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Abstract

Background: The human microbiome comprises the microorganisms that inhabit the

various locales of the human body and plays a vital role in human health. The composi-

tion of a microbial population is often quantified through measures of species diversity,

which summarize the number of species along with their relative abundances into a

single value. In a microbiome sample there will certainly be species missing from the
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1 INTRODUCTION

target population which will affect the diversity estimates.

Methods: We employ a model based on the hierarchical Pitman-Yor (HPY) process

to model the species abundance distributions over multiple microbiome populations.

The model parameters are estimated using a Gibbs sampler. We also derive estimates

of species diversity as a function of the HPY parameters.

Results: We show that the Gibbs sampler for the HPY model performs well in the

simulation study. We also show that the estimates of diversity from the HPY model

improve over naïve estimates when species are missing. Similarly the HPY estimates

tend to perform better than the naïve estimates when the number of individuals sampled

from a population is small.

1 Introduction

Human microbiome studies attempt to quantify the makeup of the different species that

occupy the human body. The composition of the gut microbiome in particular plays an im-

portant part in human health. Modelling species abundance distributions in this framework

has long been a goal in metagenomic datasets. There have been a number of methods based

on Bayesian non-parametrics developed to model these kinds of community dynamics. In

particular, the Dependent Dirichlet process has been applied in this context to species abun-

dance distribution and diversity estimation, and has additionally been used to address the

effects of covariates on these entities (Arbel et al., 2016; Ren et al., 2017). However, these

models were created from a statistical standpoint, and do not reflect the underlying principles

of community ecology. In contrast, there are alternative statistical methods that attempt to

describe and capture the dynamics of such distributions in a manner that is faithful to princi-

ples of ecological theory. Nevertheless, there are competing perspectives on how evolutionary

processes and the environment affect species distributions (Jeraldo et al., 2012). For example,

one theory suggests that species assemblage is characterized by niches, which are defined by

the allocation of resources in the population (Chesson, 2000). There also exists a competing
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theory that describes “neutral” models, which assume that species are functionally equivalent

and that processes such as immigration and birth/death events primarily contribute to com-

munity diversity (Etienne, 2005). The theory of neutrality claims that most genetic diversity

observed in a population is a result of chance, as opposed to Darwinian selection (Kimura,

1968); that is, the birth rate that a particular species depends on the number of individuals

of that species present in the population, rather than on the species’ ability to survive in the

environment. This is analogous to the theory of neutrality for gene alleles that originated

in the field of population genetics (Ewens, 1972). One important doctrine in neutral theory

is Hubbell’s Unified Neutral Theory of Biodiversity (Hubbell, 2001). In Hubbell’s theory,

it is assumed that there are a number of distinct local communities (sometimes called local

populations) that are subject to immigration and birth/death processes. Immigration into

each community is independent of the other communities, and all individuals that immigrate

to a community do so from a conceptual metacommunity shared by all local communities.

Immigration can happen at different rates across populations. The birth rate in the neutral

model is on a per capita basis—births are more likely to occur for more highly abundant

species. Additionally, the rate of speciation, i.e. the frequency at which new species appear

(i.e. species that have not yet been observed in any population), is a defining parameter

of the top-level metacommunity. Note that the metacommunity and the local communities

in Hubbell’s model are sometimes referred to in the context of the mainland-island model,

where immigration occurs from a mainland (analogous to metacommunity) to local islands

surrounded by uninhabitable space (analagous to the local communities).

Harris et al. (2015) showed that the class of neutral models, when multiple local communities

with differing population dynamics are considered and under certain conditions on individual

mean reproductive success, converges to the hierarchical Dirichlet process (HDP) with large

local population size. They developed a Gibbs sampler for the hierarchical Dirichlet process

given a matrix of species counts among multiple local communities. The authors also pre-

sented a means for testing for neutrality in the populations after fitting the model. However,
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microbial abundance data has suggested that ranked species abundance distributions follow

a power-law tail (Li et al., 2013). That is, if we consider the ranked proportions of species

in a population, pk, k = 1, 2, . . . such that p1 > p2 > p3 > . . . , then we have the following

relationship for the ranked abundances:

pk ∝ k−a

for some a > 0 (Clauset et al., 2009). One limitation of the Dirichlet process model is it

cannot accommodate a power-law tail in its species distribution. Conversely, a related process

called the Pitman-Yor process, can indeed generate a species distribution that exhibits a

power-law tail (Goldwater et al., 2006). It is then of value to pursue the question as to

whether the Pitman-Yor model is more appropriate for modelling the species frequency

distribution than the Dirichlet model. In this paper we investigate the use of the Pitman-

Yor process in a hierarchical formulation called the hierarchical Pitman-Yor process (HPY

process) to model abundance data in multiple microbial populations. The HPY process is

analagous to the mainland-island model, but it can also accommodate a departure from

the assumption of neutrality. We develop a Gibbs sampler to fit the model parameters.

Additionally, we derive expressions for two measures of species diveristy in the context of

the HPY process. We perform an extensive simulation study to investigate the performance

of the HPY model under different situations, as well as the efficacy of the measures of species

diversity defined in the HPY context.

We begin in the next section with the definition of the Pitman-Yor Process. In the Methods

section (Section 2.1), we introduce the hierarchical Pitman-Yor model and give details for

the Gibbs sampler as well as a description on calculating diversity in this model. In Section 3

we present results for an extensive simulation study that investigates the performance of the

HPY model. Finally, in Section 4 we show results from applying the HPY model to a gut

microbiome 16S sequencing dataset from a study on lean and obese twin pairs.
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1.1 Pitman-Yor process

Assume that, for 0 ≤ α < 1 and γ > −α, we generate a sequence of random variables Vk, for

k = 1, 2, . . . such that Vk ∼ Beta(1− α, γ + kα). Furthermore, define the following:

p1 = V1, pk = (1− V1) . . . (1− Vk−1)Vk, for k ≥ 2. (1)

Then the Griffiths, Engen, and McCloskey distribution is defined as the joint distribution of

(p1, p2, . . . ) and is abbreviated as GEM(γ, α) (Yamato et al., 2001).

Let X∗k , k = 1, 2, . . . be a sequence of independent samples from some distribution H. If we

draw the vector p ∼ GEM(γ, α) independently from each X∗k , then the Pitman-Yor process

(or two-parameter Poisson-Dirichlet process) is defined as:

∞∑
k=1

pkδX∗k , (2)

where δX∗k is a discrete measure at X∗k (Buntine and Hutter, 2010). The Pitman-Yor process

is abbreviated as PY(α, γ,H). α and γ are called the discount and concentration parameters,

respectively. H is referred to as the base distribution. The Dirichlet process is a special case

of the Pitman-Yor process where the discount parameter α = 0.

A convenient way of drawing from the Pitman-Yor process is through the Chinese restaurant

process representation. Assume that we have already drawnX1, . . . , Xn among which we have

drawn the values X∗1 , . . . , X∗K directly from the base distribution H, for some 1 ≤ K ≤ n.

If H is continuous, then all of X∗1 , . . . , X∗K are distinct, however if H is discrete then some

of the values may not be distinct. Then the distribution of Xn+1 conditional on X1, . . . , Xn

is:

Xn+1|X1, . . . , Xn, γ, α,H ∼
K∑
k=1

nk − α
γ + n

δX∗k +
γ +Kα

γ + n
H, (3)
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where nk represents the number of times the value X∗k appears among X1, . . . , Xn. More

simply, Xn+1 is sampled either from an existing value X∗k with probability proportional

to nk, or from the base distribution H. The values X∗1 , . . . , X∗K are called “tables” in the

Chinese restaurant configuration. The tables may also be referred to simply by their indices

1, . . . , K.

1.2 Diversity

One of the most important descriptive tools in microbial community estimation is species

diversity. Diversity aims to create a quantitative description of a population that incorporates

information such as the total number of species in a population and the relative frequencies

of those species. For example, one commonly applied measure of diversity is Simpson’s

index, which concerns the probability of sampling the same species twice from a population.

Assume a population contains K distinct species and that the proportion of species k is

represented by pk. Simpson’s index is sometimes calculated as the probability of sampling

two different species in subsequent draws (i.e. the complement of the above definition). The

latter definition is used in this paper. Simpson’s index, denoted by D, is then written

as:

D = 1−
K∑
k=1

p2k, (4)

(Gorelick, 2006). A larger value of D implies the probability of obtaining the same species

in two subsequent samples from the population is small. Thus, the closer the value of D is

to one, the more diverse the population under consideration.

The fundamental problem in estimating diversity is that it is unlikely that a sample from a

population will include all K species that exist in the population. To illustrate the problem,

consider a population with three species (K = 3), where the counts of the three species

are (n1, n2, n3) = (5, 4, 1). If we calculate Simpson’s index naïvely based on Equation 4 we
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get D = 0.58. Now, consider a sample from this population where we obtain the counts

(n1, n2, n3) = (3, 2, 0). Calculating Simpson’s index on the sample proportions gives D =

0.48. Thus, the diversity in the population has been underestimated, simply because we

failed to sample individuals from species 3.

Model assumptions can help to estimate species diversity in the presence of missing species.

Methods for estimating Simpson’s index in the mainland-island model assumed in Hubbell’s

neutral theory of biodiversity have been developed by Cerquetti (2015). Expressions to

estimate Simpson’s index have not yet been developed in the HPY context, however. Thus,

in this paper we propose the derivation of an expression of Simpson’s index in this context.

The idea is that the HPY Gibbs sampler proposed in this paper could be applied to species

abundance data, and estimates of the HPY model parameters could be obtained. From

there, Simpson’s index could be calculated using the estimated HPY model parameters.

Alternatively, the expression for Simpson’s index could be applied to all the MCMC samples

obtained in the Gibbs sampler. The advantage of this approach is that, even if a particular

population has missing species, the model structure assumed in the HPY framework can

help to model the probability of discovering a new species (i.e. one that has not yet been

observed). There is also a sense of “borrowing strength” between populations, in that we

can account for sampling probabilities for a species that has a zero count in a population by

considering the frequencies of that species in another population.

2 Methods

In this section we outline the model for the HPY process and describe the Gibbs sampler used

to fit the model. Additionally we present a formula for Simpson’s index in the context of the

HPY model parameters. In the mainland-island model, each individual in a local community

can be traced back to an ancestor that immigrated to the community. In the hierarchical

Pitman-Yor model, the “tables” in the Chinese restaurant representation of the Pitman-
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Yor process are analogous to individuals’ ancestors that immigrated in the mainland-island

model. Multiple individuals in a community could have descended from the same ancestor

and there can be multiple ancestors of the same species. The makeup of the ancestors are

not directly observable and are therefore treated as latent variables in this framework. In

this paper we use the following notation:

• J is the number of observed local communities

• K is the total number of observed species

• Yjk is the observed count of species k in population j

• tjp is the ancestor (“table”) from which individual p in community j descends

• mjk is the number of ancestors in community j corresponding to species k

• njtk is the number of observations in community j that descended from ancestor t,

corresponding to species k.

• kjp is the species of individual p in community j (a number from 1 to K)

• ψjt is the species of the tth ancestor in community j (a number from 1 to K)

We use the symbol · in a subscript to denote the summation of all values over a particular

dimension. For example, mj· =
∑K

k=1mjk is the number of ancestors in population j over

all species k = 1, . . . , K.
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2.1 Hierarchical Pitman-Yor process model

In this section we introduce the hierarchical Pitman-Yor process and describe how it is

connected to the mainland-island model. The model is defined as follows:

p0|α, γ ∼ GEM(α, γ)

pj|σj, θj, p0 ∼ PY(σj, θj, p0)

Yj|pj ∼ Multinom(nj··, pj),

for j = 1, . . . , J . The vector of proportions p0 represents the abundance of species in the

metacommunity which is assumed to follow a GEM distribution. Each vector pj represents

the abundance distribution of local population j, and is assumed to follow a Pitman-Yor

process with base distribution p0. Therefore, sampling a new ancestor in local community

j is akin to sampling from the abundance distribution p0 of the metacommunity. Finally,

the vector of observed species counts in population j, denoted by Yj, is sampled from a

multinomial distribution with its proportion vector set to pj. This final step represents the

sampling procedure from the local community. The hierarchical Dirichlet process developed

in Harris et al. (2015), was shown to be the large population size limiting distribution for

Hubbell’s neutral model. In the hierarchical Pitman-Yor model, we include the discount

parameters α and σj; it has been shown that a non-zero value for the discount parameter

corresponds to non-neutral assemblage (Crane et al., 2016). Thus, the discount parameter

could be used as a measure of departure from neutrality. Figure 1 gives a schematic of the

assumed HPY model assuming two local populations.

Priors for the top- and local-level discount and concentration parameters also must be spec-
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Metacommunity: p0 ∼ GEM(α, γ)

Local community 1: p1 ∼ PY (σ1, θ1, p0)

A11 A12 A13

Local community 2: p2 ∼ PY (σ2, θ2, p0)

A21 A22 A23

Figure 1: Schematic showing the HPY model assuming two local populations. A red node
labelled Aij corresponds to ancestor j in local population i. The microbes pictured at
the bottom correspond to descendants of the ancestors; i.e. the microbes present in the
local communities. The observed species abundance table is a sample from the descendant
microbes.

ified in the HPY model:

α ∼ Uniform(0, 1)

σj ∼ Uniform(0, 1)

γ ∼ Gamma(a0, b0)

θj ∼ Gamma(aj, bj)

for j = 1, . . . , J . Here, a0 and b0 are respectively the shape and scale hyperparameters of

the gamma distribution for the top-level concentration parameter γ. Likewise, aj and bj are

the shape and scale hyperparameters in the prior for the local-level concentration parameter

θj.

2.2 Diversity estimation

In this paper we consider Simpson’s index (or the Gini-Simpson index). The idea is, rather

than calculating
∑K

k=1 p
2
k directly from the observed proportions, we can infer in a given pop-
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ulation the probability of sampling the same species twice in a row based on the sampling

probabilities prescribed by the hierarchical Pitman-Yor process. This theoretical calculation

would allow the inclusion of sampling species that have not yet been observed in a partic-

ular sample. We can do this by considering the Chinese restaurant process representation

of the Pitman-Yor process. That is, when a particular species is sampled in a population,

the probability of observing that same species a second time is slightly altered, since the

corresponding ancestral counts will have been modified. Thus, the joint probability of sam-

pling the same species twice can be calculated by considering all possible configurations of

sampling the same species twice.

Simpson’s index is a measure of alpha-diversity—in other words it measures the amount of

diversity in a single population. One could also consider the equivalent probability calculation

across populations, i.e. the probability of sampling one species in one population and the

same species in another population. This could be applied as a measure of beta-diversity,

which measures the discrepancies in species abundance distributions between populations.

This probability can similarly be calculated in the context of the hierarchical Pitman-Yor

model. The expressions we have derived for Simpson’s index relating to alpha-diversity and

beta-diversity are quite complicated. These expressions can be found in Appendix B.

2.3 Gibbs sampler for the HPY model

In order to fit the HPY model defined in Section 2.1, we use a Gibbs sampler. The parameters

that must be updated in each step of the Gibbs sampler are the top-level GEM parameters α

and γ; the local-level PY parameters σj and θj, for j = 1, . . . , J ; and the ancestor indicators

tjp for each j = 1, . . . , J and p = 1, . . . , nj··.

As the local-level abundances are represented by a Pitman-Yor process, updates for the pa-

rameters σj and θj can be obtained by slice-sampling procedures defined by Buntine (2012).

This algorithm is outlined in Algorithm 2 in Appendix A.4. Note that the full conditionals
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for the concentration parameters are not log-concave. Buntine uses the technique from Es-

cobar and West (1995) to generate an auxiliary beta-distributed random variable. The joint

distribution of the concentration parameter and the auxiliary variable is log-concave (see

Appendix A.2.2) which allows the use of a slice-sampler. At the top level we have a GEM

distribution, however the slice samplers from Buntine can still be applied with a slight mod-

ification to the table count vectors. Details on these procedures are given in Appendix A.2

for the concentration parameters, and Appendix A.1 for the discount parameters. For the

ancestral indicators tjp, j = 1, . . . , J and p = 1, . . . , nj··, we apply the method used in Bat-

tiston et al. (2018). In their algorithm, each individual (i.e. each organism) is removed from

the population and reassigned to a new or existing ancestor with probabilities defined by

the Chinese restaurant process. Details of that procedure are outlined in Appendix A.3.

Algorithm 1 outlines a single iteration of the Gibbs sampler used to fit the model.

It is not immediately obvious what choices would be best for the hyperparameters a0, b0,

aj, and bj. To guarantee the log-concavity of the joint distribution of the concentration

parameters, we need to choose the shape parameters so that a0 ≥ 1 and each aj ≥ 1 (see

Appendix A.2.2). We find that setting these shape parameters to 1.1 works well in practice.

The sampler is fairly sensitive to the choice of the scale parameters b0 and bj. However, we do

find in practice that setting all the scale parameters equal to the number of observed species

K leads to good estimation accuracy. This allows the prior means for the concentration

parameters to scale as a function of the number of observed species, which is necessary

since we have observed that a poorly specified setting for this prior mean can negatively

affect the posterior distributions of these parameters. This configuration corresponds to the

recommendation in Buntine’s libstb C library, which is used to sample the Pitman-Yor

parameters (Buntine, 2012).
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Algorithm 1: Iteration i of the HPY Sampler
for j ← 1 to J do

for p← 1 to nj·· do
njtjp· ← njtjp· − 1 ;
if njtjp· = 0 then

for q ← tjp + 1 to mj· do
tjq ← tjq − 1

end
mjkjp ← mjkjp − 1 ;

pnew ←
(

1 +
(γ +m··)(nj·kjp −m·kjpσj)

(θj +mj·σj)(m·kjp − α)

)−1
;

Generate r ∼ Unif(0, 1);
if r < pnew then

tjp ← mj· + 1 ;
mjkjp ← mjkjp + 1 ;

else
foreach t : ψjt = ψjtjp do

πt ∝ njt·−σj
θj+nj··−1 ;

end
Set tjp ← t with probability πt ;

end
end
Sample σj ∼ p(σj|θj, tj·1, . . . , tj·K , tj··) and θj ∼ p(θj|σj, tj··) ;

end
Sample α ∼ p(α|γ,m·1, . . . ,m·K) and γ ∼ p(γ|α,K);

2.4 Simulation study

To validate the Gibbs sampler for the HPY model, we have designed an extensive simulation

study. We simulate data from the hierarchical Pitman-Yor process using its Chinese restau-

rant process representation. That is, for every new individual sampled in local population

j, we will perform one of three options (1) sample from an existing ancestor, thus assigning

that individual the same species as the ancestor; (2) sample from an existing species at the

top level; or (3) sample a new species at the top level.

In the simulation study, we simulate data under multiple realistic configurations of the

parameters in the HPY model. For the local-level parameters, we consider the values

σj ∈ {0.2, 0.5} and θj ∈ {5, 25}. For the top-level parameters, we consider the values
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2 METHODS

α ∈ {0.2, 0.5, 0.8} and γ ∈ {5, 25, 50}. We generate 10 local communities, and assume

the same values for the local parameters across all communities. In all cases, the total

number of individuals generated from the HPY process is 10,000 in each community; how-

ever, the final number of individuals sampled in each community in the multinomial step

is nj·· ∈ {500, 1000, 5000} (i.e. this is the number of individuals that would be observed in

the species abundance vector Yj in each population j). We generated 50 replications of each

simulation scenario. For each of the simulation replications the HPY Gibbs sampler was

run for 2000 steps along with 1000 burn-in steps. To obtain parameter estimates we take

the posterior mode of the MCMC samples. The posterior mode is more appropriate than

the posterior mean in this context as the posterior distributions of the concentration and

discount parameters are usually quite skewed due to the constraints on their supports.

Results from the simulation study are shown in Section 3. We examine the accuracy of the

estimated parameters by comparing the posterior mode of the parameter samples from the

Gibbs sampler to the true simulated values. We also calculate Simpson’s index to measure

alpha-diversity in each population (see Equation 17) and beta-diversity to compare across

populations (see Equation 18) in Appendix B. We compare Simpson’s index from the HPY

model to the naïvely calculated indices, i.e. summing the squared observed proportions in

each sample.

2.5 Data analysis in twin study

We apply the hierarchical Pitman-Yor model Gibbs sampler on a 16S sequencing dataset

from the Missouri Adolescent Female Twin Study (Turnbaugh et al., 2009). The study was

undertaken to investigate the differences in the composition of the gut microbiota between

lean and obese hosts. The study considered monozygotic and dizygotic twin pairs that were

concordant for obesity as well as their mothers, though we only include data from the twins

in the HPY analysis. The study population consisted of 21-32 year-old women of European

and African ancestry. 16S sequencing from fecal samples was performed using multiplex
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pyrosequencing on the V2 and V6 regions. Fecal samples were taken at two time points for

each twin, however we consider samples only from the first time point, as there would likely

be strong correlation between the compositions of the intestinal microbiota within each twin

between the two time points. Most twin pairs lived apart, though 29% of the twin paris did

live in the same household. In this analysis we consider a sample size of 102 samples from

29 monozygotic and 22 dizygotic twin pairs. In the cleaned dataset the are 28 women in

the lean category (BMI 18.5–24.9 kg/m2), 7 women in the overweight category (BMI 25–30

kg/m2), and 70 women in the obese category (BMI>30 kg/m2).

In this paper we wish to estimate diversity using the HPY model and compare diversity

within the adiposity groups. We also explore some technical details such as the appropriate-

ness of the fitted HPY model to the observed data and the effect of sequencing depth on the

diversity estimates. From the HPY sampler we obtain 2000 MCMC samples after running

1000 burn-in samples.

3 Simulation results

In this section we outline the results of the simulation study described in Section 2.4. First we

consider the estimation accuracy of the various parameters in the HPY model (γ, α, θj, σj).

Results from these investigations are shown in Appendix C. Each of these plots shows esti-

mation errors as the difference between the estimated parameter (posterior mode) and the

true simulated value. These errors are normalized by dividing by the true simulated values

to facilitate comparisons across simulation scenarios.

In Figure 5 we consider the normalized errors from estimating the top-level concentration

parameter γ. Estimates generally appear to be unbiased. There is little improvement in

estimation accuracy with increasing sample size in the local populations. Conversely, there

does appear to be better estimation accuracy when the true value of the top-level discount

parameter (α) is smaller. Higher values of α correspond to a heavier tail when considering
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the species abundance distribution aggregated across populations. That is, a higher top-level

discount parameter implies many singleton species, which could contribute to the difficulties

in estimation accuracy in this particular parameter configuration.

Simulation results for the top-level discount parameter α are shown in Figure 6. Again,

the estimates do not appear to have any particular bias. In many cases there does appear

to be a slight improvement in estimation accuracy with increasing sample size. There is a

substantial increase in estimation accuracy for larger values of the true simulated value of

α. In the nj·· = 500 configuration, there is generally better estimation accuracy for σj = 0.2

than for σj = 0.5.

In Figure 7 we show the estimation accuracy in simulations for the local-level concentration

parameters θj, j ∈ {1, . . . , J}. There is generally better estimation accuracy when the true

value of the local concentration parameters are θj = 5 compared to θj = 25. It also seems

that there is a slight positive bias in estimates for this parameter, though the reason for

this potential bias is still unclear. Similarly in Figure 8 we show results for the local-level

concentration parameters σj, j ∈ {1, . . . , J}. In most cases there is a noticeable improvement

with increasing sample size. In some cases there is an improvement for θ = 25 as opposed

to θ = 5, however, this improvement is not consistent across all simulation scenarios. There

also appears to be a slight negative bias for these parameters. In the MCMC samples

there is typically a strong negative correlation between the local concentration and discount

parameters due to the fact that both parameters are related to the total number of observed

species. This could explain why the biases for the local concentrations are of the opposite

sign of the biases of the local discount parameters.

Next, we investigate the results of estimating Simpson’s index using the HPY model. First,

the expression in Equation 17 is calculated for each of the 2000 MCMC samples from the

Gibbs sampler. Then, then final estimate for Simpson’s index is taken as the mode of those

values. It should be noted that the posterior distribution of Simpson’s index does not have
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Figure 2: Estimation error for Simpson’s index (alpha-diversity) in the simulation scenarios.

a high variance, so the actual estimated value would not change much if the posterior mean

or median were used. We compare the values of Simpson’s index from the HPY model to

a naïvely calculated Simpson’s index from the observed proportions in each population. In

Figure 2 we compare the errors for the two estimation methods. The naïvely estimated

Simpson’s index is often underestimated, especially when γ = 50, whereas the HPY calcula-

tion was more accurate, though it did slightly overestimate in some cases, in particular when
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the sample size in the local populations was smaller. Recall that higher values of γ generally

correspond to a higher species richness across all populations (i.e. in the metacommunity).

Thus, Simpson’s index calculated using the HPY framework is more accurate when there

is high species richness in the metacommunity. However, it should be noted that, as the

number of samples taken within each population increases, both the naïvely calculated and

HPY calculated values of Simpson’s index are consistently accurate. This shows that it is

important to consider the number of sequences when calculating diversity in a population,

and that the HPY model is valuable in samples with a low number of sequences.

We also explore the results of Simpson’s index for beta-diversity. In the HPY model we

estimate this in the same way as for the standard measure of Simpson’s index shown above,

only we now use Equation 18. Figure 9 shows the error for Simpson’s index for beta-diversity

estimated from the HPY model and naïvely. For the most part, the naïvely estimated values

are not subject to a large amount of error to begin with. There are only a few instances

where the HPY estimated index is better estimated, such as γ = 25, α = 0.2, θj = 5, and

σj = 0.2. Like before, estimation improves substantially for both methods with an increasing

number of sequences.

4 Data analysis results

We now outline the results of applying the HPY model in the lean/obese twin study as

described in Section 2.5. First we consider the estimated values of Simpson’s index within

the obesity categories.

Figure 3(a) gives the distributions of Simpson’s index from the HPY sampler within each of

the obesity categories. There is no apparent difference in alpha-diversity between subjects

within the three categories using this measure. Similarly, we consider Simpson’s index for

beta-diversity in Figure 3(b) calculated between subject pairs within the same obesity cate-

gory and across obesity categories. Again, there is very little difference in beta-diversity using
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Figure 3: (a) Simpson’s index estimated from HPY model across overweight categories. (b)
Simpson’s index for beta-diversity between subject pairs that are concordant vs. discordant
for overweight categories.

this metric in subject pairs concordant for obesity category compared to discordant.

We also check the distributions of the estimated values of the local-level HPY parameters

in the obesity categories in Figure 10. As in the above results for diversity, there do not

appear to be differences in the distributions of either the local concentrations θj or the local

discounts σj between the obesity categories. Next, we check whether the estimated local-

level parameter estimates correlate with the age of the host. Though there is no apparent

relationship for θj, there does appear to be a positive association between the age of the host

and the local discount σj, as shown in Figure 11. However, this association is rather weak

with linear regression estimating a slope of only 0.0064, p = 0.026. Recall that a positive

discount parameter reflects a non-neutral community. The range of estimated local discount

parameters is from about 0.3 to 0.67, suggesting non-neutral assemblage within all the local

communities.

Next we consider the effect of twin pairs on the results of the HPY model. In Figure 13

we examine scatterplots comparing (a) local concentration θj, (b) local discount σj, and (c)

Simpson’s index between twin pairs. There is no apparent concordance for any of the three
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quantities between twin pairs. We also look at Simpson’s index for beta-diversity between

and across twin pairs from the HPY model in Figure 13. There is a subtle difference in

means of beta-diversity within and between twin pairs—the mean was 0.9098 for unrelated

pairs, and 0.9027 within twin pairs. A two-sample t-test for comparing these means resulted

in p = 0.0402. This means that the probability of sampling the same species twice is

higher for twin pairs, suggesting slightly more similar diversity within twin pairs compared

to unrelated pairs. Finally, we check whether alpha-diversity or beta-diversity differs with

respect to monozygotic (MZ) or dizygotic (DZ) twin pairs in Figure 14. There does not

appear to be any significant difference in either alpha or beta-diveristy between MZ and DZ

twin pairs.

It is also important to check the appropriateness of the HPY model on this dataset. To do

so, we compare the curve of ranked species abundances (averaged over all subjects in the

dataset) to multiple datasets simulated under the HPY model. In each simulation we ran the

HPY process using parameters from one of the MCMC samples from the Gibbs sampler run

on the lean/obese twins dataset. We also did the same using a hierarchical Dirichlet process

for comparison. Figure 4 shows the range of the the ranked species abundances curves for

the HPY and Dirichlet models along with the observed species abundance curve from the

dataset. It is immediately apparent that the HPY model fits the observed data much better

than the hierarchical Dirichlet model. In particular, the HPY model better captures the tail

of the distribution, which is unsurprising given the model’s ability to handle a power-law

tail.

Finally we see the effect on the number of sequences in a sample on the difference in Simpson’s

index (both alpha and beta-diversity) between the HPY model and naïvely estimated. In

Figure 15 we see the differences in both indices as a function of the number of sequences;

in the plot for beta-diversity we consider the sum of the sequences in both samples. In

both cases there is more agreement between the HPY and naïve estimates with increasing
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Figure 4: Ranked abundances of species in the twin study. The blue dots represent the true
abundances and the shaded region represents the range of the ranked abundances in the
simulated data from both the hierarchical Dirichlet and Pitman-Yor processes.

sequence counts. This result is consistent with the simulation results presented in Section 3

and again underscores the fact that the HPY model is useful for estimating diversity in

populations with a smaller number of sequences sampled.

5 Discussion

In this paper we have applied the hierarchical Pitman-Yor process to model species abun-

dance distributions in microbiome sequencing data. We have developed a Gibbs sampler to

fit the model and shown that estimates of the parameters in the HPY process are well esti-

mated in this context. Additionally we have provided a formula for estimates of Simpson’s

index in the context of the HPY process.

The main limitation of the method is the computational inefficiency of the Gibbs sampler,

in particular resampling the ancestral states tjp. Since sequencing depths could be quite
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high, there could be tens of thousands of ancestral states to update in each iteration of the

Gibbs sampler. However, because all individuals of the same species within a population

could be considered interchangeable to an extent, we do not have to keep track of the indi-

viduals’ ancestral states, rather we only need to keep track of the total number of ancestors

corresponding to each species. In this case, ancestors can be added or subtracted from each

population at a rate that depends on HPY parameters and current ancestor frequencies.

Buntine and Hutter (2010) developed a sampler in this style which could be applied instead

of the table indicator sampler as described by Battiston et al. (2018). Similarly, there have

also been developments in variational approximations in Dirichlet mixtures that could be

extended for the hierarchical Pitman-Yor model (Huynh et al., 2016; Kurihara et al., 2007).

Such approximations could greatly reduce the computational times in this model.

In this paper, when calculating Simpson’s index from the hierarhical Pitman-Yor model, we

consider the results of sampling the next two individuals from the Chinese restaurant repre-

sentation of the process, after having observed a sample from the target population. However

this is distinct from the “true” diversity in a microbiome population, since the frequencies

of the Chinese restaurant process will be different in the true underlying population. To

get better estimates of diversity as well as species richness, individuals can be up-sampled

within each population using the Chinese restaurant process. From there various measures

of diversity could be calculated to estimate their true values in the underlying population.

This could be useful in particular for diversity measures that would be difficult or impossible

to write directly in terms of the HPY parameters.

One last point is that one of the main advantages of using the Pitman-Yor process instead

of the Dirichlet process was to better capture the tail of the ranked species abundance

distribution. However, since Simpson’s index is a diversity measure of second order, it is not

sensitive to changes in the tail of this distribution. This means that Simpson’s index is not

necessarily the best diversity measure for investigating the tail. However, the calculation of

Page 22 of 43

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353599doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353599
http://creativecommons.org/licenses/by-nc/4.0/


7 ACKNOWLEDGEMENTS

Simpson’s index can be expressed very nicely in terms of the probabilities defined by the

Chinese restaurant representation (see Appendix B). We believe using this index is a good

starting point for demonstrating how diversity measures could be estimated using the HPY

process, though future work should focus on alternative metrics to better capture the tail of

the ranked species abundance distribution.

6 Conclusion

We have developed a Gibbs sampler to fit a model based on the hierarchical Pitman-Yor

process given species abundance data across multiple microbial populations. This process is

more appropriate for use on microbiota species abundance data than the previously estab-

lished hierarchical Dirichlet process due to its ability to accommodate a power-law tail. Ad-

ditionally, we have provided new expressions for Simpson’s index measuring alpha-diversity

and beta-diversity in the context of the hierarchical Pitman-Yor process and showed their

usefulness in simulation and in a data application.
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A Sampling the model parameters

A.1 Sampling the discount parameters σj and α

The conditional distribution of the discount parameter σj for local population j can be

expressed as:

p(σj|θj, tj·1, . . . , tj·K , tj··)
σj∝σtj··j

Γ(tj·· + θj/σj)

Γ(θj/σj)

K∏
k=1

S
nj·k
tj·k,α

(5)

where SNM,a is a generalized Stirling number of type (−1,−a, 0), as defined by Hsu and Shiue

(1998). Then, if we denote the log-probability density function for the full conditional of α by

log(p(α|γ)), we can simply use the slice sampler as defined in Algorithm 2. Since 0 < α < 1,

there is not the same concern about the initial value for the slice sampler as we have for the
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concentration parameter (see Appendix A.2). An arbitrary starting value (say 0.5) can be

used.

At the top level we have a GEM distribution, meaning that the full conditional distribution

of the top-level discount parameter α can be written as (Buntine and Hutter, 2010):

p(α|γ,m·1, . . . ,m·K) = αK
Γ(K + γ/α)

Γ(γ/α)

K∏
k=1

Γ(m·k − α)

Γ(1− α)
(6)

We then exploit the following property for a special case of the generalized Stirling number

Sn1,a = Γ(n− a)/Γ(1− a). This allows Equation 6 to be rewritten as.

p(α|γ,m·1, . . . ,m·K) = αK
Γ(K + γ/α)

Γ(γ/α)

K∏
k=1

Sm·k1,α . (7)

This form is equivalent to that of the full conditional for the discount parameter in the

Pitman-Yor process with all the table counts fixed to 1. Thus we can modify Buntine’s

slice sampler to sample from the conditional distributions of top- and local-level concen-

tration parameters. It has been shown that the full conditionals are log-concave (Buntine,

2012).

A.2 Sampling the concentration parameters θj and γ

We wish to use a slice sampler to sample from the full conditional of the concentration

parameters γ and θj, j = 1, . . . , J . However, the full conditionals are not in fact log-

concave. Instead we use the auxiliary variable method from Escobar and West (1995).

For the concentration parameter for local population j, we can define an auxiliary beta-

distributed random variable p(qj|θj) ∼ Beta(θj, nj··).
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The joint distribution of θj and qj given σj is written as:

p(θj, qj|σj, tj··) = p(θj|σj, tj··)p(qj|θj)
θj∝ e−θj/bθa−1j

Γ(tj·· + θj/σj)

Γ(θj/σj)

Γ(θj)

Γ(θj + nj··)

Γ(θj + nj··)

Γ(θj)Γ(nj··)
q
θj−1
j (1− qj)nj··−1

θj∝ e−θj/bθa−1j

Γ(tj·· + θj/σj)

Γ(θj/σj)
q
θj−1
j (1− qj)nj··−1. (8)

Now, because of the fact that:

p(θj|σj) =

∫ 1

0

p(θj|σj)p(qj|θj)dqj, (9)

we can first sample from the joint distribution of θj and qj, and simply disregard the qj

samples.

For the top-level concentration parameter, the full conditional is derived by considering

the probability function of the GEM distribution. We can use the same auxiliary random

variable procedure as we used for the local-level concentration parameter. That is, assuming

p(q0|γ) ∼ Beta(γ,m··) we have that:

p(γ, q0|α,K)
γ∝ e−γ/b0γa0−1Γ(K + γ/α)

Γ(γ/α)
qγ−10 (1− q0)m··−1 (10)

In Appendix A.2.2 we show that the probability function in Equation 8 is log-concave in θj,

which allows the use of a slice sampler. However, because the support of θj is (−σj,∞),

it can be difficult to choose an appropriate starting value for the slice sampler. To chose

the starting value we use the fixed-point optimizer from Buntine (2012) to first find the

maximum of p(θj, qj|σj) and use that as the initial point of the slice sampler.
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A SAMPLING THE MODEL PARAMETERS

A.2.1 Finding the maximum of p(θj, qj|σj)

The support of θj is (−σj,∞). Consequently, a poor choice of the initial value for the slice

sampler could result in the sampler taking a very long time to warm up. Instead, we begin

the sampler from a maximum a posteriori estimate of p(θj, qj|σj). Differentiating the joint

log-probability function of θj and qj gives:

log(p(θj, qj|σj)) = −θj
b

+ (a− 1) log(θj) + log (Γ(θj/σj + tj··))− log (Γ(θj/σj))

+ (θj − 1) log(qj) + (n− 1) + c−θj

(11)

where c−θj is a constant not depending on θj. Setting
∂ log(p(θj ,qj |σj))

∂θj
=0 gives:

−1

b
+
a− 1

θj
+ ψ(θj/σj + tj··)

1

σj
− ψ(θj/σj)

1

σj
+ log(qj) = 0 (12)

where ψ(·) is the digamma function. To solve this, Buntine (2012) designed the following

fixed-point optimizer:

θ
(t)
j ← σjψ

−1

[
−σj
b

+
σj(a− 1)

θ
(t−1)
j

+ ψ

(
θ
(t−1)
j

σj
+ tj··

)
+ σj log(qj)

]
(13)

where ψ−1(·) is the inverse of the digamma function. This optimizer converges in a relatively

small number of iterations (generally less than five). The output of this optimizer is then

used as the initial value of the slice sampler for p(θj, qj|σj).

A.2.2 Log-concavity of p(θj, qj|σj)

The slice sampler requires p(θj, qj|σj) to be log-concave. To show that this is indeed the

case, we consider the second derivative of log(p(θj, qj|σj)). If we differentiate left-hand side
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of Equation 12 we get:

∂2 log(p(θj, qj|σj))
∂θ2j

= −a− 1

θ2j
+

1

σ2
j

(
ψ1(θj/σj + tj··)− ψ1(θj/σj)

)
(14)

where ψ1(·) is the trigamma function (i.e. the second derivative of the logarithm of the

gamma function). The trigamma function is strictly decreasing on the positive real line,

meaning that:

ψ1

(
θj
σj

+ tj··

)
< ψ1

(
θj
σj

)
(15)

since tj·· ≥ 1. Therefore, we have that ∂2 log(p(θj ,qj |σj))
∂θ2j

< 0 if a ≥ 1.

A.3 Sampling the ancestral states tjp

Recall that each tjp indicates the ancestor (analogously called a “table” in the Chinese restau-

rant construction) from which the pth individual in population j descends. As the true an-

cestral states of the individuals in the observed populations are unknown, this uncertainty

must be accounted for in the model. Each ancestral state indicator tjp can be thought of

as a random variable and can consequently be re-sampled in each iteration of the Gibbs

sampler.

All individuals sharing a common ancestor must be of the same species. The species of each

individual in the population is determined by the sample. Therefore, when considering the

full conditional distribution of each tjp, we must also condition on the observed species of

individual p. Here we use the method presented in Battiston et al. (2018) wherein each

ancestral state is updated by first “removing” individual p from its population and either

reallocating it to an existing ancestor (of the same species) or allocating a new ancestor.
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That is, we can sample tjp proportional to:

∑
t:ψjt=ψjtjp

n′jt· − σj
θj + nj·· − 1

δt +
θj +m′j·σj

θj + nj·· − 1

m′·kjp − α
γ +m′··

δ(m′j· + 1). (16)

where n′jt·, m′j·, m′·kjp , and m
′
·· are the revised values of njt·, mj·, m·kjp , and m·· after removing

individual p from population j. That is, if individual p were the only individual corresponding

to a particular ancestor then removing it would also remove the ancestor, thus necessitating

these updates. The second term of Equation 16 corresponds to allocating a new ancestor

for individual p. By applying the appropriate scaling, the probability of allocating a new

ancestor can be written as
(

1 +
(γ+m··)(n′j·kjp

−m′·kjpσj)

(θj+m′j·σj)(m
′
·kjp
−α)

)−1
. The procedure for updating each

ancestral state is more precisely defined in Algorithm 1.
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B SIMPSON’S INDEX IN THE HPY MODEL

A.4 Slice sampler

Algorithm 2: Slice sampler for concave log-probability function l(x)

Initialize x(0), blower, bupper
for i← 1 to I do

y ← l(x(i−1)) ;
bl ← blower ;
bu ← bupper ;
Generate u ∼ Unif(0, 1) ;
y ← y + log(u) ;
rejected← TRUE ;
while rejected do

v ← Unif(0, 1) ;
x(try) ← bl + v(bl − bu) ;
if l(x(try)) > y then

x(i) ← x(try) ;
rejected← FALSE ;

else
if x(try) < x(i−1) then

bl ← x(try) ;
else

bu ← x(try) ;
end

end
end

end

B Simpson’s index in the HPY model

Here we present the expression for Simpson’s index in the context of the HPY model. First

we consider calculating using Simpson’s index to measure alpha-diversity. This means we

consider the probability of sampling the same species twice in two concurrent samples from

the process (in a single population), given that we have already taken a number of samples

from the process over multiple populations. To calculate this probability, we need to enu-

merate all possible ways that the same species could be sampled twice. It turns out that the

most convenient way to express this is by summing over the ancestor probabilities.

For the first sample, we could either sample from an existing ancestor at the local level or
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sample a new ancestor from the top level. At the top level either we could either sample

from an existing species or sample a brand new species. In the second sample, we are now

restricted to possibilities resulting in the same species as the first sample. Keep in mind that

now the appropriate counts in the local and top-level processes need to be updated to reflect

what happened in the first sample. Using this reasoning, the expression for Simpson’s index

in population j HPY framework is written as follows:

Dj = 1−
mj·∑
t=1

{
njt − σj
θj + nj·

(
(njt + 1)− σj
θj + nj· + 1

+
∑

t′:ψjt′=ψjt,t′ 6=t

njt′ − σj
θj + nj· + 1

+
θj +mj·σj
θj + nj· + 1

m·ψjt
− α

γ +m··

)}

+
θj +mj·σj
θj + nj·

(
γ +Kα

γ +m··

[
1− σj

θj + nj· + 1
+
θj + (mj· + 1)σj
θj + nj· + 1

1− α
γ +m·· + 1

]

+
K∑
k=1

{
m·k − α
γ +m··

[
1− σj

θj + nj· + 1
+

∑
t′:ψjt′=k

njt′ − σj
θj + nj· + 1

+
θj + (mj· + 1)σj
θj + nj· + 1

(m·k + 1)− α
γ +m·· + 1

]})

= 1−
∑mj·

t=1(njt − σj)[nj·ψjt
− (mjψjt

+ 1)σj]

(θj + nj·)(θj + nj· + 1)

+ (θj +mj·σj)

{ ∑mj·
t=1(njt − σj)(m·ψjt

− α)

(θj + nj·)(θj + nj· + 1)(γ +m··)

+
(γ +Kα)(1− σj) +

∑K
k=1(m·k − α)[nj·k + 1− (mjk + 1)σj]

(θj + nj·)(θj + nj· + 1)(γ +m··)

+
(γ +Kα)[θj + (mj· + 1)σj](1− α) +

∑K
k=1(m·k − α)[θj + (mj· + 1)σj](m·k + 1− α)

(θj + nj·)(θj + nj· + 1)(γ +m··)(γ +m·· + 1)

}
.

(17)

The latter equality in Equation 17 reflects a more computationally efficient way to calculate

Dj, as the first definition contains several unnecessary sums.

Likewise, we can consider Simpson’s index as a measure of beta-diversity, i.e. comparing

species diversity across populations. In this case we wish to calculate the probability of sam-

pling one species in population j, then subsequently sampling the same species in population

j′. Using similar reasoning as in the alpha-diversity calculation, we can expression Simpson’s
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beta-diversity index as follows:

Djj′ = 1−
mj·∑
t=1

{
njt − σj
θj + nj·

( ∑
t′:ψj′t′=ψjt

nj′t′ − σj′
θj′ + nj′·

+
θj′ +mj′·σj′

θj′ + nj′·

m·ψjt
− α

γ +m··

)}

+
θj +mj·σj
θj + nj·

(
γ +Kα

γ +m··

[
θj′ +mj′·σj′

θj′ + nj′·

1− α
γ +m·· + 1

]

+
K∑
k=1

m·k − α
γ +m··

[ ∑
t:ψj′t=k

nj′t − σj′
θj′ + nj′·

+
θj′ +mj′·σj′

θj′ + nj′·

m·k + 1− α
γ +m·· + 1

])

= 1−
∑mj·

t=1(njt − σj)(nj′·ψjt
−mj′ψjt

σj′)

(θj + nj·)(θj′ + nj′·)
+ (θj′ +mj′·σj′)

∑mj·
t=1(njt − σj)(m·ψjt

− α)

(θj + nj·)(θj′ + nj′·)(γ +m··)

+ (θj +mj·σj)

{∑K
k=1(m·k − α)(nj′·k −mj′kσj′)

(θj + nj·)(θj′ + nj′·)(γ +m··)

+
(γ +Kα)(θj′ +mj′·σj′)(1− α) + (θj′ +mj′·σj′)

∑K
k=1(m·k − α)(m·k + 1− α)

(θj + nj·)(θj′ + nj′·)(γ +m··)(γ +m·· + 1)

}
.

(18)

Once again, the latter expression in Equation 18 is a more computationally efficient expres-

sion. Thus, if we have a species abundance table over multiple populations, we could run the

HPY Gibbs sampler to obtain samples of the HPY parameters, and use the above expression

to obtain estimates for each of Simpson’s alpha-diversity and beta-diversity indices.
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C SUPPLEMENTARY FIGURES FOR SIMULATION

C Supplementary figures for simulation
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Figure 5: Normalized estimation error for top-level concentration (γ) in the simulation sce-
narios.
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Figure 6: Normalized estimation error for top-level discount (α) in the simulation scenarios.
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Figure 7: Normalized estimation error for local-level concentrations (θj) in the simulation
scenarios.
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Figure 8: Normalized estimation error for local-level discounts (σj) in the simulation scenar-
ios.
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Figure 9: Estimation error for Simpson’s index (beta-diversity) in the simulation scenarios
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D Supplementary figures for data analysis
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Figure 10: (a) Estimated local concentration parameter (θ̂j) in the obesity categories. (b)
Estimated local concentration parameter (σ̂j) in the obesity categories.
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Figure 11: Estimated local discount parameter (σ̂j) vs. age in the lean/obese twin study.
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Figure 12: Concordance between twin pairs for: (a) Local concentration (θ̂j), (b) Local
discount (σ̂j), and (c) Simpson’s index
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Figure 13: Comparing Simpson’s index beta calculated between twin pairs and within twin
pairs.

Page 41 of 43

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353599doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353599
http://creativecommons.org/licenses/by-nc/4.0/


D SUPPLEMENTARY FIGURES FOR DATA ANALYSIS

●

●

−0.10

−0.05

0.00

0.05

0.10

DZ MZ
Zygosity

S
im

ps
on

's
 in

de
x 

tw
in

 d
iff

er
en

ce
 (

H
P

Y
) (a)

●0.825

0.850

0.875

0.900

0.925

DZ MZ
Zygosity

S
im

ps
on

's
 in

de
x 

be
ta

 (
H

P
Y

)

(b)

Figure 14: Comparing (a) Simpson’s index differences between monozygotic (MZ) and dizy-
gotic (DZ) twin pairs; and (b) Simpson’s index beta within MZ and DZ pairs.
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Figure 15: Difference between Simpson’s index for (top) alpha-diversity and (bottom) beta-
diversity calculated using HPY model and naïvely as a function of the number of sequences
in each sample in the obese/lean twins study. For the beta-diversity plot, the sum of the
number of sequences for each pair of samples is considered.
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