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Abstract: This paper reports the experimental investigation of two different 
approaches to random bit generation based on the chaotic dynamics of a 
semiconductor laser with optical feedback. By computing high-order finite 
differences of the chaotic laser intensity time series, we obtain time series 
with symmetric statistical distributions that are more conducive to ultrafast 
random bit generation. The first approach is guided by information-
theoretic considerations and could potentially reach random bit generation 
rates as high as 160 Gb/s by extracting 4 bits per sample. The second 
approach is based on pragmatic considerations and could lead to rates of 2.2 
Tb/s by extracting 55 bits per sample. The randomness of the bit sequences 
obtained from the two approaches is tested against three standard 
randomness tests (ENT, Diehard, and NIST tests), as well as by calculating 
the statistical bias and the serial correlation coefficients on longer 
sequences of random bits than those used in the standard tests. 
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1. Introduction 

Semiconductor lasers are very sensitive to perturbations from the outside environment [1, 2]. 
Even very weak optical feedback may significantly increase both the intensity noise and 
lasing linewidth, which is undesirable in most applications. Consequently, many conventional 
laser-diode systems are commonly prepared with optical isolators to impede feedback from 
surface reflections. Recently, however, in view of the technological importance of these 
devices, the rich nonlinear dynamics of semiconductor lasers with delayed feedback/injection 
have been widely investigated [3, 4]. Among them, a form of chaotic dynamics, termed 
coherence collapse, has been exploited for several applications, such as chaos-based 
communications [5, 6], chaotic lidar/radar [7], reservoir computing [8], and chaos-based 
random bit generation (RBG) [9–11]. Our focus here is on chaotic laser-diodes for RBG. 

Generally speaking, there exist two approaches to generate random bits. The first is based 
on deterministic mathematical algorithms and is known as pseudo RBG [12]; unfortunately, 
the quality and generation rate may be inadequate, for applications such as cryptography and 
large-scale Monte Carlo numerical computations in which it is crucial to have nearly 
unpredictable bits [13, 14]. The second approach consists in extracting randomness from 
physical phenomena, such as radioactivity, noise, turbulence, and electrical chaos in nonlinear 
circuits, and is known as physical RBG [15–25]; the generation rate of most physical random 
number generators is typically on the order of a couple of Gb/s or lower [26]. Following the 
first demonstration of physical RBG based on broadband optical chaos [9], chaotic 
semiconductor lasers have gained interest as physical sources of randomness because of the 
high potential generation rate and the ease of implementation [10, 11, 27–33]. It should also 
be mentioned that there is debate about the role of noise in chaotic systems with regard to 
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RBG [34–36]. Progress has recently been made in improving the generation rate using high-
order derivatives [11], coupled chaotic lasers [37–40], as well as advanced post-processing 
techniques, such as the bit-order-reversed method [41]. Experimental implementations have 
been demonstrated based on photonic integrated circuits [27, 28], as well as numerical 
implementation using various schemes, such as RBG based on all-optical components [30] 
and a single external-cavity semiconductor laser (ECSL) [34]. Higher generation rates have 
been obtained thanks to large sampling rates and to complex post-processing that artificially 
increase the allowed number of retained bits from each high-resolution analog-to-digital 
converted sample. As an example, Kanter et al. have demonstrated ultrafast chaos-based RBG 
with a rate of 300 Gb/s based on the use of the high-order derivatives using a sampling rate of 
20 GHz and extracting 15 random bits per sample, although the raw data were digitized with 
8-bit resolution [11]. Very recently, Oliver et al. have highlighted that the fundamental limits 
of maximum RBG rate imposed by information theory depend on the analog bandwidth of the 
chaotic laser and cannot be improved by simply increasing the sampling rate or by creating 
additional bits through post-processing [33]. In fact, in earlier works, the number of bits 
extracted from per sample from the chaotic laser intensity has been chosen heuristically. In 
[31, 33, 37], this number has been estimated by plotting histograms of the truncated values 
until a flat histogram, [i.e., probability density distribution (PDF)], is obtained. The heuristics 
were validated by testing the generated bit stream against existing statistical tests of 
randomness. Nevertheless, intuitively, to extract m almost-uniform and independent bits from 
a source, the source should initially contain at least “ m bits of randomness” in it; this can be 
formally quantified with information-theoretic measures, such as the Shannon entropy and 
min-entropy [33, 42–44]. In particular, if one were to extract more than the number of 
quantization bits from each sample, the generator should be considered as a pseudo random 
number generator based on physical phenomena or called a physical-based pseudo random 
number generator, rather than a true physical random number generator. 

The majority of existing schemes for fast chaos-based RBG in the literature require 
bitwise exclusive-or (XOR) operation to amplify inherent randomness to remove residual 
correlations, in addition to the selection of several least significant bits (LSBs) [9, 29, 31, 38–
41, 45]. In this paper, we explore two approaches to fast RBG based on the processing of the 
chaotic laser intensity time series of an ECSL. In the first approach, the number of retained 
bits is conservatively selected according to the limits set by information theory. In the second 
approach, the number of extracted random bits is merely chosen to pass standard randomness 
tests. Accordingly, we name the first approach physical RBG, and the second physical-based 
pseudo RBG. Proving that our conservative first approach does indeed ensure information-
theoretic RNG requires an in-depth analysis of our post-processing, which is beyond the 
scope of the present paper and will be the subject of a subsequent work. Some previous works 
show that the interplay of dynamical properties, acquisition conditions, and post-processing 
plays a critical role in the performance of RBG [33, 45, 46]. We apply the procedure 
described in [47] which is based on the calculation of the high-order finite differences (HFD) 
of the initial data, which results in symmetric statistical distributions. It must be noted that 
this method is similar to the independently developed high-order derivatives method 
presented in the pioneering [11]. The post-processing proposed in [47] and [11] reduces the 
dependence on the dynamical properties and acquisition conditions at the expense of 
additional numerical processing. For this reason, the strict adjustment of the feedback 
strength, the injection current, and the external-cavity length is not needed. Throughout the 
study, the post-processing employed only includes the calculation of HFD and the selection of 
LSBs. Moreover, unlike many existing reports of chaos-based RBG [9–11, 27–33, 37–41], 
the randomness in the present experimental study is not only verified by three standard 
randomness tests, for which the required size of the sequence of random bits is only of the 
order of 1 Gbit, but is also checked by calculating the statistical bias and correlation 
coefficient, for very long (10-50 Gbits) random bit sequences. 
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This paper is organized as follows. Section 2 briefly describes the experimental setup 
employed for ultrafast RBG, which is a semiconductor laser subject to time-delayed optical 
feedback. Section 3 presents the experimental results; we first focus on physical RBG and 
then investigate physical-based pseudo RBG. Section 4 provides concluding remarks. 

2. Experimental setup 

The schematic diagram of the experimental setup for RBG is shown in Fig. 1. The setup 
consists of a semiconductor laser with optical feedback, which generates intensity chaos and 
provides the physical source, and of a post-processing unit, which extracts randomness. This 
processing is performed offline as in most previous studies [31–33, 37, 38]. 

 

Fig. 1. Schematic diagram of ultrafast RBG based on optical chaos. Laser: a distributed 
feedback (DFB) laser diode; OC: optical circulator; VA, variable optical attenuator; FC, 85: 15 
fiber coupler; PD, photodiode; OSC, 40 GHz real-time oscilloscope; HFD, high-order finite 
differences; LSBs, least significant bits. 

2.1 Chaos generation 

The generation of complex chaotic signals is realized by perturbing a semiconductor laser 
using an external-cavity to feed light back into the gain medium. The semiconductor laser 
used in our experiments is an intrinsically single-longitudinal mode DFB laser that operates at 
a nominal wavelength of 1550 nmλ = and has a threshold current of ~ 10 mAthI = . The 

output light is fed back into the laser facet after it passes through a fiber ring cavity that 
consists of an optical circulator (OC), a variable optical attenuator (VA), and a fiber coupler 
(FC). The DFB laser is easily destabilized by adjusting the VA to change the feedback power. 
The laser is driven by an ultra-low-noise current source (ILX-Lightwave, LDX-3620B) and 
controlled by a thermoelectric controller (ILX-Lightwave, LDT-5412). 

The laser was pumped well above threshold to ensure operation in the coherence collapse 
regime: the injection current was set to ~20 mA so that the chaotic fluctuations dominate the 
background noise. The external-cavity formed by the abovementioned components results in 
a large roundtrip delay time of 57.68 ns. The feedback strength, defined as the ratio of the 
optical feedback power fed back into the laser to the laser power in the absence of feedback 
was set to ~8%. As we will not focus on the dynamical properties, finding the optimum 
operating conditions for the RBG by a careful adjustment of the feedback strength or the 
injection current is beyond the scope of the present work. However, we stress that one can 
optimize the statistical properties of chaotic dynamics by carefully controlling the feedback 
level. 

2.2 Post-processing 

The dynamics of the laser intensity were detected at a photodiode (PD), and then acquired by 
a real-time oscilloscope (LeCroy WaveMaster 813zi, 13 GHz bandwidth). The experimental 
data was digitized by the 8-bit analog-to-digital converter (ADC) in the oscilloscope. As 
mentioned above, the post-processing employed for the chaos-based RBG consists of the 
calculation of the HFD and followed by the retention of the LSB. For the first approach, we 
point out here that we do not extract more bits than the limit set by information theory, 
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leading to physical RBG; for the second approach, we attempt to extract as many bits for each 
sample as possible, so as to realize ultra-high speed physical-based pseudo RBG. 

In our experiments, unlike many previous optical RBG schemes summarized in the 
introduction, we choose a high sampling rate of 40 GHz. The chaos bandwidth obtained from 
such an ECSL is on the order of several GHz, and the bandwidth of the oscilloscope is 13 
GHz. The detection bandwidth and sampling rate are sufficient to capture all relevant 
dynamics in the intensity time series. In addition, our two schemes of chaos-based RBG only 
involve limited post-processing. Moreover, as also explained in [10, 11], a single laser is 
necessary contrary to [9, 38–40, 45, 48], and contrary to [38, 49, 50], we do not need to use 
and adjust a delay line to generate a second, uncorrelated, bit stream from the measured 
stream. Thanks to the use of HFD, the rigorous, and experimentally difficult, threshold 
voltage adjustment, as well as the selection of the retained range of output intensities, 
described in [9, 45, 46] are also avoided. 

3. Experimental results 

3.1 Statistical properties of laser chaos 

True random bit sequences lack any pattern in their appearance and, in principle, are 
completely unbiased and unpredictable. The quality of the generated random bits depends 
upon the statistical properties of the sources of randomness. 

 

Fig. 2. Statistical properties of laser chaos. (a) PDF and (b) autocorrelation function of the 
chaotic waveforms. The blue curve in (a) denotes the fitted Gaussian. 

Entropy sources with a close to uniform distribution are good candidates for high-quality 
RBG; however, the physical sources known to us do not have an ideally symmetric PDF, to 
say nothing of being uniformly distributed at each digitization level. For example, Fig. 2(a) 
presents the calculated PDF for the chaotic laser intensity generated by the experimental setup 
displayed in Fig. 1. The PDF is directly obtained from 73 10× digitized samples. Although the 
PDF resembles a Gaussian distribution, the asymmetry of the PDF is clearly identified by 
comparing it with the fitted Gaussian [blue curve in Fig. 2(a)], which is a common feature of 
chaotic semiconductor lasers. In our case, the coefficient of skewness and kurtosis are about 
0.27 and 4, respectively, which substantially deviate from a Gaussian distribution. This means 
that keeping all LSBs of the 8-bit data cannot pass the statistical tests of randomness since the 
non-uniformity of the initial distribution influences the randomness of the bits generated. 
Moreover, neither are consecutive bits independent. The autocorrelation trace for the full 8-bit 
signal is shown in Fig. 2(b). It can be clearly seen that peaks appear at integer multiples of the 
delay time, e.g., a pronounced peak with a correlation coefficient about 0.34 is located at a 
delay time of 57.68 ns, which corresponds to the roundtrip time in the external-cavity. 
Therefore, to extract random bits from the chaotic sources, post-processing techniques should 
be employed. 
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Fig. 3. PDFs over the range of digitization levels for (a) 7 LSBs, (b) 6 LSBs, (c) 5 LSBs, and 
(d) 4 LSBs retained from each 8-bit sample. 

Selection of m LSBs is a common, simple post-processing procedure for improving the 
uniformity of the bit distributions and for destroying the residual correlations in the original 
dynamics [31–33, 37–40, 51]. Here, this technique is applied to our experimental signal. 
Figures 3(a)-3(d) show the distributions for 7m = down to 4, respectively. In Fig. 3(a) only 
the most significant bit (MSB, 7m = ) is excluded and the corresponding PDF significantly 
differs from a uniform distribution. When more MSBs are discarded the uniformity of the 
PDF is improved, as shown in Figs. 3 (b) and 3(c). Furthermore, if one selects only 4 LSBs 
( 4m = ) for each 8-bit sample, the resulting PDF is close to uniform, as is illustrated in Fig. 
3(d). In addition, the residual correlations are gradually eliminated as the number of discarded 
MSBs increases even though the original dynamics exhibit obvious short-term correlation. 
For this reason, the signature of the feedback delay time is not important for RBG when such 
post-processing is introduced. We will explore the residual correlation feature for our chaos-
based RBG in the following sections. 

Note that in the experiment, for the fixed injection current and feedback strength given 
above, random bits obtained by keeping the 4 LSBs of the 8-bit data cannot pass all the 
statistical tests of randomness. This is because there still exist significant biases or 
correlations in the generated random bits. To further distill the randomness, as mentioned 
above, additional post-processing is needed. In this study, we therefore only employ the 
selection of m LSBs as the second post-processing step after calculating the HFD of the 
experimental signal. 

3.2 High-quality physical RBG 

In order to achieve efficient generation of random bits, we adopt the nth-order finite 
differences (HFD) procedure described in [47], which allows one to extract random bits from 
any source of randomness with nonsymmetric distribution. A similar method for increasing 
the speed of chaos-based RBG was previously discussed in [10, 11]. To generate random bit 
sequences, we need not choose the optimal conditions regarding the chaotic dynamics and 
acquisition process. This is because the calculation of HFD reduces dependence on these 
properties. The working point of the laser is fixed as given in Sec. 2, unless otherwise stated. 
In the HFD method, the generation of random bit sequence consists of the following two 
steps. The first step involves collecting N integer samples ka ( 1, 2, ...k N= ) with 8-bit 

resolution from the measured output intensities of a chaotic laser. They are transformed into 
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floating-point numbers with M-bit resolution ( 8M >> ), and then the nth-order differences of 
the floating-point data are calculated. It is worth noting that one cannot aim to extract all 
significant bits from each obtained sample since strong correlations appear in the bit stream 
after the calculation of HFD. Therefore, one should discard certain MSBs to eliminate these 
correlations. To this end, in the second step, one just retains m LSBs of each new variable in 
the floating-point representation and consecutively concatenates all the retained bits to obtain 
a long random bit sequence. 

 

Fig. 4. (a) Characteristics of the calculated floating-point numbers based on 50th-order finite 
differences. (a) Time series and (b) its associated statistical distribution. The dashed lines stand 
for the mean value of the time series. The blue line in (b) represents a fitted perfect Gaussian 
distribution. 

As a point of comparison, we evaluate the potential rate of randomness extraction in the 
first approach, by properly quantifying the amount of randomness in the obtained 
sequences { }ka . While, the Shannon entropy and min-entropy may have operational 

information-theoretic meaning in the present context [42] we opt to evaluate the min-entropy, 
which is the most conservative way to measure then randomness that could be extracted from 
a discrete random variable [25, 44]. 

The min-entropy is defined as log{max( )}iH P∞ = −  with max( )iP being the probability of 

the most likely event [42] and iP is defined to be the probability of the ith value of the 

alphabet of the discrete variable. In our experiments, the real-time oscilloscope 
recorded 710 samples at a time of 8-bit data at 40 GHz sampling rate; We calculated the min-

entropy values of 200 sets of 710 samples and then made an average over 200 values of min-
entropy. For our experimental data, the final min-entropy is ~4.4 bits per sample, which 
indicates that, even the best method for extracting randomness cannot lead to more than 4.4 
information-theoretically random bits from each raw 8-bit resolution sample. In addition, 
random bit sequences obtained by directly keeping 4 LSBs per sample cannot pass the entire 
statistical randomness tests because the generated random bit sequences may still contain 
certain biases and correlations, which can stem for example from long term correlations 
associated with the external-cavity length of the chaotic laser [52, 53] as illustrated in Fig. 
2(b). (Thus, in the first approach, the technique of calculating nth-order finite differences is 
utilized.) Firstly, all the random integers ka of 8-bit resolution obtained from our oscilloscope 

were transformed into floating-point numbers according to the procedure described in [26, 
47]. Secondly, the HFD of these numbers were calculated. Specifically, the maximal number 
of bits that represents each sample is chosen to be 52, since numbers represented in the 
double format have a maximum precision of 52 bits. The maximal difference 
order maxn allowed for the experimental data can be determined by the condition (1) in [47], 

where the author demonstrated the violation of that condition leads to appearance of strong 
correlations in the generated bit stream. However, in our case, we aim to extract only 4 LSBs 
for each sample to avoid exceeding the min-entropy. The first step of our procedure is to 
calculate the 50th-order finite differences of a sequence of the floating-point numbers. It is 
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worth noting that the use of lower-order differences leads to 4 LSB-based random sequences 
that pass the standard statistical tests (as mentioned below) but not the three-standard-
deviation criteria. This highlights the beneficial role of HFD post-processing in the extraction 
of randomness, as well as the limitations of the three tests cited above. Figure 4(a) presents 
the fluctuation evidence for such floating-point numbers. One can see that these numbers 
symmetrically fluctuate around their mean. As a result, a highly symmetric distribution is 
obtained with a coefficient of skewness of the order of ≈10−7, as shown in Fig. 4(b), where a 
perfect Gaussian distribution fit is also depicted, indicating that one can achieve RBG based 
on the data after this post-processing. Before extracting random bits, all new ka after 

calculating the HFD were transformed into positive numbers by adding 512 and mapped into 
the binary format. Finally, the random bits obtained by keeping 4 LSBs for each sample after 
the use of HFD have a distribution that is significantly closer to uniform than that of Fig. 3(d). 
Moreover, the serial correlation coefficients are also significantly closer to zero, as will be 
shown below. In that regard, we consider that the use of HFD combined with a restriction to 
the number of LSBs corresponding to the min-entropy may have the potential to generate 
information-theoretic random bits at a rate of160 Gb/s ( 4 LSBs 40 GHz)= × . 

Table 1. Results of NIST statistical tests for physical random bits. The results have been 
performed using 1000 samples of 1 Mbit data and a significance level 0.01α = , for 
“Success”, the P value (uniformity of p values) should be larger than 0.0001 and the 

proportion should be in the 0.99 0.0094392± range [56]. For the tests that produce 
multiple P values and proportions, the worst case is shown. 

Statistical test P value Proportion Result 

Frequency 0.450297 0.9890 Success 

Block frequency 0.610070 0.9910 Success 

Cumulative sums 0.211144 0.9890 Success 

Runs 0.911413 0.9830 Success 

Longest runs 0.406499 0.9900 Success 

Rank 0.234373 0.9910 Success 

FFT 0.701366 0.9900 Success 

Nonoverlapping templates 0.302058 0.9850 Success 

Overlapping templates 0.090388 0.9870 Success 

Universal 0.812905 0.9850 Success 

Approximate entropy 0.308561 0.9900 Success 

Random excursions 0.137487 0.9888 Success 

Random excursions variant 0.164071 0.9888 Success 

Serial 0.285427 0.9930 Success 

Linear complexity 0.738534 0.9850 Success 

 
We verified the quality of the generated bit sequences utilizing three collections of 

standard statistical tests. These are the pseudorandom bit sequence test program (ENT) [54], 
the Diehard tests [55], and the National Institute of Standards and Technology test suite 
(NIST Special Publication 800-22) [56]. 

First, a sequence of 1 Gbit length was tested in ENT program. The ENT results are as 
follows: Entropy = 1.000 000 bits per bit (the optimum compression would reduce the bit file 
by 0 percent), 2χ distribution is 0.39 (randomly would exceed this value 50% of the times), 
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arithmetic mean value of data bits is 0.5000, Monte Carlo value for π is 3.142211186, and 
serial correlation coefficient is 0.000015. Second, we carried out the Diehard tests according 
to the description in [55], which outlines that the Diehard battery consists of 17 tests, and p-
values obtained in each test (269 in total for a sequence of 92.5 10× bits used in our case) 
should not be 0 or 1 up to 6 decimal places and are supposed to be uniform in [0, 1). The 
overall p-value ( 0p ) characterizes the uniformity of this distribution. We 

obtained 0 0.669760[KS]p =  with minimal 0.0079p = and maximal 0.9984p = from the total 

number of 269 (KS denotes the Kolmogorov-Smirnov test). Finally, the NIST tests were 
performed using 1000 instances of 1Mbit sequences and are shown in Table 1. 

The bit sequences generated by the chaotic dynamics of a semiconductor laser with 
optical feedback at the bit rate of160 Gb/s passed all three standard randomness tests of ENT, 

Diehard, and NIST. 

 

Fig. 5. The results of the statistical bias B and serial autocorrelation coefficient kC for the 

physical RBG at a speed of 160 Gb/s. (a) B as a function of the number of generated bits N; (b) 
first 200 serial autocorrelation coefficients for the binary sequence of 10 Gbit length. The 

values of kC were calculated by ensemble averaging over
4

1 10× sequences of 1 Mbit length 

each. 

It is worth noting that the standard tests above operate on bit sequences that are limited to 
a couple of Gbits, such as 1 Gbit in ENT and NIST tests, as well as 2.5 Gbits in Diehard tests. 
It is important to check the statistical properties on longer sets that are more in line with the 
large bit rates obtained here. Therefore, to further evaluate the randomness of the long 
random-bit sequences, we calculate the statistical bias B and the serial autocorrelation 
coefficients kC . B and kC are defined as [47] 

 0.5 ,iB b= −  (1) 

 
( ) ( )

( )2
,

i i i k i

k

i i

b b b b
C

b b

+− −
=

−
 (2) 

where ib ( 1, 2,...i = ) takes the values “0” or “1”, k is the delay in bits and the averaging ⋅ ⋅ ⋅ is 

performed over the index i . Note that the statistical bias B and the serial autocorrelation 
coefficients kC are random variables which vary from one sequence to another and depend on 

its length. For high-quality random bit sequence of length N , both the statistical bias B and 
the absolute value of the serial autocorrelation coefficients kC should be smaller than the 

three-standard-deviations: 0.53 1.5B Nσ −= for B and 0.53 3C Nσ −= for kC with a probability of 

99.7% [12]. Figure 5(a) shows on a log-log scale the dependence of the statistical bias B on 
the sequence length N . It is apparent that the statistical bias always lies below the 3 Bσ -

criterion (dashed line). Figure 3(b) shows the first 200 autocorrelation coefficients for a 
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sequence with a length of 10 Gbits. One can see that, all values kC are within the range that is 

bounded by dashed lines corresponding to the 3 Cσ -criterion. Therefore, both criteria are well 

satisfied for the random bit sequence of 10 Gbits. 

3.3 Ultrafast physical-based pseudo RBG 

Let us now consider the randomness extraction in the second approach. Concretely, 
information theory shows us that if one samples at a rate sR GHz and quantizes on M bits, the 

entropy rate of the resulting discrete-time stochastic process cannot exceed sM R⋅ b/s. As an 

example [11], reported a generation rate of 300 Gb/s with 20 GHzsR = and 8 bitsM = , which 

violates the above reasoning. Here, in this second approach, we aim to extract as many bits as 
possible from the chaotic dynamics of a single ECSL that pass the three standard tests and 
satisfy the three standard-deviation criteria. To this end, the calculation of HFD of the initial 
data was also implemented. In contrast to [26, 47], where all the random integers ka were 

transformed into floating-point numbers of 52-bit resolution, in our implementation here the 
initial data of 8-bit resolution were transformed into a 64-bit integer data type (“int64”). 
Moreover, we found that the maximal difference order max 58n = determined by condition (1) 

in [47] may be not the optimal one, and we obtained better performance for generating 
random bits when maxn was slightly increased to 62. Therefore, the 62th-order finite 

differences were used. The need for such a high order of difference may be caused by the 
sharpness and asymmetry of initial distribution, as shown in Fig. 2(a). All ka were then 

transformed into positive numbers by adding 622 and converted in binary. 

Table 2. Results of NIST statistical tests for ultrafast physical-based pseudo random bits. 

Statistical test P value Proportion Result 

Frequency 0.651693 0.9830 Success 

Block frequency 0.275709 0.9900 Success 

Cumulative sums 0.186566 0.9830 Success 

Runs 0.079051 0.9850 Success 

Longest runs 0.680755 0.9880 Success 

Rank 0.587274 0.9930 Success 

FFT 0.676615 0.9910 Success 

Nonoverlapping templates 0.011709 0.9810 Success 

Overlapping templates 0.074330 0.9850 Success 

Universal 0.158133 0.9850 Success 

Approximate entropy 0.552383 0.9870 Success 

Random excursions 0.256333 0.9823 Success 

Random excursions variant 0.184128 0.9871 Success 

Serial 0.500279 0.9900 Success 

Linear complexity 0.662091 0.9890 Success 

 
Next, the randomness extraction was carried out. To reiterate, even though all numbers 

contain 64 bits, again, one cannot extract all significant bits from each of them because 
keeping the full bits results in appearance of strong correlations in the generated bit 
sequences. To eliminate these correlations several of the MSBs have to be discarded. One can 
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estimate the number of bits that need to be removed by plotting PDFs of the truncated values 
as is done in Fig. 3. Thanks to HFD, the removal of only a few bits leads to flat PDFs. Then 
one has to further check the ENT, Diehard, and NIST tests to determine the number of bits 
that should be retained. Based on extensive tests, we found that an extraction of 55 LSBs 
from each sample may pass all the statistical tests for randomness. We carried out the same 
procedure of the randomness tests as that for the physical RBG in the first approach. The 
ENT results are as follows: Entropy = 1.000 000 bits per bit (the optimum compression would 
reduce the bit file by 0 percent), 2χ distribution is 0.27 (randomly would exceed this value 

50% of the times), arithmetic mean value of data bits is 0.5000, Monte Carlo value for π is 
3.141596402 and serial correlation coefficient is −0.000014. For the Diehard tests, it was 
obtained that 0 0.068578[KS]p =  with minimal 0.0017p = and maximal 0.9897p = from the 

total number of 269. Table 2 presents the NIST results. 
For this second approach, the statistical bias B and the serial autocorrelation 

coefficients kC of the random bit sequences were tested as well. As 55 LSBs were extracted 

from each sample, one can easily obtain a long bit-sequence from the chaos-based RBG. The 
bias was evaluated versus the length of the sequence N . It is clearly shown in Fig. 6(a) that 
the statistical bias B of the random bit sequence always keeps below the significance level of 
3 Bσ up to 50 Gbits. In the meantime, the first 200 serial autocorrelation coefficients kC of 50 

Gbits random bit stream is presented in Fig. 6(b). One can see that, all values kC are kept 

within the range, which is bounded by dashed lines corresponding to the 3 Cσ -criterion. These 

results further confirm the uncorrelatedness of the sequences, indicating that the chaos-based 
RBG can also be used to produce random bit sequences of ultra-long length at the same time 
the corresponding generation rate is increased up to the order of a couple of Tb/s. 

 

Fig. 6. The results of the statistical bias B and serial autocorrelation coefficient kC for the 

physical-based pseudo RBG at a speed of 2.2 Tb/s. (a) B as a function of the number of 
generated bits N; (b) first 200 serial autocorrelation coefficients for the binary sequence of 50 

Gbit length. The values of kC were calculated by ensemble averaging over
4

5 10× sequences of 

1 Mbit length each. 

The results given above suggest that the generated bit sequences passed all the statistical 
tests for randomness, in the sense that the inclusion of 55 consecutive LSBs leads to RBG at a 
rate of 2.2 Tb/s ( 55 LSBs 40 GHz)= × , which is the fastest generation rate based on the 

chaotic dynamics of semiconductor lasers known to us. However, as it violates the limit set 
by information theory, we have to consider the corresponding generator as an ultrafast 
physical-based pseudo random number generator. 

A further increase of the generation rate of random bits could possibly be achieved by a 
transformation of the initial data into a class of integers such as “int128” or “int256” (see, for 
instance, the GNU Multiple Precision Arithmetic Library [57]), which may result in a 
generation rate of 4 Tb/s or 8 Tb/s. Such types of integers can be implemented in hardware by 
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employing field programmable gate array (FPGA), but a discussion of the experimental 
realization of such approaches is beyond the scope of this paper. 

Finally, we would like to make several remarks on our work. The two approaches 
discussed here do not require extensive post-processing. In the two, the post-processing only 
involves the calculation of HFD and the selection of m LSBs. Moreover, what we discuss 
requires neither the use of several lasers as in [38–40, 45] nor of delay lines as in [38, 49, 50]. 
Because of the post-processing chosen, we need not worry about the details of the acquisition 
nor of selecting a specific chaotic regime for the laser. Indeed, we checked (results not given 
here) that the randomness tests are passed for a wide range of operating parameters and for 
various acquisition conditions. That is, the two approaches are insensitive to these parameters, 
which is obviously another major advantage in addition to the ultrafast bit rate. Moreover, the 
two approaches introduced in the present study can also be carried out in a more compact 
photonic integrated circuit [27, 28]. 

4. Conclusion 

In summary, we have reported two approaches to ultrafast RBG based on the chaotic 
dynamics of a semiconductor laser subject to optical feedback. The post-processing only 
includes the calculation of HFD and the selection of LSBs. In the first approach, we only have 
retained 4 LSBs for each sample according to the min-entropy and demonstrated a possibility 
of an high-quality physical random number generator with a generation rate of 160 Gb/s; in 
the second approach, starting with the use of a transformation of initial data obtained with 8-
bit resolution into a 64-bit integer type, we have succeeded in extracting 55 LSBs and shown 
a feasibility of ultrafast physical-based pseudo RBG at a rate of 2.2 Tb/s. As mentioned 
above, post-processing requires additional computational resources. These might be based on 
parallel arrays of suitable ultrahigh-speed FPGAs or ASICs, though the actual implementation 
is beyond the scope of the present study. Our work not only highlights an approach to 
physical RBG that satisfies the bounds set by min-entropy, but also demonstrates the high 
potential for ultrafast physical-based pseudo RBG based on the chaotic lasers. 
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