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Abstract:  16 

The recent democratisation of high-throughput molecular phenotyping allows the rapid 17 

expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, 18 
transcriptomics, proteomics, metabolomics, as well as microbiome metabarcoding), that 19 

now represent innovative perspectives for environmental assessments. Indeed, when 20 
developed for ecologically relevant species, these emerging “omics” analyses may present 21 

valuable alternatives for the development of novel generations of ecological indicators, that 22 

in turn could provide early warnings of eco(toxico)logical impairments. 23 
This pilot study investigates the bio-indicative potential of different multi-metric tools based 24 

on different high-throughput molecular phenotyping approaches (i.e. metabarcoding of the 25 
intestine microbiome, and liver metabolomics by nuclear magnetic resonance (NMR) and 26 

liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) on two 27 

sentinel fish species (Perca fluviatilis and Lepomis gibbosus) from a set of eight water bodies 28 

of the peri-urban area of Paris (France). We show that the LC-MS metabolome dataset 29 

allows remarkably clear separation of individuals according to the species but also according 30 
to their respective sampling lakes. Interestingly, the similar variations of Perca and Lepomis 31 

metabolomes occur locally indicating that local environmental constraints drive the 32 

observed metabolome variations beyond their obvious genetic differences. Thus, the 33 

development of such reliable molecular phenotyping for environmental monitoring 34 

constitutes a promising and innovative bio-indicative tool for environmental assessment. 35 

 36 

Keywords: microbiome metabarcoding, untargeted metabolomics, environmental 37 

assessment, biomarkers, sentinel species 38 
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1. INTRODUCTION 40 

In the past decades, the use of bio-indicator aquatic organisms has been widely adopted in 41 

order to monitor, maintain or improve the quality of water bodies worldwide.1 In parallel, 42 

the difficulties and the rational limits of direct chemical monitoring for providing sufficient 43 

information to adequately assess the risks from anthropogenic chemicals in the environment 44 

have been increasingly recognized.2 45 

Recent years have offered intense implementation of molecular techniques in a wide variety 46 

of ecology research fields. Modern bio-monitoring and bio-assessment may greatly benefit 47 

from the specific development of high-throughput methods that potentially provide reliable, 48 

high quantity and quality standardized biomolecular data in a cost- and time-efficient way.3-4 49 

 50 

Fishes, in particular, present unique features that make them especially relevant for bio-51 

indication purposes. They indeed occupy in almost any aquatic habitat, as they are capable 52 

of experiencing different and variable environmental conditions.5 Fishes are also responsive 53 

to numerous abiotic (e.g. temperature, water velocity, sediment load, hypoxia) or biotic (e.g. 54 

famine, predation, parasitism) pressures, together with anthropogenic stressors such as 55 

contaminants, that represent additional constraints that fish may experience in disturbed 56 

ecosystems.6 Environmental stressors are known to induce biological variations, in relation 57 

to the specific physiological, developmental and reproductive capabilities of the different 58 

fish species allowing them to colonize and occupy ecosystems.7 Thus, fishes appear to be 59 

valuable bio-indicators and their individual or community responses to environmental 60 

pressures, therefore, might have a high ecological relevance. 61 

In Europe, for example, according to the Water Framework Directive (WFD), local ecological 62 

quality can be assessed by comparing the community structure (of fishes, but also of 63 

diatoms, sea-grasses, macro-invertebrates, etc.) in impacted sites to those observed in 64 

reference sites, using various biological quality indices.8 However, experts face several 65 

important challenges originating from the main limitation of different diversity indexes 66 

based on fish guild: they remain especially time-consuming, requires costly sampling 67 

procedures, and can even exhibit low responsiveness to field variation.9-10 One other 68 

important drawback of fish diversity-based bio-indicative indexes is that they also present a 69 

high sensitivity to species migration, human transplantation or fishing activities, that 70 

critically compromise their predictive power.11
 On the other hand, fish bio-indication can be 71 
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also considered through various measurable biological traits (e.g. population structure, 72 

genetic or functional diversity, physiological or biological parameters). Some of them have 73 

been already implemented, including morphometrical features,12 punctual biochemical 74 

markers,13 or genetic diversity.7 However, these attempts have also emphasized their 75 

relative limitations in terms of operational predication ability.14 76 

 77 

The recent democratisation of high-throughput molecular phenotyping allows the rapid 78 

expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, 79 

transcriptomics, proteomics, metabolomics, as well as microbiome composition by 80 

metabarcoding). These constitute many early responding biological traits, and represent 81 

promising perspectives for environmental assessments.15-16 

In this context, it is very likely 82 

that emerging “omics”-based analyses, developed for ecologically relevant fish species, may 83 

present valuable alternative for the development of new ecological evaluation tools, that 84 

could provide even earlier warning of eco(toxico)logical impairs.17
 85 

 86 

To this end, the present pilot study investigates the bio-indicative potential of different 87 

multi-metric tools based on different high-throughput molecular phenotyping approaches 88 

(i.e. metabarcoding of the intestine microbiome and liver metabolomics by NMR and LC-MS) 89 

on two sentinel fish species (Perca fluviatilis and Lepomis gibbosus) from a set of eight water 90 

bodies of the peri-urban area of Paris (France). We hypothesize that molecular phenotyping 91 

approaches can be exploited for environmental diagnosis, and provide valuable multi-metric 92 

characters indicative of ecological conditions for both evaluation or prediction purposes, 93 

together with a prospective mechanistic understanding that allows cause-effect relationship 94 

investigation. We compare here the potential phenotypic bio-indication of two sentinel 95 

species, as these organisms could present different or comparable sensitivity and 96 

responsiveness to local environmental constraints, that may reinforce the proof of concept 97 

of their respective interest for “omics”-based bio-indication. 98 

 99 

 100 

2. MATERIALS AND METHODS 101 

2.1. Fish sampling 102 
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Field sampling campaigns were performed during late summer 2015 (7-10th September) in 103 

eight peri-urban pounds around the Paris’ area (Île-de-France region, France), chosen for 104 

their respective eutrophication levels and the presence or the absence of recurrent 105 

cyanobacterial blooms: Cergy-Pontoise (Cer), Champs-sur-Marne (Cha), Maurepas (Mau), 106 

Rueil (Rue), Verneuil (Ver), Varennes-sur-Seine (Var), Fontenay-sur-Loing (Fon), and Triel 107 

(Tri) pounds (Supplementary figure S1).18-19 These sites were sampled by the Hydrosphère 108 

company (www.hydrosphere.fr) with an electric fishing device (FEG 8000, EFKO, Leutkirch, 109 

Germany) for capturing fish alive. The investigation of the fish guild indicates that only the 110 

perch (Perca fluviatilis) and pumpkinseed sunfish (Lepomis gibbosus) were present in all or 111 

almost all these pounds (supplementary table S1) and were thus selected as sentinel species 112 

for further molecular phenotyping analyses by metabarcoding and metabolomics. 113 

Briefly, alive caught fishes (n=5-10 young-of-the-year per pounds and per species) were 114 

directly measured (12.0±4.8 cm), weighed (9.3±2.6 g), briefly euthanized by neck dislocation 115 

and then liver and intestine of each individual was shortly sampled, flash-frozen in liquid 116 

nitrogen and kept at -80°C until analyses, in accordance with European animal ethical 117 

concerns and regulations.  118 

In every lake, sub-surface chlorophyll-a equivalent concentrations attributed to the four 119 

main phytoplankton groups (Chlorophyta, Diatoms, Cyanobacteria and Cryptophyta) were 120 

measured with an in-situ fluorometer (Fluoroprobe II, Bbe-Moldenke, Germany). Sub-surface 121 

water samples filtered on 20-µm mesh size were also collected for phytoplanktonic 122 

community analysis and further metabolomics characterisation, and then kept at -80°C until 123 

analysis.  124 

 125 

2.2. Intestinal microbiome sequencing and OTU analyses 126 

Intestinal microbiome DNA was extracted from each fish individual (4-5 replicate fishes per 127 

pound), stored and filtered following Mouchet et al..20 After DNA concentration and purity 128 

checking, a 295 pb fragment of the 16S rRNA-encoding gene corresponding to the V5-V6 129 

variable region was amplified using 789-F and 1080-R primers and sequenced on an Illumina 130 

MiSeq platform (2x250 bp, Fasteris, Switzerland). Raw reads analysis was processed through 131 

the FROGS pipeline (Find Rapidly OTU with Galaxy Solution) implemented on a galaxy 132 

instance (2.3.0) (https://galaxy.migale.inra.fr/). Sequences were dereplicated before 133 

clustering using SWARM algorithm (2.1.5) with, at first, a denoising step using an 134 
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aggregation distance equal to 3.21 The taxonomic assignation of each cluster was performed 135 

using the BLAST tools. OTU table was rarefied, normalized by Total Sum Scaling using 136 

MicrobiomeAnalyst platform.22  137 

 138 

2.3. Liver metabolite extraction and metabolomics analyses 139 

The liver extraction was performed on 132 individuals (comprising 78 Perca and 54 Lepomis) 140 

with methanol/chloroform/water (ratio 2/2/1.8 – 22 mL.g-1 at 4°C) and the polar fraction 141 

was analyzed on a 600-MHz NMR spectrometer equipped with a 5-mm cryoprobe (Advance 142 

III HD Bruker, Germany) with a noesygppr1d pulse sequence as previously described.19 1H-143 

NMR spectra were treated with the Batman R package for deconvolution, peak assignment 144 

and quantification of 222 putative metabolites.23 145 

The liver extracted polar phase was additionally injected (2 μL) on C18 column (Polar 146 

Advances II 2.5 pore - Thermo), then eluted at a 300 μL.min-1 flow rate with a linear gradient 147 

of acetonitrile in 0.1% formic acid (5 to 90 % in 21 min) with a ultra-high performance liquid 148 

chromatography (UHPLC) system (ELUTE, Bruker). Consecutively, the individual metabolite 149 

contents were analyzed using an electrospray ionization hybrid quadrupole time-of-flight 150 

(ESI-Qq-TOF) high-resolution mass spectrometer (Compact, Bruker) at 2 Hz speed on positive 151 

MS mode on the 50–1500 m/z range. The feature peak list was generated from recalibrated 152 

MS spectra (< 0.5 ppm for each sample, as an internal calibrant of Na formate was injected 153 

at the beginning of each sample analysis) within a 1-15 min window of the LC gradient, with 154 

a filtering of 5,000 count of minimal intensity, a minimal occurrence in at least 50% of all 155 

samples, and combining all charge states and related isotopic forms using MetaboScape 4.0 156 

software (Bruker). 157 

Additionally, five pools of six different individuals randomly selected for Perca and Lepomis 158 

(quality check samples) were similarly eluted then analyzed on positive autoMS/MS mode at 159 

2-4 Hz on the 50-1500 m/z range for further metabolite annotation. Molecular networks 160 

were performed with the GNPS (http://gnps.ucsd.edu) and/or MetGem 161 

(http://metgem.github.io) softwares, as previously described24 and metabolite annotation 162 

was assayed using GNPS, Mona, HMDB and Massbank MS/MS spectral libraries. 163 

Phytoplankton samples of each water pound, concentrated with a 20-µm mesh size, were 164 

also extracted with 75% methanol (2 min sonication, 5 min centrifugation at 15,000 g - 4°C) 165 
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and then similarly was analyzed on LC-HRMS on autoMS/MS positive mode, as earlier 166 

described, and the metabolite list was annotated with the same pipelines. 167 

 168 

2.4. Data matrix treatment 169 

The resulting count table of 87 OTUs (microbiome metabarcoding), and the intensity data 170 

tables of the 222 metabolites (1H NMR) and 1252 analytes (LC-MS) were further treated for 171 

quantile normalization and Pareto’s scaling, data representation by PCA and heatmap with 172 

hierarchical clustering and then analyzed to investigate the influences of “Species” (Perca or 173 

Lepomis) “Lakes” (Che, Cha, Fon, Mau, Rue, Tri, Var or Ver) parameters on the datasets by 174 

partial least square – differential analysis (PLS-DA) using the MixOmics R Package,25 the 175 

MetaboAnalyst 4 tool 26 and the MicrobiomeAnalyst platform.22 The PLS model 176 

performances were determined by accuracy, performance (R2) and predictability (Q2) values, 177 

and classification error. 178 

 179 

 180 

3. RESULTS AND DISCUSSION 181 

3.1. Global informativeness of the three molecular datasets on Perca and Lepomis 182 

Figure 1 illustrates the global relative distribution of OTUs, metabolites observed by NMR 183 

and by LC-MS for each fish (comprising both Perca and Lepomis) on a heatmap with 184 

hierarchical classifications and individual plot principal component analyses (PCA). Based on 185 

the relative distribution of the 87 identified OTUs within fish individuals (44 Perca and 34 186 

Lepomis), no reliable discrimination could be observed according to the species and lakes 187 

(Fig. 1A and D). Although the 222 potential metabolites quantified by NMR on 128 fish (78 188 

Perca and 54 Lepomis) present no obvious distinction for neither the “species” nor “lakes” 189 

variables (Fig. 1B and E), the 1,252 analytes semi-quantified from the liver metabolomes by 190 

LC-MS clearly present more discriminant patterns between species and lakes (Fig. 1C and F). 191 

Additional investigations on those datasets were then performed using supervised models. 192 

While unsupervised PCA were first used to evaluate the global dispersion between species 193 

and sampling groups, a supervised model such as partial least square differential analysis 194 

(PLS-DA) (Supplementary figure S2; supplementary tables S2, S3 and S4) allows to maximize 195 

the separation between sample classes (i.e. “species” and “lakes”) and to extract 196 

information on discriminating features (variable importance on projection - VIP). 197 
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Interestingly, these differential analyses indicate that the microbiome metabarcoding 198 

dataset allows a faint but noteworthy discrimination among the intestinal microbiomes 199 

observed within individuals of the two species (R2 = 0.54), but with only a limited 200 

predictability of the models (Q2 = 0.13 and classification error = 0.32) (Supplementary figure 201 

S2A), while no reliable microbiome discrimination could be retrieved for the “lake” variable 202 

according to PLS-DA investigation (Supplementary figure S2D). Concerning the 1H NMR liver 203 

metabolomics dataset, the PLS-DA model provide a comparable discrimination between 204 

species (R2 = 0.51 and Q2 = 0.38) (Supplementary figure S2B), but could neither allow reliable 205 

“lake” discrimination or prediction (Supplementary figure S2E). On the other hand, a very 206 

strong discrimination for the “species” was achieved by PLS-DA for the LC-MS liver 207 

metabolomics dataset (R2 = 0.96 and Q2 = 0.96, classification error = 0) (Supplementary 208 

figure S2C). Only a slight distinction among the “lakes” can be observed for the LC-MS 209 

dataset (R2 = 0.34 and Q2 = 0.24; classification error = 0.84) (Supplementary figure S2F), 210 

whereas both the heatmap with hierarchical clustering (Figure 1C) and the individual plot 211 

from the un-supervised PCA (Figure 1F) show remarkable grouping of fishes from the same 212 

species collected in the same lakes. This surprising lack of performance of the PLS-DA 213 

performed with grouped LC-MS data from the two fish species, Perca and Lepomis, is very 214 

likely due to species variation among the different lakes. Indeed, this hypothesis is further 215 

explored by investigating separately the Perca and Lepomis locality differences on their 216 

respective intestinal microbiomes and liver metabolomes. 217 

 218 

3.2. Comparison of Perca and Lepomis molecular signature variation among lakes 219 

Considering separately the 16S rDNA metabarcoding datasets of the two fish species, the 220 

intestine microbiome of Perca and Lepomis shows only faint specificity within the different 221 

sampling lake groups, as investigated by both un-supervised and supervised multivariate 222 

analyses and hierarchical classification (Supplementary figure S3). Indeed, the different 223 

performance scoring retrieved for PLS-DA remains distinctly low, and does not support an 224 

important structuration of the data according to the “lake” variable, whatever the species 225 

considered. However, in the present case, the limited sample number per sampling lake 226 

(n=4-5) could constitute a significant limitation to the informativeness of the intestinal 227 

microbiome for local discrimination (supplementary figure S3). 228 

The intestinal microbiome constitutes a remarkable interface between the organism and the 229 
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surrounding environment that is involved in various fish biological processes including 230 

digestion, immunity or ecotoxicology.27 The analysis of its microbial composition, in terms of 231 

genotype occurrence, density and taxonomy represent remarkable biological traits for the 232 

fish host that aim at characterizing the functionality and the ecology of this specific intestinal 233 

microbial ecosystem.  234 

Although the intestinal microbiome is the object of numerous investigations in microbial 235 

ecology and related host disease/health studies,28 this compartment has been rarely 236 

included in environmental biomonitoring programs. However, changes in the microbial 237 

intestinal composition may denote significant environmental variations that have potentially 238 

altered the host homeostasis and may be influenced by the specific responsiveness of the 239 

different fish species. However, microbial diversity estimated from 16S-rRNA sequences 240 

does not allow  taking into consideration that different genotypes can present functional 241 

redundancy within the intestinal microbial ecosystem,29 or alternatively, that 242 

undistinguishable OTUs (regarding only V5-V6 16S-rRNA fragment) can mask different sub-243 

taxa with distinct physiological capacities, as already exemplified for Vibrio sp..30 Taken 244 

together, these technical issues can represent noticeable limitations for the use of microbial 245 

diversity retrieved from OTU sequencing for environmental assessment, and may require 246 

additional function-based approaches for microbial community exploration.27 Also, one of 247 

the most pregnant limitation for the democratisation of microbiome metabarcoding 248 

analyses is maybe its financial cost, that still remains too important for its integration in the 249 

development of affordable biomonitoring solutions. 250 

 251 

Concerning the 1H NMR metabolomics datasets of the two fish species taken separately, the 252 

liver metabolome of Perca and Lepomis shows only a limited specificity in relation to the 253 

“lakes”. Indeed, according to the relatively low performances of the hierarchical 254 

classifications and the discriminant analyses, the NMR liver metabolomes present restricted 255 

discrimination on “lakes” for both species and could also support only a limited separation 256 

predictability of the supervised models (Supplementary figure S4; supplementary table S3).  257 

The 1H NMR metabolomics allow the reliable quantification of main liver metabolites 258 

(belonging mostly to amino acids, sugars, TCA metabolites, etc.), by detecting characteristic 259 

chemical groups, with regards to their respective position within the molecules.31 These 260 

primary metabolites are key contributors to the cellular metabolism and are supposed to be 261 
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responsive to variable physiological conditions of fish encountering peculiar biological 262 

outcomes and/or environmental constraints.32 However, this approach remains focused on a 263 

few principal metabolites involved in main cellular pathways or regulation processes, and 264 

not being specific of subtle molecular regulation processes. Moreover, 1H NMR presents only 265 

low sensitivity and limited discrimination capability for molecules presenting similar 266 

chemical structures, such as lipids, that exhibit an aggregated and unspecific signal on NMR 267 

spectra.33 For this reason, it is supposed to present lower discriminating power than less 268 

quantitative, but more selective and more sensitive, mass spectrometry-based 269 

metabolomics approaches.  270 

 271 

In contrast, the LC-MS dataset of the two fish species considered separately clearly shows 272 

reliable discrimination of the metabolomes of fishes originating from the different sampling 273 

lakes (Figure 2; supplementary figure S5; supplementary figure S6). As illustrated with the 274 

un-supervised PCA and heatmap with hierarchical classification (Figure 2), the liver 275 

metabolomes analyzed by LC-MS present distinct local signatures that support reliable 276 

discriminant analysis models for both Perca and Leptomis, with significant performance 277 

scoring of the PLS-DA (R2
Perca = 0.46 and Q2

Perca = 0.35; R2
Lepomis = 0.50 and Q2

Lepomis = 0.38) 278 

(supplementary figure S5; supplementary figure S6). Taken together, these observations 279 

indicate that the locality seems to globally influence the LC-MS metabolome composition for 280 

both species. 281 

However, as previously observed when comparing LC-MS datasets of both fish species 282 

together, the Perca and Lepomis liver metabolomes of the Fontenay-sur-Loing lake (Fon) 283 

exhibited a quite species-specific trajectory, with regards to the relative composition of their 284 

metabolomes (Figure 2A and 2D). This suggests that, although the specific “lake” signature 285 

of the metabolome appears in good agreement between the two species for most localities, 286 

in some environments, local specificities are variable from one species to the other one, as 287 

represented here for the local species-specificity of the Perca and Lepomis metabolomes in 288 

Fon lake. 289 

Interestingly, the hierarchical classifications performed respectively on the Perca and 290 

Lepomis LC-MS metabolome datasets show very similar lake relationships, grouping together 291 

the fish from the lakes of Cer and Mau, from Cha, Fon and Rue, and from Tri, Var and Ver 292 

(for Perca) or Tri and Ver for Lepomis, as this latter fish species was not retrieved in Var 293 
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(Figure 2B and 2E). Then, we re-explored the fish metabolome discrimination considering 294 

together fish from the “Cer/Mau”, “Cha/Fon/Rue” and “Tri/Var/Ver” (or “Tri/Ver” for 295 

Lepomis) groups, by PCA (supplementary figure S7), and PLS-DA (Figure 2C and 2F). For both 296 

Perca and Lepomis the metabolomes present an even better discrimination scoring (Perca: 297 

accuracy = 0.77, R2 = 0.79, Q2 = 0.70; Lepomis: accuracy = 0.70, R2 = 0.73, Q2 = 0.60) and 298 

discriminant analysis predictive error (Class. errorPerca = 0.04; Class. errorLepomis = 0.10) for 299 

these three groups than when considering the different lakes separately. Remarkably, the 300 

observation of the metabolite semi-quantification of the best VIP presents largely similar 301 

variations among these three groups of lakes for Perca and Lepomis (Table 1; supplementary 302 

figure S8).  303 

In addition, the LC-MS metabolite annotation, supported by molecular networking analysis 304 

(supplementary figure S9; table 1), shows that fish collected from the Cer/Mar lake group 305 

seem to present greater energetic and anti-oxidant/detoxification reserves (e.g. adenosine 306 

and oxidized glutathione) than in other lake groups. In addition, the molecular networking 307 

annotation process highlights that most, if not all, of the known metabolites (presenting 308 

structural identity or analogy hits) are shared between the two species (e.g. saccharides, 309 

nucleic acids, carnitines, glutathiones, lipids) when most of the species-specific cluster 310 

metabolites remains uncharacterized, as corresponding molecules present no match within 311 

public chemical databases (supplementary figure S9).34 This representation remarkably 312 

illustrates the portion of the specific liver molecular metabolism that remains to be 313 

characterized for these two species. 314 

 315 

In general, various genetic or phenotypic factors (such as development stages, 316 

contamination levels, predator/parasite pressures, food availability, etc.) could influence and 317 

explain local discrepancies of the metabolome of fishes collected from different 318 

environments.17 However, in the present case, the fact that Perca and Lepomis 319 

metabolomes, analyzed in parallel, present similar metabolite variations clearly indicates 320 

that local environmental constraints drive such observed phenotypic co-variations (beyond 321 

the obvious genetic distinction between Perca and Lepomis). Then, these present results 322 

claim for the great value of LC-MS-based metabolomic imprints for molecular phenotyping 323 

on sentinel species and the exploration of environmental effects.35 324 

Although LC-MS-based metabolomics remains a selective analytical approach (according to 325 
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both LC separation and ionisation respective properties of each molecule), it presents un-326 

precedent analytical capabilities in terms of sensitivity, dynamic range and number of 327 

characterized components and it now offers unprecedented perspectives for the 328 

investigation for molecular phenotyping applied to environmental sciences.36 We assume 329 

that a single LC-MS fingerprint analysis does not embed the whole metabolite picture of the 330 

biological compartment (the fish liver, in the present case), especially because of its 331 

selectivity performances.37 However, it provides a specific and precise measurement of a 332 

large number of components that can endorse high-throughput and in-depth phenotyping. 333 

For comparison, 1H NMR metabolomics allows the global quantification of the CH2-CH2 or 334 

CH2-CH=CH fatty acid bounds,38 whereas LC-MS metabolomics can discriminate and 335 

characterize hundreds of different lipids belonging to various sub-classes,39 providing 336 

undoubtedly more informative and discriminant features. In addition, multi-omics 337 

integration tools, such as Mixomics,40 provide innovative solutions for the comparison of 338 

heterogeneous dataset matrices obtained from a single set of samples or individuals, and 339 

may contribute to investigate metabolomics biomarker relevance (supplementary figures 340 

S10-S11). 341 

 342 

3.3. Use of LC-MS metabolomics fingerprint for environmental assessment? 343 

Although the value of LC-MS metabolomics for investigating the impacts of environmental 344 

stressors or contaminants, and their respective modes of action, has been well-explored in 345 

medical sciences41 or in ecotoxicology laboratory-based studies on aquatic models,42-45 such 346 

methods have been used only faintly in field research so far.46-47 Apart from a limited 347 

number of evidence on the utility of NMR-based metabolomics in environmental fish 348 

studies,17;48-49 few other examples indicate that field-based LC-MS metabolomics constitute 349 

an emerging and powerful, but still underused, approach for increasing our understanding of 350 

in situ biological, physiological, ecological or ecotoxicological processes.50-52 351 

Our analysis constitutes one of the first attempts to push forward the potential of high-352 

throughput molecular phenotyping, and especially through LC-MS-based metabolomics, for 353 

environmental assessment. Indeed, this organismal molecular phenotyping supported by 354 

multi-variable chemometric investigation offers remarkably rich biological information that 355 

serves at describing specific phenotypic plasticity. Moreover, this organismal 356 

variability/responsiveness can further be confronted to local environmental factors in order 357 
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to search for correlation/causality relationships (supplementary figure S12). This effort 358 

pushes a step further into the objective environmental omics-assisted assessment relying on 359 

field data modelling using artificial intelligence decision-supporting tools.17
 360 

 361 

As described by Pompfret and co-workers,53 environmental metabolomics exhibits very 362 

promising perspectives for operational bio-monitoring applications, because of its reliability, 363 

its reproducibility, and its high predictive potential. However, these authors also point out 364 

that the responsiveness and robustness of the bio-indicative object, that is characterized 365 

through the analytical prism of the metabolomics, remains crucial and has to be carefully 366 

evaluated and tested with an appropriate experimental design.53 On the other hand, 367 

freshwater fishes are already considered as good indicators of the ecological status of 368 

aquatic ecosystems, as various fish biodiversity indexes have already been proposed and are 369 

still under-evaluation at local or large scales.8 370 

However, for ethical concerns, fish bio-monitoring would also gain at being less invasive and 371 

deleterious for the organisms. To this end, non-lethal mucus sampling has been investigated 372 

by LC-MS and has demonstrated the remarkable informativeness of this approach for 373 

environmental studies.51 In parallel, recent attempts have also been made concerning the 374 

interest of planktonic or benthic microbial communities characterized by metabarcoding for 375 

water quality bio-indication,16 but these efforts still remain explorative. 376 

 377 

The main challenge we face remains the development of more integrative approaches 378 

connecting chemical, biological and ecological evaluations, in the context of anthropized 379 

natural environments experiencing multi-stressor pressures. A major caveat of the use of 380 

fish environmental metabolomics may now be the lack of dedicated databases54 fulfilled by 381 

studies considering together different species, populations, development stages, seasons 382 

and environments. This pre-requisite knowledge could be used to provide baseline reference 383 

data that would support machine learning or artificial neural network tools for the training 384 

of decision-making models. 385 

 386 

 387 
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Map of sampled lakes (Supplementary figure S1); individual plots of PLS-DA performed with intestine 390 

metabarcoding of 16S rDNA (A and D), Liver NMR (B and E) and LC-MS (C and F) metabolomics 391 

datasets for Perca and Lepomis, discriminated according to the “species” (A-C) and “sampling lakes” 392 

(D-F) parameters (Supplementary figure S2); individual plots of PCA, heatmap with hierarchical 393 

clustering and PLS-DA testing the difference among the different lakes according to the intestinal 394 

microbiomes of Perca (A-C) and Lepomis (D-F) presenting insufficient accuracy, predictability and 395 

quality performances for sampling lake discrimination (Supplementary figure S3); individual plots of 396 

PCA, heatmap with hierarchical clustering and PLS-DA testing the differences among lakes according 397 

to the liver NMN metabolomes of Perca (A-C) and Lepomis (D-F) presenting insufficient accuracy, 398 

predictability and quality performances for sampling lake discrimination (Supplementary figure S4); 399 

individual plots of PLS-DA, testing the differences among lakes according to the LC-MS metabolomes 400 

of Perca, with corresponding best VIP list and metabolite box-plots (Supplementary figure S5); 401 

individual plots of PLS-DA, testing the differences among lakes according to the LC-MS metabolomes 402 

of Lepomis, with corresponding best VIP list and metabolite box-plots (Supplementary figure S6); 403 

Individual plots of PCA for LC-MS metabolomics of Perca (A) and Lepomis (B) representing the 404 

different lake groups highlighted by hierachical classication as shown on Fig. 2 (Supplementary figure 405 

S7); box-plots of top-16 best VIP metabolites according to PLS-DA performed on the lake groups 406 

indicated by hierarchical classification, as shown on Figure 2, for Perca (A) and Lepomis (B) 407 

(Supplementary figure S8); molecular networking of Perca and Lepomis metabolomes characterized 408 

by GNPS and t-SNE algorithms (Supplementary figure S9); Integration of the NMR and LC-MS 409 

metabolomics of Perca using MixOmics illustrates the comparable PLS-DA patterns of the datasets (a-410 

b) and the global correlation of respective VIPs (correlation score = 0.79; c) (Supplementary figure 411 

S10); Integration of the NMR and LC-MS metabolomics of Lepomis using MixOmics illustrates the 412 

comparable PLS-DA patterns of the datasets (a-b) and the global correlation of respective VIPs 413 

(correlation score = 0.83; c) (Supplementary figure S11); phytoplankton composition estimated by 414 

BBE measurment of the eight lake sub-surface water (a), corresponding cyanobacteria relative 415 

composition for Fon, Tri, Var and Ver (B), and molecular networking of metabolites extracted from 416 

the filtered biomass of the respective water of the eight lakes generated with t-SNE algorithm, with 417 

cyanobacteria peptide clusters indicated in bold and microcystin cluster indicated in red (C) 418 

(Supplementary figure S12) (PDF) 419 

List and numbers of collected fishes (Supplementary table S1); list of significant VIP discriminating 420 

the intestinal microbiomes (Supplementary table S2), the liver NMR metabolomes (Supplementary 421 

table S3) and the liver LC-MS metabolomes (Supplementary table S4) of Perca and Lepomis species 422 

determined by PLS-DA; list of significant VIP (>1.5) discriminating the liver LC-MS metabolomes of 423 

Perca and Lepomis from the different lakes determined by PLS-DA (Supplementary table S5) (XLS) 424 
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Legends of figures 635 

 636 

Fig. 1. Visualization of the dataset structuration for intestine metabarcoding 16S rDNA (A), 637 

liver NMR (B) and LC-MS (C) metabolomics on heatmaps with hierarchical clustering 638 

according to Euclidean distance for Perca and Lepomis fishes collected during the 7-10th of 639 

September, 2015 within eight pounds of the peri-urban Paris’ area. 640 

 641 

Fig. 2. PCA (A and D), heatmap with hierarchical classification (B and E) and PLS-DA (C and F) 642 

of LC-MS metabolome of Perca (A-C) and Lepomis (D-F) liver according to the “sampling 643 

lake” parameter. 644 

 645 

Table 1. Annotated VIP (score >2) of respective Perca and Lepomis LC-MS metabolomics 646 

dataset according to PLD-DA performed on lake, and corresponding variation among the 647 

here lake groups highlighted by hierarchical classification (according to Figure 2B and 2E). 648 

  649 
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Fig. 1. 650 

 651 

  652 
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Fig. 2. 653 

 654 
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Table 1. 656 

 657 

MW (Da) Annotation VIP comp. 1 Perca VIP comp. 1 Lepomis

267.09601 Adenosine 8.86 (�>�=�) 15.23 (�>�=�)

612.1507 Glutathione (oxidized) 6.44 (�>�>�) 13.32 (�>�>�)

307.08355 Glutathione (reduced) 7.02 (�>�>�) 2.28 (�>�>�)

383.10736 Analog: Cyanidin arabinosine 4.25 (�>�>�) 2.67 (�>�>�)

217.13223 Analog: Carnitine 1.55 (�>�>�) 4.18 (�>�>�)

229.08904 Ergothioneine 0.10 4.03 (�>�>�)

626.16763 Analog: Glutathione (oxidized) 1.58 (�>�=�) 3.76 (�>�>�)

663.10912 Nicotinamide adenine dinucleotide 0.4 3.61 (�>�=�)

203.1173 Acetyl-carnitine 3.50 (�=�>�) 1.82 (�=�>�)

567.33206 Lysophosphatidylcholine 22:6 2.99 (�>�=�) 0.78

250.02948 Analog: N-acetylglutamic acid 2.98 (�>�=�) 2.30 (�>�=�)

429.14971 Analog: Adenosine 5'-monophosphate 0.19 2.96 (�>�=�)

463.07428 Adenylo succinic acid 2.87 (�>�=�) 2.90 (�>�>�)

248.14845 Analog: N-acetylglutamic acid 0.48 2.78 (�>�>�)

268.0806 Analog: Adenosine 1.60 (�>�=�) 2.72 (�>�=�)

265.0952 Tryptophan 0.19 2.65 (�>�=�)

347.06212 Adenosine-5' mono-phosphate 1.96 (�>�=�) 2.55 (�>�=�)
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