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Feedback circuits ruled by ttme-delayed differential equations (DDE) can be used as the epuiters
m optical and electronic chaos-based secure commumnications. The degree of secunty of
commumcations 15 limited by the possibility of recovenng the parameters of the chaos-generatng
emitter. We analvze several methods for recovering the fime delays in modified DDE

systems with two feedbacks. With increasing zam factor of the feedbacks it becomes difficult or
even impossible to recover the time delay of the modified corcwit. © 2005 Optical Sociery

af America

The history of chaos-based communications started at
the begmning of the 1990s, when Pecora and Caroll pub-
lished therr fundamental work on chaos synchromization.!
Soon after, chaotic waveforms were found to be a possible
camier for coohdential information m
communications® A zreat number of examples of chaos-
based commmnication systems have been reported since that
time. We consider here a specific type of chaos-generating
emifter which has a tfunable source controlled by a feedback
loop with a nonlinear element and a time delay (see, for
example, Fef 3). The dynamics of thus cucwt can be de-
senbed by the differential delay equation (DDE) known as
Tkeda's e:quai:i;l:un.'1 Such a eireuit 1s remarkable due to the fact
that it 15 characterized by hyperchaotic dynamics and exhib-
its high-dimensional attractors (the dmmension of chaos
reaches values up to 500) with many positive Lyzpunov ex-
ponents in the case of sufficiently strong nonlmeanty of the
feedback.” Such a circuit can be synchronized easily® and
provides a lugh rate of communication, for example, of an

Sacure

order of several Ghats PEIS-EI'.‘DD.EI.-"

In the beginning the high complexity of a chaotic camier
was considered to be a sufficient condition for a high degree
of securj.ty.s However, it was later shown that lngh dimension
by itself does not prevent cracking of a Sj":»tlafrxl.sl Thus the
reconstuction of all parameters of a cirewt ruled by DDE
and the recovery of the transmutted mmformation have been
achisved for comparatively low dimensionality of chaos'*™"
and later for a hyperchaoctic system despite the hugh dimen-
sicnality of the chaotic camier'® In Fef 14 we described 2
way of cracking the parameters of a hyperchaotic system by
concentrating mostly on binding the type of nonlineanty and
the reconstruction of its parameters.

Mevertheless, the problem of T-recovery 15 still of great
mterest and has not been carefully wnvestigated yet. We dis-
cuss some aspects of this problem in this Letter.

The block-diagram of the chaos-generating single-

feedback cireunit 15 shown in Fig. la. It consists of a con-

trolled source (the tunable laser diode in Fef 3 or the VOO
in Eef 15), a nonlinear element (the birefringent plate placed
between two polarizers in Ref 3 or the set of resonant cir-
cuits in Ref. 15), a photodicde” or diode,”” a low-pass filter
with a cutoff frequency f=1/277) . and a ttme delay T. The
dynamics of such a circwst are desenbed by the DDE:

dylt)
——=BFy(+-T)], (1)
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where y(t) 15 the normalized dimensionless vanable, & is the
feedback gain factor or bifurcation parameter, and F is the
function descnibing the nonlinear element In the case when
the birefringent plate 1= in use, F 1s the sin” function with the
initial phase shift &, F[¥(r)]=sin’[W)+ D] It should be
noted that Eq. (1) also describes a feedback circuit with con-
trolled nonlimeanty and uncontrolled source (for example,
the controlled Mach-Zehnder interferometer used in Fef. 16).
This system can be attacked 51.1.::@5551]1}'.[4 We will consider
that system as a classic example for testing known methods
of T-recovery.

It was shown that the single-feedback nonlmear delayed
circuit with the band-pass filter instead of the low-pass filter
also generates hyperchaohe signa]:-,.]-" These signals can be
used as carmers in the narow-band transmitting channels. In
the case of the sin’-type nonlinearity and of a band-pass filter
formed by a low-pass filter and a lugh-pass filter, the chaos-
gemerzting cireuit is ruled by the normalized equation:'’

) [ 71 d_]r‘{ i'J 1
_}'[.r}l 1 +'r_2_|| + 17 o + -

Xjry{r}d:=ﬁsinl[yg.r—T,'|+¢rc,], i2)
o

where 7; and T, comespond to the cutoff frequencies of the
low-pass and high-pass filters. We wwvestigated the possibil-
ity of recovenng the time delay of that system, too.
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FIG. 1. The block diagrams of chaos-based wansmitters: (a) with one feed-
back om the coentralled soumce, (b) with mwo feedbacks on the comfrolled
source and the comirolled noolinearity, c) with two parallel tme delays in
one feedback and with a confrolled source; m(f) is the information sizmal.

For better security we propose to use two feedback loops
with different delays T} and T;: one feedback 15 controlling
the source and another one is controlling the nonlmeanty.
The block diagram comesponding to that transmitter i1s
shown in Fig. 1b.

We consider here the particular case, in which the non-
lmeanty 15 represented by a confrolled Mach-Zehnder inter-
ferometer (for example, see Ref. 16) that 15 described by the
nonlinear function Fp (1) ] = sinp(f)+$p]. We suppose that
the phase shift @ can be controlled.

In the case of the feedback with the low-pass filter, the
dynamics of such a cireuit are desenbed by a DDE similar to
Eq. (1)

dyl .
yigh+ 7y ':1:] =B sin*{y(t— Ty )+ Pg[1 +kpit—T1)1},

(3

where k 15 the zgam in the feedback confrolling the nonlin-
earity (see Fig. 1b).

The band-pass feedback case 15 ruled by an equation
similar to Eq. (2):

a‘_}'[r}+ 1 Jr 0d
—_— Tlar
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_'vg.r}l 1+ ;.l + Ty
=g ain {p(1— T+ B[ 1+ kp(r—T3)]). (4)

It should be noted that Eqs. (3) and (4) describe also the
dynamics of the smgle-feedback circuit with two parallel

time delays; such a cirewit is shown in Fig. le. The models
(1}—(4) were used for pumerical smmulations and tests of the
Trecovery methods.

There are several known methods that can be used by an
eavesdropper to recover the value of the time delav T.

1. ANALY SIS OF THE RETURN MAFPS OF THE TRANSMITTED
SIGNAL

A retwn map represents the functiom p(r) versus yir
—tg), where ry iz the vanable embedding time shift. When
tp=7T, this function 15 considered as an analog of a 2D sec-
tion of the phase h?jec'tnrf.ls For tp=1T, the return map ex-
hibits some distngmshable structure containing advanced in-
formation about the type of the nonlinear function F. ' In the
other cases, the refwn map represents a senes of states with
isotropic creular distibution and does not contain any struwe-
ture.

2. ANALYSIS OF THE AUTOCORRELATION FUNCTION
(ACF) OF THE TRANSMITTED SIGNAL

In some cases the ACF of the output signal y{r) has a
peak that cormesponds to the exact value of T. ' This method
15 the least sensitive 1n comparison with all others; we ob-
served such a peak only for the simple single-feedback cir-
cuits shown i Fig. la.

3. APPLICATION OF THE AVERAGE MUTUAL INFORMATION
TECHNIQUE (THE AMI TECHNIGIUE}

The AMI techmiques are borrowed from mformation
theory. ' The AMI is 2 statistical function that establishes a
eniterion for mutual dependence between two measurements;
such a enterion 15 based on the notion of information hies
between them The two measuwrements we consider here are
the output signal ¥(f) and a delaved version of 1t, ¥{r —1y).
If »(r} and ¥(r—7y) are not completely independent, the
AMI function versus the embedding vanable ry exhibais a
sharp peak located at rg=1T. It 15 clear that in owr case y{r)
and y(f—ty) ave not independent, since they are connected to
each other by the DDE.

4. ANALYSIS OF THE TIME DISTRIBUTION OF EXTREMA

The method based on a statistical analysis of ime inter-
vals between all pairs of extrema in the fime series was de-
seribed in Ref 20. We modified this method slightly by using
the statisties of a binary funchon we plot in the tme domain.
This function 15 equal to “0" everywhere, except for the
moments cormesponding to maximma of the sampled time se-
nes y(r), where 1t 15 equal to “1."”" Next we simply calculate
the sum of many limmited senes of that inary function, each
sertes having the same duration (longer then expected value
of T). Every senes begins at arbitranly chosen moments
when the binary function 15 equal to 1. Such a sum displays
a peak located at +=1T (see below).



5. RECOVERY OF BY LOCAL LINEAR FITS IN A
LOW-DIMENSIONAL SPACE

Binner” eral. and Zhou and C.-H Lai” proposed a
method which is tailor-made to analyze ime senes {y,} pro-
duced by scalar time-delay systems. Let us first consider the
sealar fime-delay svstem descmibed by Eg. (1). They pre-
posed to work m  the three-dimensiomal space
[dy () dt, p(1),3(t— T1]. In this low-dimensional space, the
system 15 confined to a two-dimensional mamifold ruled by
the constraimt mydv/di+y(8) —F[y{t—T)]=0. In Light of
the previous properties, Bunner #f al. proposed, for each tome
mndex i, the following discrete local linear model:

.]-?r=ﬂr+br.]-"r+".|}'| Iyn [5.:'

where ¥, 15 an estimate of the time derivative, fj 15 an index
comesponding to 2 fime delay, and &, and ¢, are parameters
of the local model. The parameters of the model are found by
a least-squares fit. From the residuzl emor of the fit, an av-
erage fitting error o can easily be determuned for the whole
time series {y,}.°! This fiting error o is minimal when 75
comesponds to the delay equal to time I, because only in
that case do the triples (¥, .5, .», r.:'} fulfll smltanecushy
the above-mentioned constraint. The unknown value of the
delay time thus comesponds to a minimum of the average
fithng emror o.

In the case of a tme-delay svstem ruled by a set of
coupled delay-differential equations, Hegger ar al ™ propose
to add a Takens-hke embeddmg to the model used for a
sealar system. This leads to a local hinear model of the form:

M A
J?r=ﬂ,+le.:'bijp, }+}ED Vg1 i6)

where M represents the mumber of addifional delaved van-
ables considered i the model This model will be used for
the systems with band-pass filters since the mtegro-
differential equations describing these systems [Eq. (2)] can
be trapsformed into a set of two coupled delav-differential
equations.

We mvestgated numerically the chaos-generating emut-
ters bazed on the circuits desenibed by Eqs. (1)—(4). We used
the Funge—Eutta procedure to obtam the fime seres, next
appled the T-recovery methods listed above. For the coremt
with the low-pass filter, the parameters of the cireuit are:
n=53ps, I}=100n=05ms, T,=077T;=0386 ms (ar-
bitrarily chosen), y=0T747 (arbitrarly chosen). For the
band-pass filter, we added the value of the zecond tome con-
stant 79=23 ps. The parameters 7] and T are close to the
parameters of the expenimental setupn.'1 The normalized bifur-
cation parameter & was varied from 0 to 23, The zain k of
the feedback loop containing the time delay T'> was vaned
from 0.1 te 0.43. The last value cerresponds to the *'sym-
metrical” case: k=1, when the lefi-hand side of Egs. (3)
and (4) can be written as sin [(r— Ty +y(r— Tdy]

We analyzed the time seres of the output sizmals for
different duration I: 1=20T;, I=100T and I=3500T,.

The resultz of the recovery of T for the cirewit with the
single feedback loop and the sin” nonlmeanty (Fig. la) are
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FIG. 2. Becovery of the vahe of the dme delay T for the ransmitter with
the low-pass filter shown m Fig la for /=207, and 8= 25: (a) an example
af the eufpat sigpal, (b} histopram of the amplitode, (c) the refum map, (d)
the ACF, (e} the AMI fnchion, {f) the time distribution of maxima (g)
recovery of I by linear fits in a three-dimensional space.

shown m Fig. 2. Ope can see an example of the chaotic
output signal (Fiz. 2a) and the distmbubon of the ampliude
probability (PDA) (Fig. 2b). It can be seen that the PDA 1=
almost Gaussian for @ =25, and thus we are dealing with a
high-dimensional chaos. The Lyapunov dimension of chaos
can be estimated by the equation: d= 0387/ 7y =730, Th=s
approximate equation has been derived from a computation
of the Lyapunov spectrum based on Fammer's method = Tt is
m agresment with the conjectures on chaos dimension pro-
posed 1 Bef 24, Despite that high value of d (the highest
value of 4 reached expennmentally 15 1.5 fimes IEssjb, all of
the methods of T-recovery show that 1t 1= possible to deter-
mine the value of the time delav. The retwn map (Fiz. 2c)
does not represent a series of states with isetropic cireular
distnbubon and contains a dishmpmshable stochore (ez.,
showing that 3 periods of the nonlinearity participate m the
chaos generafion). The ACF (Fig. 2d) also exhibits a remark-
able peak at i=T; sharp peaks are well seen also m the AMI
curve (Figz. 2e), in the time distnbution of maxima (Fig. 2f),
and 1 the curve representing the average fitting error of the



that the system with two delavs can be made secure with
respect to known attacks based on the identification of the
time delav.

The same results were obtained i the case of analv=is of
the retwm maps. When # inecreases, this analysis 15 not suf-
ficiently semsitrve to recover the values of time delavs and
break the systems with two feedback loops.

Thus we have iwvestigated a chaos-generating cwemit
ruled by DDE from the point of view of secunty of the
commmumications when this cwenit 15 In use as an emitter
Despite the possibiity of generating hyperchaotic signals,
such a cireurt had been considered previously to be one that
could be successfully attacked and reconstructed by an
eavesdropper. Nevertheless, numerical results obtained show
that the addition of the second delay can mereaze the security
of the cryptosystem. The modification we propose makes the
system essentially more secure than the system based on a
single feedback.

Obviously, there are many other possibibtes for modi-
fying the system with two feedbacks. We are going to ana-
lvze different schemes for chaos-based communications in
our next paper.
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