such as reduced time in estimating the centroid or planning and executing a movement. Therefore, peak tracking time may be a useful measure of speed in a speed-accuracy trade-o↵ analysis. Current attempts at this analysis suggest that more data needs to be collected.

The same cross-correlation analysis was applied to the tracking data from the task where the target was made visible (see Figure 5). As expected, the peak lag for the explicit target experiment is lower than for the peak lag for the experiment requiring the 

Part 2. Modelling Approach

This section outlines the development of a Bayesian ideal observer model for a tracking task where subjects track a moving cloud of dots as moves along a one-dimensional random walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal recursive linear estimator suited to dynamic environments assuming all noise in the system is Gaussian. This is the "decision" component of the model. The Kalman filter is biologically plausible is because it does not require infinite memory, yet considers every piece of sensory evidence given.

The decision, "where to move next?", is answered by this model, but requires realistic inputs and outputs. We consider several human perception factors that act on the sensory input and motor outputs, as well as modify variables in the decision-making machinery. A schematic diagram of the final model is shown at the end of this section (Figure 3). This model gives, for a particular sensory input, the ideal tracking performance achievable. task where subjects track a moving cloud of dots as moves along a one-dimensional random walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal recursive linear estimator suited to dynamic environments assuming all noise in the system is Gaussian. This is the "decision" component of the model. The Kalman filter is biologically plausible is because it does not require infinite memory, yet considers every piece of sensory evidence given.

The decision, "where to move next?", is answered by this model, but requires realistic inputs and outputs. We consider several human perception factors that act on the sensory input and motor outputs, as well as modify variables in the decision-making machinery. A schematic diagram of the final model is shown at the end of this section (Figure 3). This model gives, for a particular sensory input, the ideal tracking performance achievable. In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt = Pt 1 + 2 walk Pt 1 + 2 walk + 2 cloud ( 2 
)
where cloud is the standard deviation of the generating Gaussian distribution for dot locations and walk is the standard deviation in the random walk. This Kalman gain term describes the previous estimate of target location, xt 1, is combined with the incoming measurements to update the estimate of target location xt:

xt =xt 1 + Kt(zt xt 1) ( 3 ) 
With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated as follows

Pt =(1 Kt)(Pt 1 + 2 walk) ( 4 ) 

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be easily able to identify their locations. However, it is still likely that internal sensory noise is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual discrimination task, where two dots are sequentially presented and subjects have to judge if the second dot was to the left or right of the first. The internal sensory noise estimate would be calculated from the Just Noticeable Di↵erence (JND)

internal = JND p 2 (5)
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ct = 8 > > < > > : 0+✏motor, if t ⌧  0 xt ⌧ + ✏motor, otherwise (9) 
We can estimate ⌧ by finding the delay which produces the highest correlation between target location and mouse cursor in the tracking task. A simple addition to the main tracking task, however, can reveal more about these temporal delays as well as provide Additionally, we can computed the RMSE in tracking behaviour in the target visible experiment, after shifting the cursor trace by ⌧visible, as an estimate of motor. The corresponding RMSE in the main task would also include error in estimating the target, which is why we wouldn't use it to estimate motor noise.

1I haven't thought of a good way to express the cursor placement prior to acting on sensory information. Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so it should be around 0, but then they might move it about a bit, and then of course those movements are not independent of each other... 2I'm not entirely convinced if this is correct. In this version of the task dot = 0, and so the Kalman gain will be di↵erent in the sense they will move closer to their estimate than in the version where the target is invisible. Would this correspond to a di↵erent lag? Let's begin by redefining the centroid computation

gt = 1 J J X j=1 ✓ djt + ✏internal ◆ (12) zt = t t X i=0 ✓ wigt i t ◆ ( 13 
)
where t is the time step of the sampling and wi is the weight from the temporal weighting function and must be such that

t t X i=0 wi =1 (14) 
The first weighting function we will consider is one where all dots which appear to be simultaneously presented on the screen are given equal weight (i.e. a step function):

wi = 8 > > < > > : 1 ⌧blur t , if i t  ⌧blur 0, otherwise (15) 
where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself.

Page 7

Second Year Paper 25th September 2016

Temporal Averaging Dot clouds are presented very rapidly in the tracking task. The perceptual consequence of this is that several dot clouds will appear on the screen together due to the temporal averaging of the visual system. I can imagine modelling this using a temporal weighting function which includes the previous dot locations in the computation of the centroid.

Let's begin by redefining the centroid computation

gt = 1 J J X j=1 ✓ djt + ✏internal ◆ (12) zt = t t X i=0 ✓ wigt i t ◆ ( 13 
)
where t is the time step of the sampling and wi is the weight from the temporal weighting function and must be such that

t t X i=0 wi =1 (14) 
The first weighting function we will consider is one where all dots which appear to be simultaneously presented on the screen are given equal weight (i.e. a step function):

wi = 8 > > < > > : 1 ⌧blur t , if i t  ⌧blur 0, otherwise (15) 
where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself.
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zt = 1 J J X j=1 ✓ djt + ✏internal ◆ (6)
where ✏internal ⇠ N (0, internal), and the Kalman gain would also include the internal noise in addition to the external noise from the dot cloud

Kt = Pt 1 + 2 walk Pt 1 + 2 walk + 2 cloud + 2 internal (7)
Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also be spatial blurring of the output due to motor noise. That is, the cursor ct is placed at the target's estimated location, but the movement is corrupted by Gaussian noise ✏motor ⇠ N (0, motor):

ct =xt + ✏motor (8) 
An experiment that would provide an estimate of motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate as soon as the dot cloud is displayed but after some time has elapsed. This temporal lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display, ⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating, sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag Page 5

Second Year Paper 25th September 2016 the Kalman filter is supplied with a prior estimate x0 = 0a n dt h ea s s o c i a t e de r r o r covariance P0 =0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt = Pt 1 + 2 walk Pt 1 + 2 walk + 2 cloud ( 2 
)
where cloud is the standard deviation of the generating Gaussian distribution for dot locations and walk is the standard deviation in the random walk. This Kalman gain term describes the previous estimate of target location, xt 1, is combined with the incoming measurements to update the estimate of target location xt:

xt =xt 1 + Kt(zt xt 1) ( 3 ) 
With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated as follows

Pt =(1 Kt)(Pt 1 + 2 walk) ( 4 ) 

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be easily able to identify their locations. However, it is still likely that internal sensory noise is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual discrimination task, where two dots are sequentially presented and subjects have to judge if the second dot was to the left or right of the first. The internal sensory noise estimate would be calculated from the Just Noticeable Di↵erence (JND)

internal = JND p 2 (5)
We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the Page 4
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ct = 8 > > < > > : 0+✏motor, if t ⌧  0 xt ⌧ + ✏motor, otherwise (9) 
We can estimate ⌧ by finding the delay which produces the highest correlation between target location and mouse cursor in the tracking task. A simple addition to the main tracking task, however, can reveal more about these temporal delays as well as provide Additionally, we can computed the RMSE in tracking behaviour in the target visible experiment, after shifting the cursor trace by ⌧visible, as an estimate of motor. The corresponding RMSE in the main task would also include error in estimating the target, which is why we wouldn't use it to estimate motor noise.

1I haven't thought of a good way to express the cursor placement prior to acting on sensory information. Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so it should be around 0, but then they might move it about a bit, and then of course those movements are not independent of each other... 2I'm not entirely convinced if this is correct. In this version of the task dot = 0, and so the Kalman gain will be di↵erent in the sense they will move closer to their estimate than in the version where the target is invisible. Would this correspond to a di↵erent lag? Let's begin by redefining the centroid computation

gt = 1 J J X j=1 ✓ djt + ✏internal ◆ (12) zt = t t X i=0 ✓ wigt i t ◆ ( 13 
)
where t is the time step of the sampling and wi is the weight from the temporal weighting function and must be such that

t t X i=0 wi =1 (14)
The first weighting function we will consider is one where all dots which appear to be simultaneously presented on the screen are given equal weight (i.e. a step function):

wi = 8 > > < > > : 1 ⌧blur t , if i t  ⌧blur 0, otherwise ( 15 
)
where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself. Let's begin by redefining the centroid computation
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where ⌧blur is the length of time over which the stimulus is temporally averaged. Alternative temporal weighting functions would weight dots according to when they where first presented. For example, this could be done using a Gaussian function wi ⇠ N (0, blur).

Another possibility is an exponential function, but this seems like it would be hard to disentangle from the operation of the Kalman filter itself.
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Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also be spatial blurring of the output due to motor noise. That is, the cursor ct is placed at the target's estimated location, but the movement is corrupted by Gaussian noise ✏motor ⇠ N (0, motor):
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Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be easily able to identify their locations. However, it is still likely that internal sensory noise is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual discrimination task, where two dots are sequentially presented and subjects have to judge horizontal position of the dot-cloud centroid, c t (i.e., dot midpoint on a single frame). The perceptual system smooths the signal by convolving with an exponential to produce the target estimate x. This is equivalent to the weighted sum of current input and previous estimate, xt-1 , according to the smoothing parameter, α. Output: perceived error determines the motor response. B: Setting of α that minimises the difference between true and perceived target location for each difficulty level and condition. C: Tracking lag as a measure of perceptual smoothing. As per the expected effects of difficulty level on perceptual smoothing (B), we found the corresponding X pattern in average tracking lags measured by a cross-correlation analysis (see text for details). Note that a larger α means greater weight on the current estimate and therefore less tracking lag. D: Metacognitive sensitivity AUROC as measured under several error-estimation methods compared to the standard RMSE method reported throughout. Absolute: mean absolute error between target and cursor. Perceptual: error according to the perceptual model in (A) with α values from (B). Centroid: RMSE calculated using dot-cloud centroid rather than true target location. Positive values indicate that this method yields higher sensitivity than the standard method. E: Same as in (D) but testing different performance criteria, comparing to the true-average criterion reported throughout. Cumulative: average error on a per-trial basis ignoring future performance. Feedback: last 5-trial performance feedback as criterion. N-back: windowed average of last N trials. Optimal calculated as N between 1 and 100 that maximises the AUROC. F: Computed optimal N for each condition. Black: individual participants. Red: group mean ± SEM. [START_REF] Miall | Intermittency in human manual tracking tasks[END_REF]. However, we did find evidence of such a pattern of perceptual smoothing in the tracking lags by difficulty level (Figure 6C). Tracking lag was computed per observer by finding the lag that maximised the cross-correlation between the velocity signal of the target and cursor. The pattern is the reverse of that seen in Figure 6B: larger α means greater weight on the current estimate and therefore shorter tracking lags, as the estimate is less dependent on the history of the stimulus.

When the AUROC was calculated from the trial RMSE according to the perceptual model, however, the results are only marginally improved by at most 0.01 in the AUROC (Figure 6D). In fact, using the RMSE based on the raw centroid signal or absolute tracking error also produced similar AUROC estimates, only slightly worse than the RMSE method.

The relatively unchanging AUROC across these performance metrics is likely due to the high correlation between all of these error measures. As compared to the RMSE method, the correlations for the cloud-size condition are r = 0.98, 0.94, and 0.79 for absolute error, perceptual error, and centroid error respectively. For the velocity-stability condition, these are r = 0.98, 0.94, and 0.95. This is because all methods are measures of the mean performance, which will change little with unbiased noise if given sufficient samples (i.e., 10 s of tracking). Thus, we conclude that our AUROC statistic was a robust measure and that the overlap in the confidence-conditioned distributions is unlikely due to the selection of RMSE as the objective-performance metric.

Another assumption we made in our analysis of metacognitive sensitivity was that the average-performance criterion used by the participant was fixed. However, the participant may have used a different strategy for judging sensorimotor confidence, such as keeping a cumulative average, or relying on the most recent feedback, or considering only some recent history of trials. To investigate this possibility, we tested whether the participant's categorisation of "better" and "worse" trials was more consistent (i.e., less overlap of the confidence-conditioned distributions) if the error in the trial was compared only to the RMSE of previous trials and not simply the fixed sessional average of RMSE. Considering Locke, S. M., Mamassian, P., & Landy, M. S. (2020), Cognition, 205:104396. https://doi.org/10.1016/j.cognition.2020.104396 24 only the RMSE of previous trials necessarily leads to a fluctuating average, in contrast to considering both past and future performance, which leads to a fixed average RMSE.

To be clear, computing the relative RMSE of each trial according to a fluctuating average would change the shape of the confidence-conditioned distributions (Figure 3B), but the AUROC calculation would still be performed in the same manner (Figure 3C). If the participant's sensorimotor confidence response used a criterion that tracked the real fluctuations in objective tracking performance, then the AUROC should be larger than our reported main results (Figure 4C). We considered several potential strategies for computing relative performance: a trial's RMSE could be compared to an average of all previous trials ("Cumulative"), to the average RMSE used to calculate the score in the most recent 5-trial performance feedback ("Feedback"), or to the RMSE average of only the most recent 5, 10 or best N trials ("5-Back", "10-Back", "Best N-Back"). The value of N for the Best N-back model was computed separately for each participant and session by finding the size of temporal-averaging window that maximised the AUROC. The metacognitive sensitivity according to each strategy was then compared to the results reported as the main finding.

As shown in Figure 6E, only the Cumulative and Best N-back models improved the estimated AUROCs for both sessions. On average, the number of trials in this latter model was 31.5±7.5 trials for the cloud-size session and 26.6±7.9 trials for the velocity-stability session (Figure 6F). Overall, the improvement in the AUROC was only marginal (a maximum of 2% for any model), indicating that accounting for performance fluctuations, as a proxy for fluctuations in the average-performance criterion, did little to improve the understanding of the sensorimotor confidence computation.

Summary:

In Experiment 1, we measured sensorimotor confidence for visuomotor tracking, under both cloud-size and velocity-stability manipulations of difficulty, to address the three goals of this study. A robust AUROC statistic, that quantified the ability of the confidence judgements to distinguish objectively good from bad tracking, indicated that confidence judgements were made with comparable above-chance metacognitive sensitivity 
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for both difficulty manipulations. Furthermore, a temporal analysis revealed a recency effect, where tracking error later in the trial was found to disproportionately influence sensorimotor confidence. We propose that this is due to imperfect performance monitoring and not prospective confidence based on heuristic cues to difficulty (i.e., cloud size, velocity stability).

Experiment 2

The goal of Experiment 2 was to further investigate the recency effect. To this end, we repeated the task keeping the stimulus statistics fixed (σ cloud and σ walk ) and instead varied the duration of the stimulus presentation in an interleaved design. This made the time when the sensorimotor-confidence judgement was required less predictable. Thus, participants would be encouraged to sample error evidence for their confidence throughout the trial instead of waiting until the final portion of the stimulus duration. If a response-expectation strategy was the cause of the recency effect, we would expect to see flatter temporal AUROCs for this mixed-duration design. Otherwise, if the recency effect is due to a processing limitation of sensorimotor confidence, we would expect error in the last few seconds to largely determine sensorimotor confidence regardless of the duration condition. Additionally, this experiment allowed us to investigate sensorimotor confidence in the context of a fixed difficulty setting that encourages participants to monitor their performance. This is because prospective judgements of confidence, based on cues to sensorimotor uncertainty, are uninformative when the stimulus statistics are unchanging.

Methods

Participants: There were seven new participants in Experiment 2 (21-31 years old, one left-handed, four female). All participants had normal or corrected-to-normal vision and no self-reported motor abnormalities. Participants were naive to the purpose of the studies [START_REF] Brainard | The Psychophysics Toolbox[END_REF][START_REF] Pelli | The Video Toolbox software for visual psychophysics: Transforming numbers into movies[END_REF][START_REF] Kleiner | What's new in psychtoolbox-3[END_REF].

Task: Stimulus presentation duration was manipulated with an interleaved design and three levels (6, 10, and 14 s) while the stimulus statistics remained fixed at σ cloud = 2 deg and σ walk = 0.15 deg/s. Data were collected over three 1-hour sessions, with each session composed of 15 training trials (5 per duration, randomised order) followed by 225 test trials (75 per duration, randomised order). Again, after each stimulus presentation, participants rated their subjective sense of their tracking performance as either "better" or "worse" than their session average. As shown in Experiment 1, tracking before 2 s in this task has a different error profile, due to the target and cursor both starting at the same location from stationary (Figure 4D). We opted to not count these initial 2 s of tracking in the final score so that trial duration could not serve as a difficulty manipulator in this experiment (e.g., a 6 s trial is more likely to have lower RMSE than a 14 s trial). In order to signal when the tracking contributed to the final score, the cursor was initially red (not contributing) and switched to green (contributing to the score) after 2 s. Furthermore, to ensure that all trials had the same stimulus statistics (e.g., position on screen, velocity), all trajectories were initially sampled as a 14 s stimulus and accepted or rejected before being temporally truncated to 6 or 10 s if the duration condition required. For example, this prevented an 

Results

In Experiment 2, we manipulated the duration of stimulus presentation with three interleaved conditions of 6, 10, or 14 s. The consequence of duration on objective tracking performance was a small increase in RMSE for longer durations (Figure 7A). The sensorimotor confidence judgements also showed slightly lower metacognitive accuracy (Figure 7B) and sensitivity (Figure 7C) for longer durations. Overall, the average AUROC from pooling data across durations was 0.68 ± 0.04 SEM (Figure 7D) and all participants had abovechance metacognitive sensitivity according to bootstrapped confidence intervals calculated as per the same procedure as Experiment 1. When split by session, the AUROCs were 0.68 ± 0.04, 0.68 ± 0.03, and 0.71 ± 0.02, suggesting that metacognitive performance was relatively unchanging across the sessions. Note that for these analyses we discarded the initial 2 s of tracking that the participants were instructed to ignore.

Figure 7E shows the temporal profile of metacognitive sensitivity for each duration as well as the results from Experiment 1. Participants were instructed to ignore tracking error occurring before 2 s, when the cursor changed colour, for estimating sensorimotor confidence, and we observed low metacognitive sensitivity for these time points. Due to RMSE being partially correlated between adjacent time bins (Figure 4F), slightly elevated sensitivity for the time bin at 2 s does not necessarily indicate non-compliance with task instructions. For the remainder of the trial, later time points tend to have higher metacognitive sensitivity, consistent with the recency effect observed in Experiment 1. The steepness of the temporal AUROC was also greater for shorter trial durations. This is to be expected as the contribution of a 1 s time bin to the final RMSE is greater when the trial is short. A recency effect is also consistent with the observed lower overall metacognitive performance for longer durations, because a smaller percentage of the total error signal contributes to sensorimotor confidence.

We attempted to compare the temporal AUROCs quantitatively with mixed success (see Supplementary Information). We found evidence for a stronger recency effect for for the recency effect and/or external noise via our perceptual model in Figure 5A gave little benefit when attempting to predict sensorimotor confidence for either experiment (at most ∼ 2% increase in predictive accuracy). However, we caution against strong conclusions from these supplementary analyses as certain properties of the obtained data set were not ideal for these quantitative model fits.

In sum, We replicated the recency effect of Experiment 1 for all stimulus durations.

Thus the final few seconds of tracking had the greatest influence on sensorimotor confidence regardless of whether the participant knew when the stimulus would terminate. This suggests that response expectation is unlikely to be the source of the recency effect.

Discussion

In two experiments, participants completed a visuomotor tracking task where trials were followed by a sensorimotor confidence judgement of "better" or "worse" than average tracking performance. We calculated the degree to which these judgements predicted objective tracking for manipulations of task difficulty (Experiment 1) and trial duration (Experiment 2), with an AUROC metacognitive-sensitivity statistic that ranged from no sensitivity at 0.5 and perfect sensitivity at 1. In both experiments we found above-chance metacognitive sensitivity and a temporal profile that suggested that error later in the trial contributed more to sensorimotor confidence.

Performance monitoring

Our primary aim was to establish if humans would actively monitor their own performance to judge sensorimotor confidence. An alternate strategy would have been to use cues to uncertainty (e.g., cloud size) to predict task difficulty and thus the likelihood of performing well. From our experiments, we found several indicators of performance monitoring.

First, in Experiment 1, we manipulated task difficulty systematically with two methods, varying either the cloud-size parameter (σ cloud ) or the velocity stability parameter (σ walk )

of the procedure to generate our dynamic stimulus. The manipulation of σ cloud was very noticeable, with all participants reporting the stimulus manipulation in their debriefing interviews, whereas varying σ walk was more subtle and participants had difficulty identifying the manipulation (supplementary media files are provided to illustrate the difficulty manipulations). Thus, if the strategy was to rely exclusively on cues to uncertainty, and given that the manipulations had sizeable and comparable effects on tracking performance, we would expect higher metacognitive sensitivity for the cloud-size session than the velocity-stability session. We did not find supporting evidence for this hypothesis as there was no significant difference in sensitivity between the sessions.

Stronger supporting evidence for performance monitoring was found in Experiment 2, where task difficulty was kept the same for all trials by fixing the stimulus statistics. In this scenario, there are no explicit uncertainty cues for the participant to use. Yet, metacognitive sensitivity was slightly better than that observed in Experiment 1 (AUROC of 0.68 in Experiment 2 versus 0.64 for cloud-size and 0.64 for velocity-stability in Experiment 1).

However, several factors complicate direct comparisons. Variability in tracking performance is not the same for fixed-and variable-difficulty designs; RMSE differences are likely to be lower for a fixed-difficulty design, complicating the comparison. Furthermore, the difficulty manipulation in Experiment 1 may have permitted a mixed strategy, combining performance monitoring and uncertainty heuristics. Thus, our results from Experiment 2 supporting the performance-monitoring hypothesis are a better indicator of how well performance monitoring captures true tracking performance than the results of Experiment 1.

The best evidence for performance monitoring is the recency effect we observed in both experiments. We found that sensorimotor confidence was most influenced by the error in last few seconds of the trial. Such a result is unlikely from the prospective use of uncertainty cues because it shows that the error occurring during the trial matters, with some moments being 31 treated differently from others. That is, for the cloud-size session, all time points equally signal the uncertainty from cloud size, so there is no reason that the final seconds should be privileged. Similarly, for the velocity-stability session, the behaviour of the target would have to be observed for some period of time to assess velocity stability, but this could be done at any point during the trial. One possibility is that participants were waiting until the end of the trial to make these assessments, but the results of Experiment 2 argue against this, as the recency effect was still found when stimulus-presentation duration was randomised. If instead participants were using some other heuristic strategy (e.g., average velocity, amount of leftward motion, etc.), this would also not produce a recency effect unless it predicted performance later in the trial but not early performance. From an information-processing standpoint, performance monitoring is likely to exhibit temporal sub-optimalities due to either leaky accumulation of the error signal during tracking [START_REF] Busemeyer | Decision field theory: A dynamiccognitive approach to decision making in an uncertain environment[END_REF][START_REF] Smith | Psychology and neurobiology of simple decisions[END_REF] or the temporal limitations of memory for retrospective judgements [START_REF] Atkinson | Human Memory: A Proposed System and Its Control Processes[END_REF][START_REF] Davelaar | The demise of short-term memory revisited: Empirical and computational investigations of recency effects[END_REF].

Before we examine the recency effect, we first comment on the possibility of a mixed strategy of performance monitoring and uncertainty heuristics. Metacognitive judgements based on a mixed strategy combining actual performance and cues to uncertainty have been reported for sensorimotor confidence [START_REF] Mole | Metacognitive judgements of perceptual-motor steering performance[END_REF], motor-awareness confidence [START_REF] Charles | Evidence for metacognitive bias in perception of voluntary action[END_REF], and perceptual confidence [START_REF] De Gardelle | Weighting mean and variability during confidence judgments[END_REF][START_REF] Spence | Computations underlying confidence in visual perception[END_REF], with some exceptions (e.g., [START_REF] Barthelmé | Flexible mechanisms underlie the evaluation of visual confidence[END_REF]). Yet, it is unclear if a mixed strategy was used in Experiment 1 of the present study. The anecdotal differences in detecting the difficulty manipulations (cloud-size obvious, velocity-stability subtle) coupled with comparable metacognitive performance in these sessions lends support to a performance-monitoring strategy, but are weak evidence as difficulty detectability was not rigorously tested. An ideal test for use of a mixed strategy would involve keeping performance constant by fixing the difficulty while also varying likely uncertainty cues (e.g., titrating the mean and variability of the sensory signal; De Gardelle and Mamassian, 2015; et al., 2015). This is more difficult in sensorimotor tasks as motor variability will introduce noise into the error signal, hindering any attempt to match performance. One way around this problem would be to have participants judge sensorimotor confidence for replays of previously completed tracking and artificially adjust uncertainty cues. However, this would rely on metacognition acting similarly for active tracking and passive viewing, which has only been confirmed for motor-awareness confidence [START_REF] Charles | Evidence for metacognitive bias in perception of voluntary action[END_REF].

Finally, we acknowledge that the current study is limited in that it is unable to answer how participants are achieving performance monitoring. We cannot separate the contribution of visual information, knowledge of motor commands, and proprioception to the confidence judgements. This is because motor uncertainty could be directly assessed in our task by visually inspecting the movements of the cursor, making it possible that visual information was actually the primary cue used in our task. The contribution of visual information could be addressed to some extent if we replicated the experiments under poor viewing conditions, or by asking participants to track a stimulus in a different sensory modality, or after removing the cursor altogether. However, changing these experimental conditions would entail taking into account the potential increase in attentional resources required to perform well, the lower sensitivity to other sensory modalities, and the role of the sense of agency. While all these issues are important to understand how individual cues to sensorimotor performance influence confidence, they are beyond the scope of the present study.

The recency effect

In the sensorimotor feedback process, incoming error signals inform upcoming action plans and quickly become irrelevant [START_REF] Todorov | Optimality principles in sensorimotor control[END_REF][START_REF] Bonnen | Continuous psychophysics: Target-tracking to measure visual sensitivity[END_REF]. In contrast, the goal of performance monitoring for sensorimotor confidence is to accumulate error signals across time, much like the accumulation of sensory evidence for perceptual decisions with a fixed viewing time. In fact, in the accumulation-of-evidence framework, considerable effort has 
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been made to incorporate a recency bias termed "leaky accumulation" [START_REF] Busemeyer | Decision field theory: A dynamiccognitive approach to decision making in an uncertain environment[END_REF][START_REF] Usher | The time course of perceptual choice: The leaky, competing accumulator model[END_REF][START_REF] Brunton | Rats and humans can optimally accumulate evidence for decision-making[END_REF][START_REF] Matsumori | A biased Bayesian inference for decision-making and cognitive control[END_REF].

The main arguments for including a temporal-decay component is to account for memory limitations of the observer (e.g., from neural limits of recurrent excitation) or intentional forgetting for adaptation in volatile environments [START_REF] Usher | The time course of perceptual choice: The leaky, competing accumulator model[END_REF][START_REF] Nassar | An Approximately Bayesian Delta-Rule Model Explains the Dynamics of Belief Updating in a Changing Environment[END_REF][START_REF] Norton | Human online adaptation to changes in prior probability[END_REF]. For our task, memory constraints are a more likely explanation of the recency effect than intentional forgetting, because we have long trials of 6-14 s with no changes of stimulus statistics during a trial. One contributor to the error signal we have no control over, however, is the participant's motivation to do the task.

Even though tracking performance was constant when averaged across trials, fluctuations in motivation during a trial could lead to fluctuations in sensorimotor performance that do cause volatility in the error signal. Thus, alternating between bouts of good and poor performance could bias the participant to be more forgetful.

Previous efforts to characterise the time course of a metacognitive judgement have been limited to the perceptual domain. Using the reverse-correlation technique, Zylberberg et al.

(2012) measured the temporal weighting function for confidence in two perceptual tasks and found a primacy effect: the initial hundreds of milliseconds of stimulus presentation had the greatest influence on perceptual confidence. Their finding and associated modelling suggests evidence accumulation for the metacognitive judgement stops once an internal bound for decision commitment has been reached. Our results suggest that sensorimotor confidence does not follow the same accumulation-to-bound structure, otherwise early error would have been more predictive of confidence than late error. One reason we may not have found a primacy effect is that the participant interacts with the stimulus to produce the errors that determine performance, allowing them a sense of agency that they can change or modify performance. As a result, there is no reason to settle on a confidence judgement based on initial performance. A contradictory finding to [START_REF] Zylberberg | The construction of confidence in a 959 perceptual decision[END_REF] is that sensory evidence late in the trial, during the period between the sensory decision and the metacog- [START_REF] Pleskac | Two-stage dynamic signal detection: A theory of choice, decision time, and confidence[END_REF], but this finding is hard to apply to our visuomotor task. Evaluating tracking is different from a single perceptual decision, because tracking is a series of motor-planning decisions [START_REF] Wolpert | Motor control is decision-making[END_REF]. The error signal used to plan the next tracking movement is also the feedback of the error from the last moment of tracking. Additionally, subsequent estimates of target location could theoretically provide additional information about previous locations of the target. Identifying the source of the error signal for sensorimotor confidence, either by computational modelling or brain imaging, would help clarify the nature of the accumulation process.

So far we have considered an online computation of sensorimotor confidence that accompanies sensorimotor decision making. Another alternative is that the evaluation of performance is computed retrospectively. [START_REF] Baranski | Probing the Locus of Confidence Judgments: Experiments on the Time to Determine Confidence[END_REF] showed that reaction times for confidence responses differed for speeded and unspeeded perceptual decisions, leading to the conclusion that perceptual confidence is computed online unless time pressure forces it to be evaluated retrospectively. It is reasonable to assume that the continual demand of cursor adjustment to track an unpredictable stimulus is taxing, leaving participants no choice but to introspect on their performance upon termination of the trial. If this were the case, we would likely see temporal biases consistent with memory retrieval. In the memory literature, there has been extensive evidence of both primacy and recency effects, which are thought to be associated with long-term and short-term memory processes respectively [START_REF] Atkinson | Human Memory: A Proposed System and Its Control Processes[END_REF][START_REF] Innocenti | TMS interference with primacy and recency mechanisms reveals bimodal episodic encoding in the human brain[END_REF]. Thus, the observed recency effect in our experiment could be interpreted as short-term memory limitations constraining the time constant. Another reason observers may delay performance evaluation until after the trial is because tracking is typically a goal-directed behaviour, which can be evaluated by its success (e.g., catching the prey after a chase, hitting the target in a first-person shooter game, or correctly intercepting a hand in a handshake). Still, one may want to introspect about performance while tracking to decide whether the tracking was in vain. We did not 
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incentivise participants to adopt a particular strategy in the task, so they may have treated error towards the end of the trial as their success in "catching" the target.

Metacognitive efficiency

We quantified metacognitive sensitivity for sensorimotor tracking with an AUROC metric that reflected the separation of the objective-performance distributions conditioned on sensorimotor confidence. This approach superficially shares some similarities with the metacognitive metric meta-d in perceptual confidence. For meta-d , an ROC curve, relating the probability of a confidence rating conditioned on whether the observer was correct vs. incorrect, is computed as part of the analysis to obtain a bias-free sensitivity metric that reflects the observer's ability to distinguish between correct and incorrect perceptual responses [START_REF] Fleming | How to measure metacognition[END_REF][START_REF] Mamassian | Visual Confidence[END_REF]. However, the area under this ROC curve (AUROC) has little meaning, as it is highly dependent on the sensitivity of the primary perceptual judgement [START_REF] Galvin | Type 2 tasks in the theory of signal detectability: Discrimination between correct and incorrect decisions[END_REF]. Instead, the appropriate comparison is between the perceptual sensitivity, d , and the metacognitive sensitivity, meta-d . Typically, a ratio of these sensitivities is computed, with a value of 1 being considered ideal metacognitive efficiency (i.e., the best the observer can do given the identical sensory evidence available for the metacognitive judgement as the perceptual judgement). Empirically, ratios less than 1 are most often observed, indicating less efficient, more noisy decision-making at the metacognitive level (Maniscalco andLau, 2012, 2016).

The purpose of our AUROC metric is not to quantify how well the sensory information is used for the sensorimotor control versus sensorimotor confidence, but as a non-parametric way of quantifying how sensitive an observer is to their true performance. The metric ranges from no sensitivity (i.e., chance performance) at 0.5 to perfect classification performance at 1. As with perceptual confidence, we do expect that the AUROC will depend to some degree on the variance in the performance of the primary task (e.g., tracking), even if it wasn't observed in our task. For example, if there is little variance, then it should be diffi- 36 cult to identify well executed from poorly executed trials, whereas a large variance means performance could be more easily categorised. A second use of the AUROC metric was to quantify the degree to which a model of metacognitive behaviour could predict sensorimotor confidence (see Supplementary Information). By replacing the objective-performance axis with an internal decision-variable axis according to a model, a model's explanatory power can be measured on a scale from none at 0.5 to perfect at 1. While we were unsuccessful at improving performance more than 2% in any of our experiments, which we did by accounting for both the recency effect and the effect of external sensory noise instead of simply computing RMSE using the true target location, the method of analysis nicely complemented our goal of quantifying how well sensorimotor confidence reflected objective performance.

We examined metacognitive efficiency by determining what error information contributed to sensorimotor confidence. The recency effect we observed constitutes an inefficiency in that not all information used for the primary sensorimotor decision-making was used for the metacognitive judgement as was instructed. Based on the similarity in shape of the recency effect for the duration conditions of Experiment 2, we can conclude that efficiency is inversely proportional to the duration of tracking. However, given long, multi-action sequences, it is not that surprising to find that some part of the perceptual information about error is lost. Some amount of forgetting is likely advantageous in real-world scenarios. For future metacognitive studies of action, it would be informative to examine estimates of sensorimotor confidence during action and how sensorimotor confidence interacts with goal planning, explicit learning, and expertise. For example, it would be worthwhile to investigate how sensorimotor confidence relates to cognitive control functions such as switching or abandoning motor tasks [START_REF] Alexander | Computational models of performance monitoring and cognitive control[END_REF], or how athletes and novices judge sensorimotor confidence [START_REF] Macintyre | Metacognition and action: A new pathway to understanding social and cognitive aspects of expertise in sport[END_REF]. 

Conclusion

In sum, we found considerable evidence that humans are able to compute sensorimotor confidence, that is, they are able to monitor their motor performance in relationship to a goal.

However, they do so inefficiently, in particular because of the recency effect that we revealed, disproportionately weighting the tracking error at the end of the trial to judge whether their performance was better than average. We replicated this effect with unpredictable stimuluspresentation durations to confirm that it was not the result of a response-preparation strategy. In our analyses, we have introduced the AUROC statistic, which we found useful for two purposes. First, it allowed us to quantify the relationship between sensorimotor confidence and objective tracking performance, and second, it provided a model-fit metric for elaborated decision models (see Supplementary information). Our results, obtained from a relatively simple goal of visuomotor tracking, raise many questions for future studies on sensorimotor confidence. For example, is the recency effect a key characteristic of sensorimotor confidence? And, does it result from leaky online evidence accumulation or biased retrospective memory retrieval? What factors determine the strength of the recency effect for sensorimotor confidence (i.e., attention, sensorimotor goals, etc.)? Further work will help provide a clearer link between models of sensorimotor behaviour and models of sensorimotor metacognition.
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 3 Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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 2 Figure2: Visuomotor tracking task. A: The "twinkling" dot cloud stimulus (white), generated by drawing two dots per frame from a 2D Gaussian generating distribution. Red: mean and 1 SD circle, which were not displayed. Black: mouse cursor. The dots provided sensory evidence of target location (generating distribution mean). As illustrated, more than two dots were perceived at any moment due to temporal averaging in the visual system. B: Example target random-walk trajectory in velocity space. C: The corresponding horizontal trajectory of the target. D: Trial sequence. Trials were initiated by the observer, followed by 10 s of manual tracking of the inferred target with a computer mouse. Then, participants reported their sensorimotor confidence by indicating whether their performance on that trial was better or worse than their average. Objective performance feedback was provided intermittently including average points awarded and a final leaderboard. Difficulty manipulations: cloud size (σ cloud ) and velocity stability (σ walk ) were varied in separate sessions.
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 3 Figure 3: A metacognitive sensitivity metric. A: Example of tracking error within a trial.Root-mean-squared-error (RMSE, dashed line) was the objective performance measure. B: Example participant's objective-error distributions, conditioned on sensorimotor confidence, for all trials in the variable cloud-size session. True average performance (dashed line) indicates the ideal criterion. Smaller RMSE tended to elicit "better" reports, and larger RMSE "worse". C: Metacognitive sensitivity was quantified by the separation of the conditional objective-error distributions with a non-parametric calculation of the Area Under the ROC (AUROC) using a quantile-quantile plot. At every point along the objectiveperformance axis, the cumulative probability of each conditional error distribution was contrasted. D: The area under the resulting curve is the AUROC statistic, with 0.5 indicating no meta-cognitive sensitivity and 1 indicating maximum sensitivity. The greater the separation of the conditional distributions, the more the objective tracking performance was predictive of sensorimotor confidence, and thus the higher the metacognitive sensitivity.
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 4 Figure 4: Comparable above-chance metacognitive sensitivity for cloud-size and velocitystability difficulty manipulations in Experiment 1 (n = 13). A: Effect of difficulty manipulation on tracking error. Mean RMSE contrasted for equivalent difficulty levels in the variable cloud-size session and the variable velocity-stability session. Colour: difficulty level. Curves: individual participants. Dashed line: equivalent difficulty. B: Comparison of metacognitive accuracy for the two difficulty-manipulation techniques, pooled across difficulty levels. Data points: individual subjects. Dashed line: equivalent accuracy. Error bars: 95% binomial SE. Shaded regions indicate whether metacognitive accuracy was better for the cloud-size or velocity-stability session. C: Same as in (B) but comparing the sensitivity of the sensorimotor confidence judgement. Dashed line: equivalent sensitivity. Error bars: 95% confidence intervals by non-parametric bootstrap. D: ROC-style curves for individual participants in the cloud-size session, pooled across difficulty levels. Shading: AUROC of example observer. Dashed line: the no-sensitivity lower bound. E: Same as (D) for the velocity-stability session. Shading corresponds to the same example observer.
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 5 Figure5: Performance weighting over time for sensorimotor confidence in Experiment 1 (n = 13). A: AUROC analysis performed based on each 1-s time bin in the tracking period. Error bars: SEM across participants. Error later in the trial is more predictive of sensorimotor confidence as indicated by the higher AUROC. B: The same analysis as in (A) for an ideal observer that has perfect knowledge of the error and compares the RMSE to the average RMSE. C: Temporal analysis performed with simulated responses based on expected performance according to the heuristic of difficulty level for each difficulty manipulation (see text). D: Mean and variance of the RMSE between target and cursor. Mean RMSE plateaus between 1-2 s and remains stable for the remainder of the trial. Variance is also quite stable after 2 s. Error bars: SEM across participants. E: Auto-correlation of the tracking error signal for each subject and each session. F: Autocorrelation matrix of the 1 s binned RMSE. Data pooled over trials, conditions, and participants. The correlation between time-bins is relatively low after 1 s.
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 45 Figure 4: A) Mean cross-correlations for individual subjects (black) and averaged across subjects (red). Peak lag for the red trace is 400 ms. B) Individual histograms showing the percent of traces with a particular peak lag (smoothed with a Gaussian filter with sd= 20 ms).Page 17
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 6 Figure 6: Comparison of errors as compared to the true target location for 1) the actual tracking behaviour of the subject, 2) the unadjusted Kalman filter, and 3) a Kalman filter lagged by the subject's peak tracking lag. Error bars and shaded error region represent the 95% confidence intervals.Part 2. This model is equivalent to a human that has no temporal averaging or internal sensory noise and can instantaneously place the cursor on the estimated target location without any motor noise. Figure6ashows that the human performance is approximately three times worse than this model when assessed in terms of the Root Mean Square Error (RMSE). If, however, the output of this Kalman filter is shifted by ⌧ estimate of the corresponding subject, the performance is indistinguishable from that of the human4. It is unlikely that more tracking trial will reduce the spread of errors as Subject 1 in the plot completed 2.5 times more trials than the other subjects. Figure6bplots the di↵erence between the subject's tracking and the two models on a per trial basis. Again, it is not possible to di↵erentiate the lagged Kalman filter and human performance. This suggests adding in the additional components of the model may be tricky if RMSE is used as the metric of fit.To conclude, a lagged version of the standard Kalman filter did very well at fitting human performance. The average tracking lag was very consistent across subjects, and the distributions of peak tracking lag tended to follow the pattern observed for reaction times in non-tracking experiments. 4Do you think it is a problem I am using the same sequences to estimate tracking lag and assess the fit of the model? Page 19
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 1 Figure 1: A) Example of a single display frame. White dots are sampled from a 2D Gaussian distribution (red dot indicates mean and dashed line shows 1 SD, both not visible to subjects). Black dot is the cursor position as set by the subject. B) An example horizontal random-walk trajectory of the target.6
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 12 Figure 1: A) Example of a single display frame. White dots are sampled from a 2D Gaussian distribution (red dot indicates mean and dashed line shows 1 SD, both not visible to subjects). Black dot is the cursor position as set by the subject. B) An example horizontal random-walk trajectory of the target. 6 Mean cross-correlograms of target and cursor: subject's appear to lag behind the stimulus by 400 ms (add legend). Human error versus model error: Applying temporal lag to a Kalman filter Oh look, simple Kalman filter with temporal lag does a good job at explaining error (difference is between human and model). (make fill versus no fill) Control experiment (tracking visible target): Tracking lag not just motor response time, reflects something about computation (CCG). Include tracking lag distribution for standard nonlagged model (simulations), this shows the contribution of the exponential decay weighting function to lag.
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 36 Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.

  Locke, S. M.,Mamassian, P., & Landy, M. S. (2020), Cognition, 205:104396. https://doi.org/10.1016/j.cognition.2020.104396 26 except one author. Prior to the experiment, the task was described to the participants and consent forms were collected. Participants were tested in accordance with the ethics requirements of the Institutional Review Board at New York University. Apparatus: All experiments were conducted on a Mac LCD monitor (Apple, Cupertino, CA; late 2013 version, 60 x 34 cm, 1920 x 1080 pixels, 60 Hz), with participants seated 57 cm from the monitor. Participants operated a Kensington M01215 wired optical mouse (60 Hz sampling rate, standard acceleration profile for Mac OS X) with their right hand when manually tracking the stimulus. Subjective performance evaluations were collected on a standard computer keyboard. Experiments were conducted using custom-written code in MATLAB version R2014a (The MathWorks, Natick, MA), using Psychtoolbox version 3.0.12
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 7 Figure 7: Effect of variable stimulus-presentation duration on tracking error and sensorimotor confidence in Experiment 2 (n = 7). A: Mean objective tracking performance for each duration condition averaged across observers. B: Sensorimotor-confidence accuracy for each duration condition. C: Metacognitive sensitivity for each duration condition. D: ROC-style curves for individual participants for AUROC pooled across durations. Dashed line: the no-sensitivity lower bound. Error before 2 s was excluded from the calculations in panels A-D. E: Temporal AUROCs calculated for 1 s time bins for each duration condition averaged across participants for Experiment 2 (black). For comparison, the results in Figure 4A are replotted (orange: cloud-size session; blue: velocity-stability session). The recency effect found in Experiment 1 is replicated here for Experiment 2. Vertical dashed line at 2 s indicates the timing of cursor colour-change cue to begin evaluating tracking. Horizontal dashed line the no-sensitivity line. Error bars in all graphs are SEM.
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