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Abstract

Achromatium is a long known uncultured giant gammaproteobacterium forming intracellular
CaCOs that impact C and S geochemical cycles functioning in some anoxic sediments and at
oxic-anoxic boundaries. While intracellular CaCO3 granules have first been described as Ca
oxalate then colloidal CaCO3; more than one century ago, they have often been referred to as
crystalline solids and more specifically calcite over the last 25 years. Such a crystallographic
distinction is important since the respective chemical reactivities of amorphous calcium
carbonate (ACC) and calcite, hence their potential physiological role and conditions of
formation, are significantly different. Here we analyzed the intracellular CaCO3 granules of
Achromatium cells from Lake Pavin using a combination of Raman microspectroscopy and
scanning electron microscopy. Granules in intact Achromatium cells were unequivocally
composed of amorphous calcium carbonate (ACC). Moreover, ACC spontaneously
transformed into calcite when irradiated at high laser irradiance during Raman analyses. Few
ACC granules also transformed spontaneously into calcite in lysed cells upon cell death and/or
sample preparation. Overall, the present study supports the original claims that intracellular Ca-
carbonates in Achromatium are amorphous and not crystalline. In that sense, Achromatium is
similar to a diverse group of Cyanobacteria and a recently discovered magnetotactic
alphaproteobacterium , which all form intracellular ACC. The implications for the physiology
and ecology of Achromatium are discussed. Whether the mechanisms responsible for the
preservation of such unstable compounds in these bacteria are similar to those involved in
numerous ACC-forming eukaryotes remains to be discovered. Last, we recommend to future
studies addressing the crystallinity of CaCOj3 granules in Achromatium cells recovered from
diverse environments all over the world to take care of the potential pitfalls evidenced by the
present study.

Keywords: Raman; intracellular biomineralization; micromanipulation; ACC
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1. Introduction

Achromatium oxaliferum has first been fully described by Schewiakoff (1893). Since then, it
has been shown that the genus Achromatium groups a diversity of giant colorless sulfur-
oxidizing bacterial species which form intracellular elemental S° and CaCO3 granules (Gray &
Head, 2014). They are widely distributed worldwide at the oxic-anoxic boundary in sediments
of freshwater, brackish and marine environments (Ionescu et al., 2020; Salman et al., 2015).
Since they can represent a relatively high biovolume, up to 90% of the total microbial volume
in a sediment, they have received particular attention. No strain has been cultivated so far but
culture-independent methods have been used to infer their physiology and ecology (e.g.,
Ionescu et al., 2017; Mansor et al., 2015). Achromatium cells have been reported to live in the
sulfate reduction zone, sometimes in areas of low free sulfide activity, at least for freshwater
representatives (Gray & Head, 2014). They oxidize sulfide to elemental sulfur using Oz or
possibly nitrates (Salman et al., 2015). Some populations have been reported to be autotroph
for C while others might be organotroph (Gray et al., 1999). Achromatium cells may have a
significant role in local geochemical cycles of Ca since they form large amounts of intracellular
CaCOs granules. Moreover, they sometimes produce these granules in solutions undersaturated
with all Ca-carbonate mineral phases. In these sediments, Achromatium cells are the sole
carriers of Ca-carbonates (Gray & Head, 2014). Consistently, freshwater sediments from a
wetland region close to Rydal Water (UK) have been reported to show a correlation between
the solid-phase calcium content and Achromatium cell numbers (Head et al., 2000). Since the
dynamics of the cells is associated with the dynamics of the oxic-anoxic boundary, it creates a
unique connection between variations of redox conditions and carbonate formation.

The function of the intracellular CaCOs granules has been widely questioned. For example, it
has been suggested that these intracellular Ca-carbonate granules may buffer intracellular pH

variations associated with sulfur oxidation (e.g., Salman et al., 2015). This idea has been
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supported by the recent observations that these Ca-carbonate granules dissolved when cells
were exposed to oxygen and sulfur oxidation was promoted (Yang et al., 2019). In contrast,
Schorn et al. (2020) suggested that the CaCOs granules are located in the periplasmic space of
Achromatium cells, therefore raising questions about this intracellular pH buffering function of
CaCOs. An alternative, suggested and also debated, function for CaCOs3 granules is that they
may serve as ballasts in Achromatium and anchor cells to the sediment close to the oxic-anoxic
boundary (N. Gray & Head, 2014).

All members of the Achromatium genus form intracellular Ca-carbonates and it has long been
thought that this biomineralization process was specific to this bacterial taxon. However,
widespread and phylogenetically diverse cyanobacteria have been shown to be able to
biomineralize intracellular Ca-carbonates as well (Benzerara et al., 2014; Couradeau et al.,
2012). Li et al. (2016) showed that the intracellular Ca-carbonates are amorphous calcium
carbonates (ACC) in all these cyanobacteria. Moreover, a magnetotactic bacterium affiliated to
Alphaproteobacteria was recently shown to biomineralize intracellular ACC as well (Monteil
et al., 2020). Last, many eukaryotes have also been shown to biomineralize ACC instead of
crystalline calcite or aragonite, at least as a precursor phase (Addadi et al 2003). Whether this
capability to form intracellular CaCOs convergently appeared several times during evolution in
these organisms or it involves homologous pathways (in connection with e.g., C fixation)
remains to be determined by future molecular biology approaches.

There are discrepancies in the literature about the nature of the intracellular Ca-carbonates in
Achromatium (Table S1). These discrepancies started as early as Achromatium was discovered.
Indeed, Schewiakoff (1893) followed by, e.g., Virieux (1913) first suggested that intracellular
granules were composed of calcium oxalate. This interpretation was based on the observation
of recrystallized granules extracted from Achromatium cells by various reactants, which looked

like the Ca-oxalates formed by plants. However, a few years later, West and Griffiths (1913),
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also using various chemical tests, concluded that the granules were calcium carbonates. At that
time, they thought that they were analyzing cells belonging to a genus different from the one
analyzed by Schewiakoff (1893), which they named Hillhousia viirabilis, but it was later shown
to be Achromatium as well. Moreover, West and Griffiths (1913) mentioned that the CaCO3
granules in the cells did not polarize and only crystallized when extracted from the cells. They
therefore concluded that the calcium carbonate granules within the cells were in “a colloidal
form” and different from the ones in dead organisms. Bersa (1926) reiterated similar
experiments and again suggested that Achromatium granules were composed of amorphous
CaCOs. However, we noticed that authors have started to mentioned calcite instead of
amorphous CaCOs at least since 1991 (e.g., Babenzien, 1991). Head et al. (1995) and Head et
al. (2000) directly addressed the question of the crystallinity of Achromatium CaCOs granules
by performing x -ray diffraction analyses of purified preparations of intact cells and suggested
that the granules were calcite and not another structural form. Interestingly, Gray (2006)
mentioned calcite but specified that this calcite may not be purely crystalline. More recently,
Salman et al. (2015) analyzed Ca-carbonate granules in situ within Achromatium cells by
Raman microspectroscopy and also concluded that they were calcite crystals. Consistently,
most recent studies assumed that intracellular granules were calcite crystals based on the latest
reports in the literature (e.g., Babenzien et al., 2015; Ionescu et al., 2017; Mansor et al., 2015;
Schorn & Cypionka, 2018; Yang et al., 2019). Yet, the observations by West and Griffiths
(1913) suggesting that Achromatium CaCOs granules are composed of ACC seem precisely
documented. Moreover, the presence of intracellular ACC in cyanobacteria and the recently
discovered magnetotactic alphaproteobacterium urges new efforts in characterizing the
crystallinity of CaCOs granules in Achromatium. If there was a difference between
Achromatium and other bacteria, this would suggest that specific mechanisms are involved in

Achromatium and other bacteria in order to crystallize Ca-carbonate or preserve ACC from
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crystallization and they would need to be investigated in the future. Moreover, since ACC and
calcite have different thermodynamic properties, they may hold different functional roles and/or
the same role but with different efficiencies. Consequently, we re-investigated the nature of the
CaCOs granules in Achromatium cells by conducting Raman analyses on Achromatium

populations found in the sediments of Lake Pavin.

2. Material & Methods

2.1 Site description and sample collection

Sediments were collected on the shore of Lake Pavin, Massif Central, France in November
2019. Sampling was achieved by filling one-litre glass bottles with 300-400 mL of sediments
and 600-700 mL of water that overlaid the sediments. Air bubbles were excluded. Once in the
laboratory, bottles were stored with their cap closed, under dim light and at room temperature
(~25°C) from a few days up to a few months. The sampling location at Lake Pavin was
45.499107°N, 2.886273°E. No in situ measurement of Oz, sulfate and sulphide profiles was
conducted on these samples. However, a previous study showed that the oxic-anoxic boundary

extended in the first five millimetres of the sediments (Monteil et al., 2020).

2.2 Light microscopy observations, cell sorting and whole genome amplification (WGA)

Observation and micromanipulation were carried out on a 20-uL drop of pore water harvested
in the first millimetre below the interface water/sediments of a sample collected in Lake Pavin.
Cell sorting was done with an InjectMan® NI2 micromanipulator and a CellTram® vario,
hydraulic, manual microinjector from Eppendorf mounted on a Leica DM IL LED microscope
equipped with a 63x/0.70 PH objective. The microscope and micromanipulator were placed
inside a clean chamber exposed beforehand for 1 h to ultraviolet germicidal irradiation

(wavelength of the lamp: 254 nm). Single-cells with an ultrastructure and granules typical of
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Achromatium species were transferred two consecutive times with a sterile microcapillary into
a 4-uL drop of Lake Pavin water filtered at 0.2 um, before their final transfer into a 4-uL drop
of phosphate buffer saline (PBS). This drop was stored at -20°C before WGA. To obtain
sufficient gDNA for 16S rRNA gene sequencing, WGA was carried out using the multiple
displacement amplification (MDA) technique with the REPLI-g Single-Cell Kit (QIAGEN)

following the manufacturer’s instructions.

2.3 Cloning and sequencing of the 16S rRNA genes

The 16S rRNA gene was amplified using the Phusion® Hot Start Flex DNA Polymerase
following the manufacturer’s recommendations, a DNA template of 50 - 70 ng/ul and the 27F
5’-AGAGTTTGATCMTGGCTCAG-3’ and 1492R 5’-TACGGHTACCTTGTTACGACTT-
3’ primers (Lane, 1991). Blunt-end fragments of 16S rRNA gene sequences were cloned using
a Zero Blunt® TOPO® PCR Cloning Kit with One Shot® TOP10 chemically competent E. coli
cells. The inserts were sent for sequencing (Eurofins Genomics Germany GmbH). Sequences
were compared to data found in the NCBI nucleotide database using the Basic Local Alignment
Search Tool. Sequences were deposited in the NCBI Genbank database under the accession

numbers MN990460 and MN990461.

2.4 Phylogenetic analyses

The 16S rRNA gene sequences of representative type strains of all Thiotrichales
(Gammaproteobacteria) families were downloaded from the public NCBI database (January
2020). This database was enriched with several sequences related to the Achromatium genus,
some of the newly described candidate Thiotrichales species and the sequences of the two Lake
Pavin CaCOs-accumulating OTUs (Pavin-1 and Pavin-2). The 52 sequences were aligned using
MAFFT 7 (Katoh & Standley, 2013) and trimmed using Gblocks (Talavera & Castresana, 2007)
to get a final alignment of 1410 bp. A maximum- likelihood (ML) tree was built with RAXML

8
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8.2.6 (Stamatakis, 2014) under the GAMMAI model of rate heterogeneity and the GTR
substitution model. A total of 350 bootstrap replicates automatically determined by the MRE-
based bootstopping criterion were conducted using the rapid bootstrapping algorithm, among
which 100 were sampled to generate proportional support values. In this phylogeny, members
of the Francisellaceae and Fastidiosibacteraceae families were used to root the tree based on

previous phylogenies of the Thiotrichales order (Xiao et al., 2018).

2.5 Preparation of cells for microscopy analyses

Lake Pavin Achromatium cells were sorted by micromanipulation and directly deposited on a
glass coverslip (18 x 18 mm) coated with poly-L-lysine to improve cells’ adhesion. Raman
microspectroscopy analyses were conducted first with a systematic localization of the analyzed
cells. The coverslip was then sputtered with carbon. Cells analyzed by Raman were relocated
and further analyzed by scanning electron microscopy (SEM). We note that the assessment of
CaCOs crystallinity was performed by Raman spectroscopy before C-sputtering and therefore
we presently do not know if the later step may induce ACC crystallization. Moreover, air-drying
of cells, exposition of cells to vacuum and C-sputtering can cause cell damages, in particular
flattening. However, in the present study only the features that were not affected (such as

presence/absence of a cell wall) were investigated.

2.6 Reference ACC synthesis and thermogravimetric analyses

ACC synthesis was carried out following the procedure described by Wang et al. (H.-W. Wang
et al., 2017). Fresh solutions of 100 ml of 50 mM CaClz and 50 mM Na2CO3 (+ 0.5 g NaOH)
were prepared with cold (4°C) MilliQ water. The CaClz solution was placed in a 500 mL Teflon
centrifuge bottle. A 30 x 30 cm?, 75 mm thick polyethylene sheet was placed in the upper part
of the centrifuge bottle with a steel ball (1 cm in diameter, 5 g). The Na2CO3-NaOH solution

was poured into the polyethylene sheet, keeping both solutions separated. The bottle was then

9
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placed in a centrifuge (Beckman Coulter model Avanti J-20 XP) pre-cooled to 4 °C, and it was
spun at 4000 rpm for 3 minutes. The force exerted by the ball on the polyethylene sheet breaks
the sheet and throws the Na2CO3—NaOH solution into the CaClz solution extremely rapidly.
The supernatant liquid was poured out and the solid was rinsed with a few mL of dry cold (4°C)
acetone. The suspension in acetone was filtered on a Buechner funnel, the solid was recovered
and dried at room temperature under vacuum for 4-5 h.

Thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) analyses of the
reference ACC were performed using a METTLER TOLEDO® TGA/DSC3+. 8.6 mg of dry
powdered sample were placed in an alumina crucible and the sample was heated from 25 to
750°C under a 20mL/min N2 flow. The temperature scanning rate was set at 20°C per minute.
Noteworthy, TGA-DSC analyses could not be performed on natural samples due to limited

amounts of sample.

2.7 Raman microspectroscopy analyses

Raman spectra were recorded using a Renishaw InVia Reflex spectrometer equipped
with a 532 nm Renishaw diode laser. The laser was focused on the sample using a DM2500
Leica microscope with a 100x objective (NA= 0.75) to obtain a planar resolution of ~ 1 pm?.
The maximum laser power was measured at ~90 mW under the microscope without the
objective. The laser incident beam was polarized circularly by a quarter wavelength plate placed
before the microscope. We selected several neutral density filters to acquire Raman spectra at
varying laser powers from 0.1 up to 100% of the maximum laser power. Therefore, at 1%, the
power delivered in a 1 pm? spot was 900 pW and the irradiance was 9.10%° W.m™. The signal
was filtered by edge filters and dispersed by a diffraction grating with 2400 grooves/mm and

the signal was analyzed with a RENCAM CCD (charge-coupled device) detector. Before each
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session, the spectrometer was calibrated in energy using a silicon standard. Spectra were
collected using the software WIRE 4.3 provided by Renishaw.

It has been shown that Raman spectra of the different CaCO3 crystalline polymorphs (calcite,
aragonite, vaterite) are significantly different from each other and can therefore be used as
unambiguous signatures of these phases (Behrens et al., 1995). The vi Raman bands of ACC
and calcite were fitted with 2 Voigt functions using the FitViewer program, a Graphical User
Interface (GUI) designed by Olivier Forni and Paolo Pilleri at the Institut de Recherche en
Astrophysique et Planétologie (IRAP). The fit was performed with the MPFIT algorithm
(Markwardt, 2009) which is based on the Levenberg-Marquardt method (Moré, 1978). As
further described by (Vaczi, 2014), the profile described by the Voigt function results from the
convolution of a Lorentzian profile by a Gaussian function. A Gaussian profile was assumed to
model the instrumental contribution and its FWHM was fixed at 1.9 cm’!, equal to the
spectrometer bandpass as measured experimentally using the emission band of a Ne lamp. In
turn, the Lorentzian function is assumed to model the Raman transitions, corrected from the

instrumental response.

2.8 Scanning Electron Microscopy

Scanning electron microscopy (SEM) analyses were performed using a Zeiss ultra 55 field
emission gun SEM. Secondary electron (SE2) images were acquired using an Everhart
Thornley detector at an accelerating voltage of 2.0 kV and a working distance of ~3.5 mm.
Backscattered electron images were acquired for chemical mapping using an angle selective
backscattered (AsB) detector at an accelerating voltage of 15 kV and a working distance of
~7.5 mm. Elemental maps were generated from hyperspectral images (HyperMap) by energy
dispersive X-ray spectrometry (EDXS) using an EDS QUANTAX detector. EDXS data were

analyzed using the ESPRIT software package (Bruker).
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3. Results

Some pore water harvested from the first millimetres below the water/sediment interface was
deposited on a glass slide and examined under the light microscope. Large cells were observed,
measuring on average 22.3+ 6.7 um in length and 14.2+ 4.0 um in width (31 measurements),
which corresponded to volumes between ~500 and 3000 um® (Figure 1). They contained
numerous intracellular inclusions measuring around 3+1.3 um in diameter (18 measurements,
4 cells). Five cells were sorted and the 16S rRNA gene of two of them was successfully
sequenced after whole genome amplification. Their 16S rRNA gene sequences clustered in the
Achromatium cluster A (Figure 2) as defined by Mansor et al. (2015). They shared 96 to 97%
sequence identity with the Achromatium L79966 and AF129550 OTUs, sequenced from a
wetland on the margins of Rydal Water and an upland tam on Jenny Dam, respectively, both
located in the United Kingdom and composed of freshwater as in Lake Pavin (Gray et al., 1999).
Moreover, Achromatium cells in Lake Pavin had a size range consistent with that of
Achromatium cells previously observed in Rydal water (cell volumes between 1000 and 30,000

um?) and the Jenny Dam (cell volumes between 150 and 26,000 pm?).

Figure 1: Light microscopy images of Achromatium cells isolated from Lake Pavin sediments.
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@ 70%-89%
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Uncultured Achromatium sp. Pavin-2 (MN990461)
Achromatium oxaliferum AP3 (L79966)

Uncultured Achromatium sp. Pavin-1 (MN990460)
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Achromatium oxaliferum clone 5 (L42543)

Achromatium sp. HK13 (AF129557)

Achromatium oxaliferum AST01 (AJO10593)

Achromatium sp. HK9 (AF129556)

Achromatium sp. JD13 (AF129551)

Achromatium oxaliferum Rydal (L79968)

Uncultured Achromatium sp. WMS3 (KP694218)

Ca. Achromatium palustre Sippewissett (HG934343)

Achromatium sp. WMS1 (JXSM01000131)

Uncultured Achromatium sp. WMS2 (KP694217)

Achromatium sp. HK3 (AF129554)
Achromatium sp. HK6 (AF129555)
Achromatium sp. HK2 (AF129553)
_+ Achromatium minus AFK57 (AJ010596)

Achromatium minus AFK55 (AJ010595)
Thiothrix eikelboomii AP3 (NR_024758)
Thiothrix lacustris BL (NR_116397)
Thiothrix caldifontis G1 (NR_116398)
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Thiothrix nivea DSM 5205 (NR_11868)
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{L Cocleimonas flava KMM 3898 (NR_112909)
Leucothrix mucor ATCC 25107 (NR_118099)

_+— Cycloclasticus pugetii PS-1 (NR_025955)
Methylophaga aminisulfidivorans MP (NR_043871)

0.05

Sulfurivirga caldicuralii MM1 (NR_041385)
E Thioalkalimicrobium aerophilum AL3 (CP007030)
Thiomicrospira cyclica ALM1 (NR_074720)

_:Galenea microaerophila P2D (NR_126238)
Hydrogenovibrio thermophilus 178 (NR_028660)

Piscirickettsia salmonis LF-89 (NR_025980)

Ca. Allobeggiatoa halophila (EF428583)
[— Beggiatoa alba B18LD (NR_041726)

'L Beggiatoa leptomitoformis D-402 (NR_156085)
Ca. Marithrix sp. ST-E1935 (FR847874)
Ca. Halobeggiatoa sp. HMW-S2528 (FR847871)
Thioploca ingrica DEN002 (FR690998)
Ca. Parabeggiatoa communis Limfjorden D4 (AF532770)

Ca. Thiomargarita nelsonii NAM057 (FR690946)
Ca. Isobeggiatoa divolgata (AB108786)
Ca. Thiopilula aggregata NAMO083 (FR690978)

Fangia hongkongensis (NR_041041)
{: Fastidiosibacter lacustris SYSU HZH-2 (NR_159314)

Francisella tularensis subsp. mediasiatica FSC147 (NC 010677)
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Figure 2: Maximum likelihood phylogenetic tree of the Thiotrichaceae and Pisciricettsiaceae
families based on the 16S rRNA gene sequences showing the evolutionary relationships
between the two CaCOs-accumulating isolates from Lake Pavin (Pavin-1 and Pavin-2) and their
Achromatium relatives. The tree was built with the maximum likelihood method and the
GTRGAMMALI substitution model. Fangia hongkongensis, Fastidiosibacter lacustris and
Francisella tularensis subsp. mediasiatica were used as an outgroup. The tree was drawn to
scale and branches length represents the number of base substitutions per site. Only bootstrap

values above 50% are shown and annotated to a circle.
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Raman spectroscopy analyses were conducted on seven Achromatium cells sorted from the
sediments by micromanipulation. Several spots were analyzed for each cell. Then, cells were
systematically relocated and imaged by SEM and their elemental chemical composition mapped
by SEM-EDXS.

One of the 7 cells showed a particular Raman spectrum with major peaks at 150.8, 219.7 and
473.5 cm’! (Figure 3). This spectrum was identical to the spectrum referred to as biosulfur by
Nims et al. (2019), consisting of elemental sulfur inclusions in bacteria. Consistently with what
was reported by these authors, the three observed peaks were unambiguously assigned to
asymmetric S-S bending, symmetric S-S bending and S-S bond stretching of a Ss ring structure,

respectively. Consistently, SEM-EDXS mapping showed that this cell contained numerous S-

rich inclusions (Fig. S1).

a

Intensity

100 ’ 300 500

Figure 3: (a) Raman spectrum of an Achromatium cell with sulfur inclusions. The top black
spectrum is obtained on the Achromatium cell shown in the SEM images. The bottom orange
spectrum was issued from the RUFF database and was measured on elemental sulfur
(#R040135). Vertical dashed lines indicate peaks at 150.8, 219.7 and 473.5 cm’’. (b) SEM
image of the analyzed Achromatium cell were measured in the secondary electron mode (SE2;
left) with an accelerating voltage of 2 keV. The white arrow indicates the approximate location
where a low power Raman analysis was performed. (c) SEM image of the same cell shown in

(b), observed in the backscattered electron mode (ASB; right) with an accelerating voltage of
15 keV.
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On 5 cells out of 7, Raman spectra measured with 1% of the maximum laser power were similar
to those shown in Figure 4. These spectra showed two sets of peaks: a first set comprised four
peaks at 604, 749.4, 1128 and 1311.3 cm™’. Based on Pitzold et al. (2008), these peaks were
assigned to the v24, vis, v22 and v21 modes of a porphyrin ring in cytochromes. Interestingly,
these bands disappeared upon prolonged irradiation (Fig. S2). The second set comprised a very
broad peak, likely the convolution of two broad peaks, extending between 681 and 752 c¢cm’!
and another broad peak centered, depending on the spectra, between 1079.45 and 1082.43 cm™
!, These peaks were identical to those of an amorphous calcium carbonate (ACC) reference
spectrum (Figure 4). The very broad band between 681 and 752 cm™! was assigned to the in-
plane bend (v4) of C-O bonds. The strong and broad peak at around 1079.9 cm™ corresponded
to the symmetric stretching of C—O bonds in carbonate groups (vi peak) in a CaCO3 phase. This
assignment to ACC was further supported by the absence of sharp peaks characteristic of lattice
mode vibrations in crystalline CaCO3 phases below 400 cm™!. Instead, we observed a single
broad bump between the cutoff at ~50 nm and ~400 nm (Figure 4). Accordingly, SEM-EDXS
analyses showed that these cells were rich in Ca with a minor EDXS peak of Mg, the relative

height of which varied from one cell to another (Fig. S1).
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Figure 4: (Left) SEM images of the cells on which the Raman spectra were measured. White
arrows indicate where full power Raman analyses were performed. (Right) Raman spectra. The
two middle spectra (A. incl 1 and 2) are Raman spectra of CaCOs3 inclusions in Achromatium
cells. The two dashed lines show (i) a broad band between 681 and 752 cm’!, assigned to the
in-plane bend (v4) of C-O bonds in ACC and (ii) a broad band around 1079.9 cm™! assigned to
the symmetric stretching (vi) of C—O bonds in carbonate groups in ACC. Arrows show bands
at 604.2, 749.4, 1127.9 and 1311.3 cm’!, assigned to the v24, vis, v22 and v21 modes of a
porphyrin ring in cytochromes. The top spectrum (Calc ref) is a Raman spectrum of a reference
calcite crystal retrieved from the RUFF database (#R040170). The bottom spectrum (ACC ref)
is a Raman spectrum of a synthetic reference ACC particle.

When full laser power was used, the spectra measured on Achromatium intracellular granules
changed and eventually showed very different spectral features (Figure 5 and Figure 6). First,
two Raman bands appeared at ~154 and 280 cm™ after irradiation. These bands were
unambiguously assigned to the translation and higher frequency libration modes in calcite and
were due to collective synchronized vibrations of atoms around their equilibrium positions
(Perrin et al., 2016). The very broad v4 band of ACC was replaced by a narrow band at 712.2
cm’! that was consistently assigned to the v4 mode of calcite. The broad band at ~1079.9 cm™!
of ACC was replaced by a narrower band at ~1086 cm™, also consistently assigned to vi in
calcite. Last, the Raman bands at 604, 749.4, 1128 and 1311.3 cm™! of cytochromes, associated
with ACC, were absent from the calcite spectra. SEM pictures at low voltage of the cells where
this transformation was observed showed that they were systematically enveloped by a cell
wall, detected here as an envelope opaque to low energy electrons and therefore preventing the
direct visualization of the granules inside the cells (Figures 4-6). In contrast, when the cell wall
was disrupted, one could visualize directly the intracellular CaCOs3 granules, as shown in Figure
6. Local damages induced by the laser spot could be observed as a crater measuring ~2 pm in

diameter (Figure 5b). In one case, the cell partly disrupted and the irradiated calcite residue was

extruded from the cell. The resulting byproduct showed a granular microtexture (Figure 6).
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Figure 5: (a) and (b) SEM images acquired at 2 keV in the secondary electron mode showing
the Achromatium cells analyzed by both Raman and SEM. Arrows show the irradiation spots
where ACC transformed into calcite following full laser power irradiation. (c): Raman spectra
obtained using 1% and 100% laser power on cells shown in (a) and (b). Dashed lines are located
at ~154, 280, 604, 712.2, 749.4, 1079.9, 1127.9 and 1311.3 cm™".
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Figure 6: (a) Raman spectra of ACC granules in 2 Achromatium cells obtained by low laser
power irradiation (blue and grey spectra), before transformation into calcite after full laser
power irradiation (orange and yellow). Dashed vertical lines are located at ~154, 280, 712.2,
749.4, 1079.9, and 1127.9 cm™. (b) SEM image obtained at 2 keV by the InLens detector. A
fragment was partly detached from the cell on the top left after laser irradiation. (c) Close-up
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of the detached fragment showing the granular texture of calcite in the extruded fragment vs
smooth texture in ACC within the cells. (d) Close-up of the crater induced by laser in another
Achromatium cell and showing the texture of the transformed area.

The vi band of Achromatium CaCOs granules irradiated at low laser power (from 1 to 10% of
the total power) and full laser power were systematically fitted. In most cases, a very good fit
was obtained using one Voigt function but for several spectra measured after strong irradiation,
the vi band was clearly asymmetric and best fitted with two Voigt functions (Fig. S3). When
plotting the vi band position vs the full width at half maximum (FWHM) of the Lorentzian
profile, a clear difference was observed between weakly (0.1-10% of the maximum laser power)
vs strongly (100% of the maximum laser power) irradiated granules, further highlighting the
transformation of ACC into calcite upon irradiation (Figure 7). The FWHM for weakly
irradiated synthetic and Achromatium ACC varied between 24.9 and 28.6 cm™ and was
positively correlated with the band position, which varied between ~1079.5 and 1082.4 cm™'.
In contrast, the FWHM for all strongly irradiated Achromatium ACC were between 24.7 down
to 2.5 cm! which negatively correlated with the band positions, varying between 1082.4 and
1086.3 cm™'. The components with higher FWHM/lower position were minor fit components
of asymmetric bands and were interpreted as poorly crystalline remnants mixed with more
crystalline components in irradiated zones similarly to what was shown by Wehmeister et al.
(2011) (Figure 7).

In the case of one Achromatium cell, the Raman spectrum measured with 1% of the maximum
laser power was very similar to that of the most irradiated Achromatium granules and to that of
calcite with bands at~154, 280, 712.2 and 1086.2 cm™' (Figure 8). SEM observations performed
at low voltage showed that this cell was devoid of a cell wall on the contrary to the cells

containing ACC as mentioned before.

18



481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510
511

—_ [ N [\ O]
—_ (@) —_ (@)
] ] ] ]
( }
o

v, band FWHM (cm™")

(@)
1

1

1079 1080 1081 1082 1083 1084 1085 1086

v, band position (cm™)
Figure 7: Scatterplot showing the full width at half maximum (FWHM) versus the position for
the vi Raman band of the CaCO3 phase. Blue dots correspond to Raman spectra measured on
Achromatium CaCOs inclusions with reduced laser power (1 or 5 %). Green dots correspond to
Raman spectra measured on synthetic reference ACC grains with reduced laser power (1 or 5
%). Orange dots correspond to Raman spectra measured on Achromatium CaCOs inclusions
with full laser power and showing signs of crystallization.
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Figure 8: (a) SEM images acquired at 2 keV in the secondary electron mode showing an
Achromatium cell analyzed by both Raman at 1% laser power and SEM. (b): Raman spectrum
obtained using 1% laser power on the cell shown in (a). Dashed lines are located at ~154, 280,
712.2 and 1086.2 cm™ and underline bands that are characteristic of calcite.
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4. Discussion

4.1. Precautions to be taken in order to assess the crystallinity of CaCO; in Achromatium
cells

The present data clearly show that the CaCOs granules in Lake Pavin Achromatium intact cells
are composed of ACC and not calcite. Only one cell contained calcite granules but SEM
observations suggested that this cell was damaged since it did not show any cell wall as
discussed below. Several studies have detailed how Raman spectroscopy could unambiguously
discriminate between ACC and calcite (e.g., DeCarlo, 2018). This includes the presence (in
calcite)/absence (in ACC) of lattice modes at ~154 and 280 cm’'; a sharp (calcite) vs wide
(ACC) vi peak. The latter feature has been explained as the result of a high variability in the
bonding environment around the carbonates in ACC which causes deviations in the lengths of
C-O bonds. Last, a shift in the vi peak position from lower (ACC) to higher (calcite)
wavenumbers is observed. Wang et al. (2012) and Perrin et al. (2016) showed that variations in
the Mg content of ACC and calcite could change in a correlated manner with the FWHM and
position of the vi peak. Accordingly, we observed in our study some correlated variations in
the FWHM and peak position of the vi peak in ACC granules, with variation of FWHM in the
22.5-25.4 cm™! range, which according to Wang et al. (2012) may be explained by variations in
their Mg contents in the 0-10% range. Perrin et al. (2016) also noticed that (1) the FWHM of
calcite and ACC, whatever their Mg content, did not overlap, and (2) vi wavenumbers lower
than 1086 cm ™! and vi FWHM greater than 22 cm ™' were two unambiguous criteria to determine
the amorphous nature of calcium carbonate. Therefore, it can be confidently concluded that
Raman spectra collected on most Lake Pavin Achromatium cells were characteristic of ACC.

This conclusion fully agrees with the early studies by West and Griftiths (1913) who suggested

that intracellular granules in Achromatium were composed of a colloidal form of CaCOs and
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later on by Bersa (1926) who mentioned amorphous CaCOs (“amorphen (kolloidalen) Form”
in their manuscript). It also better explains Yang et al. (2019)’s FIB observations of composite
structure of the granules with submicrometer laminations, which would be difficult to explain
within a single crystal, as mentioned by the authors themselves. Similar laminations in ACC
granules, attributed to chemical variations, were observed by TEM by Martignier et al. (2017)
(2017) and Cam et al. (2016).

We note that several artefacts may lead to an erroneous assessment of the crystallinity of
Achromatium CaCOs granules. First, in a population of Achromatium cells, some ACC granules
may transform into calcite because of, e.g., cell death and/or sample preparation. Indeed, it has
been emphasized by many authors (e.g., Gower, 2008; Politi et al., 2006) that ACC is usually
unstable and often converts to a crystalline phase during sample preparation of biominerals for
ex vivo examinations. Consistently, a spontaneous transformation of ACC into calcite was
documented by the early observations by West and Griffiths (1913) and Bersa (1926) when
they killed the cells by adding alcohol or drying. Schorn et al. (2020) observed dissolution of
Achromatium ACC granules when they treated cells with acids. In the meantime, Schorn et al.
(2020) sometimes evidenced some crystallization when killing them with no acidification of
the solution. In the present study, while we observed that simple drying does not induce
crystallization of ACC, we observed one cell containing calcite. On the contrary to other cells,
this one lacked a cell wall. We cannot affirm whether the cell wall was already disrupted in the
sample before micromanipulation or if it occurred upon sample preparation but as mentioned
above, this explains why ACC granules transformed into calcite in this cell before Raman
analyses.

Second, in addition to sample preparation, irradiation at too high laser power can also cause
ACC crystallization as shown in the present study. This transformation may result from the

local heating of ACC in the laser spot over ~330°C, a temperature at which the solid-solid
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transformation of ACC into calcite is detected by thermogravimetric analyses (Fig. S4). Such a
local increase of T may result from a high absorption of light by, e.g., cytochromes, which
contribute to the Raman signal of Achromatium cells and efficiently absorb visible light at ~530
nm (Okada et al., 2012) and a slow dissipation of the heat in the material (Fau et al., 2019). As
shown by Fau et al. (2019), a more precise assessment of the temperature increase induced by
laser heating would require the knowledge of the optical penetration depth and thermal
penetration depth in organics-containing ACC granules, which we do not know yet.

An alternative interpretation of these observations could consist in suggesting that only a
surficial layer of the Achromatium granules was illuminated and therefore heated by the laser.
This surficial layer would be an ACC layer covering an initially unseen calcite core. This
initially unseen calcite core may then become apparent after volatilization of the ACC layer.
However, this interpretation is unlikely for two reasons. First, this would mean that ACC is
quite opaque. While we do not know the value of the optical penetration depth as mentioned
above, Schmidt and Wagermeier (2017) reported that cystoliths in plants, composed of ACC
and measuring 40-60 um function as light scatterers due to their transparency to visible light.
This suggests that green Raman light likely propagates throughout the 3-4 um wide ACC
granules of Achromatium. Second, if a surficial layer of ACC was volatilized (after
crystallization into calcite at ~330°C), this would produce CaO, which we did not detect by
Raman.

Overall, the high susceptibility of ACC to transform into calcite upon cell death and/or sample
preparation and/or laser irradiation concurs to the assumption made by Gower (2008) that this
explains why it took so long to discover ACC although it is common. This applies well to
Achromatium too. Two studies produced data suggesting a calcitic nature of the CaCO3 granules
in Achromatium using bulk x-ray diffraction (Head et al., 2000) and Raman spectroscopy

(Salman et al., 2015). However, XRD is much more sensitive to calcite than ACC and therefore
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even in a bulk sample where most of the cells contain ACC and only a few dead ones contain
calcite, the latter signal would show up. Salman et al. (2015) analyzed Achromatium cells by
Raman spectroscopy and obtained one spectrum typical of calcite. However, they did not
mention the use of neutral density filters and may have acquired Raman spectra at full laser
power. Alternatively, morphologically and genetically distinct subpopulations of Achromatium
have been evidenced in several localities, although this idea was challenged by recent studies
that instead suggested variations in gene expression across varying environments (Ionescu et
al., 2020). One may postulate that some Achromatium populations may produce calcite instead
of ACC. Moreover, the Achromatium populations studied by Salman et al. (2015) thrived in a
salt marsh which is chemically very different from the freshwater of Lake Pavin. While it is not
clear how salinity may directly impact the stability of ACC, it is possible that environmentally-
driven variations in ion homeostasis in cells result in different chemical environments around
CaCO:s granules. Similarly, one may wonder if Achromatium minus thriving in the more acidic
lake Fuchskuhle (pH=4.2-4.6) (Glockner et al., 1999) may form calcite instead of ACC.
Overall, only future systematic studies will be able to decipher if intracellular CaCO3 granules
in Achromatium living cells are always composed of ACC or sometimes calcite. The present
study offers guidelines to avoid potential artifacts including the use of low Raman laser
irradiation (preferably <1 mW for a 532 nm laser), then SEM to verify that the cell wall is still
enveloping the cells. It is possible that air-drying induces some damages in some cases and that
high-pressure freeze-substitution sample preparation may overcome this issue (Blondeau et al.,
2018) but this will have to be tested by future studies.

4.2. What makes bacteria producing intracellular ACC instead of intracellular calcite?

ACC are notoriously unstable phases (e.g., Addadi et al., 2003; Cavanaugh et al., 2019).
Therefore, it may appear surprising that Achromatium, a magnetotactic alphaproteobacterium

and cyanobacteria manage to preserve CaCO3 as ACC intracellularly, and that it does not
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transform into a crystalline phase such as calcite. In any case, the mechanism involved in this
stabilization appears to no longer operate as soon as the cells lyse/die explaining why in this
case ACC spontaneously crystallizes as reported here and by previous studies.

Laboratory biomimetic experiments showed that several chemical species can stabilize ACC at
least transiently, such as magnesium ions, triphosphate ions, polymers such as diphosphate-
substituted poly(ethylene glycol) and polyaspartate, polyphosphonates, some oligosaccharides
or amino acids (Addadi et al., 2003; Zou et al., 2020). It is clear that at least some of these
chemical species are abundant within the cell environment and may, therefore, play a role in
ACC stabilization. However, how they may degrade and hence stop from stabilizing ACC when
the cells disrupt remains to be understood. Alternatively, the stabilization of ACC may well be
explained by confinement as demonstrated by, e.g. Zeng et al. (2018) and Cavanaugh et al.
(2019). Based on microfluidics experiments, Cavanaugh et al. (2019) concluded that ACC is
the expected byproduct of intracellular biomineralization occurring within a micrometer-sized
compartment when the solution in this compartment is supersaturated with ACC. Moreover,
they predict that ACC may remain stable for durations much longer than the lifetime of the
organisms, i.e, months before crystallization occurs in 1% of 10 um?® vesicle and hundred years
before it occurs in 99% of it. According to Jin et al. (2018), confinement can be seen as a barrier
to water diffusion, which hinders the dissolution of ACC and reprecipitation as calcite. In
cyanobacteria forming intracellular ACC, it has been shown that this confinement may be
provided by an organic envelope of a yet-unknown composition (Blondeau et al., 2018). We
presently do not know the genes or proteins involved in the formation of this organic envelope.
In Achromatium and the recently discovered magnetotactic alphaproteobacterium, it has been
suggested that ACC granules are confined by lipid bilayers (N. Gray & Head, 2014; Monteil et
al., 2020). It can be speculated that such envelopes may also control the maximum size of the

granules as observed for example n magnetotactic bacteria and prevent their agglomeration but
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this will need further assessment in the future. Cavanaugh et al. (2019) noticed that when the
confinement was broken, the exposition of ACC to heterogeneous nucleators induced rapid
crystallization. Moreover, Liu et al. (2020) explained how this transformation of ACC into
calcite by dissolution-reprecipitation could preserve the morphology of the granules by
occurring without the need to nucleate a separate crystal. How the envelopes of ACC granules
in cyanobacteria and Achromatium rupture will need to be further studied. For this purpose,
TEM appears as the choice method since Raman microspectroscopy does not offer a spatial
resolution high enough to detect such an organic envelope.

Overall, intracellular compartmentalization by lipid bilayers or proteins seems required to
explain the formation and stabilization of ACC. This contradicts the recent suggestion by
Schorn et al. (2020) that CaCO3 in Achromatium cells would be in contact with the extracellular
environment and form in pockets delimitated by an invagination of the cytoplasmic membrane
and would, therefore, be periplasmic. We note that these conclusions by Schorn et al. (2020)
were not derived from direct observations of the ACC granules within these pockets by, e.g.
TEM tomography. Instead, they were postulated based on 1) the idea that the easy loss of
CaCOs3 upon various physico-chemical treatments is consistent with the fact that they would
not be membrane enclosed; and 2) the fact that fluorescein, a hydrophilic dye that does not
penetrate membranes, did penetrate inside cavities hosting CaCOs. However, several other facts
may oppose Schorn et al. (2020) conclusion. First, ACC granules in cyanobacteria are also
easily and rapidly lost upon various physico-chemical treatments and yet they clearly form
within intracellular enclosed compartments (Blondeau et al., 2018). The chemicals used by
Blondeau et al. (2018), i.e. ethanol which is membrane permeable, are not the same as those
used by Schorn et al (2020), i.e. HCI, which is membrane impermeable. Yet both chemical may
harm/stress the cells and induce intracellular changes. Second, Bentov et al. (2009) similarly

observed that calcein, another membrane-impermeable dye as these authors underline it, did
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stain the truly intracellular CaCOs3 of foraminifera. Last, the suggestion that CaCOs in
Achromatium would be in direct contact with the extracellular environment is inconsistent with
the report of ACC formation by some Achromatium cells in environmental solutions

undersaturated with ACC (Gray & Head, 2014).

4.3. Implications of an ACC instead of a calcitic composition of intracellular granules
There are several important ecological, geological and ultrastructural implications in reporting
that Achromatium intracellular granules are composed of ACC and not calcite.

First, several studies have discussed the potential function(s) of Achromatium CaCOs granules
(e.g., Gray & Head, 2014; Salman et al., 2015; Schorn et al., 2020; Yang et al., 2019). The
dominant view emerging lately suggests that these granules buffer intracellular pH, which may
otherwise vary due to the redox transformations of S species. It has been noted that for this
purpose the cells need to quickly adjust their CaCO3 content to rapidly changing environmental
conditions, such as exposure to O2 (Yang et al., 2019). We argue that this can be better explained
by ACC than calcite. Addadi et al (2003) and Weiner et al. (2005) consistently suggested that
ACC is a widespread biomineral phase and holds a homeostatic function in eukaryotes which
is facilitated by its metastability. Moreover, while the reactivity of calcite and ACC (e.g., the
kinetics of precipitation or dissolution) depends on prevailing chemical conditions, it has been
shown that under given conditions, ACC reactivity might be higher, partly because of a higher
surface area (Lassin et al., 2018). Altogether, these arguments support the idea that ACC may
respond more quickly to chemical changes than calcite and therefore fill such a buffering
function with a higher efficiency.

A second implication results from the solubility difference between ACC and calcite. Although
there remains some uncertainty about the exact value of the solubility of ACC, it is much higher,

at least one order of magnitude than that of calcite (Brecevi¢ & Nielsen, 1989; Carino et al.,
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2017; Purgstaller et al., 2019). Solubility of ACC is even higher when its Mg content increases
(Purgstaller et al., 2019). This means that ACC precipitation requires a higher activity of Ca>"
and/or a higher activity of HCO3™ and/or a higher pH within the compartment where it forms. It
also means that ACC starts dissolving under conditions where calcite would still be stable. The
chemical composition inside the compartments where granules form is not known but future
modelling efforts aiming at inferring the chemical conditions prevailing in these compartments
should take into account the fact that these granules are composed of ACC and not calcite.

As a third implication, Bolze et al. (2002) reported densities of 1.62 and 2.75 g/cm? for hydrated
ACC and calcite, respectively. Fernandez-Martinez et al. (2013) measured a density of 2.18
g/cm?® for dry ACC powder which remains significantly lower than that of calcite. This means
that when ACC crystallizes to calcite, this represents a volume variation between 20 to 40%.
This suggests that when ACC crystallizes to calcite in dying cells, one should expect a reduction
in size of the granules, unless further post-mortem crystal growth occurs. Moreover, it has been
hypothesized by some authors that intracellular granules in Achromatium are used to regulate
buoyancy of the cells (Gray, 2006). While ACC-filled cells remain denser than ACC free cells,
they are lighter than calcite-filled cells and therefore this role for increasing cell buoyant density
would be less efficient with ACC than calcite. Last, Mansor et al. (2015) noted that the
precipitation of CaCO3 within cells generates H™ and assumed that these protons may be used
to generate ATP. They used for their calculations the density of calcite to estimate the average
amount of Ca stored in cells which they equaled to the amount of CO3* stored into the granules
and from there inferred the equivalent amount of generated protons. Here we note that these
calculations should be revised; using ACC density will decrease these numbers by at least 20
to 40%. We also note an additional difficulty for these calculations: first Mg substitution should
be taken into account since it impacts the density of the ACC phase. Then, on the contrary to

calcite, the Ca:CO3% stoichiometry is not always 1:1 in ACC as there can be some HCO3"
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molecules as well, the proportion of which may depend on pH and temperature conditions
(Carino et al., 2017). Those should not be counted to infer the equivalent proton amount. The
advent of future experimental approaches e.g. measuring intracellular ATP in vivo will be
essential to test these calculations.

Last, as mentioned above, the stability of ACC is lower than that of calcite. Therefore, even if
ACC granules remain confined after the death of the cells, one may not expect to find genuine
ACC in the geological record. Indeed, Cavanaugh et al (2019) showed that confined ACC
granules measuring ~1 um?® would be preserved from crystallization up to about one million
years. Therefore, a fossil of an ACC granule would be a crystalline phase, most likely calcite.
In order to understand how to look for some potential traces of these ACC granules in the
geological record, it will be important to decipher in the future: 1) what conditions are prone to
crystallization of ACC in calcite; 2) if the morphology of ACC granules is always preserved
upon crystallization; and 3) if the crystallized granules replacing ACC store some organic
molecules that might be present in ACC granules and/or if a particular trace element

composition is preserved.

5. Conclusion
We find robust evidence that cells of the giant gammaproteobacterium Achromatium sp. in Lake
Pavin form intracellular ACC and not calcite. In contrast, previous reports of calcite may have
been affected by the high instability of ACC, which transforms readily into calcite upon some
sample treatments, which alter the integrity of the cells, or strong laser irradiation. Raman
microspectroscopy seems to be the most appropriate tool to infer the ACC nature of these
inclusions since analyses can be conducted under native conditions. However, special care has
to be taken to minimize irradiation delivered to the cells and check that cells are still covered

by a wall. Moreover, we advocate that future studies should prefer the term CaCO:s to calcite or
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ACC if they did not characterize the crystallinity of the intracellular granules. Reporting that
ACC instead of calcite is the constituent of CaCOs granules in Achromatium cells does not
enlighten the mechanisms of formation of these granules. However, it sets new constraints on
them such as the requirement of a confinement and the need for a higher saturation level of the
solution in which CaCOs forms. It also modifies the quantitative impact of these biominerals
on the physiology of the cells. Last, Jin et al. (2018) highlighted that ACC is widespread in
biomineralizing eukaryotes. Here we show that this is also the case in prokaryotes since the
presently three known cases of intracellular biomineralization in bacteria, i.e. diverse

cyanobacteria, some magnetotactic Alphaproteobacteria and Achromatium, all form ACC.
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References

Techniques used

Affiliation to ACC or calcite?

West and Griffiths (1913);
Bersa (1926)

Chemical treatments and
optical microscopy

ACC

Head et al. (2000)

x-ray diffraction

Calcite

Gray (2006)

Same x-ray diffraction data as
Head et al. (2000)

Calcite that “may not be purely
crystalline”

Salman et al. (2015)

Raman spectroscopy

calcite

Yang et al. (2019)

Observations of laminations in
CaCOs granules by focused lon
beam

Calcite but also mention
“colloidal calcite”

Schorn et al. (2020)

Chemical treatments and
optical microscopy

Mention mostly calcium
carbonate, sometimes calcite
but notice that upon some
treatments “cubic calcium
carbonate crystals” formed
outside of the cells

Table S1: Summary of how intracellular CaCOs granules in Achromatium were named and identified

by some studies.
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Figure S1: SEM-EDXS analyses of the Achromatium cells analyzed by Raman. On the left, overlays of
the image obtained in the backscattered electron mode (ASB detector) and the Ca (and S in the top
and bottom lines) map. On the right, EDXS spectra of the whole cells. Top: Cell showing a Raman

spectrum characteristic of S° (see Figure 3). Following lines: cells showing a Raman spectrum

characteristic of ACC (e.g., see Figure 4). Only very little S is detected in the two bottom lines in

comparison with the top line.
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Figure S2: Raman spectra measured consecutively (from the bottom to the top) on the same
spot. The three spectra were normalized in intensity relatively to the height of the v1 band of
ACC at~1079 ecm™’. (1) with 1% of laser power and 50 accumulations; (2) 10% of laser power

and 20 accumulations; (3) 1% of laser power and 50 accumulations. Arrows show bands related
to cytochromes at 604.4, 749.4, 1128 and 1311 cm™.
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Figure S3: Fit of the Raman v, bands. (a) Raman spectrum of an ACC granule. (b) Fit of the v; band
with one Voigt function. The solid black line shows the data. The solid red line shows the Voigt fit. The
dashed green line shows the linear background correction. The data and the fit superimpose very well
except at ~1127.9 cm™ where the cytochrome band was not fitted here. The values of the v; position and
Lorentzian and Gaussian FWHMs are provided. (¢) and (d) same for a granule transformed into calcite
by irradiation. (¢) and (f) same but in the latter case, the resulting v; band shows a clear asymmetry
which could be fitted using two significant Voigt functions.
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Figure S4: Thermogravimetric analysis of a synthetic ACC compound showing an exothermic peak at
330 °C, which indicates crystallization into calcite.



