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We study experimentally and theoretically the permutation entropy (PE) of the optical intensity I(t) of an
external-cavity semiconductor DFB laser in the coherence collapse regime. Our PE analysis allows us to
uncover the intrinsic dynamical complexity at multiple timescales of the delayed-feedback system, as well as
to investigate how the experimental observations can be determined by modeling. An overall good agreement
between experiment and theory corroborates the effectiveness of the Lang-Kobayashi model, though the
model underestimates the entropy on the timescale of the relaxation oscillations and can lead to a time-delay
signature that is less evident than in experiment, indicating a potential vulnerability of chaos encryption. c©
2015 Optical Society of America

OCIS codes: (140.2020) Diode lasers; (140.5960) Semiconductor lasers; (190.3100) Instabilities and chaos.

Photonic systems exhibit ultrafast chaos as well a rich
variety of other dynamical behaviors. Our focus is on
external-cavity semiconductor lasers (ECLs) for which
there are many applications [1–4]. Characterizing this
behavior, coupled with the comparison to models, is a
formidable problem since for a chaotic system, one can-
not expect exact correspondence between experiment
and theory. Here, we study experimentally and theo-
retically the permutation entropy (PE) [5] of the time-
dependent intensity I(t). Our comprehensive PE analysis
allows us to uncover the intrinsic dynamical complexity
at multiple timescales of the delayed-feedback system, as
well as to investigate how experiment can be matched to
the Lang-Kobayashi (LK) equations [6].
Matching experiment with the predictions of the LK

model faces hurdles, such as band-limited detection,
noise, and limited parameter control. In addition, en-
tropies, Lyapunov exponents, and correlation dimen-
sions, that are frequently used to characterize time-series
complexity and can provide useful insights into the na-
ture of nonlinear systems, are difficult to obtain experi-
mentally in high-dimensional systems such as ECLs [7].
Up to now there has been a dearth of systematic studies
to confirm the degree to which the LK model provides
adequate understanding of actual ECLs.
There are a number of ways one might carry out such

a program. One is to focus on low-order statistics ex-
tracted from I(t), such as autocovariance (ACV) and
probability density function (PDF). Recently, we found
substantial agreement between theory and experiment
for the ACVs with some discrepancies for the PDFs [8].
Another approach focuses on analyzing a measure of en-
tropy, such as the Kolmogorov-Sinai (KS) entropy or
the metric entropy [9]. Entropies indicate the degree

to which future behavior of a time series (TS) can be
predicted from its past history, and as such constitute
important measures of dynamical complexity. Moreover,
entropies can be used to analyze the dynamics over mul-
tiple timescales and may contain statistical information
over many moments. Shannon entropy (ShE) has been
shown rigorously to set a bound to the maximum rate of
information-theoretic randomness extractible from I(t).
The KS entropy can be thought of measuring the time
rate of creation of information as a chaotic orbit evolves
and is related to the spectrum of Lyapunov exponents
through Pesin’s identity [9]. Computing such entropies
from I(t), however, has its own difficulties that fre-
quently render such an attempt impractical.
PE [5, 10] is relatively simple to compute and serves

as a surrogate for ShE obtained from the PDF by using
the Bandt and Pompe recipe. PE quantifies complex-
ity based on ordinal patterns in TS. Previously, some
of us [11] showed numerically that PE evaluated at spe-
cific timescales for ECLs can recover important features
characterized by KS entropy and thus provides valuable
information about the complexity of chaotic lasers. Also
for an ECL, Toomey and Kane [12] conducted an ex-
perimental study that further confirms the strong de-
pendence of complexity on the timescale used in the
PE calculation and found that evaluating the complexity
with a PE delay equal to the external-cavity round-trip
time τS produces results consistent with the notion of
weak/strong chaos. Still, a comprehensive picture that
reconciles experiment and theory across a range of pa-
rameters remains unavailable.
In this Letter, we analyze the LK model in a global

way based on a multiscale ordinal symbolic analysis.
Taking the characteristic time constants in the ECL into
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consideration, the PE of I(t) is calculated at various
timescales over a range of feedback levels (theory, γ; ex-
periment, η) and injection currents J on the basis of both
numerical and experimental TS.
The setup consists of an intrinsically single-

longitudinal-mode MQW InGaAsP DFB laser, at near
1550 nm wavelength with maximum cw power of 15 mW
[8]. The free-running laser threshold current Jth is∼9.27
mA. The position of a mirror determines τS = 2L/c
(L=external-cavity length, c=speed of light) with L=65
cm giving τS = 4.3 ns; the dimensionless experimental
feedback rate η is controlled as described in [8]; when
η = 1, ∼ 20% of the optical power is fed back onto the
laser diode (LD). J is held well above Jth of the solitary
LD throughout the experiment. A fast photodiode with
12-GHz bandwidth is used to convert I(t) to an electrical
signal. A 12-GHz bandwidth, 40-GS/s real-time oscillo-
scope is employed to capture I(t) for analysis.

To make a detailed comparison between experiment
and theory, the LK model is used [6]; with E(t) the com-
plex electric field and N(t) the carrier number, we have

Ė(t) =
(1 + iα)

2

[
G(t)− 1

τp

]
E(t) + γE (t− τS) e

−iΦ,

(1)

Ṅ(t) =
J

e
− N (t)

τN
−G(t) |E(t)|2 , (2)

with G(t) = g[N(t) − N0] =optical gain (g =differential
gain coefficient), N0 = carrier density at transparency,
α =linewidth-enhancement factor, Φ =optical feedback
phase, τp =photon lifetime, τN =carrier lifetime, and
J = qJth (q=injection factor). The best agreement with
the observed dynamics is for α=3, τp=2.65 ps, τN =2.5
ns, g = 2.5 × 10−8 ps−1, and N0 = 1.3 × 108, Φ = 0,
giving Jth ≈ 9.27 mA. Moderate noise (not included)
does not significantly change the theoretical dynamics
for the values of J considered [8]. In our previous work
[8], we estimated a maximum theoretical feedback rate
γ=25 ns−1, corresponding to η=1 in our setup. Simula-
tions were conducted with a fourth-order Runge-Kutta
method with random initial conditions. To mimic filter-
ing due to the detection of the amplified photodetector
and oscilloscope, the theoretical TSs were filtered using
a cascade of third- and ninth-order Butterworth filters
with 12-GHz bandwidths [8]. This specific filtering pro-
cessing helps us achieve very good qualitative agreement
between numerics and experiments.
The experimental and theoretical TSs were analyzed

through a multiscale ordinal symbolic approach, with PE
computed based on a PDF constructed from I(t) fol-
lowing Bandt and Pompe [5]. We took partitions given
by comparison of neighboring values of the TSs, rather
than partitioning the amplitude into different levels,
which avoids amplitude threshold sensitivity and thus
overcomes the misplacement problem of the partition
[5]. This symbolic transformation keeps the information
about the correlations present in I(t), but neglects the
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Fig. 1. PE estimated with D=6 as a function of τ and
γ (η) for (a) q=1.4, (b) 1.7, (c) 2.0, and (d) 2.4.

information associated with the exact amplitude varia-
tions [13]. That is, a reasonable PDF of the generated
ordinal patterns for a given TS can be obtained when two
key embedding parameters related to the PE, i.e., an or-
dinal pattern length D and an embedding delay τ , are
appropriately chosen. Here, D and τ determine the num-
ber of symbols that forms the ordinal pattern, and the
separation between consecutive symbols in each ordinal
pattern, respectively. Moreover, it is well accepted that
the TS length M should satisfy the condition M �D!
to obtain reliable statistics [5]. Thus, we analyzed time
traces of M =4×104 samples separated by 25 ps (sam-
pling period ΩS =25 ps), and used values of D between
3 and 6, in both numerical simulations and experiments.
It is worth noting that, if M�D!, more information can
be obtained by estimating the PE with the largest D
considered. Therefore, our results presented here are ob-
tained for D=6, despite the fact that we have obtained
equivalent experimental and simulation comparisons for
other values of D (not shown). Moreover, it is important
to note that by changing τ different timescales of the sys-
tem are characterized (Ωτ = τΩS with Ωτ the timescale
at which the analysis is being done).
Figure 1 shows typical examples of PE versus τ and

γ (η) for four values of q, from model and experiment.
It is well-established that PE exhibits pronounced lo-
cal minima when τ matches harmonics and subharmon-
ics of τ∗S = τS/ΩS = 172 [10]. Indeed, this property has
been proposed for time-delay identification [14]. As can
be seen in Fig. 1, for η∼0, PE in experiment is very high
since the ECL is operating in a cw state and the recorded
TSs are dominated by spontaneous emission (SE) and
shot noise from the LD as well as noise in the photodi-
ode and oscilloscope. Even though we did not consider
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the influence of SE noise, qualitatively similar results
are found for these low values of γ (∼0). This is because
the combined effect of numerical integration noise and
of filtering leads to a noisy dynamics characterized by a
PE near one. When γ (η) is slightly increased, the es-
timated PE in theory (experiment) is extremely small.
We interpret this as follows: for such feedback levels,
the chaos is not reached or well developed, so the ECL
exhibits non-chaotic behaviors (periodic, quasi-periodic,
intermittency); also, no fingerprint of τS is revealed be-
cause of the weakness of the external-cavity driving force
F denoted as the feedback term in (1).

If γ (η) is further increased, F becomes dominant,
many external-cavity modes participate simultaneously
to the dynamics [15], and the laser exhibits fully-
developed coherence collapse (CC) around these modes
in our calculations and experiment. Interestingly, for
higher γ (η), at all q shown, the drops in the calcu-
lated PE occur for τ matching τ∗S , τ

∗
S/2, τ

∗
S/3, ..., and

τ∗S/(D − 1) in both cases, which represents a common
phenomenon in the dynamics of delayed-feedback sys-
tems indicating a deterministic link between samples
separated by τS . Also, additional extrema at τ∗S+τRO/2
(τRO =relaxation oscillation time, in the range between
∼ 0.1 and ∼ 0.2 ns) lead to a wider drop band ∼ τ∗S
when compared to those of other delays [10, 12]. Figure
1 shows that numerical results are overall in good agree-
ment with experimental observations.
We next show how the match between numerical and

experimental PE varies with timescale chosen, revealing
the intrinsic multiple-timescale features of the ECL. A
short timescale (∼τRO/2) and two longer timescales (∼
τS and one of its subharmonics) are considered.

Figures 2 (a)-(d) show PE as a function of γ (η) for
various q, when evaluated at a short timescale of τ = 3
(three times the sampling period, 75 ps). Note that such
τ corresponds with a sufficiently high sample rate and
helps us capture the dynamics at the fastest relevant
timescale. Numerics and experiments show similar vari-
ations of PE versus γ (η). Quantitative discrepancies
between numerics and experiments are noticed, as the
simulated PE is typically smaller than its experimental
counterpart, both for small and large γ (η). We checked
that the addition of Langevin sources in the LK model
to simulate SE noise does not influence significantly this
discrepancy. Our comparative PE analysis thus reveals
that the LK model does not reproduce perfectly the de-
terministic evolution of an ECL on short timescales cor-
responding to a fraction of τRO. Interestingly, this was
not revealed by the (linear) ACV analysis we performed
in [8] since the decorrelation time was shown to be well
matched in simulation and experiments. Figures 2 (e)-(l)
show typical examples of PE at long timescales from the
LK model and experiment. Such choices of τ allow us
to access information about complexity on these longer
timescales. Interestingly, in Figs. 2 (e)-(l), there is a
much better agreement between simulations and experi-
ments, both in terms of curve shape and its absolute am-

Fig. 2. PE estimated with D = 6 as a function of γ (η)
for (a, e, i) q = 1.4, (b, f, j) 1.7, (c, g, k) 2.0, and (d,
h, l) 2.4. Left: τ = 3 (75 ps); middle: τ = 50 (1.25 ns);
right: τ = 172 (4.3 ns). Squares: experiment; diamonds:
numerics. The inset is an enlargement of Fig. 2(i).

plitude variation. Except for weakly developed dynamics
resulting from a small γ (η), the numerical and experi-
mental PE values are well matched. This indicates that
LK correctly models statistical links on large timescales
and in particular on the timescale of τS . There is a spe-
cial case, though, for q = 1.4 and τ = 172 [Fig. 2(i)],
for which we find a counterintuitive result since PE for
the noiseless LK model is slightly larger than for exper-
iment [see the enlargement in Fig. 2(i)]. However, if a
slightly larger embedding delay (τ > 172) is chosen for
the numerical analysis for this q, one finds much smaller
PE in numerics than experiment, consistent with a lower
degree of randomness in the stronger pulsing dynamics
generated by LK at q=1.4 compared to experiment [8].
This means that uncertain calibration of τ between nu-
merics and experiment, due to the difficult-to-determine
influence of the response time [14], may help to interpret
the surprising phenomenon in Fig. 2(i).
It should be noted that a local minimum of PE is ex-

pected for τS and its harmonics and subharmonics [14].
Looking more carefully at the two-dimensional plots of
PE in Fig. 1, one sees that τS is not well detected in
numerics, for a particular range of γ, i.e., when γ takes
values between ∼ 5 and ∼ 15 ns−1. In contrast, more
pronounced drops are seen at intermediate γ (η) in ex-
periment. This behavior holds for the four values of q
chosen. According to our finding, in numerics τS seems
to be well suppressed or even hidden, whereas the exper-
imental analysis clearly shows its presence. The identifi-
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Fig. 3. PE estimated with D = 6 as a function of τ for
(a) q = 1.4, (b) 1.7, (c) 2.0, and (d) 2.4, where γ = 8
ns−1 and η = 0.31. Black: experiments; red: numerics.

cation of τS has attracted intensive research interest in
recent years ([10,14,16–19] and references therein), most
of which drew conclusions only based on numerical sim-
ulations or on poorly matched model and experimental
data. Thus, erroneous conclusions about the success for
concealing τS may be derived from an exclusive numeri-
cal study. Also, we observe the presence of a shift in the
delay of the system in numerics, as shown in Fig. 3 for
an intermediate γ (η). As is seen, the minimum of PE
for the numerical analysis is located at a slightly larger
τ ≈ 175 than expected (172). We also confirm such shift
by carrying out the ACV analysis (not shown).
Finally, we would like to discuss the origin of the

discrepancy between model and experiment at short
timescales. The good matching of PE at the timescale
of the delay can lead one to consider that the effect of
delayed optical feedback in the laser cavity is properly
taken into account in LK [6]. The discrepancy, which
is present only for small τ , probably originates in the
imperfect modeling of the inner laser dynamics. In par-
ticular, the modeling of gain saturation, SE noise, and
spatial effects may be required to achieve a better fit.
In conclusion, we have reported on a yet unexplored

comparison of ECL dynamics with the LK model un-
der the lens of a PE analysis. High resolution maps of
PE of I(t) generated by an ECL in the fully developed
CC regime, comparing experimental measurements with
the LK model calculations, as functions of γ (η) and τ
have been obtained. We find that numerics are in overall
agreement with experiment despite the presence of some

discrepancies. Specifically, the ECL under study seems
to generate more entropy on short timescales (fractions
of τRO) than the LK model predicts, while PE values
are in very good agreement on longer timescales, and in
particular on the timescale of τS , indicating a good mod-
eling in LK, from a statistical point of view, of the effect
of the delayed optical feedback. Therefore, it appears
that modeling efforts should focus on better reproduc-
ing the fast dynamics resulting from an excitation of the
relaxation oscillations between photon and carrier pop-
ulations in a DFB laser. Moreover, we have found that
signatures of τS may be more evident in the PE obtained
from experiment than numerics, indicating a vulnerabil-
ity of chaos-encrypted communication systems [19].
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