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Abstract

As the nervous system develops, changes take place across multiple levels of
organization. Cellular and circuit properties often mature gradually, while emergent
properties of network dynamics can change abruptly. Here, we use mathematical
models, supported by experimental measurements, to investigate a sudden transition in
the spontaneous activity of the rodent visual cortex from an oscillatory regime to a
stable asynchronous state that prepares the developing system for vision. In particular,
we explore the possible role played by data-constrained changes in the amplitude and
timing of inhibition. To this end, we extend the standard Wilson and Cowan model to
take into account the relative timescale and rate of the population response for
inhibitory and excitatory neurons. We show that the progressive sharpening of
inhibitory neuron population responses during development is crucial in determining
network dynamics. In particular, we show that a gradual change in the ratio of
excitatory to inhibitory response time-scales drives a bifurcation of the network activity
regime, namely a sudden transition from high-amplitude oscillations to an active
non-oscillatory state. Thus a gradual speed-up of the inhibitory transmission onset
alone can account for the sudden and sharp modification of thalamocortical activities
observed experimentally. Our results show that sudden functional changes in the neural
network responses during development do not necessitate dramatic changes in the
underlying cell and synaptic properties: rather slow developmental changes in cells
electrophysiology and transmission can drive rapid switches in cortical dynamics
associated to the onset of functional sensory responses.
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Introduction 1

The maturation of thalamocortical activity patterns occurs through a number of 2

transitions which reflect the progression of circuits through configurations specialized 3

for developmental roles such as synaptic plasticity, amplification, and conservation of 4

energy [1–5]. 5

While the developmental trajectories of a large number of cellular, synaptic and 6

circuit properties have been well described, how maturation of these cellular parameters 7

leads to changes in the emergent collective activity patterns remains to be established. 8

Of particular interest is an apparent disconnect between the microscopic circuit 9

properties, which tend to gradually progress from immature to adult levels [6–8], and 10

the macroscopic patterns of activity, whose transitions can be abrupt [9–12]. An 11

important question in development is whether such sudden ”switches” in network 12

dynamics during development result from a dramatic change in the electrophysiological 13

properties of cells, through a combinatorial effect of graded microscopic changes, or 14

because of a non-linear relationship between macroscopic activity and a particular, 15

deterministic synaptic or circuit element. Establishing the relationship between 16

cellular/synaptic maturation and the emergence of new activity patterns is thus a 17

critical component for improving our understanding of how neural circuitry is formed 18

normally and becomes functional, but also to predicting how neurological disorders, 19

which often incur subtle cellular and synaptic changes, can have outsize effects during 20

the important developmental epochs when synapses and circuits are forming [13,14]. 21

Delineating how slow developmental changes at the microscopic scale relate to the 22

fast, macroscopic transitions is a challenge for experimental approaches. Inhibiting even 23

those processes deemed non-essential can have significant effects on the network 24

dynamics, making it particularly challenging to disentangle the respective roles of the 25

many developmental processes in the rapid functional transitions. This is where 26

modelling and mathematical analysis becomes essential. 27

Here we apply an analytic approach to test the hypothesis that gradual maturation 28

of inhibitory synaptic timescales can account for the most dramatic developmental 29

transition in the spontaneous background activity in cortex: the rapid emergence of the 30

bi-stable thalamocortical network activity [15]. In rat visual cortex, this ‘switch’ in 31

thalamocortical network dynamics affects both spontaneous as well as light-evoked 32

activity. It consists of a massive reduction in total excitability of the network as the 33

systems shifts from a developmental-plasticity mode, into a linear sensory coding mode 34

correlated with the emergence of the ability for the animal to cortically process visual 35

stimuli, all in under 24 hours. 36

Day-by-day measurements in somatosensory and visual cortex reveal a number of 37

synaptic and circuit changes that might contribute to this switch in cortical activity. 38

These include a rapid increase in feedforward inhibition triggered in both cortex and 39

thalamus [16–19], as well as more gradual increases in total inhibitory and excitatory 40

synaptic amplitudes, increasing inhibitory effect due to reduction in the reversal 41

potential for chloride [20,21], changes in interneuron circuitry [22,23], patterning of 42

thalamic firing [17,24,25], reduction of action potential threshold [11], and changing 43

glutamatergic receptor composition [26], among others. 44

Because of the critical role of inhibitory interneurons in determining the network 45

properties of adult thalamocortical circuits, particularly the relevant network 46

phenomena of oscillatory synchronization and bi-stability [27], we explored the 47

hypothesis that the observed changes in inhibitory synaptic activity could be a likely 48

determinant of rapid emergence of functional visual circuits. To develop a model in 49

which the changing inhibitory and excitatory strength and delay (two critical observed 50

evolutions) on network activity is amenable to analysis, we deploy a variation of the 51

Wilson and Cowan (WC) model [28], in which the ratio of excitatory to inhibitory 52
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current amplitudes as well as relative timing can be varied independently to determine 53

their combined potential roles in the evolution of cortical activity. In particular, we are 54

interested in determining how the parameters of inhibitory strength and amplitude 55

interact to produce bifurcations in the response properties of the system that might 56

explain the sudden transition in cortical network dynamics before eye-opening. 57

The paper is organized as follows: first we review key experimental observations that 58

serve as a foundation of our computational study, and that it must capture. We then 59

introduce our extension of the WC firing-rate model, and identify key parameters that 60

will serve in the analysis, notably, the ratio in the excitatory-to-inhibitory onset 61

time-scales, the ratio of the excitation-to-inhibition strength and the amplitude of the 62

external stimulus. This model being developed, we then carry out an extensive 63

codimension-one and -two bifurcation analysis of the model, identify the critical changes 64

in the dynamics of the system upon variation of the key parameters. By using these 65

results we are able to identify a particular parameter evolution that accurately 66

reproduces the transition in network activity that has been experimentally reported. 67

Our results strengthens the hypothesis that dramatic changes in the activity of 68

neural networks during development do not require similarly sharp changes in the cells’ 69

properties. It also suggests that, in the precise case of the rat’s visual cortex, a speed-up 70

in the time-scale of the inhibitory neuronal response onset can account for multiple key 71

observations on cortical activity throughout development, including the sudden switch 72

from oscillatory to an active stable network behavior similar to that observed in vivo. 73

Results 74

In all species and systems examined, sensory thalamocortex development can be broadly 75

divided into two periods, which we refer to as ‘early’ and ‘late’, that determine the 76

spontaneous and evoked network dynamics [15,29,30]. The division between these 77

epochs occurs before the onset of active sensory experience: birth for auditory, 78

somatosensory and visual systems in humans, eye-opening in the rodent visual system, 79

whisking in rat somatosensory cortex [9, 12,31]. In rats, where the activity has been 80

examined locally in primary sensory cortex with high developmental resolution, the 81

switch between early and late periods is extremely rapid, and occurs in rat visual cortex 82

within 12 hours [9, 18]. Early activity differs qualitatively from late by almost every 83

characteristic of spontaneous and evoked activity. The most easily measured and 84

dramatic difference is in sensory responsiveness. In somatosensory, visual and auditory 85

cortex brief (< 100 ms) sensory stimulation evokes complex, large-amplitude responses 86

consisting of multiple slow-waves that group higher-frequency oscillations lasting from 87

500ms - 2s [5]. This oscillatory bursting is the result of hyper-excitability in the 88

thalamocortical loop, not the sense organ [17,18,32]. Spontaneous activity during the 89

early period consists is composed of bursts of nested slow and fast oscillation that 90

resemble sensory evoked activity. This resemblance occurs because at these ages 91

spontaneous activity in thalamocortex is driven almost entirely by spontaneous bursts 92

occurring in the sense organ. Unlike the adult, intact early thalamocortical circuits 93

generate little spontaneous activity on their own. As a result, they are quiet until 94

triggered by input to thalamus and spend much of their time in an extended silent state. 95

Using the visual thalamocortex as our base, we model the thalamocortical dynamics 96

observed during ‘spontaneous’ activity. In visual cortex and thalamus during the first 97

two post-natal weeks, almost all activation occurs as a result of waves of spontaneous 98

retinal activity that last between 1 and 10 seconds [13, 29,33]. Extracellular recordings 99

in rats and mice reveal that that these waves result in 6-20Hz thalamocortical 100

oscillations that synchronize firing within cortex [9, 34,35]. The period of oscillation 101

decreases with age [36] (Fig. 1A). In vivo whole-cell recordings at these ages reveal that 102
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activation is unstable and the network does not produce an ‘active’ state, defined as a 103

stable depolarized state, continuous during wakefulness, or alternating with down-states 104

during sleep (Fig. 1). As a result the network is not bistable, as in the adult. The 105

change to adult-like network dynamics occurs as a rapid switch between P11 and 106

P12 [9,16](Fig. 1). From this day whole cell currents show prominent bistability and 107

stable depolarization during wakefulness. Extracellular recordings no longer reveal a 108

prominent peak in spectral power during wakefulness, also indicating prominent 109

asynchronous state [36,37]. Measurements of sensory responsiveness indicate a shift 110

from a non-linear ‘bursting’ regime to a graded, linear regime simultaneous with the 111

switch from unstable/oscillatory to stable membrane currents [9]. Together these 112

observations show a thalamocortical network that maintains basic parameters of 113

non-linear dynamics, membrane potential instability and oscillation generation while 114

evolving the period of oscillation. The maturation of these early dynamics to adult-like 115

networks occurs as sudden transitions in the network dynamics leading to an adult-like 116

linear processing regime, asynchronous network activity and stable depolarization 117

during activation. As measured in somatosensory and visual cortex, the synaptic 118

changes most closely associated with this developmental switch are an increase in the 119

amplitude of synaptic inhibition and a decrease in its delay [16,18]. 120

Such measurements of feed-foreward inhibition in cortex suggest that changes in the 121

timing and strength of inhibition are important, but they reflect only a limited 122

population of total inhibition, the limited measurements of which [16] suggest develops 123

more gradually. We therefore take these limited measurements of inhibitory and 124

excitatory synaptic currents as starting point to examine timing and power of inhibition 125

during thalamocortical network development. 126

The mathematical model 127

In order to minimally account for the rapid ‘developmental switch’ in cortical dynamics 128

we described above, we consider a reduced system with one excitatory and one inhibitory 129

population. Undoubtedly, a complete realistic scenario would need to consider multiple 130

neural subpopulations with different connectivity and synaptic time constants for all 131

possible cells. However, this would preclude the realistic possibility to identify potential 132

key mechanisms driving the switch or to carry out analysis of the model dynamics. In 133

this study our goal is to use a simplified analytical model thought to capture many 134

critical features of cortical network dynamics to test the hypothesis that the key 135

changes in network activity, both abrupt and gradual, observed during development 136

could be accounted for by gradual maturation of inhibitory synaptic currents. 137

We thus adapted a Wilson-Cowan (WC) model, which considers instantaneous 138

synaptic responses to stimuli followed by an exponential decay (possibly after a delay), 139

in order to allow us to study independently the effects of excitatory and inhibitory 140

synaptic delay, rise times, as well as decay times. In order to better fit the shape of the 141

evoked inhibitory and excitatory currents (Fig. 1B), the WC model was extended to in 142

include double exponential kernels for the excitatory and the inhibitory synapses. 143

Mathematically, the first order dynamical system of the standard WC became a 144

second-order dynamical system for which responses to impulses are double-exponentials 145

with a prescribed amplitude, rise and decay time. This simple modification of the 146

standard WC model allows for the expression of rich dynamical behaviors comparable 147

to the electrophysiological observations, and allows for full analysis of this dynamical 148

system. 149

The model is introduced in detail in the next section, followed by a bifurcation 150

analysis in codimension-one and -two revealing the respective roles of delay and 151

amplitude in the qualitative responses of the network; a more extensive study is done in 152

the Supplementary Material, where we study the bifurcations as various other 153
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Figure 1. Correlated development of spontaneous network dynamics and
inhibitory synaptic currents in visual thalamocortex. A. Spectral analysis of
local field potentials and whole-cell membrane dynamics reveals robust oscillatory
behavior in early developing TC that increases in frequency but decreases in amplitude.
Transition to an adult-like pattern of broad-band 1/f frequency noise occurs as fast
“switch” between P11 and P12. Above and below color spectrogram are shown
representative whole-cell currents at P7 (top) and P13 (bottom). The young cell has
prominent 8Hz oscillations in membrane potential, while the older cell activity is
dominated by stable depolarization referred to as an “up” or “active” state. Color
graph in center shows representative spectrograms of layer 4 LFP for each of the
indicated ages. Spectra are normalized to mean power and the 1/f noise is removed by
subtraction. Thus the flat spectra P12-17 shows no frequencies with large violations of
the 1/f noise that dominates neuronal activity, while the sharp peak at particular
frequencies 5-25 Hz in younger animals indicates the dominance of spontaneous activity
at these ages by oscillations previously referred to as “spindle-burst” activity. Data are
novel analysis derived from animals first reported in [16,33]. B-C. Whole-cell voltage
clamp in vivo shows changes in inhibitory currents are strongly correlated with
maturation of network dynamics. B. Representative neurons at two ages showing mean
evoked inhibitory (GABA) and excitatory (Glutamate) currents. Inhibitory currents at
young ages are smaller and delayed relative to excitatory currents. C. Development of
evoked inhibitory delay (left) and amplitude (right) in visual cortex. Delay is measured
as difference between excitatory and inhibitory current onset. Amplitude as ratio
between the peak of each current. Data are reproduced from [16].

parameters of the model vary. This dissection of the dynamics of the system allows us 154

to propose an age-dependent variation of the key parameters consistent with the data of 155

Fig. 1, robust to noisy perturbations, and that closely reproduces the qualitative 156

properties of the visual cortex dynamics through the developmental switch. 157
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Figure 2. Two-populations model with double exponential synapses. (A)
Two populations of neurons, one excitatory (blue) and one inhibitory (red) in
interaction (coupling coefficients JEE , JEI , JIE , JII) and receiving external inputs,
respectively IE and II . Insets display the typical double exponential responses to
impulses for each population (arbitrary units), with identical peak amplitudes and
respective onset delays τoE and τoI . (B) Numerical simulations of the model, with
Gaussian noise stimulus, at P7 (top) and P13 (bottom). In these graphs is represented
the proportion of active excitatory neurons as function of time: at P7, the network
displays an oscillatory behavior at 8Hz; while at P13, the activity shows a noisy
stationary behavior, both being comparable to the in vivo recordings (Fig. 1). (C)
Excitatory (blue) and inhibitory (red) synaptic currents in response to a brief impulse,
in arbitrary units, with the convention that the total excitatory transmitted current
(area under the curve) is normalized to 1.

Wilson-Cowan model with double exponential synapses To model synaptic 158

dynamics with non-zero rise (τ1) and decay (τ2) times1 of the responses to an impulse, 159

we consider that each populations respond to inputs through second-order differential 160

equations of the type: 161

x′′ +

(
1

τ1
+

1

τ2

)
x′ +

x

τ1τ2
= f(t) (1)

1Notice that the two equations are completely symmetric under the exchange of τ1 and τ2; we choose
by convention τ1 > τ2.
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where x′ (resp. x′′) denotes the first (resp. second) derivative in time of x and f(t) the 162

input to the system (see SI text for more detail). Following the standard approach 163

introduced by Wilson and Cowan [28], we model (uE , uI) the proportions of cells that 164

are firing at time t in the excitatory (E) and inhibitory (I) populations in response to 165

external input and their interactions. Each population is assumed to satisfy an equation 166

of type (1), with respective rise and decay times τE1 (τ I1 ) and τE2 (τ I2 ), yielding the 167

system of differential equations: 168

u′′E +

(
1

τE1
+

1

τE2

)
u′E +

uE
τE1 τ

E
2

= (1− uE) fE SE(JEEuE + JIEuI + IE)

u′′I +

(
1

τ I1
+

1

τ I2

)
u′I +

uI
τ I1 τ

I
2

= (1− uI) fI SI(JEIuE + JIIuI + II), (2)

where the input to population E/I possibly induces an activation to the fraction of 169

quiescent cells (1− uE/I) with a maximal rate fE/I , and according to a sigmoidal 170

transform SE/I of the total current received. The sigmoids associated to each 171

population may have distinct thresholds θE/I and distinct slopes aE/I , but are assumed 172

to have the same functional form: SE(·) = S(aE , θE , ·) and SI(·) = S(aI , θI , ·) with 173

S(a, θ,X) =
1

(1 + e−a(X−θ))
− 1

(1 + eaθ)
. (3)

The total input received by a population E/I is given by the sum of the external 174

current IE/I and the input of other cells, proportional to the fraction of firing cells in 175

both populations, and weighted by synaptic coefficients (Jij)(i,j)∈{E,I}, that depend 176

both on the level of connectivity between populations (i, j) and on the average 177

amplitude of the post-synaptic currents. 178

We now perform changes of timescales and parameters to reduce the system to a 179

small set of independent parameter. First, we notice that our model involves 4 different 180

time constants τE1 , τ
I
1 , τ

E
2 , τ

I
2 . By a simple change of time, considering time for instance 181

in units of τE1 : t = t
τE1

, the system becomes equivalent to a reduced system depending 182

on three dimensionless ratios: 183

κ =
τ I1
τE1

κ > 0,

λE =
τE2
τE1

, λI =
τ I2
τ I1

0 < λE , λI < 1. (4)

The coefficients λE and λI determine mainly the slope of the decay of the 184

double-exponential synaptic responses. The parameter κ instead can be interpreted as 185

(proportional to) the ratio between the onset time of the inhibitory current with respect 186

to the excitatory one. In fact, it can be shown (see Suppl. Mat.) that the peaks of the 187

impulse responses of the excitatory and inhibitory synapses (the onset times) can be 188

expressed as: 189

τoE = h(λE), τoI = κ h(λI) (5)

with h(λ) = λ log(λ)
λ−1 . Equivalently, by reintroducing the standard time units, one has 190

τoE = τoE τE1 and τoE = τoI τ
E
1 . Therefore, in the case λE = λI one obtains that 191

indeed κ = τoI
τoE

. In other words, under this condition κ gives the ratio of the relative 192

onset-speed of the inhibition and the excitation. From the experimental data of Fig. 1, 193

we see that the inhibition onset delay decreases (or speed increases) relative to the onset 194

of the excitatory synaptic currents, hence we expect that the value of the parameter κ 195

decreases during cortex development. Therefore we will focus our analysis on the role 196

this relative E-I time-scale ratio plays during the development. 197
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Moreover, the system depends upon two amplitude parameters fE and fI . To 198

simplify further the model and keep only the most relevant parameters, we express the 199

variables uE and uI in units of the total current received by the excitatory population 200

in response to a Dirac impulse stimulation (the surface AE under the synaptic impulse 201

response), leaving only the ratio between that quantity and the total current received by 202

population I (the corresponding surface AI), as a free parameter, denoted α = AI/AE , 203

and given, in terms of the original parameters of the model, by the expression (see the 204

Supplementary Material): 205

α = κ2
fIλI
fEλE

.

In other words, for any choice of the time constants, we trade the ratio fI/fE with the 206

more interpretable parameter α. Heuristically, when α < 1, the total current that would 207

be received by the inhibitory population in response to a pulse of current is smaller than 208

the total current received by the excitatory population in the same situation. 209

Therefore, without loss of generality, the original system of Eq. 2 reduces, in these 210

units, to the system: 211

u′′E +
1 + λE
λE

u′E +
uE
λE

=
1− uE
λE

SE(JEEuE + JIEuI + IE)

u′′I +
1 + λI
κλI

u′I +
uI
λIκ2

= α
1− uI
λIκ2

SI(JEIuE + JIIuI + II) (6)

where the derivatives are now taken with respect to the dimensionless time variable t. 212

Developmentally-driven bifurcations in network dynamics 213

We are now in a position to investigate the impact of the electrophysiological 214

modifications taking place during development on the network dynamics. To this 215

purpose, we characterize the dynamics of Eq. 6, wit a particular focus on the presence 216

of attractors (fixed points or periodic orbits) and their stability as a function of the 217

value of the parameters altered throughout development. Stable attractors indeed 218

determine the observable dynamics in our network. Bifurcations, associated in the 219

number of attractors, their type and their stability may indeed underly the rapid switch 220

in cortical activity and response seen experimentally. For simplicity and for the sake of 221

considering a small amount of independent relevant parameters, we will assume in the 222

following that inhibitory and excitatory input to be proportional: II = rIE . We then 223

study the system dynamics in these regimes as the parameters κ, α and IE are varied as 224

observed experimentally during the transition. 225

The key parameters we shall investigate are the following: 226

• κ, which controls the onset delay of the inhibitory population relative to the 227

excitatory population; 228

• α, corresponding to the relative strength of inhibition as compared to the 229

excitation, and 230

• IE , accounting for the level of external input to the excitatory population, also 231

controlling the input to the inhibitory cells under the current assumptions. This 232

parameter and its impact on networks dynamics is less understood during this 233

period of development, and we explore its impact here in our model. 234

Other parameters were set as in standard references [28]. In particular, we fixed 235

aE = 1.3, θE = 4, aI = 2 and θI = 3.7. The connectivities have been fixed to JEE = 16, 236

JII = −3, JEI = −JIE = 10. Here, we use the convention that II = rIE with r = 0.5 237
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fixed and λE = λI = 0.8. In the Supplementary Information we show that other choices 238

of r, λE , λI and J ’s do not qualitatively affect the dynamics of the system in the 239

(α, κ, IE) space. 240

Having set the fixed-parameter values as described in the previous paragraph, we 241

can develop values for κ, α and IE that reproduce the network dynamics and synaptic 242

currents observed at early and late stages (Fig. 2B-C). 243

Codimension-one and -two bifurcation analyses The second-order synapses 244

endow the system with a rich dynamics, including multiple states qualitatively similar 245

to those observed experimentally. This section elucidates this dependence in the 246

parameters: we characterize here the behaviors of the system as a function of the 247

parameters and identify those where transitions occur computing the bifurcations of the 248

underlying vector field. 249

In Fig. 3, we start by investigating how the system we develop responds to changes 250

in the external input parameter IE (panels L1 and L2), inhibitory timescale κ (L3-L4) 251

and amplitude of the inhibitory currents α (L5-L6), in each case for two choices of the 252

other parameters. We find that, consistent with the experimental observation, our 253

system features: 254

1) Stationary states, where the E and I population activity levels depend on the 255

value of the parameters. In particular they increase for larges levels of input IE , 256

and smaller inhibition parametrized by α. These stationary states can be further 257

differentiated as: 258

i) ”Up states”, where both E and I populations show a relatively high constant 259

level of activity, similar to patterns of brain activity in the awake adult. 260

ii) ”Down states”, where both E and I populations show a relatively low 261

constant level of activity akin to the inactive periods during early 262

development. 263

In Fig. 3 we distinguish between up and down states only when both solutions are 264

present (irrespectively of their stability) for a given choice of the parameters 265

(green and yellow regions in Fig. 3, panels L1, L2, L3). For clarity, when there is 266

only one stable high-activity state is present, we call it a “unique up state” (white 267

region in Fig. 3, panels L1, L2, L5 and L6). 268

2) Oscillatory states where the E/I populations are activated rhythmically (pink 269

region in Fig 3), reproducing to the periods of activation during early 270

development, and observed for intermediate values of input or inhibition 271

amplitude (panels L1, L5 and L6) or slow inhibition (panel L4). 272

Interestingly, these states need not be exclusive. Thus we characterize regions of 273

their coexistence. Above we cited regions of the state-space where the up and the down 274

states co-exist and are stable (green regions in Fig. 3, panels L2, L3). These are 275

evocative of the behaviors observed in the adult brain during sleep or low visual input 276

situations. In addition, we observe regions where down-states and oscillations co-exist 277

and are are stable, in a small (orange) region in Fig. 3 panel L3. 278

Delineating the regions where these attractors are stable are codimension-one 279

bifurcations, that are depicted as circles in Fig. 3. We found the following bifurcations: 280

• Appearance or disappearance of stationary states are associated with saddle-node 281

bifurcations (or Limit Points, LP, blue circles Fig. 3). We distinguish two types of 282

saddle-node bifurcations: those yielding one stable and one saddle equilibria 283

(circles filled in blue), versus those yielding two unstable equilibria (circles filled in 284

white, associated with the emergence of one repelling and one saddle equilibria) 285
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Figure 3. Bifurcation diagrams in 1-dimensional parameter spaces: In all
panels are depicted the value of the excitatory activity uE associated with equilibria
and periodic orbits (in that case, maximal and minimal values are plotted) as a function
of one given parameter. L1-L2 show the influence of IE for fixed α = 1 and κ = 3 (L1)
or κ = 0.5 (L2). L3-L4 elucidate the influence of κ with α = 1 and IE = 0.75 (L3) or
IE = 1.5 (L4). L5-L6 characterize the influence of α, with IE = 1.5 and κ = 4 (L5) or
κ = 1.5 (L6). Regions are colored according to the type of stable solutions. We
distinguish between up and down states when more than one solution is present for a
given choice of the parameters, while we call it unique up state, when only one (stable)
constant solution is present
. Bifurcation labels: LP: Limit point, H: Hopf, SH: Saddle homoclinic, SNH: Saddle
node homoclinic, LPC: Limit point of cycles. Solid (dashed) black lines represent stable
(unstable) solutions for uE . Maximal and minimal uE along cycles are depicted in cyan

(solid: stable, dashed: unstable limit cycles).

• Emergence of oscillatory behaviors is related to the presence of Hopf bifurcations 286

(green circles labeled H in Fig. 3. Locally, Hopf bifurcations give rise to periodic 287

orbits that are either stable or not and we have identified each case (we speak, 288
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respectively, of super- or sub-critical Hopf bifurcations, and depicted those with 289

green- or white-filled circles). 290

• The periodic orbits also undergo bifurcations that affect network behavior: they 291

may disappear through homoclinic bifurcations (red points, labeled SNH when 292

corresponding to Saddle-Node Homoclinic, of SH when corresponding to 293

Saddle-Homoclinic) at which point of branch of periodic orbit collides with a 294

branch of fixed points (either a saddle-node point or a saddle equilibrium), and 295

subsequently disappears. We also observed the presence of folds of limit cycles (or 296

limit points of cycles, LPC, in magenta), particularly important in the presence of 297

sub-critical Hopf bifurcations since they result in the presence of stable, large 298

amplitude cycle. 299

In addition to these observations, Fig. 3 highlights the fact that the location and the 300

mere presence of the above-described bifurcations may fluctuate as a function of the 301

other parameters. We elucidate these dependences in Fig. 4 by computing the 302

codimension-two bifurcation diagrams of the system as inhibitory timescale and external 303

current (κ and IE , panel A) or inhibitory timescale and inhibitory currents amplitude 304

(κ and α, panel B) are varied together. In these codimension-two diagrams, because of 305

the structural stability of bifurcations, the codimension-one bifurcation points found 306

yield curves in the two-parameter plane, with singularities at isolated codimension-two 307

bifurcation points. Codimension-one diagrams depicted in Fig. 3 correspond to sections 308

of codimension-two diagrams, and we indicated the location of these sections in Fig. 4. 309

In both panels, we observe the presence of two such points: 310

• A Bogdanov-Takens bifurcation (black circle labeled BT Fig. 4(A)). At this point, 311

the Hopf bifurcation meets tangentially the saddle-node bifurcation curve and 312

disappears, explaining in particular the transition between panels L1 (no Hopf 313

bifurcation, on one side of the BT bifurcation) and L2 (on the other side of the 314

BT bifurcation). The universal unfolding of the Bogdanov-Takens bifurcation is 315

associated with the presence of a saddle-homoclinic bifurcation, SH curve, along 316

which the periodic orbit disappears colliding with a saddle fixed point. We have 317

computed numerically this curve (depicted in red in Fig. 4), and found that this 318

curve collides with the saddle-node bifurcation associated with the emergence of 319

down-states, at which point it turns into a saddle-node homoclinic bifurcation 320

(namely, instead of colliding with a saddle fixed point, the family of periodic orbits 321

now collides with a saddle-node bifurcation point). From the point of view of the 322

observed behaviors, this transition has no visible impact. This curve accounts for 323

the presence of SNH and SH points in Fig. 3, panels L1 and L3. 324

• Bautin bifurcation points (Generalized Hopf, black circle labeled GH, 1 point in 325

panel A, 2 in B), where the Hopf bifurcation switches from super- to sub-critical, 326

underpinning the variety of types of Hopf bifurcations observed in Fig. 3, 327

particularly between panels L5 and L6. The universal unfolding of the Bautin 328

bifurcation is associated with the presence of a fold of limit cycles (or Limit Point 329

of Cycles, LPC, depicted in magenta), that was already identified in panels L1 330

and L5 and which appear clearly, in Fig. 4, to be those sections intersecting the 331

LPC lines. 332

Model validation and interpretations 333

Experiments showed that up- and down-states, as well as large amplitude oscillations, 334

arise at distinct phases of development corresponding to distinct input levels and 335

synaptic current profiles. Our model indeed displays dynamics that are compatible with 336
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Figure 4. Codimension-two bifurcation diagrams: (A) elucidates the transitions
as a function of input and inhibitory timescales (IE , κ) for fixed α = 1; (B)
characterizes the transitions occurring as amplitude and timescale of inhibition (α, κ)
are varied, for fixed IE = 1.5. Color-code and notations as in Fig. 3. Codimension-two
bifurcations: BT: Bogdanov-Takens, GH: Generalized Hopf (Bautin). Solid and dotted
blue (resp. green) lines represents respectively stable or unstable limit points (resp.
Hopf bifurcations). Sections corresponding to the different panels of Fig. 3 are depicted
with dotted black lines.

those observed experimentally, depending on the values of the external input as well as 337

the relative onset delays and amplitudes of the recurrent inhibitory and excitatory 338

currents. 339

In particular, at early developmental stages (P5-P10), inhibitory currents show a 340

larger onset delay than the excitatory currents, which in terms of the model parameters 341

correspond to large values of κ. In this case, the model displays a oscillating activity 342

switching regularly between periods of high and low firing rates for intermediate values 343

of thalamic or cortical input IE . For relatively low or high inputs, the system stabilizes 344

to either the down- or the up-state respectively, consistent with panel L1 of Fig. 3. This 345

typical profile is clearly set apart from dynamics associated with parameters 346

corresponding to later developmental stages. At these later stages, synaptic integration 347

matures and becomes faster, while the ratio between the inhibitory and excitatory 348

timescales decreases. In our notation, this corresponds to smaller values of the 349

parameter κ. In Fig. 3(L2) we show such a case, where the system has transitioned to a 350

completely distinct regime, where depending on the external input the up and/or the 351

down state are the only stable solutions, and an intermediate oscillatory regime is 352

absent. 353

The model further allows to us to follow the evolution in the dynamics as we 354

modulate the inhibitory current onset delay, or in other words, continuously change the 355

parameter κ, as shown in Fig. 3(L3-L4) for a choice of low and high value of excitatory 356

input IE respectively. These codimension-one diagrams in fact, clearly show the 357

importance of of κ in determining the dynamical state. For IE smaller than the value 358

associated with the saddle-node bifurcation, the dynamics display bistability between 359
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up-states and down states. Increasing κ induces an oscillatory instability of the up-state 360

(through the super-critical Hopf bifurcation). This leads to a relatively narrow bistable 361

regime between oscillations around the up-state and a down-state. The up-state 362

oscillations soon disappear through a saddle-homoclinic bifurcation, so that for 363

relatively large values of κ, the down-state as the unique stable attractor for low IE . In 364

contrast, for IE larger that the value associated with the saddle-node bifurcation, the 365

system displays a unique equilibrium, associated with up-states, for low values of κ. 366

This state loses stability through a super-critical Hopf bifurcation (for IE smaller than 367

the value associated to the codimension-two Bautin bifurcation observed in Fig. 4(A), 368

sub-critical otherwise). Hence the system shows periodic dynamics between up- and 369

down-states for larger values of κ e.g. for slower inhibition onset. In other words, as the 370

inhibition onset speeds up, the network dynamics pass through bifurcations that bring it 371

from an oscillatory regime with relatively low oscillation frequencies and large 372

amplitudes to a regime with a stable active constant activity state, that we can 373

interpret as an up-state. Indeed, as we can see in the codimension-two bifurcation 374

diagrams Fig 4(A), for any given value of the external input IE , there exists a critical 375

value κc(IE) at which the system undergoes a bifurcation towards either a unique 376

up-state regime (white region) or a bistable regime (green region). A similar transition 377

is observed experimentally around P11-P12, characterized by a swtich from an 378

oscillatory to a prominent up-state of activity. For κ < κc(IE), the bifurcation diagrams 379

Fig. 4(A) and and Fig. 3(L2) show indeed that the system tends to settle into the active 380

stationary state regime, except for small values of the thalamic or cortical input IE for 381

which this up-state may co-exist with a down-state. Interestingly, we notice that the 382

value of the input IE associated with the saddle-node bifurcation (blue line in Fig.4) is 383

independent of κ, indicating that the emergence of the down-state arises at levels of 384

thalamic or cortical input that are independent of the inhibitory/excitatory currents 385

onset delay ratio. In other words, the down-state may be observed at any stage of 386

inhibitory maturation given that the feedforward input is sufficiently low. 387

Moreover, we observed in the experimental data of Fig. 1 that the relative 388

amplitudes of the inhibitory synaptic inputs with respect to the excitatory ones 389

(parametrized by α in the model) increase during development. In the model, we 390

observed (Fig. 4(B)) that, for input levels associated with oscillations at α = 1, the 391

curve of Hopf bifurcations in the (α, κ) plane is convex, so that increasing or decreasing 392

the relative amplitude of inhibitory currents α, or simply decreasing the relative 393

inhibitory onset delay κ beyond a critical value, yields a switch to non-oscillatory 394

regimes similar to the adult network responses. We note that, although the interval of 395

values of α associated with oscillatory behaviors shrinks as κ decreases (as clearly 396

visible in Fig. 3 (L5, L6)), the choice of α = 1 to compute Fig. 4(A) is generic, as any 397

value between about 1 and 7 would have given qualitatively identical results. 398

We further note that for κ large, the Hopf bifurcations are sub-critical. While this 399

does not affect the presence of periodic orbits (because of the limit points of cycles 400

evidenced), it will affect the finer structure of how the network transitions to 401

oscillations. In that regime, contrasting with the progressive disappearance of 402

oscillations typical of super-critical Hopf bifurcations, we would observe that 403

large-amplitude oscillations disappear suddenly as they reach the limit point of cycles. 404

Moreover, near this region, we may have a coexistence between the stable oscillations 405

and stable (up- or down-) constant states, which, in the presence of noise, may generate 406

inverse stochastic resonance. 407

Developmental parametric trajectories and switch 408

The presence of the bifurcations described in the previous sections shows that, in a 409

physiological situation where network parameters show a gradual and smooth variation, 410
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sudden and dramatic changes in the network dynamics (a switch) may arise. In 411

particular, consistent with the experimental evidence, as soon as the global input 412

increases, or inhibitory onset delay decreases, or inhibitory current amplitude increases 413

beyond some critical levels, an oscillatory network will suddenly switch to an constant 414

activity state. In this section, we delineate more precisely the possible parameters 415

trajectories that, in addition to this qualitative consistency, shows a quantitative 416

agreement with the observed changes in oscillation frequency at the switch. More 417

precisely, we investigate if our minimal model can, in addition, reproduce the increase in 418

oscillatory frequency observed experimentally in Fig. 1(A) approaching the switch. 419

A robust measurement of this acceleration was obtained by deriving the 420

power-spectrum of the recorded activity. To directly compare model dynamics to the 421

experimental measurements, we compute the fast Fourier transform of the solutions to 422

Eq. 6 within the range of parameters covered by the above bifurcation analysis, and 423

report in Fig. 5 the two relevant quantities associated: peak frequency and amplitude. 424

In these diagrams, the region of oscillations, delineated in Fig. 4 by the Hopf bifurcation
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Figure 5. Frequency and amplitude of the oscillatory solutions. Panels A and
B refer to (IE , κ) phase space with α = 1, while panels C and D to (α, κ) phase space
with IE = 1.5. In panels A and C the frequency is expressed in Hz, after fixing
τE1 = 5 ms (thus, the excitatory onset delay has the reasonable value of τoE ∼ 4.5 ms),
while in panels B and D the amplitude values correspond to the difference between the
maximum and the minimum of the oscillation in the excitatory population activity.

425

and limit points of cycles, clearly stands out. Furthermore, we observe that a significant 426

and monotonic increase in the oscillation frequency occurs in the vicinity of the 427

supercritical Hopf bifurcation. In the parameter planes (κ, IE) and (κ, α), the portion of 428

the Hopf bifurcation line associated with this acceleration of the oscillation frequency 429
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forms a smooth curve relatively flat in κ, suggesting that the onset delay between the 430

inhibitory and the excitatory current responses is crucial for the phenomenology 431

observed experimentally throughout the developmental switch period. 432

In detail, while changes in IE or α could also underpin a sudden switch between an 433

oscillatory state and an constant activity state, the telltale frequency acceleration near 434

the transition specifically points towards a decrease of the relative inhibitory current 435

onset delay κ. Moreover, since in the phase space, the oscillation frequency increase 436

(just before the switch) happens only near the Hopf bifurcation line, our model predicts 437

that the corresponding oscillatory amplitude should progressively decrease, and not 438

suddenly drop as it would be the case if the switch occurred at crossing the fold of limit 439

cycles or the homoclinic bifurcation.
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Figure 6. Model of the developmental switch. Top: a realistic variation of
inhibitory onset delay κ and amplitude α relative to the excitatory ones throughout the
developmental switch period. Bottom: Spectrogram of the solutions of Eq. 6 with
IE = 1.5 and τE1 = 5 ms, computed as the fast-Fourier transform of the excitatory
activity uE ; same calculation and representation as used in the experimental data of
Fig. 1(A).

440

Following our analysis we can now propose a specific developmental variation of the 441

parameters that reproduces accurately changes in both the macroscopic dynamics and 442

the spectrogram seen in the experiments (see Fig.1C). In order to follow the observed 443

data, we constrained qualitatively the inhibitory timescale to decrease and the synaptic 444

amplitude to increase with the developmental stage as seen in data. We fixed the 445

excitatory time constant to a realistic value of τE1 = 5ms. We proposed the 446

age-dependent parametric trajectories depicted in Fig. 6 (top), and obtained an accurate 447

match with the experimental data: a sudden switch, at age P12, between an oscillatory 448

states and a quasi-constant activity, together with a clear increase in oscillations 449

frequency at approaching the switch. Strikingly, the simple phenomenological model we 450

15/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/296673doi: bioRxiv preprint 

https://doi.org/10.1101/296673
http://creativecommons.org/licenses/by-nc-nd/4.0/


developed to account for the qualitative biological observations not only reproduces 451

global observations but also shows a very good quantitative agreement with the 452

experimental observations. Actually, we observed that the range of frequencies obtained 453

in numerical simulations of the model naturally matches quantitatively the experimental 454

data, arguing that these observed behaviors are robust and do not depend sensitively on 455

the fine parameters of the system. In particular, we note that τE1 varies during 456

development. Then, since oscillation frequencies in our model are inversely proportional 457

to τE1 , the frequencies may change accordingly, but the qualitative picture obtained will 458

persist. We note that such a detailed study would require more experimental data than 459

available at this date and we consider it to be an interesting avenue for future research. 460

Robustness to noise 461

The above results were obtained in a deterministic system, which allowed us to use 462

bifurcation theory to show sudden transitions in the network responses as a function of 463

the excitation/inhibition time-scale ratio and input level. However, in physiological 464

situations, neural populations show highly fluctuating activity due to multiple sources of 465

noise (e.g. channel noise or synaptic noise resulting from the intense bombardment of 466

neurons from other brain areas) [38]. The role of noise in dynamical systems has been 467

the topic of intense study [39,40]. In general, large amounts of noise generally 468

overwhelm the dynamics, while small noise produces weak perturbations of the 469

deterministic trajectories away from instabilities. In the vicinity of bifurcations, even 470

small amounts of noise may significantly modify the deterministic dynamics [39,41,42]. 471

Because of the importance of bifurcations in the switch, we investigate in this section 472

the role of noise on the dynamics of Eq. 6. We assume that the various sources of noise 473

result in random fluctuations of the current received by each population around their 474

average value IE0 and II0 = rIE0 , and model the current received by each population 475

by the Ornstein Uhlenbeck processes: 476

dIE = (IE0 − IE) dt+ η dW IE
t

dII = (II0 − II) dt+ η dW IE
t (7)

where (W IE
t )t≥0 and (W II

t )t≥0 are standard Wiener processes and η is a non-negative 477

parameter quantifying the level of noise (we consider that η is dimensionless, by 478

associating the corresponding units on the Wiener process). We computed the solutions 479

of the system and derived the statistics of the solutions for various level of noise. The 480

average amplitude of the variations in time of the solutions as a function of the 481

excitatory input IE0 and excitation/inhibition timescale ratio κ is depicted in Figure 7 482

for various values of η and fixed r = 0.5. Away from the bifurcation lines, the impact of 483

moderate noise is reasonably negligible, and the noisy system behaves as its 484

deterministic counterpart, as we can see in Fig. 2B, where at P7 (before the switch) the 485

oscillating regime displays minor perturbations from the deterministic (η = 0.3, 486

κ = 3, α = 1.3, IE = 1.5), and similarly the stationary up-state at P13 (after the switch) 487

is only perturbed (η = 0.3 κ = 2, α = 1, IE = 1.5). Near transitions, we observe two 488

effects that have a moderate, yet visible effect, on the precise parameters associated to a 489

switch. In particular, we observe that all transition lines tend to be shifted by the 490

presence of noise, enlarging the parameter region associated with oscillations. This 491

effect is likely due to stochastic resonance effects in the vicinity of heteroclinic cycles or 492

folds of limit cycles, while in the vicinity of the supercritical Hopf bifurcation, coherence 493

resonance effects due to the interaction of noise with the complex eigenvalues of that 494

equilibrium (see [39]). 495

We thus conclude that despite a slight quantitative shift of the parameter values 496

associated with the switch, the qualitative behavior of the noisy system remains fully 497
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consistent with the experimental observations. Indeed, a decrease in the timescale ratio 498

κ, possibly associated with an increase in the input, yields a transition from oscillating 499

solutions to a stationary activity level associated with linear responses to input, which 500

ensures that the proposed mechanism underlying the switch is robust in the presence of 501

noise. 502
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Figure 7. Amplitude of the oscillatory solutions in the presence of noise.
We consider the effects of Gaussian noise on the statistics of Fig. 5, namely the
difference between the maximum and the minimum values of the excitatory activity uE ,
in the (IE0, κ) phase space. The codimension 1 and 2 bifurcations of the noiseless case
are indicated, following the same notation as in the Fig. 4.

Discussion 503

. 504

During thalamocortical development, several aspects of network activity undergo 505

dramatic changes at all scales, from microscopic to macroscopic, during spontaneous 506

activity as well as in response to external stimuli. In this paper we studied the 507

possibility that some of these changes happen in a continuous smooth way at the level 508

of single neurons while giving rise to abrupt transitions in the global network dynamics. 509

In particular, we focused on one specific phenomenon, the sharp switch occurring in the 510

rodent visual cortex spontaneous activity, which goes from a regime with 5-20 Hz 511

oscillations, called ‘spindle-burst’ or ‘delta-brush’ oscillations, in response to network 512

input in the immature brain (P5 - P11 in rats) to an asynchronous irregular firing after 513

maturation (after P12). In order to catch the crucial mechanism inducing such a 514
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transition, we developed a new version of the standard Wilson-Cowan model for 515

excitatory and inhibitory populations activities, enriched with double-exponential 516

synapses, allowing us to introduce new features of the developing neurons related to the 517

relative time-scales of their responses to stimuli. These timescales indeed appear 518

particularly prominent, as inhibitory and excitatory cells display a significant gradual 519

maturation of the profile of the synaptic responses to current pulses throughout the 520

switch. 521

The Wilson-Cowan approach has been extensively studied in the case of mature 522

cortical network , and one of its major advantages is its simplicity yet ability to 523

accurately reproduce observed behaviors. Indeed, only few biologically-related 524

parameters define the model, a massive simplification compared with more biologically 525

accurate models, and if, on one hand, this obscures a direct relationship with 526

experimental measurements, it provides a direct understanding of the main rate-based 527

mechanisms underlying the global dynamics of the system. In [43] for example, another 528

version of the Wilson-Cowan model, enhanced by short-term plasticity, has been used to 529

address another aspects of the development, namely the emergence of sparse coding. In 530

this work, we have shown that the decay of the inhibitory currents timescale compared 531

to excitation explains the main features of the developmental switch observed 532

experimentally. Mathematically, when the ratio between the two onset delays decreases, 533

the dynamics of the system crosses a Hopf bifurcation arising where excitatory and 534

inhibitory delays are of the same order of magnitude. Moreover, the model constrains 535

directly the possible changes in electrophysiolocal parameters consistent with the 536

experimental observations. In particular, we showed that the acceleration of the 537

oscillatory pattern and decay of their amplitude occurring experimentally before the 538

switch predicts specific changes in timescale ratios and amplitudes, namely a decay of 539

timescale ratio of inhibitory vs excitatory currents and an increase in the relative 540

inhibitory current amplitude compared to excitation, two key phenomena observed 541

during developments. Other variations of the electrophysiological parameters may lead 542

to a switch or not, and in the case of the presence of a switch, would yield distinct 543

hallmarks. 544

To exhibit this result, we provided an extensive numerical analysis of the 545

codimension-one and -two bifurcations occurring as a function of the onset delay of 546

inhibition in combination with the other natural parameters (particularly, the ratio of 547

the excitatory and inhibitory synaptic currents amplitudes and the external input), and 548

found indeed that the smooth variations in the synaptic integrations and levels of input 549

naturally led, from an initial synchronous state, to a constant activity regime. Moreover, 550

to recover the typical acceleration of the oscillations near the switch, we suggested that 551

the key parameter in the switch is the decay of the amplitude ratio, and predicted a 552

decay of the oscillation amplitude at the switch associated. 553

Because of the natural biological fluctuations of the parameters, it is a complex task 554

to assess whether changes in the electrophysiological parameters are sudden or 555

continuous. We argue that our mathematical model and analysis is valid in both cases: 556

indeed, had our system not displayed a bifurcation upon changes in the timescale ratios, 557

even a sharp variation of the delay ratios would not have yielded a change in the 558

qualitative dynamics of the system. 559

From the biological viewpoint, this result suggests that the transition is intrinsically 560

related to the fact that the inhibitory timescale decays by a larger fraction than the 561

excitatory one. Indeed, a decay of the timescale ratio indicates that, if we denote τ bE/I 562

and τaE/I the synaptic timescales of the E/I populations before and after the switch, 563

decreasing ratios readily imply 564

τaI
τ bI

<
τaE
τ bE
.
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Notice that this is a stronger condition than τ bI − τ bE > τaI − τaE already observed in 565

Fig. 1(C). Going back to experimental data, we actually observe such behavior (Fig.8), 566

that we can quantify as κb = 1.47± 0.05 and κa = 0.98± 0.11 (mean ± standard error). 567

One-tail Welch’s t-test confirms that κb > κa, p-value: p = 0.001. However, due to the 568

limited number of points, more data need to be collected specifically for this purpose in 569

order to have more robust results and properly test this prediction and also resolve the 570

fine evolution of the ratio as a function of age. 571
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A

Figure 8. Decreasing ratio of delays. Blue points represent the experimental data
of Fig. 1(C) expressed in terms of ratio between inhibitory and excitatory currents onset
delays. The dashed line indicates the moment of the observed developmental switch,
between P11 and P12. Black points and error bars represent the mean values and
standard error for the points before (B) and after (A) the transition.

This paper, initially aimed at accounting for a qualitative change in the dynamics of 572

cortical networks when inhibition becomes faster, caught not only the main features 573

observed experimentally, but also the order of magnitude of the frequency and 574

amplitude trajectories of the native oscillations without need for fine-tuning. The exact 575

quantitative results however vary upon changes in parameters values; in particular, if 576

the existence of immature oscillations only depends on the ratio between the inhibitory 577

and excitatory onset delays, the frequency of those oscillations is proportional to the 578

absolute value of those delays. In our final quantitative simulations, we focused on a 579

case where the excitatory current delay is kept fixed; further studies based on new 580

experimental measurements could allow consideration in more detail the role of the 581

absolute excitatory delay and its developmental dynamics. 582

Our simple model can be improved in several directions. First our model does not 583

distinguish distinct neural populations and the variety of their timescales and evolutions 584

within the thalamocortical loop. A direct perspective would be to make the model more 585

precise by including various populations and changes in their timescales and relative 586

impact. In particular, the early thalamocortical oscillations described in Fig. 1 involve 587

the thalamus, itself showing an oscillatory activity at the same frequency as cortex, and 588

in that view cortico-thalamic feedback is a potentially critical component of these 589

oscillations [17]. The current model of early oscillation generation in visual cortex we 590

developed suggests that unpatterned, noisy input (roughly IE/II in the model) from 591
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retina provides the drive, and thalamus and cortex as a whole oscillate in response. This 592

reproduces accurately the fact that both thalamus and cortex switch to 593

asynchronous/tonic patterns of firing after the switch, and both are the sites of reduced 594

delay and increased amplitude of inhibition. The value of the present results lies in 595

showing that recurrent networks of excitatory and inhibitory neurons can be made to 596

undergo developmental transitions similar to those observed in vivo, in response to 597

similar changes in the electrophysiological parameters. Future studies will reveal the 598

circuit specifics of these networks during development. 599

We should also emphasize that our extension of the Wilson-Cowan model to 600

investigate temporal dynamics of inhibition has implications and applications beyond 601

development. Disruption of inhibition, particularly mediated by fast-spiking 602

parvalbumin neurons, has been implicated in an number of neuro-developmental 603

disorders [44,45]. These include multiple mouse models of autism and schizophrenia. 604

While to our knowledge, direct measurement of inhibitory delay have not been published, 605

reduced drive [46] or density of fast-spiking parvalbumin neurons should result in net 606

slowing of inhibitory rise times as represented within our model. The bifurcations of 607

this model show that even small changes in delay can result in significant changes in the 608

oscillatory dynamics, that might inform processing deficits observed in these conditions. 609

Materials and Methods 610

Mathematical and Computational methods 611

The full mathematical framework is provided in the reference [28] and in the main text, 612

while more details can be found in SI text. The bifurcation analysis have been 613

performed using XPPAUT [47] and Matcont (in Matlab environment) [48]. The results 614

shown in Fig. 2B, Fig. 5, Fig. 6 and Fig. 7, are based on numerical simulation where the 615

Eqs. 6 have been implemented in Matlab and Python codes with the Euler method. In 616

particular, for each set of parameters, we simulated 1 second of dynamics, while 617

frequencies (by FFT analysis) and amplitudes of the oscillations have been calculated 618

only on the last 500 ms, to avoid the initial transient. Moreover, for the cases with 619

noise, for each set of parameters we run 10 different simulations, and shown the mean 620

for the amplitudes of the oscillations in Fig. 7. 621
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Supporting Information 622

S1 Text 623

Mathematical details 624

In this section we discuss some mathematical details concerning the theoretical model 625

described in the main text. 626

Starting from the model defined in Eq. 2, and applying the time redefinition t = t
τE1

, 627

and the reparametrization of Eq. 4 described in the main text, we obtain the system: 628

u′′E +
1 + λE
λE

u′E +
uE
λE

= fE (1− uE) SI(JEE uE + JIE uI + IE),

u′′I +
1 + λI
κλI

u′I +
uI
λIκ2

= fI (1− uI) SI(JEI uE + JII uI + rIE). (8)

In order to understand the role of the parameters κ, α and λ’s discussed in this work, 629

we consider here the case in which the r.h.s. of the differential equations are substituted 630

by Dirac external impulses at time t0: 631

(1− uE(t)) SI(JEE uE(t) + JIE uI(t) + IE)→ δ(t− t0),

(1− uI(t)) SI(JEI uE(t) + JII uI(t) + rIE)→ δ(t− t0). (9)

Therefore the simplified differential equations for the excitatory and inhibitory 632

activitiescan be written as: 633

u′′E +
1 + λE
λE

u′E +
uE
λE

= fE δ(t− t0),

u′′I +
1 + λI
κλI

u′I +
uI
λIκ2

= fI δ(t− t0). (10)

This dynamical system can be analytically solved, and the general solutions read: 634

uE(t) =
λE e

− t−t0λE (c1 + c2 + fE θ(t− t0))− e−(t−t0) (c2λE + c1 + fEλE θ(t− t0))

λE − 1
,

uI(t) =
e
− (λ+1)(t−t0)

κλI

λI − 1

(
λe

t−t0
κ (c2κ+ c1 + fIκ θ(t− t0))

−e
t−t0
κλI (c2κλI + c1 + fIκλI θ(t− t0))

)
. (11)

where θ(x) is the Heaviside theta function, and c1, c2, c3, c4 integration constants. When 635

imposing the solutions to be trivial before the external impulses 636

(uE(t) = uI(t) = 0, t < t0) , we finally obtain: 637

uE(t) =
fEλE θ(t− t0)

(
e−(t−t0) − e−

t−t0
λE

)
1− λE

,

uI(t) =
fIκλI θ(t− t0)

(
e−

(t−t0)
κ − e−

t−t0
κλI

)
(1− λI)

. (12)

It is easy to verify that the area under the curves of these responses are: 638

AE =

∫ +∞

−∞
uE(t)dt = fEλE ,

AI =

∫ +∞

−∞
uI(t)dt = fIκ

2λI . (13)
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In the main text we fixed the parameters fE = 1/λE and fI = 1/(κ2λI) in order to have 639

an area AE = 1, and a ratio AI/AE = α. The parameter α can then be identified as the 640

quantity of response of the inhibitory population to a spike-like input, with respect to 641

the excitatory response. Moreover, from these explicit solutions it is easy to derive the 642

exact onset delays, defined as the time at which the responses reach their maximum 643

τoE =
λE log (λE)

λE − 1
, τoI = κ

λI log (λI)

λI − 1
(14)

In Fig. 9 wehave shown the effect of changing the parameters κ and λ’s on these 644

solutions. These results justify our interpretation of κ as representing the ratio between 645

the onset delays of excitatory and inhibitory responses (which is an exact results when 646

λE = λI), and as λ’s as the parameters regulating the decay slopes of these responses. 647
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Figure 9. Dependence of the response activity on parameters κ and λ’s. (A)
The response of the inhibitory activity uI to a Dirac input at adimensional time t = 0,
for different values of κ, with λI = 0.8 and α = 1. (B) The same response of the
excitatory activity uE , for different values of λE .

Independence of the results on other parameters 648

In the analysis discussed in the main text, we focused on the role played in our model 649

by the three parameters κ, the ratio between the onset delays of inhibitory and 650

excitatory currents, α, the ratio between the inhibitory and excitatory responses, and 651

IE , the amount of external input. We fixed all other parameters of the model to 652

standard values, and observed that a decrease in κ is fundamental in explaining the 653

features of the developmental switch: it determines a phase transition from an 654

oscillatory regime to a stable one, with an increase in frequency and decrease in 655

amplitudes, of the oscillations, when approaching the switch. In this section we show 656

that the scenario we discussed in the main text is not peculiar of the parameters choice 657

we made, that no particular tuning is needed, and that instead, the qualitative results 658

are robust when the other parameters are let vary in suitable intervals. 659

Connectivities: In order to show how this bifurcation diagram changes as function 660

of the connectivity, as an example, we show in Fig. 10 the comparison between the 661

choice we made in the main text (JEI = −JIE = 10) and the case with 662

JEI = −JIE = 9. Limit points and Hopf bifurcations are shown for different values of κ. 663

Notice that while LP lines are left invariant by changes in κ, Hopf bifurcations (and 664

then the parameter region giving rise to stable oscillations) shrink when decreasing κ. 665
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Nonetheless, the dependence of the dynamics on JEI and JIE is very similar in the two 666

cases, only the values of the parameters for which transitions happen change. For 667

example, in the case JEI = −JIE = 9, if fixing IE = 1.5, the scenario of Fig. 3(L4) 668

cannot be reproduced for α = 1, but instead for α & 1.5 for some different critical value 669

of κ at the Hopf bifurcation. This general behaviour is garanteed for a significant 670

interval of values for the connectivity parameters, excluding therefore the fact that our 671

results would depend on some sort of fine tuning. Moreover, it is easy to show that also 672

the balanced condition JEI = −JIE is unnecessary, and it was chosen only to diminish 673

the number of free parameters of the model. 674
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Figure 10. Bifurcation diagram in the space of external input IE and
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connectivity parameters JEI and JIE . The limit point lines are the same for all
values of κ. However the stability of the same limit points changes with the different
values of κ. Solid and dotted green lines represents respectively stable or unstable Hopf
bifurcations. Codimension 2 bifurcations follow the same conventions as in Fig. 4, with
ZH: Zero-Hopf. For the clarity of the figure, saddle-node homoclinic, saddle homoclinic
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Ratio r between external inputs to inhibitory and excitatory populations: 675

In the standard Wilson and Cowan model, the external input to inhibitory and 676

excitatory populations are introduced as independent. In our notation, they are related 677

by II = rIE , therefore defining the parameter r as the ratio between the the two inputs. 678

We consider here only the case of positive r. In Fig. 11 for IE = 1.5 and α = 1 we show 679

a 2-dimensional bifurcation diagram in the (r, κ) parameter pace. As for J ’s, for a 680

significant interval of values of this ratio (0.3 . r . 1.1), the developmental switch can 681

occur for κ decreasing with days, with the dynamics passing from an oscillatory to a 682

stable regime, generically through an Hopf bifurcation. For 0 . r . 0.3 and 683

1.1 . r . 1.3, the transition can occur through Limit Point of Cycles bifurcations. For 684

r & 1.3 the transition, if present, occurs for unnatural higher values of κ. 685

“Decay” time constants λE and λI : In the extension we propose of the standard 686

Wilson and Cowan model with double-exponential synapses, we introduced 4 time 687

constants (in spite of the standard 2). One was reabsorbed in the definition of time, 688

while the others can be redifined in terms of adimensional ratios. The main parameter κ 689

represents roughly the ratio between the onset delays of inhibitory and excitatory delays. 690

The parameters λE and λI instead, can be seen as determining the slope of the decay of 691

the synaptic responses and by construction they are 0 < λE , λI < 1. In the analysis 692
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All other parameters are fixed as specified in the main text. Notations for coloured
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performed in the main text, we fixed λE = λI = 0.8. In Fig. 12 we show how once again 693

the main qualitative result does not depend on the precise value of λ’s. In fact, in both 694

symmetric and asymmetric cases, only the critical value of κ at the Hopf biforcation, 695

and the precise value of the amplitude of the oscillations is affected by the λ’s choice. 696
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