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Abstract

Temporal dynamics in ecological variables are usually assessed using linear trends or smoothing

methods. Those trends qualitatively summarise the increase or decrease in the variable of interest

over a given time period. Yet, linear trends do not capture changes in the direction or in the rate of

change of indices such as population trajectories, that may typically occur when conditions improve

or worsen following conservation actions or environmental disturbances. In a similar way, non-

linear  methods while  aiming to fully  characterise  population  trajectories,  fail  to  end up with  a

standard classification. Here, we propose and test a simple method to classify the trajectory of a

given ecological variable according to its trend and acceleration. Our method is based on fitting a

second order polynomial that is used to describe a trajectory according to its direction, velocity, and

curvature (accelerated or decelerated).  We apply this  method to the temporal  dynamics  of bird

populations monitored by the French Breeding Bird Survey as a case study. Using data for more

than 100 species monitored from 1989 to 2017 in more than 2000 sites, we show that one quarter of

the studied species have dynamics that can be better described by our polynomial approach than

typically-used linear analysis. We also show how it can be used to analyse indicators constructed

with multi-species indices. Our method can be applied to any type of ecological variable either to

classify trajectories of ecological  variables in time or trajectories of ecological variables  across

pressure  gradients.  Overall,  our  results  suggest  a  more  systematic  investigation  of  non-linear

trajectories when analysing the dynamics of ecological variables.

Key-words:  bird,  conservation,  ecological  variables,  non-linearity,  polynomials,  population

dynamics, trend analysis.

1. Introduction

As biodiversity is undergoing a major decline (Ripple et al., 2017), international initiatives have set

several ambitious targets to combat this trend, by protecting species and habitats or maintaining and

restoring ecosystems (CBD, 2010; EC, 2011). These objectives require the development of relevant

data and statistical tools to estimate any progress towards those targets.

Different types of variables has been proposed for measuring the “changing state of nature”. For

instance,  a  suite  of  “biodiversity  variables”  have  been  proposed  to  detect  critical  biodiversity
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changes  (Schmeller  et  al. 2018).  Whatever  the  ecological  level  considered  (species,  habitat,

ecosystem) and the specific definition used (variable, indices, indicator), detecting changes in the

dynamics of biodiversity responses is key to temporal ecology and conservation policy (Wolkovich

et al., 2014). Among possible approaches, the analysis of temporal trends in populations of habitat

specialist  species  (e.g. farmland  birds,  Gregory  et  al.,  2005),  or  in  aggregated  indicators  of

population dynamics (e.g. Living Planet Index, Loh et al., 2005) has become common practice for

monitoring human impact on biodiversity (Vačkář et al. 2012).

Ideally,  an improved biodiversity  status  should be  revealed  by a  switch from a decrease  to  an

increase (or at least to a stabilisation) in the temporal trend of those indices (Donald et al., 2007;

Koleček  et al., 2014; Sanderson  et al., 2016; Koschová  et al., 2018). More generally, the aim of

calculating temporal trends is to describe the state of a given variable with regard to its past with a

straightforward descriptor that can be easily interpreted and used in further analysis (e.g. to compare

dynamics between species or to relate the trend in the variable to specific pressures).

However, the term "trend" creates confusion about what is measured when a statistical model is

fitted to a trajectory (i.e. a time series) of a given variable of interest. The trend is usually measured

after fitting a linear model that estimates the average rate of change of the variable over a given

period (Link and Sauer, 1997a) and it is used to describe the trajectory. When estimating a trend,

however, one only synthesises the overall change in terms of direction (the sign of the trend), and

steepness (the magnitude of the trend). Yet, a trajectory is more than its trend as it is defined by the

pattern of fluctuation itself. When studying a trajectory, the purpose should rather be to find the

most accurate description of changes over time in terms of direction, velocity, curvature, or even the

timing of such changes. Surprisingly, trends and trajectories are not always separated in the study of

ecological variables (Humbert et al., 2009; Inger et al., 2014).

Relying on linear trend methods or on a percentage of change between the first and last values

remains largely dominant in classifying and comparing temporal changes in population dynamics

for most of the well-studied groups, such as birds (Julliard et al., 2004; Donald et al., 2007; Reif,

2013; Inger  et al., 2014; Heldbjerg  et al., 2018; Rosenberg et al., 2019), fish (Christensen  et al.,

2014; Vasilakopoulos  et al., 2014), and insects (Hallmann  et al., 2017; Lister and Garcia, 2018;

Sánchez-Bayo  and  Wyckhuys,  2019).  But  focusing  either  on  trends  or  trajectories  can  lead  to

different interpretations as numerous population dynamics are non-linear (Clark and Luis, 2019) .

Before any qualitative change of a given variable can be detected, the trajectory of the variable can

adopt different shapes with specific meanings that cannot be captured by simply measuring the

trend. For instance, for a population trajectory reflecting the conservation status of a threatened
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species, the deceleration of the decrease already reveals a better situation (Fig. 1A). On the contrary,

an accelerated decrease mirrors a stronger degradation (Fig. 1B). Thus, the variation in the rate of

change along the trajectory is highly informative from a conservation perspective and yet cannot be

entirely captured by a linear trend approach. Worse, linear trends can mask reversal dynamics, a

concave or convex hump shaped curve that is typically qualified as “stable” by a linear model (Fig.

1C).  Therefore,  studying  complete  trajectories  beyond  simple  trends  is  crucial  to  track  the

improvement or failure in conservation policies as well as to identify changing points that may

follow the implementation of a conservation policy.

A plethora of  other  than  linear  methods to  describe population  trajectories  is  already available

(Thomas, 1996; Link and Sauer, 1997b; Ruppert et al., 2009; Dornelas et al., 2013; Tittensor et al.,

2014). Most of these methods rest on generalised linear models with polynomial regression splines

(Cunningham and  Olsen,  2009)  or  generalised  additive  models  (GAM)  (Fewster  et  al.,  2000;

Buckland et al., 2005). Although these methods are fundamental to fit and describe complex non-

linear dynamics, the details of such complex shapes can be irrelevant for assessing the status of a

population trajectory and difficult to use for comparison between different species. The reason is

that in these non-linear models, the type of function used and the degree of freedom allocated to the

corresponding statistical models are often not a priori constrained by the user (otherwise it would

correspond to a parametric case (Brun et al. 2019)) but rather adjusted to the data. This leads to

difficult interpretations as the risk of overfitting increases compromising the comparison between

datasets. For instance in a GAM, smooth functions are built on a trade-off between the smoothness

of the function and the fidelity to the data which implies a selection (either by generalised cross

validation or marginal likelihood) of the smoothing parameters (Wood, 2017). Alternatively, simple

non-parametric methods also exist (e.g. correlation rank (Yue and Wang, 2004; Sonali and Kumar,

2013; Adarsh and Janga Reddy, 2015)), but they remain highly conservative in detecting no more

than a dominant trend. Other methods identify breakpoints along a trajectory, for instance by fitting

segmented relations usually through piecewise regression models (Muggeo, 2003; Muggeo, 2008;

Fong et al., 2017), or by applying sequential or iterative regime shift analysis methods (Rodionov

and Overland, 2005; Gröger et al., 2011). Although these techniques help to locate abrupt changes

along a  trajectory,  they do not  synthesise the trajectory beyond identifying particular  changing

points.

Overall, the current approaches to study and compare non-linear trajectories in ecological variables

do not  offer  a  simple  method for  classifying  trajectories  based  on their  general  shape.  Such a

method should be flexible enough to handle most ecological data, it should use simple statistical
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estimates to classify trajectories, and these estimates should be easy-to-use for comparing different

trajectories. We suggest that a method that meets these criteria could include: a) estimating the

direction of change of a trajectory, b) estimating the rate of change of a trajectory, c) identifying

whether the rate of change is accelerating or decelerating within a trajectory, and d) detecting points

where the direction of change of a trajectory switches sign. Such a method would not reject linear

trend analysis nor replaces GAM-like approaches, but would rather aim at providing a simple and

generic classification of non-linear trajectories.

In this paper, we develop such a generic method to classify trajectories of any ecological variable

(population  indices,  multi-species  indicators  or  any kind of  temporal  series)  according to  their

direction  (decline,  increase,  stable)  as  well  as  to  their  overall  shape  (accelerated,  decelerated,

convex or concave). We describe this method step-by-step and we test it in simulated trajectories

that resemble typical time series of monitored populations.  We further show how and why this

method could be used in two empirical examples. We use population dynamics of the 108 most

common species monitored by the French Breeding Bird Survey (FBBS) from 1989 to 2017 (Jiguet

et al., 2007) to illustrate how our method can be used to describe the conservation status of these

populations.  We finally  apply  this  method  on multi-species  indicators  (MSI)  for  farmland  and

woodland  birds.  We  anticipate  that  this  method  will  be  sensitive  to  well  identified  pitfalls  of

classical  monitoring  programs  (Buckland  and  Johnston, 2017)  that  might  have  a  particular

incidence on the uncertainty of the variable of interest resulting in a wider sampling error. A method

accounting for this sampling error has been recently proposed for multi-species indicators (Soldaat

et al., 2017). We therefore adapted this method to take into account sampling error in our method

when it is available. We also tested the sensitivity of our method to critical methodological choices

or  change  in  data  quality.  We highlight  the  advantages  and disadvantages  of  our  approach  by

comparing our results to those estimated by most common linear methods.

2. Materials and methods

2.1 A general classification of trajectories for ecological variables

We use the properties of a second order polynomial function to describe and classify the overall

shape of any trajectory.

Let Y be a quantitative discrete or continuous variable (e.g. population abundance or any ecological

variable) and  X a quantitative continuous variable representing time (year, month or days). The

characterisation of a second order polynomial function can be achieved in two steps (Fig. 2A):

Step 1. We first fit a second order polynomial between Y and X through a least-square regression:
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Y=α0+α1 X+α2 X2 (1)

Such a regression model performed using orthogonal polynomials removes the correlation between

the first (X) and the second order (X²) variables (Narula, 1979). The significance of each coefficient

(α1 for  first  order  and  α2 for  second order)  is  therefore  used  to  test  whether  the  second order

significantly improves the regression compared to the first order. More precisely, a second order

polynomial (Eq. 1) can discriminate between a stationary process (if α1 and α2 are not significant), a

monotonous process (if only α1 is significant), and an accelerated process (if α2 is significant).

We fit this function within the interval bounded by X0 and XT, respectively the first and last values

of X, to generate a curve that can be either convex ( ) or concave ( ) (Fig. 3). For a convex curve,⋃ ⋂
this interval on which the function is fitted necessarily delineates one of the following cases: a

decelerated decline (Fig. 3A.1), a convex phase (Fig. 3A.2) or an accelerated increase (Fig. 3A.3).

For a concave case three analogous cases can be described: a decelerated increase (Fig. 3B.1), a

concave phase (Fig. 3B.2), or an accelerated decline (Fig. 3B.3).

Step 2. We then characterise the fitted polynomial function with simple metrics, i.e. we transform

the information contained within the function and the interval into a readable description using the

direction, the acceleration, the velocity and the changing points of the trajectory (Fig. 2-3). The

direction of the trajectory is defined as being either a decline, nil or an increase. The acceleration

corresponds to an accelerated, constant, or decelerated phase when the direction is either a decline

or an increase, or refers to a convex, stable or concave phase when there is no direction (Fig. 2).

Moreover, the velocity represents the rate of change of a given trajectory and the changing points

designate where the rate of change of the trajectory adopts a different profile (Fig. 3).

For linear cases (α2 non significant), Y becomes a linear function of X (i.e. Y = α0+α1X). The four

indices are completely determined by the sign and the magnitude of the slope (α1). The direction is

an increase, nil, or a decline for positive, null, or negative slopes respectively. The acceleration is

null, the velocity is the magnitude of the slope and there is no specific point of noticeable change

that can be identified.
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For non-linear cases (α2 significant), a standardised classification should be able to discriminate

between decelerated or accelerated cases and convex, stable or concave dynamics (Fig. 3). This is

done as follows:

Direction. To qualify the behaviour of the function over a given period, we use the direction of the

function  around the  centre  Xm of  the  interval  [X0,  XT]  (corresponding to  the  whole  time series

length). The direction of Y is then determined by the sign of the slope of the tangent TXm given by

the linearisation around Xm:

T Xm ( X )=Ẏ ( Xm ) ( X−Xm )+Y ( Xm ) (2)

where Ẏ(Xm) is the first derivative of Y:

Ẏ ( Xm )=α1+2α2 X m (3)

Ẏ is computed around Xm both at Xm-δ and Xm+δ (Fig. 3), where δ is equal to 25% of the interval

[X0,  XT].  As  the  direction  can  change  only  once  along  a  second  order  polynomial,  if  this

modification does not happen on [Xm-δ, Xm+δ], it implies that the change occurs either on ]-∞, Xm-δ[

or on ]Xm+δ, +∞[. If it occurs on ]-∞, Xm-δ[, the direction is constant on [Xm-δ, XT] and by symmetry,

if the change happens on ]Xm+δ, +∞[, the direction is constant on [X0,  Xm+δ]. In both cases, the

direction stays the same on at  least  75% of  the interval  [X0,  XT]  and we assume this  direction

accurately reflects the main direction of Y on [X0, XT]. In these cases, if Ẏ(Xm-δ) > 0 and Ẏ(Xm+δ) >

0, the direction is an increase and if Ẏ(Xm-δ) < 0 and Ẏ(Xm+δ) < 0, the direction is a decline. If the

sign of Ẏ changes on the interval [Xm-δ, Xm+δ], it means that Ẏ becomes zero around Xm and hence

the direction is considered as nil and there is no alternative possibility.

Acceleration. The acceleration of the polynomial fit on the interval is given either by the sign of the

second order coefficient  α2 or by the sign of  γγ , the derivative of the curvature function γ (Eq. 4)

(O’neill,  2006). This choice depends on whether the direction is nil  (sign of  Ẏ(Xm-δ) ≠ sign of

Ẏ(Xm+δ)) or not.
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γ̇ ( X m )=
−12α2

2 (2α2 Xm+α1 )

(1+(2α2 Xm+α1 )
2)

5
2

(4)

When the direction is nil (Fig. 3 A.2, B.2), the acceleration refers to the convexity or concavity of

the trajectory and only the sign of α2 is needed to describe it (convex for α2 > 0, concave α2 < 0).

When the direction is an increase or decline (Fig. 3 A.1, A.3, B.1 and B.3), the acceleration cannot

be  described  solely  by  the  sign  of  α2,  because  whether  the  function  is  in  an  accelerated  or

decelerated phase depends on the interval which is regarded. For instance, if α2 > 0, we could have

a decelerated decline (Fig. 3A.1) or an accelerated increase (Fig. 3A.3) depending on the interval

considered. We therefore introduce a criterion that directly refers to the curvature γ of the function

irrespective of the interval (Fig. S1). This criterion is given by computing γγ  the first derivative of

the curvature function γ at Xm the centre of the interval [X0, XT] (Eq. 4) (supplementary materials 1

for calculation details).

When the interval is on the left side of the minimum or maximum of the second order polynomial,

whatever the sign of α2, the function is decelerating (Fig. S1). When the interval is on the right side

of the minimum or maximum, the function shows an acceleration. The sign of  γγ  is the opposite

when the sign of α2 changes. By multiplying the sign of γγ  by the sign of α2, we obtain a consistent

type of acceleration for the variable considered (Y). When this sign is negative, it corresponds to an

acceleration and when it is positive, it corresponds to a deceleration.

Velocity. The velocity is given by the magnitude of the tangent at Xm, i.e. the value of Ẏ(Xm) (Eq. 3).

The  velocity  can  be  compared  between  two  curves  only  if  they  belong  to  the  same  type  of

trajectories. For instance, it would not make sense to compare the speed of a decelerated trajectory

(Fig 2B case 9) with the speed (slope) of a linear increase (Fig 2B case 6).

Changing points. Non-linear or multiple linear regression methods can provide changing points or

periods (Buckland et al., 2005; Fewster et al., 2000; Muggeo, 2003; Cunningham and Olsen, 2008;

Smith et al., 2015). Here, for each second order polynomial curve three local points of interest can

be identified in theory. Those points correspond to values of X where a shift in the rate of change is

observed. No significance test is required as the significance of the second order polynomial implies

the existence of these points (but see below for standard deviation). The first point (p1) marks the
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minimum  (for  convex  cases)  or  maximum  (for  concave  cases)  of  the  polynomial  curve  and

corresponds to the value of X when Ẏ is zero (Eq. 5). The two other points (p2 and p3) delineate the

values of X where the rate of change is mainly driven by a horizontal or vertical component (Eq. 6)

(see supplementary material 2). In practice, among these three points (p1, p2 and p3), only the ones

which fall within the interval [X0,  XT] are generally relevant (Fig. 3).  These points only serve as

potential changing points in the overall shape of trajectories and need to be interpreted as such by

the user.

{Ẏ ( p1 )=α1+2α2 p1

Ẏ ( p1 )=0
⇒ p1=

−α1

2α2

(5)

{
Ẏ ( p2 )=−1
or 
Ẏ ( p3 )=1

⇒{
p2=

−α1+1
2α2

or 

p3=
−α1−1

2α2

(6)

In many cases, the sampling error of the Y value is also accessible and needs to be considered to

estimate  Y uncertainty.  We therefore  use a  Monte  Carlo  simulation  method to account  for  this

sampling error (SE) adapted from Soldaat  et al. (2017). We first set the Y  value for the reference

year (baseline year that can be either the first, last or central year or a specific year chosen by the

user) to 100 and any Y value below 1 is truncated to 1 and its SE set to 0. We then log-transformed

the Y values and we applied the Delta-method (Agresti, 2002) to obtain the sampling error of Y on a

log scale (SElog(Y) = SE(Y)/Y). 1000 Y vectors are then simulated by taking values from a normal

distribution with a mean equal to the log-transformed Y values and the standard deviation equal to

the SElog. Each Y vector is back-transformed to the original Y scale, the reference year value is set to

100 and other values are expressed as a percentage of the value of the reference year. We then

classify each simulated Y after estimating its acceleration, velocity and potential changing points.

As simulated trajectories  may be classified in  different  classes,  we perform a binomial  (if  two

different classes) or multinomial (if more than two different classes) test to assess the significance

of the predominant class. If both a non-linear and a linear class are predominant but none of them

significantly, Y is classified as belonging to the linear class. Only the simulations belonging to the

selected class are kept and used to calculate the average velocity and the average changing points (if

any) and their standard deviation.
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In  summary,  using  the  classification  method  described  above  (Fig.  2A),  one  can  classify  any

trajectory  as  belonging  to  only  one  of  the  nine  classes:  accelerated  decline,  constant  deccline,

decelerated decline, concave, stable, convex, decelerated increase, constant increase and accelerated

increase (Fig. 2B). The direction and the type of acceleration are enough to cover this classification

which is obtained unambiguously because both the direction and the acceleration are retrieved from

the statistical significance of the second order polynomial coefficients. Moreover, two additional

properties can be easily obtained, namely the velocity of the change, and potential changing point(s)

with a significant shift in the rate of change of Y. The classification being based on trajectories in a

given  interval  [X0,  XT],  it  is  by  definition  dependent  on  the  time  interval  considered.  The

incorporation of the sampling error allows to test the significance of the classification and to give an

estimate of uncertainty (as standard deviation) for velocity and potential changing points.

2.2 Sensitivity to time series length, missing data, noise and sampling error

We tested the sensitivity of the proposed method on simulated trajectories that mimic each of the

nine classes (Fig. 2B). To produce time series we used the second order polynomial (Eq. 1) with

parameter values  α1 and  α2 chosen to be close to the coefficients obtained from empirical time

series and selecting only the part  of the produced parabola that resembled the nine classes (for

details see supplementary material 3). We performed a sensitivity analysis to four potential sources

of biases (see supplementary material 4). First, we explored the effect of the time series length.

Second,  we  explored  the  effect  of  gaps  in  the  monitored  data  as  typically  the  frequency  of

monitoring can differ from year to year. Third, we explored the effect of process noise (Dennis et

al., 2006) as additional year-to-year variation on the trend. Noise corresponds to a deviation from

the process and it influences the position of the Y value for a given X value. Finally, we explored the

effect  of  sampling  error  due  to  incomplete  sampling,  weaknesses  in  detectability  or

misidentification of species. Sampling error corresponds to a dispersion metric of uncertainty of a Y

value for a given X value.

2.3 Classifying trajectories of empirical ecological variables: an illustration using bird populations

We tested our method on an empirical dataset. We classified bird population time series from the

French Breeding Bird Survey (FBBS) from 1989 to 2017. To be validated by the FBBS, volunteer

ornithologists had to follow a standardised protocol on fixed sites (2693 since 1989) on which a

fixed number of point counts were carried out by the same observer in the same order. Each point
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count of each site is monitored twice a year during the same period (5 or 15 minutes) 1 to 4 hours

after sunrise, between 1st of April and 15th of June to take into account early and late breeding

birds. Of the 242 species recorded in the dataset, we selected the most abundant species (99% of the

total abundance) to restrict our analysis only to the most common species, easy to observe and less

exposed to sampling biases. After removing non-selected species and sites only monitored once, our

dataset  comprised  2144  sites  and  108  species  (supplementary  materials  5).  For  each  site  and

species, count data from all the points of each given site were summed (after taking the maximum

of the two monitoring spring sessions for each point) as a proxy for the local abundance of the

species in a given site and a given year.

Note that many ecological data are similar to what is collected by the FBBS,  i.e. they use multi-

species and multi-sites surveys to derive yearly variations in the abundance of each species or in

more elaborated indicators combining multi-species indices (Loh et al., 2005; Pereira and Cooper,

2006; Butchart et al., 2010; Inger et al., 2014).

We thereafter applied our method to yearly population indices (see supplementary materials 6) of

each of the 108 species from the FBBS during the period 1989-2017 corresponding to [X0,  XT],

using 2001 as the reference year. For each species  i, the yearly index (Yi) was considered as the

response variable (Y) and years as polynomial explanatory variable (X) (Eq. 1).

Finally, we also tested our method on multi-species indicators (MSI) rather than individual species.

MSI are typically used to capture the general trend of a specific group of species of interest (e.g.

farmland birds).  To compile  these  MSI,  we selected  farmland  and  woodland specialist  species

(MNHN, 2019).

All analyses were performed in R (version 3.4.4). Bird data were obtained from the French National

Natural History Museum in 2018. A workflow of the proposed method is available as Rmd file and

can be downloaded at https://github.com/StanislasRigal/classtrajectory.

3. Results

3.1 General case

Testing our method on the simulated trajectories, we were able to correctly classify between 44.6%

and 98.3% depending on the biases considered (Table 1).  In terms of sensitivity to  time series
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length, we found that the classification was weakly sensitive to the length with a slightly better

classification percentage for longer time series (Table 1). 96.8% of the simulations were correctly

classified,  when the  time series  length  was 30,  which  is  the  time series  length  covered  in  the

empirical example. This percentage is not significantly different from the percentage obtained for

length equal to 70 (binomial test p-value = 0.156) but it was significantly higher than the percentage

obtained for a length equal to 10 (binomial test p-value < 0.0001). The highest percentage was

found for a length of 50 but it was not significantly higher than the percentage found for a length of

70 or 90 (binomial test p-value = 0.127 and 0.331). Overall this source of bias has less impact on

the percentage of correct classifications than others. The average distance between expected and

observed potential changing points was around 5 or 6% of the time series length. For missing data,

we found that the more the data are complete (the more the ratio between monitored years and time

series length is close to 1), the more the classifications were correct, with a maximum of 96.8% of

correct classification for a complete time series (ratio = 1). For noise and sampling error, we found

that these biases generated the most high percentage of misclassification.

Time series length (Years) (ratio of missing data =
1, noise = 5%, sampling error = 5%)

10 30 50 70 90

Correct classifications (%) 90.3 96.8 98.3 97.5 97.8

Mean relative distance from observed to simulated
changing points (% of time series length)

4.9 5.0 5.5 5.8 6.3

Missing data (Ratio between monitored years and
time series length) (time series length = 30, noise =
5%, sampling error = 5%)

0.2 0.4 0.6 0.8 1

Correct classifications (%) 48.8 59.7 72.5 82.8 96.8

Mean relative distance from observed to simulated
changing points (% of time series length)

3.8 3.7 3.6 3.8 5.0

Noise (% of Y range) (time series length = 30, ratio
of missing data = 1, sampling error = 5%)

5 15 25 35 45

Correct classifications (%) 96.8 82.4 63.3 48.9 44.6

Mean relative distance from observed to simulated
changing points (% of time series length)

5.0 9.5 12.1 16.1 17.9

Sampling error (% of Y range) (time series length
= 30, ratio of missing data = 1, noise = 5%)

5 15 25 35 45

Correct classifications (%) 96.8 85.6 56.8 54.8 51.7
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Mean relative distance from observed to simulated
changing points (% of time series length)

5.0 8.6 7.7 8.6 10.2

Table 1: Averaged percentages of correct classifications for each value of each source of bias. The

time series length is expressed in years. The ratio corresponds to the number of monitored time

steps to number of time steps. The process noise and the sampling error are expressed in percentage

of the Y range (Ymax-Ymin).

3.2 Case-study

We applied our classification method on bird population trajectories recorded in France from 1989

to 2017. We found that among the 108 species trajectories, 80 were linear while for the other 28

(i.e. 26% of the 108 trajectories) a second order polynomial was better than the linear fit. 26 species

trajectories were classified as increase of which three were decelerated and 23 constant (Fig. 4 F, I).

29 species trajectories were classified as decline of which four were decelerated, 24 constant and

one accelerated (Fig. 4 A, D, G). 53 species trajectories were neither classified as decline nor as

increase, of which four were convex, 33 remained stable and 16 had concave dynamics (Fig. 4 B, E,

H).

We also quantitatively compared trajectories based on their velocity. Note that the velocity was not

recorded when the trajectory direction was nil (concave, stable or convex classes) as it would have

been null. Also no velocity was calculated for the accelerated increase class as we found no species

belonging to this class. We found that species from the same class can differ greatly in velocity. For

instance, between two decelerated and decling species, Pica pica had a velocity three times greater

than  Corvus  frugilegus (respectively  -8.4  and -3.0)  depicting  a  stronger  decrease  of  Pica  pica

relative  to  Corvus  frugilegus.  Note  that  the  comparison  of  species  velocities  for  trajectories

belonging to different classes is not meaningful. For instance, the velocity of Emberiza citrinella, an

accelerated and declining species, is similar to the velocity of Pica pica, a decelerated and declining

species  (respectively -9.2 and -8.4).  The trajectories  of  those two species  being different,  their

velocities cannot be compared although they are quantitatively similar. This highlighted the need of

considering the trajectory class before conducting velocity  comparisons and more generally  the

need of caution when performing linear trend comparisons.

For some cases, we also detected potential changing points that depict either a change from an

increase to a decline (or  vice versa), or an acceleration or deceleration of the rate of change. For
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instance, Emberiza citrinella started to strongly decrease in 2007 (p2, sd = 1.9, Fig. 4A). During the

same period, Coloeus monedula slowed down its decline in 1991 (p2, sd = 2.5), reached a minimum

in 2000 (p1, sd = 0.9) and mainly increased after 2010 (p3, sd = 1.3) (Fig. 4B). These points can

provide additional information on each species dynamics of potential conservation interest such as

population responses to pressure or conservation changes.

Using our method on MSI, we found a significant accelerated decline in farmland specialists (Fig.

5A) (α2  = -0.08,  α1  = 300, sd = 7.06, p-value < 0.0001). In contrast, we found a stable trend in

woodland specialists (slope = 0.09, sd = 5.9, p-value = 0.28) (Fig. 5B).

4. Discussion

In this paper, we showed how trajectories of ecological variables can be classified into nine classes

using a method that is simply based on fitting a 2nd order polynomial model (Fig. 2). Our method

basically  dissects  the  dominant  shape  of  a  trajectory  into  2  properties:  the  direction  and  the

acceleration. In addition, this method can indicate the velocity and potential changing points along

the trajectory where a shift in the rate of change happens. As such, our approach helps to provide

comparable and easy-to-use information that goes beyond the current classification and comparison

method based on linear trend analysis or percentage of change (Vorisek  et al., 2010; Inger  et al.,

2014).

When applied to empirical population trajectories, we showed how this method gives additional

information on species dynamics compared to common linear approaches. Studying linear trends of

our empirical example would have masked significant non-linear dynamics for more than 25% of

the studied species between 1989 and 2017. Thus, using a common linear approach no distinction

could have been found between species with stable trajectories and those with convex or concave

dynamics,  compared  to  fitting  a  second  order  polynomial  function.  Moreover,  decreasing  or

increasing trends would only have been differentiated quantitatively using velocity whatever their

individual shapes. Finally, potential changing points would have been inaccessible using a unique

linear regression although they can be provided using other methods (Fewster et al., 2000; Muggeo,

2003; Cunningham and Olsen, 2009; Smith  et al., 2015). These remarks also stand for the multi-

species indicators analysed in this study. The dynamic of the forest species MSI was classified as

stable and other non-linear methods may be then applied to more precisely fit the narrow range

variations. The dynamic of the farmland species MSI was categorised as an accelerated decline.
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Therefore, beyond the now well-described decline in farmland birds (Donald et al., 2001; Gregory

et al., 2019; Newton, 2004; Reif and Vermouzek, 2019), their decrease was even faster between

1989 and 2017 in France. Of course, an analysis restricted to a different interval, like for instance

focused on the last  years (showing a stabilisation),  would have led to a different classification.

Thus, it should be clear that the classification given by this method synthesises the shape of the

trajectory over the whole available time series. In that sense, different dynamics during a particular

part of the trajectory may be explored by applying the method to a specific period.

The presented method can also be used to search for signs of improvement following, for instance,

large-scale conservation policies. As pressures on ecosystems are not intrinsically supposed to be

linear it may be relevant to combine this method to synthetically describe population trajectories

along with non-linear dynamics of pressures that are experienced by species in different areas (e.g.

to test whether the trajectories of ecological variables and of candidate pressures are similar (in

shape) and synchronous (via the changing points)).  Previous studies have selected a given year

(often close to a new conservation legislation enforcement) to compute before/after linear trends or

linear approximations (Donald et al., 2007; Mace et al., 2010; Koleček et al., 2014; Sanderson et

al.,  2016).  Our  method  does  not  require  the  selection  of  a  particular  year.  Rather,  it  can

independently highlight specific points where trajectories change in direction, which can be used for

evaluating a potential temporal lag between legislation and biodiversity responses (Male and Bean,

2005).

The classification method we propose is sensitive, to some extent, to the length of the time series,

the data resolution, the magnitude of noise (distance to the process influencing the position of a

value) and the importance of sampling error (dispersion metric corresponding to the uncertainty of a

value). The length of the time series does not influence a lot the quality of the classification above a

minimal length. In suboptimal conditions (no missing data, weak noise and low sampling error),

even for 10 year long time series, correct classification rate was high (90% see Table 1) and the

changing points were set with a high accuracy. Gaps in the data may have a stronger influence on

the classification due to a  higher  uncertainty for the polynomial  fit.  However for multi-species

indicators the issue of missing years can be tackled using for instance chain indexing (Crawford et

al., 1991; Soldaat  et al., 2017). The noise on the process one wants to study remains difficult to

estimate in empirical data, but its impact on correct classification ratio is confined to very noisy

data (below two third of correct classification when the noise is higher than 25% of the index

range).  Finally,  sampling  error  can  be  incorporated  in  our  method  to  produce  a  more  reliable
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classification by allowing to test the significance of the class quantified as standard deviation for the

polynomial coefficients and the changing points. High sampling error results in a more conservative

classification  as  the  significance  of  second  order  weakens.  However,  the  accuracy  of  the

classification remains  high (above 85%) for most  of  the sampling error  levels observed in  our

empirical example. When the data resolution or the length of the time series results in too few data

available to fit a second order polynomial, a non-parametric alternative approach can be adopted to

provide  a  similar  classification  using  the  correlation  rank  given  by  the  Mann-Kendall  test

(supplementary materials 7). Such a non-parametric method is always less powerful (less sensitive

to small changes) than the parametric one, but it can outperform the linear approach for low data

resolutions (Table S1).

Although we focused on classifying population trajectories, we showed that our method can be

applied to multi-species indicators. Trajectories of basically any type of ecological variable can also

be classified using our method because fitting a second order polynomial does not require long and

high-resolution data and it does not need any a priori parameter specifications, contrary to highly-

parametric models as GAMs (Fewster  et al., 2000). These characteristics justify the flexibility of

the method that allows it to be used with different types of ecological data, while keeping enough

simplicity to obtain a meaningful classification of trajectories.  Obviously,  in cases where a full

description of a trajectory is necessary or trajectories are highly non-linear, other existing methods

will be more appropriate. In that sense, our proposed method does not replace linear and highly-

descriptive approaches, but rather offers a complementary alternative by providing a classification

for non-linear cases well adapted for tracking a wide variability of ecological variables including

multi-species indicators (Gregory et al., 2005; Collen et al., 2009; Gregory and Van Strien, 2010;

Brereton et al., 2011; Rosenberg et al., 2019) to inform and evaluate conservation actions.
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Figures

Figure 1: Illustrations of second order polynomial (solid line) and linear (dotted line) fits of Y (a

hypothesised  ecological  variable  (black  circles))  by  X (in  units  of  time).  A)  Second  order

polynomial  fit  captures  a  decelerated  decline  whereas  the  linear  fit  does  not.  B)  Second order

polynomial fit  captures an accelerated decline whereas the linear fit  does not.  C) Second order

polynomial fit captures a concave phase whereas the linear fit is flat.
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Figure  2:  Classification  steps  (A)  and  classes  (B).  Once  the  second  order  polynomial  Y  =

α0+α1X+α2X² is fitted (step 1), the significance of α2 is evaluated (step 2a) to distinguish between

linear (B. 4, 5 and 6) and non-linear (1, 2, 3, 7, 8 and 9) trajectories. For linear cases, assessing

direction  and  velocity  is  straightforward  using  the  coefficient  of  the  slope  α1.  For  non-linear

dynamics (step 2b), concave and convex cases (B. 2 and 8) can be discriminated by a change in the

sign of the tangent around Xm.  Remaining classes (1, 3, 7 and 9) require the calculation of the

curvature derivative at Xm as a proxy of the acceleration as well as the computation of the tangent

value at Xm for velocity estimation. B) Class numbering refers to the following types: accelerated

decline  (1),  concave  (2),  accelerated  increase  (3),  constant  decline  (4),  stable  (5),  constant

increase(6), decelerated decline (7), convex (8), and decelerated increase (9).
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Figure 3: Second order polynomial curves on the time interval [X0, XT], Xm being the middle of the

interval.  For  a  given  second  order  polynomial  function Y  =  α0+α1X+α2X²,  six  cases  may  be

described depending on the position of the curve relative to the interval [X0,  XT].  For a convex

function (A), three cases can be found: a decelerated decline (A.1), a convex phase (A.2), or an

accelerated increase (A.3).  For a concave function (B),  three cases as well  can be identified: a

decelerated increase (B.1), a concave phase (B.2) or an accelerated decline (B.3). The direction of

the trajectory is assessed based on the sign of the tangents at points Xm-δ and Xm+δ (inset window).

Changing points are marked with a circle for p1 and a square for p2 and p3. p1 is the point where the

tangent becomes zero and delineated increase and decline.  p2 and p3 are points where the tangent

coefficient is 1 or -1. They define where the tangent becomes more horizontally or vertically led.
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Figure 4: Classification of the 108 bird species trajectories (standardised abundances) from 1989 to

2017  into  the  nine  possible  linear  (D,  E,  F)  and  non-linear  (A,  B,  C,  G,  H,  I)  classes.  A)  1

accelerated declines, B) 4 convex trajectories, C) 0 accelerated increase, D) 24 constant declines, E)

33  stable  trajectories,  F)  23  constant  increases,  G)  4  decelerated  declines,  H)  16  concave

trajectories,  I)  3  decelerated  increases.  Scaled  yearly  indices  of  abundance  (black  dots)  with

sampling error (grey intervals) are shown for one species of each class. Second order polynomials

are shown by a bold line and standard deviations by dashed lines. Changing points of interest are

marked on these fits with their standard deviation (bounded segments) (circle and red for  p1 and

square and blue for p2 and p3).
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Figure  5:  Multi-species  indicators  (yearly  values  (black  dots)  with  standard  deviation  (grey

intervals)) of farmland (A) and forest (B) specialist species between 1989 and 2017. A) The second

order polynomial is shown by a bold line and standard deviation by dashed lines. Changing point of

interest is marked on this fit with its standard deviation (bounded segment) (square and blue for p3).

B) A stable fit is represented (bold line and standard deviation by dashed lines) as no linear trend

nor  second  order  polynomials  were  detected.
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