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Abstract—General purpose knowledge bases such as DBpedia
and Wikidata are valuable resources for various AI tasks. They
describe real-world facts as entities and relations between them
and they are typically incomplete. Knowledge base completion
refers to the task of adding new missing links between entities
to build new triples. In this work, we propose an approach for
discovering implicit triples using observed ones in the incomplete
graph leveraging analogy structures deducted from a knowledge
graph embedding model. We use a neural language modelling
approach where semantic regularities between words are pre-
served, which we adapt to entities and relations. We consider
domain specific views from large input graphs as the basis for
the training, which we call context graphs, as a reduced and
meaningful context for a set of entities from a given domain.
Results show that analogical inferences in the projected vector
space is relevant to a link prediction task in domain knowledge
bases.

Keywords–Domain knowledge base; Context graph; Entity em-
bedding; Neural language model; Analogy structure; Facts discov-
ery.

I. INTRODUCTION

Mining graph structures with machine learning proved to
be of great aid to extract hidden useful information in various
domains. Recently, learning with graph embedding to encode
unstructured data has attracted a lot of attention in research.
This paper extends the work in [1] with particular focus on
knowledge graphs.

General purpose Knowledge Bases (KB) such as YAGO,
Wikidata, and DBpedia are valuable background resources
for various AI tasks, for example, recommendation [2], web
search [3], and question answering [4]. However, using these
resources brings to light several problems which are mainly
due to their substantial size and high incompleteness [5] as
a result of the extremely large amount of real world facts
to be encoded. Recently, vector-space embedding models
for KB completion have been extensively studied for their
efficiency and scalability and proven to achieve state-of-the-art
link prediction performance [6], [7], [8], [9]. Numerous KB
completion approaches have also been employed that aim at
predicting whether or not a relationship, which is not in the
knowledge graphs (KG), is likely to be correct. An overview
of these models with the results for link prediction and triple
classification is given in [10]. KG embedding models learn
distributed representations for entities and relations, which are
represented as low-dimensional dense vectors, or matrices, in

continuous vector spaces. These representations are intended to
preserve the information in the KG namely interactions between
entities such as similarity, relatedness, and neighborhood for
different domains.

In this work, we are particularly interested in adapting
the language modelling approach proposed by [11], where
relational similarities or linguistic regularities between pairs of
words are captured. They are represented as translations in the
projected vector space where similar words appear close to each
other and allow for arithmetic operations on vectors of relations
between word pairs. For instance, the vector translation

v(Germany)− v(Berlin) ≈ v(France)− v(Paris)
shows relational similarity between countries and capital cities.
It highlights the clear-cut analogical properties between the
embedded words expressed by the analogy "Berlin is to
Germany as Paris is to France". We propose to apply
this property to entities and relations in KGs as represented
by diagrams (a) and (b) in Figure 1. The vector translation
example is likely to capture the capital relationship that we
could represent by a translation vector v(capital) verifying the
following compositionnality [11]:

v(France) + v(capital)− v(Paris) ≈ 0

We use the analogical property for KB completion and
show that it is particularly relevant for this task. Our intuition
is illustrated by diagrams (b) and (c) in Figure 1, where an
unobserved triple can be inferred by mirroring its counterpart in
the parallelogram. To the best of our knowledge, leveraging the
analogy structure of linguistic regularities for KB completion
has never been investigated prior to this work.

We consider applying such properties on excerpts from
large KGs, we call context graphs, guided by representative
entities of a given domain, where interactions between entities
are more significant. Context graphs show to be the bearers
of meaning for the considered domain and easier to handle
because of their reduced size compared to source graphs.

This paper is organized as follows. Section II gives an
overview of related work while Section III presents the global
approach. Section IV recalls basic notions of the neural
linguistic model. Then, Section V describes our approach to
build context graphs and learn features for link prediction.
Section VI details the evaluation protocol with expanded
algorithms and discusses the initial results and finally, in Section
VII we conclude.
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Figure 1. (a) Analogy relation diagram (parallelogram) between countries and capital cities. In KGs (b) and (c), r corresponds to the relation capital and r′ is
decomposed into two type relations (is-a) to concepts Country and City.

II. RELATED WORK

In what follows we give an overview of research work
related to the embedding of knowledge graphs with a particular
focus on approaches based on neural language models for the
embedding of RDF graphs from which our approach is derived.

A. Knowledge Graph Embeddings
Several KBs exist such as YAGO [12], DBpedia [13],

Freebase [14], or WordNet [15]. These knowledge bases contain
billions of real-world facts and are, by nature, highly incomplete
[5]. Many NLP tasks are based on these resources. The results
of word sense disambiguation [16] and question answering
[17], [4], for example, are directly impacted by the quality of
those graphs.

Vector-space embedding models have a particularly advan-
tageous performance among other statistical relational learning
methods [18] proposed for knowledge graph completion or link
prediction task [6]. Their main objective is to generalize the
graph representation by calculating highly reduced dimensional
vectors of entities and their relations. The first proposed
algorithm, TransE [7], was inspired by a linguistic embedding
model [11] where words are represented as vectors in an
embedding space such that linguistic regularities present in the
text reflecting relational similarities are captured and modeled
as translations in the projected vector space.

Several variations have been subsequently proposed, for
example, translation-based models (TransH [19], TransR [20]),
bilinear models (DistMult [21], and ComplEx [22]), tensor
factorization models (Rescal [23]), neural tensor networks (Ntn
[24], [25]) among others [6], [26].

Formally, consider E to be the set of entities and R the
set of their relations. A knowledge base K consists of a set of
triples (s, r, o) ∈ K such that s, o ∈ E , r ∈ R, r is the relation
between the subject s and the object o.

Each relation r is formulated as a linear map that transforms
the subject s, represented as an embedding vector vr, from
its original position near the object o in the vector space. A
score function f(s, r, o) is defined by the embedding models
to measure the uncertainty of each triple. For example, the
TransE f function is as follows:

‖vs + vr − vo‖l1/2 ; vr ∈ Rk

where the entities s and o are represented by vectors vs and
vo ∈ Rk; k is the vector’s dimension. A general margin-based
objective function is optimized with different optimization
algorithms (e.g., the stochastic gradient descent, abbreviated

SGD) to learn the following model parameters: entities vectors
and relations vectors or matrices. This function is as follows:

L =
∑

(s,r,o)∈K
(s′,r,o′)∈K′

(s,r,o)

[γ + f(s, r, o)− f(s′, r, o′)]+

where [y]+ = max(0, y), γ is the margin hyperparameter; the
set of incorrect triples is K′(s,r,o) generated by altering the
correct triple (s, r, o) ∈ K.

The model Analogy presented in [8] has a particular
focus on the study of analogical relations between triples.
The approach proposes a formal solution to the problem of
multi-relational embedding from an analogical inference point
of view by defining analogical properties for entities and
relation embeddings as well as optimizing algorithms (objective
function) with respect to those properties. The authors argue that
analogical inference is particularly advantageous for knowledge
base completion and show that their framework improves state-
of-the-art performances on benchmark datasets (e.g., WN18
and FB15K).

This assertion supports our decision to exploit the linguistic
regularities that reveal analogies between words in order to
apply them to entities and their relations in a graph. Since we
are working on a particular application domain, we do not apply
our method on benchmark datasets. We extract our data from
large graphs to target only useful knowledge for this domain.
Moreover, our method has the advantage of being based on a
simple and efficient model, which directly offers a modeling of
the analogy and optimally scales up without the need to define
a complex framework for the study of regularities.

B. Neural Language Based RDF Graph Embedding
Another family of techniques for RDF graph embedding

uses neural language models and paths in the graph to calculate
vectors of entities and relations.

A general technique called Node2vec is proposed in [27].
It aims at creating embeddings for nodes in an (un)directed
(a)cyclic (un)weighted graph G(V, E ,W) where V is the set of
vertices and E the set of edges with weightsW . The embeddings
are learned using the Skip-gram model [28] trained on a corpus
of sequences of nodes generated using the sampling strategy.
The input graph is turned into a set of directed acyclic sub-
graphs with a maximum out degree of 1 using two hyper-
parameters for sampling: Return R (probability to go back to
the previous node) and Inout Q (probability to explore new
parts of the graph).



A closely related approach to our work is described in [29].
The RDF2vec approach uses the neural language model to
generate embedding on entities from walks on two general
knowledge bases namely DBpedia and Wikidata. Short random
walks are created for the whole set of entities in an image of
the KB at a given date. Walks using RDF graph kernels are
also used on small test datasets due to scalability limitation.
The trained models are made available for reuse. The approach
we propose here differs in several ways. First, we consider
undirected labelled edges in the RDF graph to adapt the neural
language model that is compared to directed graph. Second, we
use biased walks guided by the application domain to generate
sequences that are compared to random walks. Third, rather
than using object properties to build the sequences, we consider
dataType properties and literals because we assume that they
hold useful information for our application domain (e.g., dates,
textual descriptions). Finally, and most importantly, we propose
to handle scalability issues by contextualizing the input graphs
assuming that more relevant information is centralized within
a perimeter of α hops around our main entities (α is defined
later).

III. KG COMPLETION WITH NEURAL LANGUAGE MODEL

In the following sections we present the approach we
propose for link discovery in KGs. To this aim we use
neural language models, namely CBOW and Skip-gram models,
that we adapt to the embedding of entities from the KG.
Our approach leverages analogical structures extracted from
relational similarities between entities generated by the used
neural language model. We show in the following how the
analogical regularities, applied to entities from KGs, could
be used to infer new unobserved triples from the observed
ones to complete the original graph. We propose to work on
contextualized RDF graphs focused on a specific domain that
we extract from large general purpose KGs. We developed a
set of algorithms for the construction of context graphs and for
the preparation of test data and the evaluation process, which
will be detailed as the approach stages progress.

IV. PRELIMINARIES: NEURAL LANGUAGE MODEL

Classic NLP systems and techniques treat words as atomic
units represented by indices in a vocabulary without considering
similarities between them. Texts are represented as a bag of
words using binary feature vectors where each word corresponds
to a vector index. Although being simple and robust, such
techniques have limited performances in different NLP tasks due
to the high dimensional and sparse data vectors generated. With
recent advances in machine learning techniques, neural language
models have been proposed to overcome these limitations by
generating low dimensional distributed representations of words
using neural networks. The main goal of word embedding
(mapping from words to vectors of real numbers) approaches
is to capture as much of the semantic and morphological
information as possible from large amounts of unstructured
text data. They explicitly model the assumption that words are
statistically more dependent as they appear closer in the corpus.

Many different types of models where proposed; however,
the earliest suffered from inefficient training of the neural
network as they become computationally very expensive on
large data sets [30], [31], [32]. An efficient neural model
has been proposed in [11], [28], the Word2vec model, and

gained wide popularity due to its simplicity. Word2vec is a two-
layer neural net model for learning distributed representations
of words while minimizing computational complexity. Two
different model architectures for parameter learning are used,
the Continuous Bag-of-Words model (CBOW) and the Skip-
gram model.

A. Continuous Bag-of-Words Model

The intuition behind the CBOW model is the fact of
predicting one word while considering a multi-word context
within a given window in order to preserve information about
the relation of the target word to other words from the corpus.
The architecture is shown in Figure 2.

Figure 2. CBOW architecture

The input layer is composed of surrounding words within
a given context window c. Their input vectors are calculated
from the input weight matrix, averaged and then projected in
the hidden layer (or projection layer). The output weight matrix
serve to calculate a score for each word in the vocabulary as
the probability of being a target word. The architecture of the
neural network is formally given by:

• a set of vectors xi representing training words
w1, w2, w3, ..., wC in the input layer;

• weights matrix W of size V ×N from input to a hidden
layer where V is here the entire words vocabulary, and
N is the dimension of the hidden layer;

• weights matrix W ′ of size N × V as from a hidden
to output layer;

• a softmax function as a final activation step.

The goal is to calculate the probability distribution
p(wi|wi−c...wi+c), the vector representation of the word with
index i, using the softmax function:



p(wi|wi−c...wi+c) =
exp(vT v′wi

)∑V
w=1 exp(v

T v′w)

where V is the entire words vocabulary, v′w is the output vector
of the word w and v is the averaged input vector of context
words:

v =
1

2c

∑
−c≤j≤c,j 6=0

vwi+j

The objective of the CBOW model is then to maximize the
average log probability:

1

C

C∑
i=1

log p(wi|wi−c...wi+c)

B. Skip-gram Model
The Skip-gram Model is the opposite of the CBOW model

where it is matter to predict c context words from one target
word in the input. The architecture is shown in Figure 3.

Figure 3. Skip-gram architecture

Formally, given a sequence of training words
w1, w2, w3, ..., wC , the objective function to maximize
is the following average log probability:

1

C

C∑
i=1

∑
−c≤j≤c,j 6=0

log p(wi+j |wi)

where −c and c are the limits of the context window, word wi

is every word from the working corpus. The first step is then
to obtain the hidden layer as:

h =WTx := vTWI

On the output layer, c multinomial distribution is computed
sharing the same weights between the output panels from the

hidden to output layer weights matrix W ′. The activation of
the output use the softmax function to calculate the probability
p(wi+j |wi) as follows:

p(wi+j |wi) =
exp(v′Twi+c

vwi)∑V
v=1 exp(v

′T
wv
vwi

)

where V is the entire words vocabulary, vw is the input vector
and v′w is the output vector of the word w. More details about
these techniques can be found in [33], [34].

So far, the models presented above, both CBOW and
Skip-gram, are in their original forms without any efficiency
optimization applied. Computed in a straightforward manner,
the computational complexity of those algorithms corresponds
to the size of the vocabulary. In fact there exist two vector
representations for each word in the vocabulary, vw and v′w,
the input and the output vector, respectively. During the update
process it is required to iterate through every word wj in
the vocabulary, compute their probability prediction, and their
prediction error to finally update their output vector v′j . Doing
these computations for all of the words for every training
instance makes the learning of output vectors considerably
expensive and the whole learning process impractical to scale
up for large vocabularies. Two optimization techniques were
proposed to solve this problem by limiting the number of output
vectors that require an update per training instance, hierarchical
softmax and negative sampling [11].

As stated by the authors in [11], negative sampling outper-
forms hierarchical softmax on the analogical reasoning task,
which is our main concern in this paper. They also argue that
the linearity of the Skip-gram model makes its vectors more
suitable for such linear analogical reasoning. This will guide
our parameters calibration for training the word2vec model in
the evaluation step.

V. APPROACH

The approach we propose in this work adapts the neural
language model word2vec for the embedding of knowledge
graphs. It benefits from the properties offered by this model,
which explicitly assume that closer words in text documents
are statistically more dependent. For RDF graphs, words are
replaced by entities and relations between entities. Sequences
of entities and relations should be generated from the RDF
data in order to apply the word2vec model as on sentences
of words. After graph conversion, we can train the neural
language model to represent entities and relations between them
as vectors of numerical values in a latent feature space. These
vectors can directly be used to perform analogical inferences
for link prediction. In our approach, we work on excerpts
from large knowledge graphs, we call context graphs, which
represent condensed information from a given domain. Many
reasons motivate our choice; we discuss them in the following
subsection and show how such context graphs are built and
explored.

A. Building Context Graphs
For the remainder of this article, we will study a knowledge

graph extract; we name it Context Graph (CG). We first start
by explaining why CGs and, more generally, extracts from
knowledge graphs, are interesting to study and how they can
be constructed.



1) Motivation For Context Graphs: In the semantic web
community, the concern has arisen to work with extracts from
large graphs, rather than with large graphs themselves. Various
motivations are encountered for this. To begin with, a query
on a graph, in particular a CONSTRUCT query, creates a ’view’
on this graph that constitutes an extract on which we generally
wish to do targeted operations: insertion into another graph,
display, processing, etc. We may want to put aside the obtained
extract, for example, because the corresponding request is long
to process and therefore costly in performance for the triple
store of the original graph.

An extract targeted on a class or a category of objects can
be useful, for example, for an analysis and an improvement of
the quality of these types of objects in the large graph: used
properties, missing properties, consistency with a schema, etc.

We can assume that queries on an extract can execute faster
than the same queries on the full graph (and give the same
results for a category of queries targeted by the extract). This
can be a way to bypass timeout problems on graphs such as
DBpedia. We have no precise benchmarks on this subject. To
create such benchmarks; it is necessary to install a copy of
DBpedia on the same computer, then build the extract, and test
a list of queries, which is out of scope in this work.

The same is true for other processings on graphs. For
example, in [29], building a model from DBpedia may take up
to several days with a powerful machine [35] while building
a model for this work takes 11 minutes on a laptop with four
GB of memory and a quad-core 2.8 GHz processor (see more
details at the end of the evaluation section). We argue that with
smaller and more focused graphs as our Context Graphs, it is
easier and more reliable to apply inference methods.

Extracts can also be shared more easily to contribute to
students work. A dated and versioned excerpt can also be a
significant dataset to support research work by having access to
the data that have been used for this work. This is particularly
useful if you are working on constantly evolving data graphs
such as Wikidata.

2) Context Graphs Building Process: We define a Context
Graph as a sub-graph of a general KG (e.g., DBpedia)
representative of a domain D.

1) The first step to build a CG is to identify a list
of seeds defining the domain. A seed is an entity
from KG corresponding to a concept that is con-
sidered relevant for D. For example, if the concept
is ‘Musée du Louvre’, the corresponding entity in
DBpedia is <http://dbpedia.org/resource/Louvre>. In
some domains this list is obvious as for museums,
hotels, or restaurants. In general, the common practice
is to rely on a reference dataset (such as IMDB for
cinema).

2) The second step extracts from KG, the neighborhood
for each seed within a given depth filtering
useless entities or predicates (not informative
for D) and returns the final CG as the union
of elementary contexts. We use the CG in the
following algorithm as the basis for the embedding
model. For example, DBpedia-fr uses the predicate
<http://dbpedia.org/ontology/wikiPageRevisionID>,
which is maintenance information about the source
of the entity. The node revision ID is inadequate for

our work and thus we consider it as out of our target
domain.

Algorithm 1: CONTEXT BUILDER

1 Function ContextBuilder(KG, seedsEntities,
radius, filteredEntities)

Input : A knowledge graph KG
A neighborhood depth to reach radius
A set of entities which are used as seeds
seedsEntities
A set of entities which are excluded from the seeds
filteredEntities
Output : Context Graph context

2 level ← 0
3 context ← ∅
4 while level < radius do
5 newSeeds ← ∅
6 foreach s ∈ seedsEntities do
7 Cs ← FindNeighbors(KG, s)
8 context ← context ∪ Cs

9 newSeeds ← newSeeds ∪
EntityFilter(Cs,filteredEntities)

10 end
11 level ← level +1
12 seedsEntities ← newSeeds
13 end
14 context ← context ∪ AddClasses(KG,

Entities(context))
15 return context

We create the algorithm CONTEXT BUILDER (Algorithm
1) to build a context graph context from a knowledge graph
KG for a given domain D. For a set of seeds (seedsEntities),
findNeighbors(s) extracts a neighboring context Cs from
a knowledge graph KG for each seed s. The final context,
context, is updated adding Cs. A list of new seeds, newSeeds,
is updated with the new collected entities after filtering
the terminal nodes with the EntityFilter method. The
exploration depth level is incremented by 1 at each step
up to the desired radius limit. At the end of process, the
resulting context context is expanded with the classes of
entities extracted from KG by the methods AddClasses and
Entities.

The purpose of the EntityFilter method is to elim-
inate a certain number of entities that seem useless for
a given application. The entities to be filtered are given
in the list filteredEntities. In our application, examples of
elements in this list are entities belonging to the T-Box due
to their very general nature (e.g., in DBpedia: dbo:Building,
dbo:Place or owl:Thing) and structuring nodes (e.g., DBpedia-
fr pages layout, <http://fr.dbpedia.org/resource/Modèle:P.>).
Those nodes introduce a great deal of noise without bring-
ing relevant information for the targeted domain. For ex-
ample, in our experiments on DBpedia, we found 3, 486
entities built on <http://fr.dbpedia.org/resource/Modele:????>
giving rise to 2, 692, 515 links and 101, 235 links to
<http://www.w3.org/2004/02/skos/core#Concept>.

The Entities method finds all the entities in the created
context graph. The AddClasses method adds the classes of



all the entities after finding them in the source graph. At this
stage, we also add the ontology (the T-Box) that organizes
these classes, if it exists. Thus, we have a knowledge of the
nature of the manipulated entities, which allows us to draw
conclusions on the basis of these classes as we will see below.
It should be noted that the concept of a class can differ from
one knowledge graph to another; this is, for example, the case
for Wikidata that uses its own concepts, while DBpedia uses
the concepts defined by RDFS [36].

B. Context Graph Sub-structures
We transform the entities and relations in the CG as paths

that are considered as sequences of words in natural language.
To extract context graph sub-structures, we use the breadth-first
algorithm to get all the graph walks or random walks for a
limited number N .

Let G = (V, E) be an RDF graph where V is the set of
vertices and E is the set of directed edges. For each vertex
vx ∈ V , we generate all or N graph walks Pvx of depth d
rooted in the vertex vx by exploring indifferently direct outgoing
and incoming edges of vx. We iteratively explore direct edges,
both incoming and outgoing, of neighbors vxi

of vertex vx until
depth d is reached. The paths after the first iteration follow
this pattern vx → ei → vxi where ei ∈ E . The first token of
each path p ∈ Pvx is the vertex vx followed by a sequence
of tokens that might be labels of edges or vertices. The final
set of sequences for G is the union of the sequences of all the
vertices

⋃
vx∈V Pvx .

Hereafter are some examples of entity sequences that have
been extracted from DBpedia using graph walks of depth 2, 4
and 8, respectively:

dbr:Walker,_Texas_Ranger → dc:subject →
dbr:Category:Martial_arts_television_series

dbr:Walker,_Texas_Ranger → dbo:creator →
dbr:Paul_Haggis

dbr:Walker,_Texas_Ranger→ dbp:country→ United States
fdbr:Maison_de_Balzac → dbo:wikiPageWikiLink →

fdbr:Honoré_de_Balzac → fdbp:auteur → Patricia Baudouin
fdbr:Maison_de_Balzac → dbo:wikiPageWikiLink →

fdbr:La_Comédie_humaine → dbo:wikiPageWikiLink
→ fdbr:Venise → dbo:wikiPageWikiLink →
fdbr:Paul_Bourget→ dbo:wikiPageWikiLink→ fdbr:Catégorie:
Grand_officier_de_la_Légion_d’honneur

The following correspondences are used for properties:
fdbr http://fr.dbpedia.org/resource/
dbo http://dbpedia.org/ontology/
dbp http://dbpedia.org/property/
dc http://purl.org/dc/terms/

C. Feature Learning
Next, we train the word2vec neural language model, which

estimates the likelihood of a sequence of entities and relations
appearing in the graph and represents them as vectors of latent
numerical features. To do this, we use the continuous bag of
words (CBOW) and Skip-gram models as described in Section
IV. CBOW predicts target words wi from context words within
a context window c while Skip-gram does the inverse and
attempts to predict the context words from the target word. The
probabilities p(wi|wi−c...wi+c) and p(wi+j |wi) are calculated
using the softmax function.

Once the training is finished, all entities and relations are
projected into a latent feature space where semantically similar
entities are positioned close to each other. Moreover, we can
perform basic mathematical operations on the vectors in order
to extract different relations between entities.

D. Analogical Inference
In this last step, we extract analogical properties from the

feature space to estimate the existence of new relationships
between entities. We use the following arithmetic operation
on the feature vectors (entities of Figure 1): v(Berlin) −
v(Germany) + v(France) = v(x) which we consider is
solved correctly if v(x) is most similar to v(Paris). On the
left-hand side of the equation, entities contribute positively
or negatively to the similarity according to the corresponding
sign. For example, Germany and France having the same
type Country contribute with different signs, Berlin, of a
different City type, contribute with the opposite sign of the
corresponding Country. The right-hand side of the equation
contains the missing corner of the diagram, which remains to
be predicted. We then use cosine similarity measures between
the resulting vector v(x) and vectors of all other entities of
the same type in the embedding space (discarding the original
ones of the equation) in order to rank the results.

In this article, the assessments focus on relationships
between museums and artists. We will therefore be interested
in equations on the model v(artist1) − v(museum1) +
v(museum2) = v(x). In addition, we verify that x has the
good type, here Artist.

E. Semantic filtering
Analogical inference returns as result a set of entities who’s

vectors are similar to the reference vectors.
It is possible to acquire entities which do not have the

required type (City in the example). To handle this, we apply
a semantic filtering to keep only entities of the expected type.
Doing so, we use a combination of embeddings and semantics
to achieve filtered results to explore for evaluation.

VI. EXPERIMENTAL EVALUATION

In what follows we present the experimental evaluation
of the proposed approach with a case study in the tourism
field, particularly the museums of Paris. Data is extracted from
general purpose KBs on which the approach is applied and
evaluated against ground-truth of artists and museums analogies.

A. Case Study
We test our approach on a sub-graph of DBpedia repre-

senting a target domain; here we chose museums of Paris
Musées, a federation of museums in Paris. We propose to
address the scalability issue by contextualizing the input graphs,
assuming that more relevant information is centralized within
a perimeter of α hops around the main entities of this domain.
We used α = 2 as suggested by [37]. We build our KG as the
union of individual contextual graphs of all entities representing
the input data from the cultural institution Paris Musées (12
sites). We identify each site by its URI on DBpedia-fr after
an entity resolution task (in the following, we denote the URI
http://fr.dbpedia.org/resource/entity shortly as dbr:entity).

Obtaining URIs is a classic Entity Linking problem. As we
are only dealing with a small number of elements, we used a



rudimentary method: starting from the name of each museum,
a search in DBpedia-Fr of entities with the same label - by
testing different variants of a character case - we get a set of
propositions that are validated by a person. It is also a person
who carries out a search in DBpedia-Fr for entities that could
not be found by this process. Of course, for a greater number
of entities describing a domain, it would be necessary to use
an advanced method of Entity Linking and a context for each
entity to avoid any ambiguities [38].

The final graph contains 448, 309 entities, 2, 285 relations,
and 5, 122, 879 triples. To generate sequences of entities and
relations we use random graph walks with N = 1000 for depth
d = {4, 8}. We also consider for each entity all walks of depth
d = 2 (direct neighbours).

The context graph for Paris Musées was constructed with a
depth of 2. The core of the context therefore has a depth of 1.
Studying the impact of choosing this depth is beyond the scope
of this article. A blacklist has been created essentially comprised
of all the elements of the T-Box, considered as terminal nodes.
For example, if a node brought us to owl:Thing and we
followed the links from there, clearly, we would bring back
1, 527, 645 entities that are not necessarily related to our
domain.

Table I gives a description of a context graph extracted from
DBpedia-fr for the depth N = 2. We test different settings for
the constitution of such a graph. The values in this table are
therefore only indicative.

TABLE I. Description of a context graph CG extracted from DBPedia-fr with
N = 2

Context CG DBPedia-fr %
Distinct entities 448309 10515624 4.2
Distinct predicates 2285 20322 11.24
Links 5122879 185404534 2.76
Links by entity
(mean) 11.42 17.63

It is normal that there are fewer links per node in CG than
in DBPedia-fr, since, by construction, we have eliminated some
links that are not very informative in our application framework
as explained above.

We therefore have a number L of links 36 times lower and
a number S of vertices 23 times lower in the CG that in KG. On
an algorithm in O(L+S), such as the Breadth-first search, we
can anticipate a gain factor of around 30, which can strongly
contribute to the applicability of a large number of methods.
The gain can become considerable on algorithms such as those
of the shortest path search between two nodes, when it is also
a matter of giving weights to edges, the complexity of which
is in O(S2).

We then train the Skip-Gram word2vec model on the corpus
of sequences with the following parameters: window size = 5,
number of iterations = 10, negative samples = 25 (for the
purpose of optimisation), and dimension of the entities’ vectors
= 200. We use gensim implementation of word2vec [39]. The
parameters values are inspired by those used for the training
of the RDF2vec model [29] and, for the remaining ones, the
default values, as proposed in [11], are used. Moreover, we

trained our model with the CBOW method and with a larger
vector dimension (500). We notice in general better performance
with the Skip-Gram method, but cannot make any assertion
about the vector dimension.

Our method cannot be evaluated against others using
benchmark datasets such as FB15K, WN18 [7], [8]. It requires
defining a context and extracting a subgraph from it; none of the
other methods use such a context in the available evaluations
and our proposal is strongly linked to the definition of such
a context. So far, we have no knowledge of any experiments
that rely on DBpedia-Fr. Some rely on DBpedia, but French
museums are poorly represented in DBpedia.

B. Evaluation Protocol
Existing benchmarks for testing analogy tasks in the

literature are designed for words from text corpora. To the best
of our knowledge, using a language model driven analogy for
link prediction in knowledge graphs has not been investigated
yet.

To evaluate our approach, we build a ground-truth for an
analogy between entities in the KG. Each entry corresponds to
a parallelogram as described in Figure 1, with one unobserved
triple in the KG. For each entity, corresponding to a museum
site in our application, we collect a list of well-known artists
for this site as follows: find in DBpedia-fr the list of artists
(dbo:Artist) or otherwise, individuals (dbo: Person) who are
associated with the site. For some sites, we manually create
the list, for example, by searching for well-known artists for a
museum on the website [40].

The data used for the evaluation is made up of two tables
indexed by the museum identifier. The first table associates a
museum with an artist considered as key for this museum; for
example, Zadkine for the Zadkine museum. The second table
associates a list of people - essentially artists - important for
this museum. These lists were established by consulting the
list of artists from the Paris Musées Collections site [40] and
consolidating this information with the corresponding Wikipedia
pages. For each artist and museum in the data, we use the URI
in DBpedia-Fr.

In the following paragraphs of this subsection, we first
present the method used to obtain the results. Then, we propose
two ways to evaluate them.

We create the algorithm FIND SIMILARS (Algorithm 2)
which builds a two-dimensional table. The first dimension is
the museum for which we search artists. The second dimension
is the museum for which we know a principal artist. As the
result, each cell of the table contains a list of proposed artists.

The first test is formalized as follows: given a pair
(museuma, artista = main artist for museuma), for each
museumb, a 6= b, we search for a list of artists artistb, which
has a similar role as the role of artista for museuma (here,
we consider the artist who has the most works exhibited or who
is the most present in the museum, that we call the main artist).
Then, we assess the pertinence of each artistb for museumb.

The evaluation test aims at discovering artista for
museuma considering a known triple <museumb, artistb>
while varying b and measuring the mean of the returned results.
We use conventional metrics: Mean Reciprocal Rank (MRR)
and the number of correct responses at a fixed rate (Hits@).



Algorithm 2: FIND SIMILARS

1 Function FFindSimilarArtists(MainArtists,
Museums,)

Input :
List of main artist uris, one by museum
MainArtists
List of museum uris Museums
Max of returned similar entities Max
Output :
Table of proposed similar artists for Mj given (Mi,
Ai) SimilarArtists [][]

2 foreach Mi ∈ Museums do
3 Ai ← MainArtists [Mi ]
4 foreach Mj ∈ Museums do
5 Similars [Mi ][Mj ] ←

FindSimilars(Ai, Mi, Mj , Max)
6 SimilarArtists [Mi ][Mj ] ←

TypeFilter(Similars [Mi ][Mj ],
tArtist)

7 end
8 end
9 return SimilarArtists

The evaluation protocol is as follows: for each URI Mi,
URI of a museum, let URI Ai be the URI of the first artist
identified for Mi, consider all Mj | j 6= i, and find the top
most similar entities of the predicted vectors with positives =
[Ai,Mj] and negative =[Mi]. In the list of results, we filter by
type Artist, and then examine the intersection with artists Al

associated with Mj .
In other words, we fix the target Mj and look at the obtained

results by varying the reference pair (Mi, Ai). We consider
the relevance of the returned result on Mj as the average
relevance over all pairs (Mi, Ai). Algorithm EVALUATION A
(Algorithm 3) shows the steps of the first evaluation test.

In Algorithm 3, the EvaluateAgainstRef function
uses the list of proposed artists and the reference list for museum
Mi. This function checks whether the artists expected by the
reference list have been found in the 3rd -or 5th or 10th- first
returned results, and compares the rank of found results with
the reference ranking (with MRR metric). The Mean function
averages the obtained results for the different Mi tested.

It is worth noticing that we frequently find loosely qualified
links between museums and artists; such links are very common
in DBpedia and use the property wikiPageWikiLink
representing an untyped link. Subsequent work is required
to qualify them.

C. Results
Table II shows the results of MRR and Hits@{3, 5, 10} (%)

for d = {4, 8} and N = 1000. The final row of Table II with
columns d = 8 shows the impact of considering longer paths
on the performances of the approach. In fact, longer paths
capture richer contexts for entities and results in better vectors
estimation by the neural language model.

We compared our approach with the one presented in [29],
which creates a model, modelDB, for all entities in DBpedia.
For each entity in our ground-truth built on DBpedia-fr, we

Algorithm 3: EV ALUATION A

1 Function
MuseumsFocusedEvaluation(SimilarArtists,
, Museums)

Input :
Table, result of Algorithm 2 SimilarArtists
Reference lists of artists, one list by museum
List of museum Museums
Output :
List, mean of MRR values by museum MMrr
List, mean of Hit@3 values by museum MHit3
List, mean of Hit@5 values by museum MHit5
List, mean of Hit@10 values by museum MHit10

2 foreach Mj ∈ Museums do
3 foreach Mi ∈ Museums do
4 Proposal ← SimilarArtists [Mi ][Mj ]
5 Mrr [Mi ], Hit3 [Mi ], Hit5 [Mi ],

Hit10 [Mi ] ←
EvaluateAgainstRef(Proposal,
ArtistsRefList [Mi ])

6 end
7 MMrr [Mj ], MHit3 [Mj ], MHit5 [Mj ],

MHit10 [Mj ] ← Mean(Mrr, Hit3, Hit5,
Hit10)

8 end
9 return MMrr, MHit3, MHit5, MHit10

look for its equivalent in DBpedia and verify that it is contained
in the vocabulary of modelDB built with d = 4. Only 7 out
of 12 museum entities are in modelDB, as well as their first
associated artist among others. The analogy tests return globally
poor results. ModelDB were unable to retrieve relevant entities
in the top 100 returned answers, as was the case for our model
trained on the CG, without any improvement even if extended
to top 5000. This result is to be expected when we look at the
following table, which shows that our CG has better coverage
of the ground-truth domain entities, mainly artists, compared
to DBpedia.

TABLE III. GROUND-TRUTH ENTITIES IN DBPEDIA AND DDBPEDIA-FR.

dbo:Person dbo:Artist No type dbo:Museum
DBpedia 272 190 44 7

DBpedia-fr 272 327 6 12

The first row of Table III shows that not all dbo:Artist
are linked to dbo:Person (ex: dbr:Sonia_Delaunay). With 12
museums and 334 artists in the reference list, 97.90% can
be identified as an artist in our context graph vs. 56.88% in
DBPedia, which partly explains the poor results with modelDB.
As we filter the returned results by type Artist (or more generally
by Person), several relevant answers are filtered.

We also compared our approach with a random selection
of entities of type dbo:Artist in the vocabulary of the model.
The results, given in columns d = 4R of Table II, show a great
benefit of leveraging the regularities in the vocabulary space
to extract relationships between entities.

While analysing values on Table II, we noticed wide
discrepancies between the results of different museums. For



TABLE II. MRR AND HITS@{3, 5, 10} (%) OF A SUBSET OF REPRESENTATIVE EXAMPLES OF Paris Musées DATA FOR d = {4, 8} AND N = 1000 WITH
ANALOGY AND RANDOM FOR d = 4 (D=4R).

MRR Hits@3 Hits@5 Hits@10
Entity d=4R d=4 d=8 d=4R d=4 d=8 d=4R d=4 d=8 d=4R d=4 d=8
dbr:Musée_Bourdelle 0.05 0.39 0.43 0.09 0.50 0.42 0.18 0.50 0.42 0.18 0.66 0.50
dbr:Musée_Carnavalet 0.01 0.43 0.59 0.00 0.58 0.67 0.09 0.66 0.75 0.09 0.83 0.75
dbr:Musée_Zadkine 0.00 0.43 0.44 0.00 0.41 0.42 0.00 0.50 0.50 0.00 0.50 0.50
dbr:Musée_Cernuschi 0.01 0.42 0.50 0.00 0.50 0.58 0.00 0.58 0.67 0.09 0.75 0.67
dbr:Petit_Palais 0.04 0.38 0.63 0.09 0.50 0.75 0.09 0.66 0.75 0.09 0.66 0.75
dbr:Maison_de_Balzac 0.03 0.23 0.44 0.09 0.25 0.58 0.09 0.41 0.58 0.09 0.41 0.58
dbr:Musée_Cognacq-Jay 0.09 0.33 0.49 0.09 0.33 0.58 0.09 0.33 0.58 0.09 0.33 0.58
dbr:Musée_d’art_moderne 0.04 0.36 0.71 0.09 0.41 0.75 0.09 0.50 0.83 0.09 0.58 0.83
dbr:Musée_Romantique 0.03 0.34 0.48 0.09 0.41 0.50 0.09 0.41 0.58 0.09 0.50 0.58
dbr:Palais_Galliera 0.00 0.36 0.48 0.00 0.50 0.50 0.00 0.50 0.58 0.00 0.50 0.58
dbr:Maison_de_Victor_Hugo 0.01 0.38 0.55 0.00 0.50 0.58 0.00 0.58 0.58 0.18 0.58 0.67
dbr:Musée_de_Grenoble 0.00 0.34 0.33 0.00 0.41 0.33 0.00 0.50 0.33 0.00 0.50 0.33
All entities in Paris Musées 0.02 0.37 0.52 0.04 0.44 0.58 0.06 0.51 0.62 0.09 0.57 0.64

example, Hits@10 values for dbr:Musée_d’art_moderne and
dbr:Musée_de_Grenoble are respectively: 0.83 and 0.33. This
impacts the global performance of all museums (see last row
of Table II). The result means for the second value that the
system was not able to retrieve the corresponding artist for
dbr:Musée_de_Grenoble in the top returned results. We argue
this is mostly related to the representativeness of this artist’s
entity in the KG and how it is linked to the museum’s entity;
less interlinked entities (directly or indirectly through neighbors)
have a lower chance of being related with the analogy structure
in the embedding space.

To explain this, we run the following evaluation test:

• goal: evaluate how well we find museum which has
artista as main artist,

• input: each known pair (museumb, artistb) where
artistb is the main artist for museumb,

• method: we look for museums that play a similar role
for artista to which played by artistb for museumb

and verify if the returned museums have a relationship
with the artista in the ground-truth

For example, consider the fol-
lowing pair (museumb, artistb) =
(Maison_de_V ictor_Hugo, V ictor_Hugo) and the
relation main_artist_for between them, and consider
artista = Honore_de_Balzac. We want then to
find museums related to Honore_de_Balzac with the
main_artist_for relation (as by analogy of the relation
between the pair (Maison_de_V ictor_Hugo, V ictor_Hugo).
In other words, find museums for which Honore_de_Balzac
is the main artist.

The evaluation protocol is as follows: for each Aurii, URI
of an artist, consider all known triples <Murij , Aurij > |
j 6= i, and find the top most similar entities of the predicted
vectors ranked by similarity. In the list of results, we filter
by type Museum, and we then examine the intersection with
museums Muril associated with Aurii.

In other words, we fix the pair (Mi, Ai) and assess all
possible targets Mj in the returned results. We consider here
that the pertinence for the artist Ai is the average pertinence for
all possible targets. Algorithm EVALUATION B (Algorithm
4) shows the steps of this second evaluation.

In Algorithm 4, the EvaluateAgainstRef function
uses the list of proposed artists and the reference list for the

Algorithm 4: EV ALUATION B

1 Function
ArtistsFocusedEvaluation(SimilarArtists,
ArtistsRefList, Museums)

Input :
Table, result of Algorithm 2 SimilarArtists
Reference lists of artists, one list by museum
List of museum Museums
Output :
List, mean of MRR values by museum MMrr
List, mean of Hit@3 values by museum MHit3
List, mean of Hit@5 values by museum MHit5
List, mean of Hit@10 values by museum MHit10

2 foreach Mi ∈ Museums do
3 ← [Mi ] foreach Mj ∈ Museums do
4 Proposal ← SimilarArtists [Mi ][Mj ]
5 Mrr [Mj ], Hit3 [Mj ], Hit5 [Mj ],

Hit10 [Mj ] ←
EvaluateAgainstRef(Proposal,
ArtistsRefList [Mj ])

6 end
7 MMrr [], MHit3 [], MHit5 [], MHit10 []

← Mean(Mrr, Hit3, Hit5, Hit10)
8 end
9 return MMrr, MHit3, MHit5, MHit10

museum Mj . This function checks whether the artists expected
by the reference list have been found in the 3rd -or 5th or
10th- first returned results and compares the rank of found
results with the reference ranking (with MRR metric). The
Mean function averages the obtained results for the different
Mj tested.

Table IV shows the results of MRR and Hits@{3, 5, 10}
(%) for d = 4 and N = 1000. For example, the line
dbr:Antoine_Bourdelle is built for the given pair (Musée
Bourdelle, Antoine Bourdelle), then, for each other museum,
we search the proposed artists. We evaluate the results with
MRR, Hit@3, Hit@5, Hit@10, and put in the table the mean
of the results for each museum.

The wide differences between artists’ results in the last
column of Table IV (Hits@10) (e.g.,dbr:Victor_Hugo and
dbr:Geer_Van_Velde) reveals the impact of the triple inter-



linkage in the graph on the analogy prediction test. Thus, good
prediction performance of new triples could be achieved with a
good representativeness of known triples by the context graph.
For evidently strong interlinkages such as for (Musée Victor
Hugo, Victor Hugo), (Musée Bourdelle , Antoine Bourdelle),
we have satisfactory results. For a weaker link, such as (Musée
Carnavalet, Israël Silvestre), the results are unsatisfactory. We
need to investigate what can be foreseen as a good interlinkage.

TABLE IV. MRR AND HITS@{3, 5, 10} (%) OF REPRESENTATIVE
EXAMPLES OF ARTISTS EXHIBITED IN MUSEUMS OF Paris Musées FOR d = 4

AND N = 1000

Entity MRR Hits@3 Hits@5 Hits@10
dbr:Antoine_Bourdelle 0.61 0.72 0.81 0.81
dbr:Israël_Silvestre 0.08 0.09 0.13 0.13
dbr:Gustave_Courbet 0.38 0.45 0.45 0.72
dbr:Ossip_Zadkine 0.67 0.81 0.90 0.91
dbr:Xu_Beihong 0.74 1.0 1.0 1.0
dbr:Honoré_de_Balzac 0.53 0.72 0.81 0.81
dbr:François_Boucher 0.65 0.72 0.81 0.81
dbr:Geer_Van_Velde 0.09 0.09 0.09 0.09
dbr:Ary_Scheffer 0.62 0.72 0.81 0.91
dbr:Jacques_Heim 0.18 0.18 0.45 0.72
dbr:Victor_Hugo 0.53 0.63 0.72 0.91

D. Performances
In this final section, we provide input on the execution

performances. Building a model for this work takes 11 minutes
on a laptop with 4 GB memory and a quad-core 2.8 GHz
processor. We exclude the building of the context graph, which
takes place only once. The following time values are only
indicative and may vary slightly depending on the parameters
chosen to build the model. We use the library rdflib [41] to
program the entire process in Python 3. Loading the context
graph takes 270 seconds; this only happens once for a set of
tests with different parameters to build the model. Generating
the 500 walks for each museum takes 30 seconds. Building
the model with the walks takes 28 seconds. So, it is possible
to generate a model on the fly during interactive sessions.

VII. CONCLUSION

In this paper we presented an approach for link discovery
in knowledge bases based on neural language embedding
models. We worked on contextualized RDF graphs focused on
a specific domain that we extract from large general purpose
knowledge graphs. Our approach leverages analogical structures
extracted from relational similarities between entities generated
by the neural language model. We show how these analogical
regularities, applied to entities from knowledge graphs, could
be used to infer new unobserved triples from the observed ones.
We presented a set of algorithms, on which our approach is
based, for the construction of context graphs and the preparation
of test data and the evaluation process. The results of applying
our approach on a domain-specific ground-truth are promising.
We will continue to expand upon the research and compare it
with state-of-the-art approaches for knowledge base completion
on the standard baselines.
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