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Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both
theoretically and experimentally how the nature of unwanted multi-photon components of single
photon sources affect the interference visibility. We apply our approach to quantum dot single
photon sources in order to access the mean wavepacket overlap of the single-photon component -
an important metric to understand the limitations of current sources. We find that the impact of
multi-photon events has thus far been underestimated, and that the effect of pure dephasing is even
milder than previously expected.

Quantum interference of indistinguishable single
photons is a critical element of quantum technologies. It
allows the implementation of logical photon-photon gates
for quantum computing [1, 2] as well as the development
of quantum repeaters for secure long distance commu-
nications [3, 4]. The development of efficient sources of
single and indistinguishable photons has become a chal-
lenge of the utmost importance in this regard, with two
predominant, distinct approaches. The first one is based
on non-linear optical photon pair production [5, 6], and
multiplexing of heralded single photon sources is being
explored to overcome an intrinsic inefficiency [7–10]. The
other is based on single quantum emitters such as semi-
conductor quantum dots [11, 12] where ever-growing con-
trol of the solid-state emitter has enabled the combina-
tion of high efficiency and high indistinguishability [13–
16].

The standard method to quantify the indistinguishab-
ility of single-photon wavepackets is to perform Hong-Ou-
Mandel (HOM) interference [17]. In perfect HOM inter-
ference, two indistinguishable single photons incident at
each input of a 50:50 beam-splitter will exit the beam-
splitter together, resulting in no two-photon coincidental
detection events at both outputs. In practice, however,
the two inputs only exhibit partial indistinguishability
described by a non-unity mean wave-packet overlap Ms

(also defined as the single-photon trace purity [18, 19]).
Partial indistinguishability of the input states leads to
coincidental detection events at the outputs and reduces
the HOM interference visibility. The interference visib-
ility VHOM can therefore give direct access to the single-
photon indistinguishability Ms = VHOM [19].

For non-ideal single-photon sources, for which the
photonic wavepackets present a residual multi-photon

component, the HOM visibility remains the relevant
quantity that determines the quality of the above-
mentioned quantum operations. However, the visibil-
ity of HOM interference is reduced due to multi-photon
contributions, even if Ms = 1, i.e. for an ideal single-
photon indistinguishability. In most cases, the multi-
photon component of the photonic wavepacket, charac-
terized by the second order intensity autocorrelation at
zero time delay g(2)(0), depends on the system para-
meters in a manner that is completely independent of
the single photon indistinguishability, and it is critical to
have tools to access the latter in order to understand the
physics at play and improve the performance of single
photon sources.

Here we explore both theoretically and experimentally
HOM interference with imperfect single-photon sources.
Previously, the impact of multi-photon contributions on
HOM interference has been investigated in the limited
case where the additional photons are in the same spec-
tral and temporal mode as the predominant ones [20–22].
It has been shown that the visibility of HOM interference
in this case is given by VHOM = Mtot − g(2)(0) [19, 23],
where Mtot is the mean wavepacket overlap of the total
input state, i.e. including the multi-photon compon-
ent. Here we show that the properties of the addi-
tional or “noise” photons play a critical role in HOM
interference, and that it is crucial to know the origin of
the imperfections to be able to correctly extract the in-
trinsic single-photon indistinguishability Ms. We valid-
ate our approach by experimentally emulating two types
of imperfect sources. Finally, we investigate the case
of quantum-dot based single photon sources (QDSPS)
based on both neutral and charged excitons. By un-
derstanding the physical mechanisms in both cases, we
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are able to provide a proper way of extracting the single
photon indistinguishability that accounts for the nature
of the multi-photon events.

We model an imperfect “single-photon” state
(g(2)(0) > 0) by mixing a true single photon (g(2)(0) = 0)
with separable noise at a beam splitter. We limit our
analysis to small g(2)(0) values so that the noise field
itself is well-approximated by an optical field with
at most one additional photon and a large vacuum
contribution. This restriction to a weak, separable noise
field remains relevant in practice for many situations as
illustrated for QDSPSs later on.

It can be shown (see Supplementary Material), that
for separable noise and a small resultant g(2) (typically
g(2) < 0.3), the visibility of HOM interference is given
by:

VHOM = Ms −
(

1 +Ms

1 +Msn

)
g(2) (1)

where Msn is the mean wavepacket overlap between the
single photon and an additional noise photon satisfying
0 ≤ Msn ≤ Ms. We have defined g(2) ≡ g(2)(0) for
simplicity.

It is instructive to consider the two limiting cases of
Equation 1. If the additional photons are identical to
the single photons, i.e. Msn = Ms, then Equation 1
reduces to the simple case that VHOM = Ms − g(2),
showing that the total and single photon mean wave-
packet overlap coincide, Ms = Mtot. Alternatively, if
the noise has no overlap with the single photons and
Msn = 0 , then the visibility is further reduced and given
by VHOM = Ms − (1 +Ms) g

(2). The degree to which
HOM interference is affected by a non-zero g(2) is there-
fore dependent on the origin of the additional photons.

We experimentally test this model by emulating im-
perfect single photon sources. We prepare a train of
near-optimal single photons and mix them with addi-
tional photons to controllably increase g(2) and meas-
ure the impact on the HOM interference. We experi-
mentally emulate the two limiting cases outlined above:
when the additional photons are completely distinguish-
able (Msn = 0) from our single photon input, and when
they are completely identical (Msn = Ms). In each case,
we measure the g(2) and HOM interference visibility of
the resultant wavepacket in an unbalanced Mach-Zehnder
interferometer (see Supplementary Material for further
details).

We use a state-of-the-art single photon source based
on a quantum dot (QD) deterministically embedded in
an electrically contacted micropillar cavity [13]. The QD
acts as an artificial atom which we coherently control
via resonant excitation to generate single photons with
high single photon purity, g(2) < 0.05, and high indistin-
guishability, Mtot > 0.9. The single photons are separ-
ated from the excitation laser using a cross-polarization
set-up, as shown in Figure 1(a).

The experimental set-ups that enable a controlled in-
crease of the multi-photon probability are shown in Fig-
ure 1(b) and (c) for the two limiting cases. First, to add
fully distinguishable photons, we mix the single photons
from the QDSPS with attenuated laser pulses at a differ-
ent wavelength. A 3 ps Ti-Sapph pulsed laser centered
at 925 nm is spectrally dispersed using a diffraction grat-
ing, and a narrow portion is selected to obtain a 15 ps
excitation pulse resonant with the QD transition (here
a charged exciton). A second, non-overlapping part of
the spectrum is selected to mix with the emitted single
photons. By appropriately tuning the time delay we
can add synchronous spectrally-distinguishable photons
to the single photon emission. The corresponding out-
put field is then considered as an effective source, and
we adjust the power of the laser beam to alter the
magnitude of the two-photon component. The meas-
ured HOM visibility as a function of g(2) of this effect-
ive source is shown in Figure 1(d). Since the spectral
overlap between the QDSPS photons and the additional
laser photons is zero (Msn = 0) our model predicts that
VHOM = Ms− (1+Ms)g

(2), where a single parameter Ms

accounts for both the origin of the curve at zero g(2) and
its slope. The line in Figure 1(d) shows that this model
fits the data very well with Ms = 0.94± 0.02.

To create a wavepacket where the additional photons
are identical to the predominant single photon compon-
ent, we build another effective source where we add a
small fraction of photons from the same QDSPS gen-
erated at a later time. This is obtained by perform-
ing an unbalanced quantum interference between two
photon pulses produced by the QDSPS with delay τ . The
first half waveplate (HWP) and polarizing beam splitter
(PBS) in Figure 1(c) allow us to tune the relative intens-
ity of the predominant single photon pulse and the addi-
tional photons. Then, a pair of QWP and HWP is used
to make the polarizations of both photons identical be-
fore the 50:50 beam splitter (BS). Most of the time, only
the main photon gets to the second BS and is transmitted
with 50% probability. However, when this photon meets
a second one generated after a τ delay and temporally
overlapped, they will undergo HOM interference and exit
the beam splitter in the same output port. Therefore, the
output of the second BS has a higher g(2), since there is
a small probability that some of the output pulses now
contain two identical photons. By adjusting the splitting
ratio at the first beam splitter, the g(2) of the output
state can be controlled. Figure 1(d) presents the HOM
visibility as we increase the g(2) via addition of identical
photons, where a clear difference is observed compared
to the previous limiting case. For Msn = Ms, the model
predicts VHOM = Ms − g(2), a linear dependence with
slope of −1. The line in Figure 1(f) again demonstrates
that the model gives a very good fit to the data, with an
extracted Ms = 0.89± 0.01.

We note that the extracted values of Ms for these two
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Figure 1. (a) Schematic for the experimental set-up of a quantum dot single photon source (QDSPS). A quantum dot
embedded in a micropillar cavity is placed in a cryostat and cooled to around 8K. A resonant excitation pulse is used to
coherently control the quantum dot, and single photons are collected in the orthogonal polarization to extinguish the excitation
laser. The half and quarter waveplates allow alignment of the polarization along one of the microcavity axes [13, 24]. (b),(c)
Experimental set-up used to emulate an imperfect single photon source with (b) distinguishable (Msn = 0) and (c) identical
noise Msn = Ms. The inset in (b) shows the spectrum of the spectrally-distinct noise photons and QD photons. (d) Visibility

of HOM interference, VHOM measured as a function of g(2) for distinguishable (green squares) and identical (black circles) noise
sources. The lines are the predictions from the theoretical model.

cases represent the upper and lower bound of the intrinsic
single photon indistinguishability of the QDSPS used in
these measurements. If the non-zero g(2) of the QDSPS
was due to distinguishable noise then we could deduce
that Ms = 0.94±0.02. Similarly if the noise was identical
then the QDSPS has a single photon indistinguishability
of Ms = 0.89 ± 0.01. This demonstrates that it is ne-
cessary to know the origin of the unwanted photon emis-
sion in order to be able to extrapolate the data back to
g(2) = 0.

Our study highlights the importance of determining
the origin of the multi-photon component in order to
properly extract the single photon indistinguishability.
To the extent of our knowledge, this has so far only been
done in the indistinguishable case, independent of the
physical phenomena of the multi-photon components. In
the following, we discuss how to properly estimate the
single photon indistinguishability for the current highest
performing single photon sources, i.e. QD based sources.

There are two distinct categories of QDSPS, depending
on the charge state of the quantum dot: neutral excitons
and charged excitons (hereafter referred to as exciton and
trion states respectively). The optical selection rules and
photon emission processes differ significantly between the
excitons and trions [24], leading to a different origin of
the multi-photon component.

For an exciton, the system is described by a three level
system where the excitation pulse creates a superposi-
tion of the two excitonic linear dipoles with an energy
difference given by the fine-structure splitting [25]. This
results in a time dependent phase between the two ex-
citon eigenstates, so that the single photon emission in
cross-polarization beats with a period determined by the
fine structure splitting [24, 26], as shown in Figure 2(a).

Time (ns)
0 0.5 1 1.5 2

In
te

n
si

ty

10-4

10
-2

10
0

Time (ns)
0 0.5 1 1.5 2

In
te

n
si

ty

10-4

10-2

10
0

Pulse Duration (ps)
0 20 40 60 80

g
(2

)

0

0.05

0.1

0.15

0.2

0.25

0.3
Exciton
Trion

(b)(a)

Figure 2. (a) Time traces of the single photon wave-
packet emitted by exciton (upper) and trion (lower) based
sources. The excitation laser pulse is shown in grey. (b) Meas-

ured g(2) for trion (purple squares) and exciton (blue circles)
based sources as a function of the excitation pulse duration
at π−pulse. The error bars are within the size of the plotted
points.

These optical selection rules imply that the single photon
emission in cross polarisation is delayed with respect to
the excitation pulse. For a trion based source, the optical
selection rules correspond to a four level-system with four
possible linearly polarized transitions [27]. In a cross-
polarised set-up, this system behaves like an effective
two-level system, and the single photon emission shows a
rapid rise time and monoexponential decay as shown in
Figure 2(a).

These optical selection rules result in very different ori-
gins of the residual two-photon component for the two
types of sources. To illustrate this, we measure the g(2) at
maximum emitted brightness for two QD sources, one ex-
citon and one trion, whilst increasing the temporal length
of the excitation pulse (Figure 2(b)). For the exciton
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source, the single photon purity remains very high for
pulse durations up to 80 ps, whereas the single photon
purity rapidly degrades for longer pulses for the trion
based source. For the trion, the single photon emission
process is fast and can occur during the laser pulse so
that there is a probability that the quantum dot returns
to the ground state before the end of the laser pulse and
gets excited again, leading to the emission of a second
photon [28]. For the exciton, the delayed emission in
cross polarization means that the probability of collect-
ing two photons via re-excitation is very small, and the
measured value of g(2) for the exciton remains small for
pulse durations of up to 80 ps. We notice that for both ex-
citons and trions, the g(2) is higher for very short pulses.
This is because the power required to reach maximum
emitted brightness (π-pulse) increases as the pulse dur-
ation decreases [29]. This implies that in the very short
pulse regime (< 10 ps) , the g(2) is limited by imper-
fect suppression of the excitation laser. This remains the
dominant source of an imperfect g(2) for exciton sources
up to a pulse duration of 80 ps, whereas trion sources are
limited by re-excitation for pulses longer than 15 ps.

To correctly extract the single photon indistinguishab-
ility for each type of QDSPS it is critical to account for
these different origins of the multi-photon component. To
do so, we experimentally increase the multi-photon com-
ponent by adjusting the main parameter that is respons-
ible for multi-photon emission in each type of source,
and then measure the impact this has on the visibility of
HOM interference. Specifically, we increase the probab-
ility of re-excitation for a trion source and the amount of
laser photons for the exciton source.

For the exciton based source, we add laser photons to
the single photon emission from the QDSPS by turning
the quarter waveplate (QWP) of the excitation pulse (see
Figure 1(a)). This means that the excitation pulse is no
longer aligned along one of the polarisation axes of the
cavity, and the light will experience a small amount of po-
larisation rotation due to the birefringence of the cavity.
Therefore, some fraction of the excitation pulse will now
be collected in the orthogonal polarisation with the single
photons. By adjusting the QWP we can add more laser
photons and increase the g(2) of this effective source and
measure the corresponding impact on HOM interference,
as shown in Figure 3(a). The added noise photons from
the laser are separable from the single photons and there-
fore Equation 1 can be used to model the data. From
the time traces in Figure 2(b), we can calculate that
there is very little overlap between the laser photons and
the single photons emitted by the quantum dot so that
Msn ≈ 0. The line in Figure 3(a) corresponds to a fit us-
ing VHOM = Ms− (1 +Ms)g

(2) from which we extract as
a single parameter the single photon indistinguishability
Ms = 0.920± 0.003.

For the trion based source, since the imperfect g(2)

arises from re-excitation, the assumption of separable
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Figure 3. (a) Measured HOM visibility as a function of the

g(2) for a exciton source, as the suppression of the excitation
laser is worsened to increase the g(2). (b) Measured HOM

visibility as a function of the g(2) for a trion source as the pulse
duration is increased. For longer pulse durations, there is
more re-excitation and the g(2) is higher. Each data point was
taken at “π-pulse”, corresponding to maximum brightness of
the source. In both plots, the solid line gives the theoretical
prediction for these data. The error bars are within the size
of the plotted points.

noise does not hold because the emission of the first
and second photon are time correlated. However, the
extra photon must be emitted during the laser pulse
for re-excitation to occur [28], whereas the main single
photon emission typically takes place after the laser pulse
with the trion radiative decay time of approximately
170 ps. As a result the noise photon, while emitted by
the QD, presents a very similar temporal profile to the
laser photon and can be modelled as a temporally separ-
ated noise with Msn = 0. The validity of this analysis is
verified by increasing the pulse duration to increase the
probability of re-excitation. The g(2) and HOM visibil-
ity are measured for different pulse durations from 15 ps
to 50 ps at the power that maximises the emitted count
rate. The results shown in Figure 3(b) are modelled well
using VHOM = Ms− (1+Ms)g

(2) with a single parameter
Ms = 0.942± 0.004.

To summarize, we find that, despite their different
physical origins, the multi-photon component of both ex-
citon and trion based QDSPSs can be treated as separ-
able distinguishable noise. In the limit of low g(2), the
single photon indistinguishability can thus be obtained
using:

Ms =
VHOM + g(2)

1− g(2)
. (2)

This correction factor can be applied to any QDSPS with
a small g(2) and fast excitation pulse, in order to extract
the intrinsic single photon indistinguishability, Ms, given
a measurement of g(2) and VHOM. The more general case
where the HOM beam splitter has an intensity reflectiv-
ity R and transmission T is given in the Supplementary
Material.

Interestingly, Equation 2 results in a higher single-
photon indistinguishability than the one obtained us-
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ing the identical noise model. It is therefore likely that
many of the values of single photon indistinguishabil-
ity that have been quoted in the literature [12] for QD
sources are in fact an underestimate of the true value.
Whilst this does not circumvent the fact that it is the
overall wavepacket indistinguishability that is crucial for
quantum technologies, this deepened understanding of
the Hong-Ou-Mandel experiment allows for a better dia-
gnosis regarding imperfect single photon sources. The
single-photon indistinguishability, Ms, gives the upper
bound to the indistinguishability that could be achieved
with an ideal experimental set–up, with no laser leakage
for example, and therefore it fundamentally quantifies
how temporally coherent the source itself is. Finally, we
note that our simple theoretical approach is only valid
for separable noise, and further studies are needed to
understand the effect of a non-separable noise on the in-
terference.

In conclusion, we have theoretically and experiment-
ally revisited the emblematic Hong-Ou-Mandel interfer-
ence. This experiment is commonly implemented to test
the indistinguishability of single particles including single
photons, single plasmons, single electrons or single atoms
[30–32]. We believe that the new insight brought by our
study will benefit these fundamental studies as well as the
development of single photon sources, allowing a better
diagnosis on the current limitations.
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giovanni, B. Plaçais, A. Cavanna, Y. Jin,
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Supplementary Material

HOM visibility for unentangled states

In this section, we derive the general relationship between the total mean wavepacket overlap of two interfering
states, the single-photon purity, and the HOM visibility. Suppose we have a beam splitter with input modes â1 and
â2 and output modes â3 and â4 monitored by single-photon detectors. The output modes can be described by the
relation (

â3(t)
â4(t)

)
=

(
cos θ −e−iφ sin θ

eiφ sin θ cos θ

)(
â1(t)
â2(t)

)
, (S.1)

provided that the beam splitter interaction is constant for the relevant frequency range of the input fields. The
coincident events of the detectors at the output are determined from the two-time intensity correlation between the

output fields G
(2)
34 (t, τ) = 〈â†3(t)â†4(t+ τ)â4(t+ τ)â3(t)〉, where we restrict τ ≥ 0 so that the detector monitoring

mode 4 clicks after the detector monitoring mode 3. The integrated G
(2)
34 around zero delay normalized by the total

intensity gives the probability p34 of having a coincident count. The HOM interference visibility is then defined as
VHOM = 1− 2p34. By following the methods of Ref. [33] to compute p34 for two unentangled input states, while also
keeping terms associated with multi-photon contributions, the HOM visibility is given by

VHOM =
2RT

[(
1− g(2)1

)
µ2
1 + 2M12µ1µ2 +

(
1− g(2)2

)
µ2
2

]
(Tµ1 +Rµ2)(Tµ2 +Rµ1)

− 1, (S.2)

where R = sin2 θ is the beam splitter reflectivity, T = cos2 θ is the beam splitter transmittance,

g
(2)
i =

2
∫∫

G
(2)
ii (t, τ)dτdt

µ2
i

=
2
∫∫
〈â†i (t)â

†
i (t+ τ)âi(t+ τ)âi(t)〉 dτdt

µ2
i

(S.3)

is the integrated intensity correlation around zero delay for input i normalized by the time-integrated mean photon
number µi =

∫
〈â†i (t)âi(t)〉 dt and the mean-wavepacket overlap is

Mij =
2
∫∫

Re
(
〈â†i (t+ τ)âi(t)〉

∗
〈â†j(t+ τ)âj(t)〉

)
dτdt

µiµj
. (S.4)

For a balanced interferometer where the input intensities of the final beam splitter are equal, we have that µ1 = µ2

and so the relation for HOM visibility simplifies to

VHOM = 4RT
(
M12 + 1− g(2)

)
− 1, (S.5)

where g(2) = (g
(2)
1 + g

(2)
2 )/2 is the average g(2) of the interfering states. For HOM interference between identical

wavepackets, M12 = M11 = M22 = Mtot is the total mean wavepacket overlap of the source and g(2) = g
(2)
1 = g

(2)
2 =

g(2) quantifies the source single-photon purity. In the ideal case where R = T = 1/2, the above relation reduces to
the equation VHOM = Mtot − g(2) given in the main text.

HOM visibility in a separable noise model

We now develop a theoretical model to describe the visibility of HOM interference for a specific type of imperfect
source. This imperfect single photon source is modeled by adding noise to an ideal single photon using a beam splitter
interaction, as shown in Figure S.1. Here the noise is separable and exhibits no entanglement with the single photon.
For simplicity, we also model the noise by another single photon, which is valid in the limit of a weak noise field or,
equivalently, when g(2) is small.

The initial state of the signal (s) and noise (n) is given by ρ̂ = ρ̂s ⊗ ρ̂n where ρ̂i = pi,0 |0〉 〈0|+ pi,1ρ̂i,1 and

ρ̂i,1 =

∫∫
ξi(t, t

′)â†i (t) |0〉 〈0| âi(t
′) dtdt′,
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Figure S.1. An imperfect photon is modelled by adding separable noise to a perfect single photon at a beam splitter

where ξi(t, t
′) is the normalized single-photon temporal density wavefunction for i ∈ {s, n}.

The imperfect photon in the output transmission mode of the beam splitter ât is obtained by tracing out the
reflected loss mode âr after applying the beam splitter relation, so that ρ̂t = Trr(ρ̂s ⊗ ρ̂n), where(

ât(t)
âr(t)

)
=

(
cosϑ − sinϑ
sinϑ cosϑ

)(
âs(t)
ân(t)

)
. (S.6)

The total state of the imperfect single photon can then be written as ρ̂t = p0 |0〉 〈0| + p1ρ̂t,1 + p2ρ̂t,2, where ρ̂t,j
is the density matrix for the transmitted state containing j photons. The total g(2) and µ can be computed directly
from the photon number probabilities by µ = p1 + 2p2 and g(2) = 2p2/µ

2. For the average photon number, we have
µ = ps,1 cos2 ϑ+ pn,1 sin2 ϑ and g(2) is given by

µ2g(2) = 2ps,1pn,1(1 +Msn) cos2 ϑ sin2 ϑ, (S.7)

where Msn =
∫∫

Re(ξs(t, t
′)ξ∗n(t, t′))dtdt′ is the mean wavepacket overlap of the single photon and noise, and ϑ

quantifies the amount of noise.
After applying a propagation phase φi to each of the photon density wavefunctions, the two-time amplitude correl-

ation of ρ̂t is given by

〈â†t(t′)ât(t)〉 = ps,1 cos2 ϑξs(t, t
′)eiφs(t−t′) + pn,1 sin2 ϑξn(t, t′)eiφn(t−t′) (S.8)

and so the total mean wavepacket overlap is given by

µ2Mtot =

∫∫ ∣∣∣〈â†t(t′)ât(t)〉∣∣∣2 dt′dt
= p2s,1Ms cos4 ϑ+ p2n,1Mn sin4 ϑ+ 2ps,1pn,1M

′
sn cos2 ϑ sin2 ϑ,

(S.9)

where Ms =
∫∫
|ξs(t, t′)|2 dtdt′ = Tr

[
ρ̂2s,1
]

quantifies the intrinsic single-photon indistinguishability, or single-photon
trace purity [18, 19], of the source. Here we have that

M ′sn =

∫∫
Re
(
ξs(t, t

′)ξ∗n(t, t′)ei(φs−φn)(t−t′)
)
dtdt′ (S.10)

is not necessarily the same as Msn due to the potential relative propagation phase φs − φn.
We can reparametrize the expressions for µ, g(2), and Mtot by defining η so that cos2η = (ps,1 cos2 ϑ)/µ and

sin2η = (pn,1 sin2 ϑ)/µ. The fact that this reparametrization exists stems from the independence of Mtot and g(2)

from photon loss. It also implies that the fundamental quantity affecting the photon statistics of this imperfect single
photon model is η, which depends on both the beam splitter angle ϑ and the relative input intensities through ps,1
and pn,1. Using the relation for VHOM from the previous section, equations (S.7), and (S.9), the visibility and g(2) in
terms of the noise parameter η are

VHOM(η) = 4RT
(
1 +Ms cos4 η +Mn sin4 η − 2(1 +Msn −M ′sn) cos2 η sin2 η

)
− 1

g(2)(η) = 2(1 +Msn) cos2 η sin2 η.
(S.11)

The value of η can be modified by changing the intensity of the noise pn,1 as was done for the emulated distinguishable
noise source in the main text. It can also be modified by changing the relative proportions of pn,1 and ps,1 using an
unbalanced Mach-Zehnder interferometer, as was done for the emulated identical noise source in the main text.
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In our study, we are interested in the slope and intercept of the parametric curve formed by {g(2)(η), VHOM(η)}.
The solution for the intercept is clear since g(2)(η) = 0 implies η = 0 and VHOM(0) = 4RT (1 +Ms)− 1. To solve for
the slope at small η, we have

lim
η→0

dVHOM(η)

dg(2)(η)
= −4RT

(
1 +Ms + (Msn −M ′sn)

1 +Msn

)
. (S.12)

For the cases we are interested in, either distinguishable noise or if ξs = ξn, we have Msn −M ′sn ' 0. This case
would also be true if Msn and M ′sn were phase averaged. Under these conditions, the HOM visibility for small g(2) is
given by

VHOM = 4RT

(
1 +Ms −

(
1 +Ms

1 +Msn

)
g(2)

)
− 1. (S.13)

In the case where the noise is distinguishable so that Msn = 0, the single-photon indistinguishability Ms can be
determined by rearranging equation (S.13):

Ms =
VHOM + 4RT

(
1 + g(2)

)
− 1

4RT (1− g(2))
(S.14)

For R = T = 1/2, we recover equations (1) and (2) presented in the main text.

Measuring g(2) and HOM interference

To measure the single photon purity we perform a Hanbury Brown-Twiss experiment and measure the coincidences
between the two outputs of a 50:50 beam splitter. The experimental set-up, and a typical coincidence histogram are
shown in Figure S.2(a). The second-order autocorrelation is given by g(2) = A0/Auncor, where A0 is the area of the
coincidence peak at zero time delay and Auncor is the average area of the uncorrelated peaks.

We perform a Hong-Ou-Mandel interference experiment by splitting the train of single photons at a beam splitter
and delaying one arm by the pulse separation time, τ . Two subsequently emitted photons then interfere at a 50:50
beam splitter, as shown in Figure S.2(b). The visibility of HOM interference is given by VHOM = 1− 2A0/Auncor.

(a) g(2)

(b) HOM
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Figure S.2. The experimental setup (left) and raw data (right) for measuring (a) g(2) and (b) HOM visibility.
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