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Abstract 13 

Aquaculture is becoming a relevant and productive source of seafood, and production is expected 14 

to double in the near future. However, bivalve activities can significantly impact coastal 15 

ecosystem functioning. To study the direct and indirect impacts of oysters on the microbial food 16 

web, a 0D biogeochemical modelling approach was adopted. The model was adjusted by 17 

parameter optimisation, assimilating data from several mesocosm observations of the 18 

concentrations of nitrate, phosphate, silicate, dissolved organic carbon and chlorophyll, as well as 19 
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bacterial biomass. The optimisation method provided a set of optimal parameters to fit the 1 

experimental observations of ‘Control’ (i.e., natural water without oysters) and ‘Oyster’ (i.e., 2 

natural water with oysters) mesocosms. The modelling results showed good accordance with the 3 

experimental observations, suggesting that the oysters directly reduced the phytoplankton 4 

community biomass, thus constraining the ecosystem to a more heterotrophic state. Oysters also 5 

reduced the competition between bacteria and phytoplankton for nutrient uptake, favouring a 6 

higher bacterial biomass than in the ‘Control’ experiment. Additionally, the presence of oysters 7 

strongly increased large micro-zooplankton biomass (50-200 µm, mainly ciliates and large 8 

flagellates). This was a consequence of bacterivory by small zooplankton (5-50 µm, mostly 9 

flagellates and small ciliates), providing a trophic link between bacteria and larger zooplankton. 10 

In conclusion, the parameter optimisation showed a good capacity to manage experimental data 11 

in order to build a more realistic model. Such models, in connection with future developments in 12 

aquaculture and global change scenarios, could be a promising tool for exploited ecosystem 13 

management and testing different environmental scenarios. 14 

Key words: Oysters, microbial food web, biogeochemical modelling, parameter optimisation, 15 

bacteria, phytoplankton, zooplankton, mesocosm. 16 

1 Introduction 17 

Bivalve activities exert a non-neutral influence on coastal ecosystems (e.g., Dupuy et al. 1999, 18 

2000, Chapelle et al. 2000, Mostajir et al. 2015), and an increase in the number of shellfish farms 19 

in specific areas will certainly impact their nearby ecosystems. The roles of bivalves can be 20 

summarised by three main functions (Richard et al. 2019): filtration (Dupuy et al. 2000, Trottet et 21 

al. 2008), excretion (Mazouni 2004, Richard et al. 2007, Jansen et al. 2011), and biodeposition 22 
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(Callier et al. 2006, 2009, Robert et al. 2013). Filtration by oysters selectively removes suspended 1 

living or non-living particles from the water column (Gosling 2015, Bayne 2017). Several studies 2 

considered the type and size of particles trapped by oysters, ranging from 3 to 5 μm (Barillé et al. 3 

1993, Dupuy et al. 1999, 2000) to 500 μm (Barillé et al. 1993, Dupuy et al. 2000, Gosling 2015 4 

and references therein), including nano- (3-20 μm) and microplankton (20-200 μm), comprising 5 

phyto-, protozoo- and metazooplankton. Oyster biodeposition, resulting from faeces and 6 

pseudofaeces production (Haven & Morales-Alamo 1966), can also influence the ecosystem as it 7 

affects the composition of total particulate matter and nutrient recycling. Souchu et al. (2001), 8 

comparing suspended particulate matter and dissolved nutrient distributions between oyster farms 9 

and nearby areas not used for cultivation in a Mediterranean lagoon (Thau, France), showed that 10 

nitrogen in the biodeposits, which accumulated at the water-sediment interface, was recycled by 11 

mineralisation to ammonium, stimulating phytoplankton biomass as a result. 12 

In exploited areas, bivalves can modify microbial plankton community structure (e.g., Froján et 13 

al. 2014, Mostajir et al. 2015). For example, a mesocosm study was conducted in the 14 

northwestern Mediterranean lagoon of Thau (France) to assess the structural and functional 15 

impacts of oysters on the microbial food web (MFW) (Mostajir et al. 2015). In this confined 16 

environment, the authors analysed the autotroph:heterotroph C biomass ratio (A:H) structural 17 

index, indicating that the MFW became more heterotrophic in the presence of oysters as top 18 

predators. 19 

Several modelling studies have simulated the evolution of oysters or their influence on 20 

biogeochemical cycles and other MFW components. Two main categories can be distinguished 21 

with diverse approaches and goals. The first category of models is focused on oyster evolution 22 

and behaviours in a specified environment, comprising models using the dynamic energy budget 23 
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(DEB) theory (Kooijman 1986, 2000, 2009) and other population growth models (e.g., Gangnery 1 

et al. 2001, 2003, 2004). The second category includes models commonly used to investigate 2 

bivalve-environment interactions. This category concerns biogeochemical models integrating 3 

oysters, where biogeochemical models describe MFW processes generally forced by the physical 4 

environment (e.g., temperature and light). Several studies included the nitrogen and/or 5 

phosphorus cycles (Chapelle et al. 2000, Zaldívar et al. 2003). In parallel with these 6 

developments and because of the strong coupling between physics and biology, biogeochemical 7 

models are regularly coupled with 3D oceanic circulation models (e.g., Auger et al. 2014, Plus et 8 

al. 2015, Ulses et al. 2016). Other developments have been made in coupling ecological models 9 

of bivalve algorithms with hydrodynamic models to simulate food availability and thus the 10 

carrying capacities of bivalve populations (Duarte et al. 2003, Marinov et al. 2007) or the impact 11 

of bivalves on the spatial distribution of phytoplankton (Spillman et al. 2008, Cugier et al. 2010, 12 

Ibarra et al. 2014). 13 

The present study focused on the interaction between oysters and MFW components and fluxes, 14 

using a 0D modelling approach. This work was part of the development of a 3D coupled 15 

hydrodynamic-biogeochemical model of an exploited coastal northwestern Mediterranean lagoon 16 

(Thau, France). The Thau lagoon is a shallow marine lagoon connected to the sea by three narrow 17 

channels. It has been highly exploited for bivalve culture and, in particular, the culture of the non-18 

native oyster Crassostrea gigas, which has been cultivated in the lagoon since 1972 (Hamon et 19 

al. 2003). The originality of this work lies in the insertion of a new oyster compartment into the 20 

highly comprehensive Eco3m-S biogeochemical model, presented in detail in Auger et al. (2011). 21 

An optimisation method assimilating mesocosm observations described in Mostajir et al. (2015) 22 

was performed to determine the best control parameters for the model. The Eco3m-S 23 
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biogeochemical model was used to simulate complex ecosystem dynamics composed of several 1 

decoupled cycles of biogenic elements (carbon, nitrogen, phosphorus, and silica). The new oyster 2 

compartment was implemented to investigate the impact of the insertion of oysters as top 3 

predators of the MFW. The mesocosm study of Mostajir et al. (2015) showed very good 4 

experimental results regarding MFW structure and functioning resulting from the introduction of 5 

oysters, but these results could not be extrapolated. The advantage of the new model is that it 6 

provides high-frequency results and deeper insight into interactions and fluxes within the MFW. 7 

In further studies, the model could also be used to elucidate the potential response of the 8 

ecological system to new environmental conditions and forcings. Future studies involving this 9 

new model will use 3D coupled hydrodynamic-biogeochemical modelling of the same study area. 10 

Specific questions to be addressed by the current study were (1) What are the essential 11 

biogeochemical processes modified within the MFW by the insertion of oysters? (2) What are the 12 

direct and indirect impacts of the insertion of oysters on the different components of the MFW? 13 

2 Materials and methods 14 

2.1 Experimental data 15 

A mesocosm study was conducted at the Mediterranean Centre for Marine Ecosystem 16 

Experimental Research (MEDIMEER) (Mostajir et al. 2015) based at the marine station of Sète 17 

(southern France). The purpose was to determine the MFW structural and functional responses to 18 

oysters as top predators. Four mesocosms filled simultaneously with screened (<1000 μm) natural 19 

Thau lagoon surface water were studied over 10 days in October 2005 near the MEDIMEER 20 

pontoon. Two of the mesocosms contained only natural water (‘Control’), and two contained 10 21 

Crassostrea gigas each (‘Oyster’). These mesocosms mimicked a water column without 22 
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including a sedimentary compartment. The water column was kept homogeneous by using a 1 

pump to assure water column mixing. 2 

The present modelling study does not reproduce all observations described in Mostajir et al. 3 

(2015) because only a few of them were relevant for the model. Temperature and 4 

photosynthetically active radiation (PAR: 400-700 nm) were used as external forcings. Six 5 

experimental observations, detailed below, were used to initialise the numerical model on day 0 6 

(beginning of the mesocosm experiment) and for parameter optimisation thereafter. 7 

Temperature (fig. 1) was measured every 10 minutes throughout the mesocosm experiment. PAR 8 

(fig. 1) was recorded every 10 minutes, between 14:00 on day 0 and 23:50 on day 7. Then, on day 9 

8, measurements were stopped due to sensor failure. However, to complete our model’s forcings, 10 

the observed values obtained on day 7 were replicated on days 8 and 9. Nutrient concentration 11 

data (nitrate (μM): fig. 2-A and 3-A, phosphate (μM): fig. 2-B and 3-B, silicate (μM): fig. 2-C 12 

and 3-C) as well as dissolved organic carbon concentration (DOC) data (μM: fig. 2-D and 3-D) 13 

were determined with samples taken once a day at 10:00 from day 1 until day 9. Chlorophyll a 14 

(Chl a) concentration in mg m-3 (fig. 2-E and 3-E) was measured using high-performance liquid 15 

chromatography (HPLC). Bacterial abundances measured by flow cytometry were converted to C 16 

biomass (in mmol of carbon m-3, fig. 2-F and 3-F) using a factor of 20 fg C bacterium-1 (Sime-17 

Ngando et al. 1995, Vidussi et al. 2011). More details on this study can be found in Mostajir et al. 18 

(2015). 19 

2.2 Model description and initial simulation 20 

The Eco3m-S biogeochemical model used in this study is presented in detail in Auger et al. 21 

(2011). It was built to simulate the temporal evolution of a complex ecosystem composed of 22 
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several decoupled cycles of biogenic elements (carbon, nitrogen, phosphorus, and silica), with a 1 

mechanistic approach for biogeochemical processes. A schematic view of the model is presented 2 

in fig. 4. The Eco3m-S model includes 36 variables, including photoautotroph and heterotroph 3 

biomasses, non-living particulate organic matter (POM) concentration, dissolved organic matter 4 

concentration, and nutrient and oxygen concentrations (detailed in Table 1). It also includes 166 5 

fundamental control parameters, in the case without oysters, defining the modelled 6 

biogeochemical processes. As an example, the model requires 10 parameters to define the grazing 7 

function of the first zooplankton size class (5-50 μm). 8 

The model is composed of several plankton groups characterised by their functional type, 9 

resulting from an analysis of experimental and modelling information on the biogeochemical 10 

functioning of the NW Mediterranean Sea. Autotrophs included three size classes of 11 

phytoplankton, namely, 0.7-2 μm (Phy1), 2-20 μm (Phy2) and 20-200 μm (Phy3, largely 12 

dominated by silicifiers such as diatoms), while heterotrophs included four size classes, namely, 13 

0.3-1 μm (mainly bacteria), 5-50 μm (Zoo1, mostly bacterivorous flagellates and small ciliates), 14 

50-200 μm (Zoo2, mainly ciliates and large flagellates), and >200 μm (Zoo3, metazooplankton 15 

dominated by copepods). To ease the comparison with the total Chl a concentration 16 

measurements, only one group of phytoplankton (Phy) was considered in our study, representing 17 

the entire phytoplankton community. The initial parameters of this group were similar to the 18 

parameter values of the third phytoplankton size class (Phy3) because diatoms dominated the 19 

phytoplankton community during the mesocosm experiment. Optimal parameters obtained by our 20 

method thus correspond to the total phytoplankton community. However, the three types of 21 

zooplankton were maintained in the model as they predate on different groups of living 22 
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organisms (bacteria, phytoplankton and even smaller zooplankton) or non-living POM (see fig. 1 

5). 2 

Four types of dissolved inorganic nutrients were considered: nitrate (NO3
-), ammonium (NH4

+), 3 

phosphate (PO4
3-) and silicate (SiO4

2-). The distinct roles of nitrate and ammonium, which are 4 

involved in new and regenerated production, were taken into account. Dissolved organic matter 5 

(DOM), in the forms of carbon (C), nitrogen (N) and phosphorus (P), was also considered as it 6 

was consumed by heterotrophic bacteria. Non-living POM, in the forms of C, N, P, and Si, was 7 

divided into two size classes: <50 μm (light) and >50 μm (heavy). Light non-living POM was 8 

also in the form of chlorophyll, resulting from phytoplankton death and zooplankton egestion. 9 

The model could also include particulate inorganic matter, which contributes to turbidity and 10 

light absorption. 11 

Experimental observations of nutrients, DOC, bacteria and Chl a on day 0 fixed some of the 12 

initial conditions required for running the model. Without any information on non-living matter, 13 

initial non-living POM concentrations were set to zero at the beginning of the experiment. Since 14 

the experimental study did not provide zooplankton biomasses, the initial conditions for Zoo1, 15 

Zoo2 and Zoo3 were fixed after calibration. The oxygen concentration was set to be sufficient 16 

(200 mmol m-3) to avoid limiting biogeochemical processes because the water column was 17 

considered well mixed. Temperature and PAR measured during the mesocosm experiment were 18 

used in the model to force biogeochemical processes. 19 

Once initial conditions were established and forcings were defined, an initial simulation was 20 

performed to simulate the 10 days of the experiment, using parameters suitable for the NW 21 

Mediterranean Sea, where the model is usually implemented (Auger et al. 2011). The model can 22 

provide daily variations in the 36 variables at a high frequency, typically every 10 minutes, for 23 
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applied simulation. In fact, this interval of time corresponds to the time step chosen to resolve the 1 

differential equations of the model. Biogeochemical fluxes such as primary production, grazing 2 

and respiration were extracted as outputs of the model. 3 

The results obtained for this initial simulation were then compared with the available data 4 

(nitrate: fig. 2-A, phosphate: fig. 2-B, silicate: fig. 2-C, DOC: fig. 2-D, Chl a: fig. 2-E, bacteria: 5 

fig. 2-F). The model results provided the same orders of magnitude as the experimental data, 6 

even though the two sets of magnitudes did not exhibit similar patterns. For instance, the N, P 7 

and Si nutrient concentrations were excessively high. However, the N concentrations were 8 

similar to the experimental data at the end of the experiment. It should also be noted that bacterial 9 

C biomass was reduced to zero after day 4 of the experiment. Because bacteria were involved in 10 

the decomposition process and assimilation of DOM, the very low simulated bacterial biomass 11 

led to discrepancies between model results and experimental data in terms of nutrients and DOM. 12 

The model also provided additional information such as ammonium concentration (fig. 6-A) and 13 

zooplankton biomasses (fig. 6-B) for which no corresponding experimental data were measured. 14 

2.3 Optimisation method 15 

To reduce the discrepancies between experimental observations and biogeochemical model 16 

results, an optimisation method suggested by Prunet et al. (1996) was adopted. The mesocosm 17 

experiment provided a total of 54 experimental observations by the measurement of six variables, 18 

once a day, for 9 days (see 2.1; day 0 was used as the initial condition). The Eco3m-S model 19 

included 166 parameters controlling biogeochemical processes. The aim of this mathematical 20 

method was to modify, namely, optimise, the control parameter values in order to minimise a cost 21 

function representing the gap between observations and model results. 22 
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The ecosystem model was considered an application 𝑀:ℝ𝑚 → ℝ𝑛, where 𝑛 is the number of 1 

experimental observations (here, 𝑛 = 54) and 𝑚 is the number of parameters (𝑚 = 166 in the 2 

model without oysters). With the application 𝑀 being non-linear, the component (𝑝𝑖)1≤𝑖≤𝑚 of the 3 

control parameter vector 𝑃 was optimised iteratively to reduce the gap between the observations 4 

denoted (𝑑𝑗)1≤𝑗≤𝑛 and the corresponding simulation results denoted (𝑐𝑗)1≤𝑗≤𝑛. The error 5 

associated with observation 𝑑𝑗 was denoted 𝑟𝑗. This optimisation procedure finally consisted of 6 

minimising a quadratic cost criterion (equation 1): 7 

 
𝐹(𝑃) =∑(

𝑑𝑗 − 𝑐𝑗

𝑟𝑗
)

2𝑛

𝑗=1

 ( 1 ) 

The value of the cost function was used to determine if the model results became more similar to 8 

the experimental observations with the iterative optimisation method. In the present study, for the 9 

first iteration, the control parameter values were extracted from the literature (see Auger et al. 10 

2011) and corresponded to the initial simulation. 𝑃0 was then defined as the first guess of the 11 

iterative method. 𝑃𝑘 ∈ ℝ𝑚 was defined as the control parameter vector for iteration number 𝑘. 12 

The vector of the difference between observed and simulated results (𝑑𝑗 − 𝑐𝑗), denoted 𝑅𝑘 ∈ ℝ𝑛, 13 

was introduced. To find the optimal parameters, the aim was to determine 𝛥𝑃 = 𝑃𝑘+1 − 𝑃𝑘, 14 

which solved equation 2: 15 

 𝑀′(𝑃𝑘) × 𝛥𝑃 = 𝑅𝑘 ( 2 ) 
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𝑀′(𝑃𝑘) is the tangent application of 𝑀 evaluated at point 𝑃𝑘. 𝑀′(𝑃𝑘) = (
𝜕𝑐𝑗

𝜕𝑝𝑖
)
1≤𝑖≤𝑚

1≤𝑗≤𝑛

, with a 1 

dimension of 𝑛 × 𝑚, is also called the Jacobian matrix of the system. This yields the system of 2 

unknowns 𝛥𝑝𝑖, with 1 ≤ 𝑖 ≤ 𝑚: 3 

 
∑

𝜕𝑐𝑗

𝜕𝑝𝑖

𝑚

𝑖=1

× 𝛥𝑝𝑖 = 𝑑𝑗 − 𝑐𝑗, for 1 ≤ 𝑗 ≤ 𝑛 ( 3 ) 

Each component (
𝜕𝑐𝑗

𝜕𝑝𝑖
) was approximated by (

𝛿𝑐𝑗

𝛿𝑝𝑖
) after small explicit perturbations of each 4 

parameter 𝛿𝑝𝑖 and compilation of deviations of the model results 𝛿𝑐𝑗. This step required running 5 

the model (𝑚 + 1) times at every iteration: a first simulation run without perturbation and then 6 

𝑚 simulation runs with only parameter 𝑚 perturbed. For this reason, the optimisation method 7 

could have a high computational cost. However, in the present work, the duration of a simulation 8 

run was very short and was not limiting in the process. 9 

The system must be dimensionless for both parameters and observations. To render the system 10 

dimensionless regarding parameters, a parameter weight diagonal matrix 𝑆, containing the a 11 

priori variances of the control parameters, was inserted (equation 4). 12 

 𝑆𝑖,𝑖 = 𝜎𝑖
2, for 1 ≤ 𝑖 ≤ 𝑚 ( 4 ) 

In the present study, 𝑆 was practically chosen to reduce 𝑆−
1

2 × 𝑃0 to the vector identity. A weight 13 

diagonal matrix 𝑊 containing the a priori weight of each observation was also introduced to 14 

render the system dimensionless regarding observations (equation 5). 15 
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𝑊𝑗,𝑗 =

1

𝑟𝑗
2 , for 1 ≤ 𝑗 ≤ 𝑛 ( 5 ) 

𝑊 was assumed to be diagonal here, which meant that the observations were uncorrelated. The 1 

advantage of using these two matrices is the ability to choose a more or less important weight for 2 

a specific parameter or observation. Then, equation 6 was obtained from equation 2, introducing 3 

the new weight matrices: 4 

 
𝑊−

1
2 ×𝑀′(𝑃𝑘) × 𝑆

1
2 × 𝑆−

1
2 × 𝛥𝑃 = 𝑊−

1
2 × 𝑅𝑘 ( 6 ) 

Equation 6 was an under-determined system 𝐴 × 𝑄 = 𝑇, with a number of equations (𝑛 = 54) 5 

stricly smaller than the number of unknowns (𝑚 = 166). The matrix 𝐴 = 𝑊−
1

2 ×𝑀′(𝑃𝑘) × 𝑆
1

2 6 

was thus singular, and various combinations of parameters resulted in the same simulation. 7 

Matrix 𝐴 can be decomposed by singular value decomposition (SVD) as follows: 8 

 𝐴 = 𝑈 × 𝐿 × 𝑉𝑡 ( 7 ) 

𝐿 is a diagonal matrix of eigenvalues, 𝑈 is a base of eigenvectors in the space of data, and 𝑉 is a 9 

base of eigenvectors of parameters. As 𝐴 was singular, some of the singular values were zero and 10 

defined the null space of the system and thus the rank. In practice, due to numerical computation, 11 

those values were not strictly zero, and the rank was difficult to define. It was typically between 5 12 

and 20. The collinearities between parameters led to a rank deficiency problem, and the pseudo-13 

inverse was influenced by small eigenvalues. The system was then truncated at rank 𝑟 using the 14 

sphericity test of Gonzalez Vicente (1986). Without this truncation, the new estimated parameters 15 



13 

 

could be far from their starting point, which was not desirable in terms of keeping the model 1 

realistic. The solution was finally calculated using equation 8. 2 

 
𝛥𝑃 = 𝑆

1
2 × 𝑉𝑟 × 𝐿𝑟 × 𝑈𝑟 ×𝑊−

1
2 × 𝑅𝑘 ( 8 ) 

𝑉𝑟, 𝐿𝑟, and 𝑈𝑟 were the truncated matrices associated with 𝑉, 𝐿 and 𝑈, respectively. The diagonal 3 

elements of matrix (𝑉𝑟 × 𝑉𝑟
𝑡) were estimators of the determination of each control parameter and 4 

were called parameter resolutions. The matrix (𝑈𝑟 × 𝑈𝑟
𝑡) gave similar information for the data, 5 

and its diagonal elements were called data resolutions. They showed the contribution of each 6 

observation as useful information to the system (e.g., Wunsch 1978). 7 

The optimisation procedure involved all 166 parameters. However, in practice, most of them had 8 

a weak influence on the results. For example, as noted above (section 2.2), the oxygen 9 

concentration was sufficient to avoid limiting biogeochemical processes. Then, the modification 10 

of parameters linked with oxygen processes did not affect our results, and the resolutions of these 11 

parameters were always null. 12 

2.4 System of equations for oysters 13 

To insert the new compartment for oysters into the ecosystem model, a method inspired by 14 

Chapelle et al. (2000) was applied, assuming two main functions. The first function was the 15 

filtration of all living (zooplankton, phytoplankton, and bacteria) and non-living (non-living 16 

POM) particles. The second function of the new compartment was biodeposition (e.g., 17 

pseudofaeces). These two processes defined the temporal evolution of oyster biomass 18 

([𝑂𝑦𝑠𝑡𝑒𝑟]𝐶), expressed as carbon concentration (mmol C m-3). 19 
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 𝑑[𝑂𝑦𝑠𝑡𝑒𝑟]𝐶
𝑑𝑡

= ∑𝑓𝑖𝑙𝑡𝑋 − 𝑏𝑖𝑜𝑑𝑂 ( 9 ) 

𝑓𝑖𝑙𝑡𝑋 is the filtration by oysters of the living and non-living particulate matter 𝑋 present in the 1 

water column (Bac, Zoo1, Zoo2, Zoo3, Phy, and light and heavy non-living POM). Bacteria were 2 

also considered in the filtration process as they can be attached to larger non-living particulate 3 

matter (Frikha et al. 1987, found in De Crignis 2007), but the efficiency of this filtration was 4 

assumed to be very low (see Table 2). 𝑏𝑖𝑜𝑑𝑂 corresponded to the biodeposition of non-living 5 

POM (light and heavy). The first modelling results showed no impact of oyster excretion on the 6 

water column for this specific experimental period. Therefore, this process was not modelled in 7 

this study to reduce the number of control parameters needed and simplify the optimisation 8 

method. The variables and fluxes presented here were first calculated in units of carbon, as were 9 

the processes in other compartments. To include a filtration efficiency 𝑒𝑓𝑓𝑂𝑋 for each filtrated 10 

particle 𝑋, the filtration term was expressed as in equation 10. 11 

 𝑓𝑖𝑙𝑡𝑋 = 𝛼𝑓𝑖𝑙𝑡 × 𝑒𝑓𝑓𝑂𝑋 × [𝑋]𝐶 ( 10 ) 

The coefficient 𝛼𝑓𝑖𝑙𝑡 depended on temperature, oyster biomass and the maximum filtration rate of 12 

oysters 𝑓𝑖𝑙𝑡0. 13 

 𝛼𝑓𝑖𝑙𝑡 = 𝑓𝑖𝑙𝑡0 × 𝑓(𝑇) × [𝑂𝑦𝑠𝑡𝑒𝑟]𝐶 ( 11 ) 

In addition to other temperature-dependent processes, 𝑓(𝑇) represented the temperature 14 

limitation of the biological process. It was expressed with the commonly used 𝑄10 model (e.g., 15 

Sherman et al. 2016). 16 
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 𝑓(𝑇) = 𝑄10
(𝑇𝑟𝑒𝑓−𝑇)/10

 ( 12 ) 

Biodeposition was calculated as a constant percentage of predation (Mazouni 1995, Chapelle et 1 

al. 2000). 2 

 𝑏𝑖𝑜𝑑𝑂 = 𝑏𝑑% × ∑𝑓𝑖𝑙𝑡𝑋 ( 13 ) 

To impact other compartments of the biogeochemical model, the filtration term was included as a 3 

sink term for each filtrated particle, and the biodeposition term was included as a source term for 4 

light and heavy non-living POM. A total of 14 new parameters (see Table 2) were introduced to 5 

the existing Eco3m-S model in order to control the two main functions of oysters. 6 

3 Results 7 

The results of this study will be presented in two parts. In the first part, the results of the 8 

‘Control’ optimisation, corresponding to the results of the optimisation procedure applied for the 9 

initial Eco3m-S model, before the addition of the new oyster compartment, will be presented. The 10 

second part will present the results of the ‘Oyster’ optimisation, corresponding to the new 11 

biogeochemical model including oysters. Each part will be discussed in three steps: a description 12 

of simulation results, an analysis of adjusted parameters, and an analysis of data resolutions. 13 

3.1 ‘Control’ optimisation 14 

The optimisation method was first performed on the original biogeochemical model, without the 15 

oyster compartment, using the experimental observations available for the ‘Control’ mesocosms 16 

(i.e., including the entire MFW but without oysters). The initial simulation presented in section 17 
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2.2 was used as the first guess. Similar weights for the observations were imposed (managed by 1 

matrix 𝑊, see section 2.3). The optimisation sequence, aiming at minimising the cost function 2 

and optimising the parameters of the model, was iterated 47 times (i.e., 47×167 simulation runs) 3 

until the parameters reached a fixed value and plateaued. The value of the cost function ranged 4 

from 1.00 initially to 0.08 at the end. The ‘Control’ optimisation was thus more similar to the 5 

experimental observations than the initial simulation was. 6 

3.1.1 Simulation results 7 

Nutrient concentrations for the ‘Control’ optimisation were more similar to the experimental 8 

observations than were the initial simulation results. For nitrate concentration (fig. 2-A), the gap 9 

between the ‘Control’ optimisation results and observations was 0.03 μM on average, whereas 10 

the gap was 0.1 μM for the initial simulation. The amplitude of daily variations was also reduced 11 

by the optimisation procedure. Between days 3 and 4, the concentration ranged from 0.05 to 0.10 12 

μM, whereas it was 0.33 to 0.76 μM in the initial simulation. 13 

Concerning the phosphate concentration (fig. 2-B), from the beginning until day 3, the decrease 14 

in phosphate during the daytime was greater in the ‘Control’ simulation than in the initial 15 

simulation. However, the increase in phosphate concentration during nights was lower for the 16 

optimised simulation. The mean concentration over the entire period was 0.18 μM for the 17 

optimised simulation, compared to 0.16 μM for the experimental observations. 18 

The silicate concentration (fig. 2-C) for the ‘Control’ optimisation was lower than that for the 19 

initial simulation. The values obtained remained generally larger than the observations, but the 20 

trend was well represented. The optimised average concentration throughout the study period was 21 

4.04 μM, compared to 3.65 μM in the initial simulation. 22 
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The ammonium concentration (fig. 6-A) increased gradually from day 0 (0.3 μM) until day 5 (3.2 1 

μM) in the ‘Control’ optimisation. Thereafter, it was stable around a value of 2.6 μM, in contrast 2 

to the initial simulation, in which the concentration decreased towards a much lower value (i.e., 3 

0.3 μM at the end of the initial simulation). 4 

The DOC concentration (fig. 2-D) in the optimised simulation decreased less than that in the 5 

initial simulation and was nearly constant throughout the experimental period. It ranged from 202 6 

to 235 μM. The maximum experimental values of DOC observed during days 3 and 4 were not 7 

captured by the optimised simulation. 8 

Regarding the Chl a concentration (fig. 2-E) for the optimised simulation, the results were more 9 

similar to the observations than were those obtained with the initial simulation. The simulated 10 

results followed the behaviour of measurements taken during the mesocosm experiment. The 11 

decrease in Chl a concentration on day 3 was corrected by the optimisation procedure to fit the 12 

experimental points. From day 5 until the end, the amplitude of the daily variations was almost 13 

constant for the ‘Control’ optimisation, with an increase during daytime equal to the decrease 14 

during nighttime (approximately 0.6 mg m-3). Hence, the simulation did not reproduce the 15 

experimental observations on day 7 but was clearly consistent with the last few days. 16 

The most significant improvement was in the bacterial C biomass concentration (fig. 2-F), which 17 

showed a good fit with experimental observations for the ‘Control’ optimisation. In contrast to 18 

the initial simulation, the values obtained were not reduced to zero after day 4. Note that the 19 

bacterial growth during the first few days was higher in the optimised simulation than in the 20 

initial simulation. The concentration reached a maximum of 15.73 mmol C m-3 on day 2 and a 21 

minimum of 4.76 mmol C m-3 between days 4 and 5, compared to 15.52 and 4.61 mmol C m-3 for 22 

the observations, respectively. 23 
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Zoo1 and Zoo2 C biomass concentrations (fig. 6-B) in the ‘Control’ optimisation followed a 1 

similar increase for the first two days of the experiment, contrary to those in the initial 2 

simulation. Then, the Zoo2 C biomass concentration exceeded the Zoo1 concentration, which 3 

depicted a link of predation. Between days 2 and 3, the two concentrations reached a maximum 4 

(5.26 mmol C m-3 for Zoo1 and 7.97 mmol C m-3 for Zoo2). From day 3 until the end of the 5 

experiment, Zoo1 and Zoo2 showed similar patterns, and the gap between the two concentrations 6 

remained almost constant. At the end, the Zoo1 and Zoo2 concentrations were 2.72 and 5.32 7 

mmol C m-3, respectively. The C biomass concentration of Zoo3 was almost the same in the 8 

‘Control’ optimisation and the initial simulation. 9 

3.1.2 Analysis of adjusted parameters 10 

The method used in this study estimated the resolution of each parameter, i.e., the importance of 11 

each parameter for making the simulated results more similar to the observations. Parameter 12 

resolution was used to sort parameters and identify the key parameters for the optimisation 13 

procedure (see Table 3). A small change in these parameters can affect the whole biogeochemical 14 

simulation. Therefore, the modification of these key parameters by the optimisation procedure 15 

was investigated. Table 3 presents a list of key parameters presenting both a high resolution rate 16 

and a significant change. 17 

Seven parameters among the identified key parameters (Table 3) controlled the zooplankton 18 

processes. The preference factor of micro-zooplankton for nano-zooplankton and the maximum 19 

grazing rate of micro-zooplankton both increased in the process, with changes of +64% and 20 

+86%, respectively. This led to higher predation of Zoo1 by Zoo2 in the ‘Control’ simulation 21 

compared to that in the initial simulation. This might explain the shifting in time of the maximum 22 
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Zoo2 C biomass concentration (fig. 6-B), happening on day 7 in the initial simulation and on day 1 

3 in the ‘Control’ simulation. Zoo2 predates on Zoo1, and the change in the dynamics of Zoo2 also 2 

impacted the dynamics of Zoo1, with a diminution of the maximum Zoo1 C biomass 3 

concentration. The maximal grazing rate of nano-zooplankton decrease also participated in this 4 

change. 5 

Two of the selected parameters shown in Table 3 correspond to the growth of bacteria. During 6 

the optimisation procedure, the net growth efficiency of bacteria greatly increased from 0.3 to 7 

0.99, whereas the maximum uptake rate of bacteria decreased from 4.25× 10−5 to 1.97× 10−5 s-8 

1. In our model, the growth of bacteria depended on the product of these two parameters. Finally, 9 

this modification led to an increase in total bacterial growth in the ‘Control’ optimisation 10 

compared to the initial simulation (see fig. 2-F). These two changes are antagonistic and highlight 11 

the fact that the optimisation process modified combinations of parameters and not individual 12 

parameters. 13 

The decrease in the maximal nitrification rate from 5.91× 10−7 to 2.52× 10−7 s-1 contributed to 14 

the diminution of nitrate concentration (fig. 2-A) in the ‘Control’ optimisation compared to the 15 

initial simulation. 16 

The temperature coefficient for decomposition increased from 2.95 to 4.35 ∘C-1, and the reference 17 

temperature for decomposition greatly decreased. This change impacted the decomposition 18 

process, which was temperature-dependent in our model. The decomposition process converts, 19 

via the action of bacteria, non-living POM into DOM. The modification of these two parameters, 20 

in addition to higher bacterial C biomass (fig. 2-F), led to an increase in DOC concentration (fig. 21 

2-D). Decomposition and other temperature-dependent processes in the model (primary 22 

production of phytoplankton, grazing by zooplankton, nitrification, etc.) were modified by the 23 
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optimisation procedure by changing the reference temperature and/or the temperature coefficient. 1 

These two parameters acted as highly non-linear parameters. 2 

The internal quotas for Phy (N:C, P:C, and Si:C) were also changed during the optimisation 3 

process. The range of the (Si:C) ratio increased as the maximal internal ratio was changed from 4 

0.19 to 0.38 mol Si mol C-1. The phytoplankton community could thus consume more silicate to 5 

build their skeleton or frustules (in the case of diatoms). From the initial simulation to the 6 

‘Control’ optimisation, the silicate concentration (fig. 2-C) decreased, becoming more similar to 7 

the observations. The consumption of nitrate by the phytoplankton community varied less (see 8 

fig. 2-A) because the interval length of (N:C) quota was reduced. Similarly, the interval length of 9 

(P:C) quota increased, allowing more phosphate uptake by the phytoplankton community. 10 

Several parameters presented a very large resolution, with a maximum of 0.78, but none of them 11 

had a resolution equal to 1. Thus, a change in a single parameter value was not enough to adjust 12 

our model. The optimisation procedure modified a linear combination of parameters. 13 

3.1.3 Analysis of data resolution 14 

The optimisation method allowed the calculation of data resolutions, which represent the 15 

contribution of each observation as effective information to optimise the model. Fig. 7-A shows 16 

data resolutions for the ‘Control’ optimisation, for the last iteration of the optimisation procedure. 17 

The data resolution varied between sets of observations, which depended on sampling time. 18 

Therefore, the data resolutions also varied during the experimental period. 19 

Experimental observations of the Chl a concentration were effective information for the 20 

optimisation procedure as they had the highest data resolution among the available observations. 21 

The data resolution decreased from 1.00 on day 1 to 0.08 on day 4 and then reached 0.49 and 22 
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0.46 on days 5 and 6, respectively. At the end of the period, it remained below 0.25. The nitrate 1 

data also had a high resolution at the very beginning and during the last few days of the 2 

experiment. The phosphate data had increasing resolution throughout the experimental period, 3 

from 0.06 initially to 0.31 at the end. The resolution of the silicate data followed the same trend 4 

as that of the phosphate data, except on day 1, when the silicate data were more useful for the 5 

optimisation process. The DOC data showed the same increase as the phosphate data. However, 6 

on days 2, 3 and 4, the resolution of the DOC data was very low. The resolution of the bacterial 7 

data decreased and varied between 0.71 and 0.09 during the experimental period. 8 

On day 1, the Chl a and nitrate observations presented the highest resolutions for the optimisation 9 

process. From day 2 to day 6, the Chl a and bacterial C biomass observations were the most 10 

influential. During those 5 days, the resolution of other observations remained low in 11 

comparison, except that of silicate on day 3. At the end of the period, the resolutions were almost 12 

homogeneous among observations, even if the nitrate data had a relatively high resolution. 13 

3.2 ‘Oyster’ optimisation 14 

To estimate the best parameter values for the model including the new oyster compartment, an 15 

optimisation procedure was performed with 180 parameters (166 initially and 14 added for 16 

oysters). Realistic values for the new parameters were chosen according to the literature (see 17 

Table 2). The initial filtration rate 𝑓𝑖𝑙𝑡0 was set to 2.31 × 10−7 s-1, as suggested by Chapelle et 18 

al. (2000), and derived from Mazouni et al. (1996). The biodeposition rate 𝑏𝑑% was initially set 19 

at 0.3 (Mazouni 1995). The filtration efficiency coefficients 𝑒𝑓𝑓𝑂𝑋 were arbitrarily chosen (see 20 

Table 2) but were free to change with the optimisation process, as were other parameters. As 21 

previously mentioned, only one group of phytoplankton was considered, representing the entire 22 
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phytoplankton community. However, the model included three filtration efficiencies for 1 

phytoplankton that can be used with three size classes of phytoplankton in future developments, 2 

but two of them were useless for our study and were thus fixed at zero. Experimental 3 

observations from mesocosms including oysters as top predators (Mostajir et al. 2015) were 4 

assimilated. The first guess of the method included the 166 parameter values resulting from the 5 

’Control’ optimisation plus the 14 new parameter values, defined as the ‘Oyster’ initial 6 

simulation. The optimisation process was iterated 75 times (i.e., 75 × 181 simulation runs). The 7 

cost function ranged from 1.00 for the ‘Oyster’ initial simulation to 0.51 for the ‘Oyster’ 8 

optimisation. 9 

3.2.1 Simulation results 10 

The nitrate concentration after optimisation was very similar to that in the observations (fig. 3-A). 11 

The simulated mean value over the entire period was 0.108 μM, compared to 0.104 μM for the 12 

observations. Compared to the ‘Control’ optimisation (fig. 2-A), in the ‘Oyster’ optimisation, the 13 

amplitude of the daily variations was low (fig. 3-A), and over the entire period, the concentration 14 

ranged from a minimum of 0.07 μM to a maximum of 0.17 μM. 15 

Similarly, the phosphate concentration (fig. 3-B) of the ‘Oyster’ optimisation was more similar to 16 

that of the observations than was the concentration in the ‘Oyster’ initial simulation. This 17 

similarity was particularly pronounced for the second half of the experimental period, when the 18 

concentration varied between 0.02 and 0.29 μM. The daily variations occurring until day 3 were 19 

relatively important compared with those on the following days. 20 

The silicate concentration (fig. 3-C) in the optimised simulation was more similar to that of the 21 

observations than the concentration in the initial simulation. The trend was also better than that in 22 
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the initial simulation. The silicate concentration decreased until day 3 and remained almost 1 

constant thereafter, with a slight increase to 6.77 μM at the end of the experiment relative to the 2 

concentration of 6.35 μM observed in the mesocosms. 3 

With the addition of oysters, the ammonium concentration (fig. 8-A) exhibited an ever-increasing 4 

trend in the ‘Oyster’ optimisation, varying from 1.20 μM in the ‘Oyster’ initial simulation to 2.73 5 

μM in the optimised simulation on day 2. At the end, the simulated ammonium concentration was 6 

10.91 μM. 7 

The optimised simulated DOC concentration (fig. 3-D) showed a slight decrease and then 8 

increased more than that in the ‘Oyster’ initial simulation to be more similar to that observed in 9 

the mesocosms. However, the simulated concentrations were much lower than the observed 10 

concentrations. The average DOC concentration over the entire period was 214.07 μM for the 11 

optimised simulation and 261.73 μM for the observations. 12 

From day 0 to day 2, the Chl a concentration (fig. 3-E) for the ‘Oyster’ optimisation exhibited the 13 

same increase observed in the mesocosms, with an amplitude of daily variations of 1.2 mg m-3. 14 

Then, it decreased sharply on day 3 and periodically fluctuated thereafter. The maximum value in 15 

the optimised simulation, reached on day 1, was 3.88 mg m-3. Between day 5 and day 9, the 16 

average concentration was 0.98 mg m-3, compared to 0.20 mg m-3 for the observations. 17 

The bacterial C biomass concentration (fig. 3-F) in the optimised simulation was more similar to 18 

that for the observations than that in the initial simulation. It increased from day 0 until the end of 19 

day 1, where it reached a maximum of 21.87 mmol C m-3. Then, a quick decrease was simulated 20 

until day 3. However, the simulated bacterial C biomass concentration remained lower than the 21 

observed concentration from day 4 until the end of the experiment. 22 
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Concerning the zooplankton C biomass concentration (fig. 8-B), after day 3, Zoo2 largely 1 

dominated the zooplankton community. Its concentration reached a maximum of 25.00 mmol C 2 

m-3 on day 3. The concentration in the optimised simulation followed a similar scheme as that in 3 

the ‘Control’ simulation without oysters, with succession of domination by the different 4 

zooplankton classes. However, the spikes appeared earlier in the simulation. The Zoo3 C biomass 5 

concentration was increased by the optimisation process. At the end of the experimental period, 6 

the C biomass concentrations of Zoo1, Zoo2, and Zoo3 were 1.88 mmol C m-3, 15.41 mmol C m-3, 7 

and 2.34 mmol C m-3, respectively. 8 

Fig. 9 shows the temporal evolution of oyster C biomass during the ten days of the experiment, 9 

revealing a regular increase from the beginning until the end of the experiment of 9.2 to 16.5 10 

mmol C m-3. The only information that we had at the beginning of the experiment was the 11 

introduction of 10 oysters into each mesocosm. This initial condition was highly speculative, and 12 

this led to careful consideration of the optimised value obtained for the filtration rate parameter 13 

after optimisation. The adjustment of this initial condition for oyster C biomass should result in 14 

an adjustment of oyster parameters. 15 

3.2.2 Analysis of adjusted parameters 16 

The optimisation procedure led to the calibration of the 180 parameters, including the new 17 

parameters for oysters, as detailed in Table 2. Table 4 shows that the key parameters changed 18 

during the optimisation according to their resolution. The new ‘Oyster’ parameters did not have 19 

the highest resolution values (see Table 2). However, as expected, the filtration rate 𝑓𝑖𝑙𝑡0, the 20 

filtration efficiency of oysters for Phy and the biodeposition rate 𝑏𝑑% changed very slightly 21 

during the process. 22 
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Two of these key parameters concerned bacterial processes (Table 4). The maximum uptake rate 1 

for bacteria greatly increased from 1.97 to 2.87× 10−5 s-1, contributing to the increase in 2 

bacterial C biomass concentration (fig. 3-F). Furthermore, DOM transformation into inorganic 3 

nutrients greatly increased. The bacterial (P:C) ratio also changed during the optimisation 4 

process, affecting the consumption of phosphate by bacteria. 5 

Six key parameters concerned the processes of the phytoplankton community (Table 4). The 6 

modification of two of them during optimisation affected the growth of the phytoplankton 7 

community. First, the maximal internal (Chl:N) ratio for Phy increased, which resulted in a faster 8 

increase in the Chl a concentration for the ‘Oyster’ optimisation than for the ‘Oyster’ initial 9 

simulation. In contrast, the increase in the half-saturation constant for nitrate uptake from 2.24 to 10 

4.66 μM tended to decrease the growth of the phytoplankton community at a constant nitrate 11 

concentration (fig. 3-A). These two changes had opposite effects, but the results showed higher 12 

growth for Phy (fig. 3-E). This discrepancy could be related to the fact that the maximal internal 13 

(Chl:N) ratio had a higher resolution value (0.84 against 0.38), i.e., higher importance in the 14 

optimisation procedure. The maximal (Si:C) ratio also decreased, from 0.38 to 0.28 mol Si mol 15 

C-1. This modification caused the diminution of the silicate concentration after day 3 (fig. 3-C) 16 

for the optimised simulation compared to the ‘Oyster’ initial simulation, even if the Chl a 17 

concentration remained low (fig. 3-E). 18 

In the same manner as in the ’Control’ optimisation, seven parameters linked with zooplankton 19 

processes are shown in Table 4. The parameters presented both a high resolution and a significant 20 

change during the optimisation procedure and concerned different processes. For example, the 21 

maximal grazing rate of Zoo2 and the preference factor of Zoo2 for bacteria concerned predation 22 
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by zooplankton and thus their prey, whereas the fraction of messy feeding for zooplankton 1 

concerned their messy feeding and thus light and heavy non-living POM concentrations. 2 

3.2.3 Analysis of data resolution 3 

In the ‘Oyster’ optimisation, the data resolution results were very different from those in the 4 

‘Control’ optimisation. According to fig. 7-B, on average, the phosphate and silicate data 5 

resolutions were the highest, while the resolutions of the nitrate, Chl a and bacteria data were 6 

almost equal. During the experimental period, the resolution for each observation showed 7 

numerous variations. 8 

The Chl a data resolution was high on days 1 and 3, at 0.53 and 0.84, respectively, but remained 9 

low thereafter. The Chl a data resolution was the highest on day 4. The nitrate data resolution was 10 

high on days 1, 3 and 7. It reached a maximum on day 7, at 0.99. The phosphate data resolution 11 

was very high on days 2 and 3, reaching 0.98 on day 3. It was almost constant at approximately 12 

0.25 during the last few days of the experiment. The silicate data resolution was also high on days 13 

1, 7 and 9, when it reached a very high value of approximately 0.93. The DOC data resolution 14 

remained very low during the experimental period, except on day 9, when it was 0.79. The DOC 15 

data made the smallest contribution to the optimisation process. The bacterial data resolution was 16 

higher on day 2, at 0.69, than on the other days of the experiment but made a good contribution to 17 

the optimisation during the entire period of the experiment. 18 

4 Discussion 19 

To assess the impact of oysters as top predators on MFW dynamics, a modelling approach with 20 

parameter optimisation was applied. The Eco3m-S biogeochemical model, coupled with the 21 
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optimisation method presented in section 2.3, efficiently reproduced observations made during a 1 

mesocosm experiment. The optimisation method estimated a linear combination of parameters 2 

giving the best compatibility with the six different observations (nitrate, phosphate, silicate, 3 

DOC, Chl a, and bacterial C biomass). Finding a solution for the assimilation process is not a 4 

simple curve-fitting procedure because of the complexity and non-linearity of the interactions 5 

between the compartments of the model. Once the new biogeochemical model including oysters 6 

was validated, the impact of oysters on the MFW was investigated by studying the structural 7 

changes in the MFW and the interactions within the MFW. 8 

4.1 The potential of the parameter optimisation 9 

The parameter resolution resulting from the optimisation method reflected the importance of each 10 

biogeochemical process in the model. Using this new benefit, the biogeochemical processes 11 

could be sorted by importance. For example, in our modelling experiment, bacterial processes 12 

played a very important role in MFW dynamics. Indeed, in both the ‘Control’ and ‘Oyster’ 13 

optimisations, the maximum uptake rate for bacteria exhibited the highest resolution of the entire 14 

set of control parameters (see Table 3 and Table 4), in line with the major role played by bacteria 15 

in the marine carbon cycle (e.g., Cho & Azam 1988, Azam et al. 1993). 16 

In contrast, the low resolution of the control parameters of the new oyster compartment, with a 17 

maximum of 0.08 (Table 2), showed that changing associated processes was not beneficial for the 18 

optimisation process. However, the fact that parameter values did not change during the 19 

optimisation might indicate that the choice of the initial values was robust and that these values 20 

could thus be used for further studies. 21 
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To meet the mathematical requirements of the optimisation method, some of the most influential 1 

parameters, i.e., those with the highest resolutions, were modified by optimisation and reached 2 

unrealistic values. These unrealistic values allowed the simulated results to be more similar to the 3 

experimental observations by minimising the cost function more efficiently. This was the case for 4 

the net growth efficiency for bacteria and three other parameters controlling temperature 5 

functions: the reference temperature for zooplankton, the reference temperature for 6 

decomposition, and the temperature coefficient for decomposition. The optimisation method 7 

preferred to change one parameter controlling the temperature functions, affecting several 8 

temperature-dependent processes at the same time, over changing multiple parameters controlling 9 

only one process each. Note that the parameters controlling temperature functions generally had a 10 

high resolution value. Furthermore, unrealistic values could be explained with a deeper analysis 11 

of other parameter values. According to the scientific literature, the net growth efficiency for 12 

bacteria should be between 0.05 and 0.7 (Del Giorgio & Cole 1998). However, considering that 13 

bacterial growth depends on the product of this parameter value with the value of the maximal 14 

uptake rate of bacteria, the decrease in the maximal uptake rate of bacteria during the 15 

optimisation process partially balanced the increase in the net growth efficiency for bacteria. For 16 

example, for the ‘Control’ optimisation, the product varied from 1.28× 10−5 to 1.95× 10−5 s-1. 17 

Indeed, the optimisation process modified a linear combination of parameters and not individual 18 

parameters. 19 

4.2 Oysters induced structural changes in the MFW 20 

The introduction of oysters as top predators of the MFW led to a more heterotrophic ecosystem. 21 

The structural autotroph:heterotroph C biomass ratio index (A:H, fig. 10) was calculated and 22 

compared to results from Mostajir et al. (2015). This calculation was simple with the model, 23 
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which estimated the C biomass of each biological component of the model, in comparison with 1 

experimental calculations, which were associated with strong uncertainties because of the C 2 

biomass calculation method. The gap between the two simulations was less important than the 3 

gaps associated with the experimental study, but the results were in the same direction. Overall, 4 

the experimental MFW was well represented by the model, at least structurally, with only six 5 

types of experimental observations assimilated. Therefore, the model corroborated the tendency 6 

for a transition to a more heterotrophic MFW with the addition of oysters as top predators, which 7 

could be useful for testing scenarios with the model. For example, the model could be used to 8 

simulate a scenario with a higher quantity of oysters to assess the structural impact of more 9 

intensive exploitation. 10 

The main function of oysters in our model was filtering all mesocosm water containing living and 11 

non-living organisms. Fig. 11 shows the filtration of each MFW component, resulting from 12 

equation 10. According to the parameters used to define the filtration rate, the most filtrated 13 

compartment corresponded to the phytoplankton community. Zooplankton was the second most 14 

filtrated, and light non-living POM and bacteria were the third most filtrated. Our model included 15 

the direct reduction of phytoplankton biomass by oysters by adding a new filtration term, 𝑓𝑖𝑙𝑡𝑃ℎ𝑦. 16 

This result was in line with those of Cugier et al. (2010) and Mostajir et al. (2015). Nevertheless, 17 

this process also indirectly impacted other components of the MFW, such as zooplankton, which 18 

may find fewer prey in the phytoplankton community. 19 

The simulated phytoplankton biomass was approximately 30% lower than the phytoplankton 20 

biomass in the ‘Control’ optimisation (fig. 2-E versus 3-E). The bacterial biomass was also 21 

affected, being 50% greater than that in the ‘Control’ optimisation (fig. 2-F versus 3-F). Oysters 22 

strongly increased zooplankton biomass by approximately 110% (fig. 6-B versus 8-B). Therefore, 23 



30 

 

the increase in the biomass of zooplankton and reduction in the biomass of phytoplankton, which 1 

are prey of zooplankton, could be in line with top-down control. The simulated predation of 2 

phytoplankton by zooplankton was slightly higher in the ‘Oyster’ optimisation than in the 3 

‘Control’ optimisation (not shown), but this result does not fully explain the large increase in 4 

zooplankton biomass. However, the reduction in phytoplankton biomass is explained by the top-5 

down control of oysters but also by the increased predation of zooplankton. Losey & Denno 6 

(1998) showed that the combined influence of two predators could be greater than the sum of 7 

their individual impacts. Here, the combined influence of oyster and zooplankton biomasses on 8 

phytoplankton biomass was greater than the sum of the individual impacts. 9 

The introduction of a top predator to an ecosystem could lead to unexpected results; in particular, 10 

the introduction of an alien top predator could have a devastating impact on native species (e.g., 11 

Bytheway et al. 2016). In our case, we cannot exclude this possibility for the Thau lagoon 12 

ecosystem, where non-native oysters (Crassostrea gigas, a Japanese oyster) have been cultivated 13 

since 1972 (Hamon et al. 2003), because oysters exert strong structural control of the natural 14 

lagoon MFW community. 15 

4.3 Indirect impact of oysters on bacterial biomass 16 

Simulated bacterial biomass strongly increased in the presence of oysters as top predators of the 17 

MFW, in accordance with the study of Mostajir et al. (2015). Those authors proposed different 18 

hypotheses to explain the increase in bacteria, and some of the hypotheses can be discussed based 19 

on the new modelling results acquired here. First, bacteria might benefit from oyster excreta 20 

(Mazouni et al. 1998), but as the excretion of oysters was not modelled in this study and 21 

simulated bacterial biomass was similar to that in the experimental observations, this benefit 22 
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might not explain the increase. Second, Mostajir et al. (2015) highlighted the assumption that the 1 

reduction in virus-like particles due to oyster filtration could favour an increase in bacterial 2 

biomass. However, viruses were not modelled, particularly due to the complexity of their 3 

interactions with other components of the MFW, and this assumption could not be investigated. 4 

Our results support the third hypothesis posed by Mostajir et al. (2015), concerning the reduction 5 

in competition between bacteria and phytoplankton for the uptake of nutrients. To quantify 6 

competition between bacteria and phytoplankton, nutrient uptake fluxes were analysed. Fig. 12 7 

shows the comparison between ‘Control’ and ‘Oyster’ optimisations for ammonium (fig. 12-A) 8 

and phosphate uptake (fig. 12-B) by phytoplankton. For bacteria, the same comparison is shown 9 

for ammonium uptake (fig. 12-C) and phosphate excretion (fig. 12-D). The model version of 10 

Auger et al. (2011) includes potential control of bacterial growth by phosphorus availability, in 11 

addition to limitation by carbon and nitrogen availability. This model formulation is derived from 12 

Thingstad et al. (1998). Bacteria first absorb DOM, but they can also assimilate ammonium 13 

and/or phosphate if DON and/or DOP are lacking. Bacteria can also act as decomposers and 14 

excrete nutrients, depending on the comparison of DOC:DON and/or DOC:DOP with their 15 

internal ratios (Kirchman et al. 2000). All the processes (nutrient uptake, excretion and 16 

respiration) make the control of their stoichiometry possible. Our results showed that, except for 17 

phosphate uptake, phytoplankton nutrient uptake was lower with the addition of oysters (fig. 12-18 

A and 12-B). Furthermore, in contrast to the pattern observed in the ‘Control’ optimisation, 19 

where no ammonium bacterial uptake was observed (fig. 12-C), bacterial ammonium uptake 20 

increased in the ‘Oyster’ optimisation after day 7. It can be concluded that competition between 21 

bacteria and phytoplankton was reduced in our model, especially that for ammonium. In addition, 22 

the excretion of phosphate by bacteria was higher with oysters and conveniently balanced the 23 
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higher phosphate needs of the phytoplankton community. Thingstad et al. (2007) showed that the 1 

dynamics of a water column receiving nitrate, phosphate and DOC continuously shift to lower 2 

nutrient competition and higher nutrient regeneration. The introduction of oysters slightly 3 

increased the DOC, nitrate and phosphate concentrations in the water column, which could 4 

correspond to the case studied by Thingstad et al. (2007). 5 

Our results showed that the reduction in this competition benefited both bacterial and 6 

phytoplankton growth. However, the phytoplankton community was subject to other strong 7 

constraints, such as filtration by oysters, as explained above. Then, the larger quantity of nutrients 8 

available for bacteria actually resulted in more bacterial biomass in the ‘Oyster’ simulation. 9 

4.4 Impact of oysters on the zooplankton community 10 

The increase in bacterial biomass in the ‘Oyster’ simulation favoured an increase in bacterivorous 11 

zooplankton biomass (mainly Zoo1 but also Zoo2 in a smaller proportion). However, the Zoo1 C 12 

biomass slightly decreased with the addition of oysters (fig. 6-B versus 8-B). The maximum Zoo1 13 

C biomass of the ‘Oyster’ optimisation was 5.46 mmol C m-3 and was reached at the beginning of 14 

day 2. On the same date, in the ‘Control’ simulation, the Zoo1 C biomass was 4.41 mmol C m-3. 15 

This result supports the idea that the increase in bacterial biomass favoured bacterivorous 16 

zooplankton because the growth of Zoo1 was higher in the presence of oysters. 17 

The high Zoo1 C biomass obtained in the presence of oysters led to a direct increase in the C 18 

biomass of Zoo2. Thus, Zoo1 served as a link between bacteria and Zoo2. Moreover, our results 19 

showed an increase in Zoo2 in the ‘Oyster’ simulation that was faster than the increase in Zoo1 20 

(fig. 8-B). Indeed, the predation pressure of Zoo2 on Zoo1 was higher than the predation pressure 21 

of Zoo1 on bacteria (not shown). 22 
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Therefore, in the presence of oysters, the phytoplankton community was greatly impacted by 1 

direct oyster filtration. Furthermore, the reduction in competition between bacteria and 2 

phytoplankton for the uptake of nutrients benefited bacteria and increased bacterial biomass. This 3 

increase in bacterial biomass favoured bacterivorous zooplankton (Zoo1), which were predated by 4 

Zoo2. Finally, this phenomenon resulted in a higher Zoo2 biomass in the ‘Oyster’ simulation than 5 

in the ‘Control’ simulation. The modelling approach provided a real advantage in investigating 6 

the interactions between different components of the MFW. The use of a mechanistic formulation 7 

of biogeochemical processes (see section 2.2) renders the extraction of stocks and fluxes simple. 8 

This discussion focused on filtration by oysters (fig. 11), predation by zooplankton and 9 

competition between phytoplankton and bacteria for nutrients (fig. 12). These biogeochemical 10 

fluxes, easily extracted from the simulation results, provided a great deal of new information for 11 

our understanding of the impact of oysters as top predators of the MFW. 12 

5 Conclusion 13 

In this study, numerical ecosystem simulations with the Eco3m-S model were performed to 14 

provide deeper insight into the interactions and fluxes within the MFW. A parameter optimisation 15 

method assimilating mesocosm experimental observations described in Mostajir et al. (2015) was 16 

used, and the model efficiently reproduced observations with and without oysters. The model 17 

provided high-frequency results over the period of the experiment, and fluxes within the MFW 18 

were extracted and analysed. For example, the comparison of nutrient uptakes by bacteria and the 19 

phytoplankton community brought to light a decrease in competition for nutrients between these 20 

two components of the MFW in the presence of oysters. Due to the filtration of all mesocosm 21 

water including organisms and non-living particles, the direct and immediate impact of oysters 22 
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was mainly a reduction in phytoplankton carbon biomass. In addition, our results showed an 1 

increase in zooplankton and bacterial biomasses. The mesocosms thus became more 2 

heterotrophic with oysters. The reduction in competition for nutrients between bacteria and 3 

phytoplankton, as mentioned above, resulted in a higher bacterial biomass in the ‘Oyster’ 4 

simulation. The increase in zooplankton biomass was explained by a strong increase in simulated 5 

Zoo2 biomass (50-200 μm, mainly ciliates and large flagellates) due to the grazing of Zoo1 6 

bacterivorous zooplankton (5-50 μm, mostly bacterivorous flagellates and small ciliates), which 7 

appeared as an intermediary trophic link. In our study, oysters pushed the system to a more 8 

heterotrophic state with higher micro-zooplankton and bacterial C biomasses and lower 9 

phytoplankton C biomass. 10 

Modelling, observation and experimentation are complementary for obtaining a good 11 

understanding of ecological processes. Observation and experimentation provide a real but partial 12 

view of the processes involved, and the ideal scenario in which everything could be observed or 13 

monitored persists. Modelling approaches provide estimates more or less close to reality, 14 

depending on the quality of known assumptions. However, such approaches often yield 15 

information that is more complete and has a greater temporal resolution. Models are fed with 16 

theories and observations. The modelling approach introduces a new point of view, which is 17 

useful for understanding biogeochemical mechanisms, paying attention to assumptions made 18 

beforehand. In our case, we succeeded in reproducing not only the steady state of the observed 19 

mesocosm experiment but also the dynamics of the ecosystem over the 10 days of the 20 

experimental period. Additional information was provided by the model, such as biogeochemical 21 

fluxes within the MFW. This idea could encourage the scientific community to pursue more 22 

interactions between modelling, observations and experimental communities. 23 
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Analysing the data assimilated during the optimisation process could also be a simple way to 1 

define the most interesting data required for the modelling approach. It could help manage 2 

experimental efforts in order to conduct a more realistic modelling study. For example, in our 3 

study, data available for Chl a or bacteria were very important for the ‘Control’ optimisation. 4 

Furthermore, our results were very similar to mesocosm observations and suggested that 5 

ammonium observations, which were not available, were not essential in this specific case. Data 6 

resolutions also contain temporal information that reveals, for example, if it is better to measure 7 

each variable once a day or measure one variable at a high frequency and others at a low 8 

frequency. The answer strongly depends on the system’s dynamics and the complexity of the 9 

processes involved. Regarding our results, a good effort to obtain numerous Chl a observations is 10 

needed, compared to DOC observations, which could be measured only once a week for example. 11 
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Tables 18 

Table 1: List of state variables in the Eco3m-S model. 19 

State variables Description Unit 

NO3, NH4, PO4, SiO4 Nitrate, phosphate, ammonium, silicate mmol m-3 
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XPhy Phytoplankton community in X, with X corresponding to carbon (C), 

nitrogen (N), phosphorus (P), or silica (Si) 

mmol X m-3 

ChlPhy Phytoplankton in chlorophyll mg Chl m-3 

CZoo1, CZoo2, CZoo3 Zooplankton C biomass mmol C m-3 

CBac Bacterial C biomass mmol C m-3 

DOX Dissolved organic X, with X = carbon, nitrogen, phosphorus, or silica mmol X m-3 

nl-POXy Heavy (y = h) and light (y = l) non-living particulate organic X (organic 

detritus), with X = carbon, nitrogen, phosphorus, or silica 

mmol X m-3 

ChlDet Light chlorophyll detritus coming from phytoplankton death or egestion of 

zooplankton 

mg Chl m-3 

 1 

Table 2: List of the new parameters for oysters introduced to the Eco3m-S model. (1) Chapelle et 2 

al. (2000), (2) Le Gall et al. (1997), (3) Defossez et Hawkins (1997), (4) De Crignis (2007) (5) 3 

Dupuy et al. (2000), (6) Grant et al. (2008), (7) Mazouni (1995), (8) Le Gall et Raillard (1988). 4 

Name  Initial value Final Value Units Resolution 

Maximal filtration rate 1 𝑓𝑖𝑙𝑡0 2.31×10-7 2.02×10-7 s-1 0.05 

Filtration efficiency on Zoo3 𝑒𝑓𝑓𝑂𝑍𝑜𝑜3 0.00 0.00 - 0.00 

Filtration efficiency on Zoo2 2,3,4,5 𝑒𝑓𝑓𝑂𝑍𝑜𝑜2 0.10 0.10 - 0.00 

Filtration efficiency on Zoo1 2,3,4,5 𝑒𝑓𝑓𝑂𝑍𝑜𝑜1 0.15 0.15 - 0.00 

Filtration efficiency on Phy3 2,4,5 𝑒𝑓𝑓𝑂𝑃ℎ𝑦3 0.50 0.45 - 0.02 

Filtration efficiency on Phy2 𝑒𝑓𝑓𝑂𝑃ℎ𝑦2 0.00 0.00 - 0.00 

Filtration efficiency on Phy1 𝑒𝑓𝑓𝑂𝑃ℎ𝑦1 0.00 0.00 - 0.00 

Filtration efficiency on bacteria 2,4 𝑒𝑓𝑓𝑂𝐵𝑎𝑐𝑡 0.05 0.05 - 0.00 

Filtration efficiency on light non-living POM 2,6 𝑒𝑓𝑓𝑂𝑙𝐷𝑒𝑡  0.10 0.10 - 0.00 

Filtration efficiency on heavy non-living POM 2,6 𝑒𝑓𝑓𝑂ℎ𝐷𝑒𝑡 0.10 0.10 - 0.00 

Biodeposition rate 7 𝑏𝑑% 0.30 0.34 - 0.02 

Rate of light non-living POM in biodeposits 

(with the rest being heavy) 

𝑘𝐷𝑒𝑡 0.50 0.48 - 0.01 

Temperature coefficient for the oyster 

temperature function 1 

𝑄10
𝑜𝑦𝑠𝑡𝑒𝑟

 2.00 2.02 ∘C-1 0.00 
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Reference temperature for oysters 1,8 𝑇𝑟𝑒𝑓
𝑜𝑦𝑠𝑡𝑒𝑟

 18.00 21.07 ∘C 0.08 

 1 

Table 3: The list of key parameters changed during the ‘Control’ optimisation process 2 

assimilating ‘Control’ mesocosm observations. 3 

Name Initial value Final Value Units Resolution 

Maximum uptake rate of bacteria 4.25×10-5 1.97×10-5 s-1 0.78 

Maximal Chl:N ratio of Phy 2.30 2.03 mg Chl mmol N-1 0.77 

Reference temperature for zooplankton processes 18.00 12.50 ∘C 0.64 

Maximal internal Si:C ratio of Phy 0.19 0.38 mol Si mol C-1 0.58 

Maximal internal N:C quota of Phy 0.20 0.19 mol N mol C-1 0.54 

Preference factor of Zoo2 for Zoo1 0.25 0.41 - 0.49 

Half-saturation constant for nitrate uptake for Phy 1.00 2.24 mmol N m-3 0.49 

Maximal grazing rate of Zoo1 at 15.5 ∘C 4.50×10-5 3.68×10-5 s-1 0.40 

Net growth efficiency of zooplankton 0.80 0.75 - 0.38 

Maximal grazing rate of Zoo2 at 15.5 ∘C 3.00×10-5 5.60×10-5 s-1 0.37 

Net growth efficiency of bacteria 0.30 0.99 - 0.36 

Maximal internal P:C quota of Phy 1.90×10-2 2.85×10-2 mol P mol C-1 0.34 

Preference factor of Zoo2 for Phy 0.15 0.06 - 0.29 

Reference temperature for decomposition processes 20.00 9.37 ∘C 0.28 

Fraction of messy feeding for zooplankton 0.23 0.31 - 0.27 

Maximal nitrification rate at 0∘C 5.91×10-7 2.52×10-7 s-1 0.17 

Temperature coefficient for decomposition 2.95 4.35 ∘C-1 0.16 

 4 

Table 4: The list of key parameters changed during the ‘Oyster’ optimisation process 5 

assimilating ‘Oyster’ mesocosm observations. 6 

Name Initial value Final Value Units Resolution 

Maximum uptake rate of bacteria 1.97×10-5 2.87×10-5 s-1 0.84 

Maximal internal Si:C ratio of Phy 0.38 0.28 mol Si mol C-1 0.63 
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Maximal internal Chl:N ratio of Phy 2.03 2.24 mg Chl mmol N-1 0.51 

Reference temperature for zooplankton processes 12.50 11.52 ∘C 0.49 

Ratio of small/large organic matter in dead 

zooplankton 

0.99 1.09 - 0.48 

Fraction of messy feeding for zooplankton 0.31 0.27 - 0.42 

Maximal internal N:C ratio of Phy 0.19 0.13 mol N mol C-1 0.40 

P:C ratio of bacteria 0.94×10-2 1.32×10-2 mol P mol C-1 0.38 

Ratio of small/large particulate organic matter in 

dead Phy 

0.82 0.87 - 0.36 

Maximal grazing rate of Zoo2 at 15.5 ∘C 5.60×10-5 5.49×10-5 s-1 0.32 

Preference factor of Zoo2 for bacteria 6.98×10-2 6.18×10-2 - 0.31 

Half-saturation constant for nitrate uptake for Phy 2.24 4.66 mmol N m-3 0.30 

Fixed P:C ratio of Zoo2 1.44×10-2 1.51×10-2 mol P mol C-1 0.30 

Maximal internal P:C ratio of Phy 2.85×10-2 3.55×10-2 mol P mol C-1 0.27 

Fixed N:C ratio of Zoo2 0.19 0.14 mol N mol C-1 0.24 

 1 

Figures 2 

 3 

Figure 1: Temperature (∘C, red) and photosynthetically active radiation (PAR, W m-2, blue) 4 

measured during the mesocosm experimental study and used to force the biogeochemical model. 5 
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 1 

Figure 2: Comparison among the mesocosm experimental study (black circles), initial simulation 2 

(blue dashed line), and ‘Control’ optimisation (red line) for the (A) nitrate concentration (μM), 3 

(B) phosphate concentration (μM), (C) silicate concentration (μM), (D) dissolved organic carbon 4 
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concentration (μM), (E) chlorophyll a concentration (mg m-3), and (F) bacterial C biomass 1 

concentration (mmol C m-3). 2 

 3 

Figure 3: Comparison among the mesocosm experimental study (black circles), ‘Oyster’ initial 4 

simulation (blue dashed line), and ‘Oyster’ optimisation (red line) for the (A) nitrate 5 

concentration (μM), (B) phosphate concentration (μM), (C) silicate concentration (μM), (D) 6 
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dissolved organic carbon concentration (μM), (E) chlorophyll a concentration (mg m-3), and (F) 1 

bacterial C biomass concentration (mmol C m-3). 2 

 3 

Figure 4: Diagram of the Eco3m-S ecosystem model with the main functional groups, 4 

biochemical constituents and processes. A new compartment for oysters was introduced. Adapted 5 

from Auger et al. (2011). 6 

 7 

Figure 5: Schematic view of the predation (red) and filtration (purple) links in the model in the 8 

presence of oysters. 9 
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 1 

Figure 6: Comparison between the initial simulation (dashed lines) and ‘Control’ optimisation 2 

(solid lines) for the (A) ammonium concentration (μM) and (B) zooplankton C biomass 3 

concentration (mmol C m-3). The three compartments of zooplankton are represented: Zoo1 4 

(blue), Zoo2 (red), and Zoo3 (green). 5 

 6 

 7 

Figure 7: Data resolution for each type of observation, detailed for each day of the experiment, 8 

for the (A) ‘Control’ optimisation and (B) ‘Oyster’ optimisation. 9 
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 1 

Figure 8: Comparison between the ‘Oyster’ initial simulation (dashed lines) and ‘Oyster’ 2 

optimisation (solid lines) for the (A) ammonium concentration (μM) and (B) zooplankton C 3 

biomass concentration (mmol C m-3). The three compartments of zooplankton are represented: 4 

Zoo1 (blue), Zoo2 (red), and Zoo3 (green). 5 

 6 

 7 

Figure 9: Oyster C biomass concentration (mmol C m-3) for the ‘Oyster’ initial simulation (blue 8 

dashed line) and ‘Oyster’ optimisation (red solid line). 9 
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 1 

Figure 10: Autotroph:heterotroph (A:H) structural index comparison between the mesocosm 2 

experimental study (points) and biogeochemical modelling (solid lines) for the ‘Control’ (blue) 3 

and ‘Oyster’ (red) optimisations. 4 

 5 

 6 

Figure 11: Filtration by oysters of other components of the MFW: phytoplankton (red), 7 

zooplankton (blue), bacteria (green), light non-living POM (purple), and heavy non-living POM 8 

(orange). 9 
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 1 

Figure 12: Comparison between the ‘Control’ (blue) and ‘Oyster’ (red) optimisations for the (A) 2 

uptake of ammonium by phytoplankton, (B) uptake of phosphate by phytoplankton, (C) uptake of 3 

ammonium by bacteria, and (D) excretion of phosphate by bacteria. 4 


