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Abstract
The human gut is a home for more than 100 trillion bacteria, far more than all other microbial populations resident on the 
body’s surface. The human gut microbiome is considered as a microbial organ symbiotically operating within the host. It is 
a collection of different cell lineages that are capable of communicating with each other and the host and has an ability to 
undergo self-replication for its repair and maintenance. As the gut microbiota is involved in many host processes including 
growth and development, an imbalance in its ecological composition may lead to disease and dysfunction in the human. 
Gut microbial degradation of nutrients produces bioactive metabolites that bind target receptors, activating signalling cas-
cades, and modulating host metabolism. This review covers current findings on the nutritional and pharmacological roles 
of selective gut microbial metabolites, short-chain fatty acids, methylamines and indoles, as well as discussing nutritional 
interventions to modulate the microbiome.
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Introduction

The human intestinal tract provides the trillions of resident 
bacteria with a nutrient-rich environment and in exchange 
the host benefits as the gut microbiota helps process nutri-
ents for our body needs. This symbiotic relationship is often 
described as mutualism, as both the bacteria and the host 
benefit from the interaction. Bacteroides thetaiotaomicron, 
is one of the most common and best-known microbes in 
human intestine, capable of degrading the indigestible 
dietary polysaccharides that serve the host with 10–15% of 
their calorific requirement [1]. A large number of microbial 

metabolic processes beneficial to the host are involved in 
the digestion and degradation of these indigestible dietary 
fibres. A number of gut microbiota species have been shown 
to be involved in the metabolism of dietary fibres to short-
chain fatty acids (SCFAs), generating energy substrates for 
the host. Gut microbiota not only produce SCFAs but is 
also responsible for the production of other gut microbial 
metabolites such as methylamine from dietary choline, and 
indoles from the metabolism of aromatic amino acids like 
tryptophan [1].

In addition, resident microbes also contribute to the host’s 
fat homeostasis by modulating the uptake of dietary lipids. 
Gut microbiota regulate the storage of fat from calories har-
vested from the diet via acting through fasting-induced adi-
pocyte factor (Fiaf). This increases hepatic lipogenesis via 
lipoprotein lipase (LPL) activity in adipocytes [1]. Conven-
tionalisation of germ-free (GF) mice with normal mice cecal 
faecal microbiota, produces a 60% increase in total body fat 
content even with reduced food intake [2].

As the gut microbiota are involved in many processes dur-
ing host growth and development, the imbalance in its com-
position and number may increase susceptibility to patholo-
gies. Dietary intervention as well as prebiotic and probiotic 
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treatments can alter microbial composition and improve 
bacterial gene richness [3]. Recently, a symbiotic which is 
a combination of probiotics and prebiotics, and probiotic 
supplementation has been shown to improve fasting plasma 
glucose, fasting insulin levels, as well as HbA1C in predia-
betic subjects [4]. Moreover, the aberration in gut micro-
bial community has also been shown to be associated with 
the development of gestational diabetes mellitus (GDM). 
Previously, a study reported that an increase in the relative 
abundance of the Ruminococcaceae family is positively cor-
related with the occurrence of GDM, with the possibilities 
that this bacterial family promotes inflammation-impaired 
glucose homeostasis leading to the reduction of insulin sen-
sitivity [5]. Therefore, the balance of the microbiota species 
is important, as it can influence the health status of the host. 
The importance of this is seen in the host immune response 
as the gut microbiota are involved in the development of 
intestinal mucosa and systemic immune system throughout 
the life of the host [6]. Studies on germ-free (GF) animals 
revealed that gut microbiota play an important role in regu-
lating physiological, biochemical, and immunological devel-
opment of the host. GF animals have abnormal numbers 
of immune cell types and immune products. Furthermore, 
commensals are also involved in many important intestinal 
functions by modulating the gene expression profile of the 
intestinal epithelial cell layer [3]. Therefore, the presence of 
the gut microbial community is vital to the host, as it helps 
maintain gut health and resistance to pathogen colonisation 
[3].

Identifying the pharmacological targets and signalling 
properties of these gut microbial metabolites is vital for 
understanding the underlying mechanisms of the gut–micro-
bial metabolites–host interaction in modulating host’s cel-
lular functions. As these metabolites have been shown to 
interfere with host metabolism via several mechanisms, 
including acting as signalling molecules activating intra-
cellular signalling cascades, we present three classes of 
gut microbial metabolites that play important roles in host 
molecular mechanisms: short-chain fatty acids (SCFA), 
methylamines, and indoles. We also discuss the strategies 
to manipulate the microbial ecology.

Main

Short‑chain fatty acids

Consumption of dietary fibre has been epidemiologically 
associated with a lower incidence of metabolic diseases and 
cancers [7]. Fermentation of the dietary fibre (e.g., from 
cereal bran, fruit skins and seeds, vegetables and pulses, 
nuts) occurs predominantly in the proximal colon where 
substrate availability and bacterial activity are the highest. 

The fibre is converted into SCFA and other by-products of 
the microbial fermentation of carbohydrates including  CO2, 
 CH4,  H2, bacterial cell mass, and heat [3, 6].

The main SCFAs produced are acetate, propionate, and 
butyrate; other SCFAs are also produced in much lower 
amounts, i.e., formate, valerate, caproate, and branched-
chain fatty acids (BCFAs) [2, 3]. The SCFAs produced 
in this manner are released at high concentrations in the 
ascending colon (70–140 mM), and their concentration 
declines in the transverse colon (20–70 mM) and in the 
descending colon (20–40  mM) [3]. The molar ratio of 
acetate, propionate, and butyrate production in the colonic 
lumen is reported to be 60:25:15, respectively [2]. However, 
this ratio can change depending on several factors such as 
diet, microbial composition, and the site of fermentation [8].

One of the key properties of SCFAs is that they can act 
either as substrates for host metabolism and/or as signalling 
molecules (Fig. 1). Acetate, produced via the fermentation 
of carbohydrates by intestinal bacteria, is taken up by the 
gastrointestinal (GI) epithelium, released into the portal 
vein bloodstream to the liver, and eventually distributed to 
peripheral tissues where it is metabolised mostly by muscle 
[9]. Acetate can also cross the blood–brain barrier to acti-
vate acetyl-CoA carboxylase and expression of neuropep-
tides thereby inducing hypothalamic neuronal activation and 
suppressing appetite [10]. Moreover, acetate is the primary 
substrate for cholesterol synthesis, and may interfere directly 
in lipid metabolism [11]. High concentrations of acetate pro-
vide substrate for hepatic lipogenesis [12].

The liver clears the majority of propionate and butyrate 
from the portal circulation to prevent high SCFAs concen-
trations in blood [13]. Approximately, 50% of propionate 
is used by humans as a substrate for hepatic gluconeogen-
esis [14]. Propionate enters TCA cycle via the succinyl-
CoA entry point. It is first converted into propionyl-CoA 
by propionyl-CoA synthetase, which is then converted into 
succinyl-CoA via three successive reactions. The result-
ing succinyl-CoA enters the TCA cycle and is converted 
into oxaloacetate, the gluconeogenesis precursor [15]. The 
concentrations of propionate in the portal vein versus the 
hepatic veins confirm the substantial uptake of propionate 
by the liver [16].

The effect of propionate on hepatic carbohydrate metabo-
lism was supported by its role in improving glucose tol-
erance and insulin sensitivity, as well as increasing high-
density lipoprotein (HDL) [17]. Moreover, it has been 
demonstrated that propionate is converted into glucose by 
intestinal gluconeogenesis (IGN), thus improving energy 
homeostasis [18].

Of the SCFAs produced by gut microbiota in human 
intestine, butyrate has caught the most attention and has been 
studied extensively, in particular supressing colonic inflam-
mation, causing cell cycle arrest and apoptosis, highlighting 
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its role in protecting against colon cancer and colitis [19, 
20]. Butyrate is the principal substrate and energy source for 
colonocytes providing at least 60–70% of colonic mucosa 
energy requirements, essential for their proliferation and dif-
ferentiation [21]. Inside the cell, butyrate enters mitochon-
dria in which it undergoes β-oxidation to acetyl-CoA and 
enters the tricarboxylic acid cycle (TCA cycle) for energy 
production [22] which can prevent autophagy by rescuing 
the deficit in mitochondrial respiration and energy perturba-
tion [23]. Butyrate is important in maintaining colonic epi-
thelium formation via its role as an anti-inflammatory agent 
to prevent the production of reactive oxygen species and 
reactive nitrogen species generated in the event of oxidative 
stress [24]. Moreover, butyrate can also play a role in lipid 
metabolism, as well as exerting anti-tumorigenic effects on 
many cancer cell lines [24]. At least part of its beneficial 
effects is reported to be related to its ability to inhibit histone 
deacetylases (HDACs) [25].

Beyond their role as substrate for energy production, 
SCFAs also act as signalling molecules through cell surface 
receptors known as G-protein-coupled receptors (GPCRs).

FFAR2 and FFAR3 activation following ligand bind-
ing inhibits the production of cyclic adenosine monophos-
phate (cAMP)-dependent pathway by adenylate cyclase, 

resulting in the reduction of intracellular cAMP pro-
duction from ATP via interaction with  Gαi protein [26, 
27]. The Gαq protein family activates phospholipase Cβ 
(PLCβ) isoforms to hydrolyse phosphatidylinositol 4,5 bis-
phosphate into 1,2 diacylglycerol (DAG) and inositol 1,4,5 
triphosphate (IP3). While DAG acts as a second messenger 
that activates protein kinase C (PKC), IP3 binds to spe-
cific IP3 receptor calcium  (Ca2+) release channels in the 
endoplasmic reticulum, thus increasing  Ca2+ release [27].

A number of studies have demonstrated that FFAR2 
acts as a chemoattractant receptor for SCFAs in neutro-
phils [27–29]. The expression of FFAR2 is frequently 
reduced or abolished in colon cancer cells; in fact resto-
ration in the FFAR2 expression followed by propionate 
treatment induced  G0/G1 cell cycle arrest and activated 
caspases, leading to apoptotic cell death [30]. Therefore, 
it is suggested that there is a possible link between the gut 
microbial fermentation products and FFAR2 in lowering 
colon cancer incidence [30]. FFAR2 is also found to be 
expressed in peptide YY (PYY)-expressing enteroendo-
crine cells (L cells) [31]. Additionally, it has been shown 
that SCFA triggers the production of glucagon like pep-
tide (GLP-1), a gut hormone with anorexigenic properties, 
through FFAR2 [32, 33].

Fig. 1  Roles of gut microbial metabolites (SCFAs) in human. Once 
absorbed in the colon, butyrate serves as energy substrates for colo-
nocytes, and acetate and propionate are transported to the liver and 

peripheral organs. In addition, SCFAs can also act as HDAC inhibi-
tor and regulate many physiological processes through signalling via 
GPCRs
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FFAR3 activation increases leptin secretion, a hormone 
that acts as a signal of satiety [34]. Butyrate and propion-
ate induce intestinal gluconeogenesis, which has beneficial 
effects on glucose and energy homeostasis via two different 
mechanisms: the first by acting as FFAR3 agonist to induce 
intestinal gluconeogenesis gene expression and the second 
via gut–brain neural circuit involving the FFAR3 [18].

Butyrate was also identified as a ligand for HCAR2, 
whose activation promotes anti-inflammatory responses [35] 
and suppresses colonic inflammation and carcinogenesis 
[36]. More recently, it has been reported that the beneficial 
effects of high-fibre diet involves the activation of GPR109A 
and FFAR2 in the gut epithelium, thereby promoting gut 
epithelium homeostasis via the inflammasome pathway [36].

Methylamines

Other microbiota-derived metabolites have been associated 
with metabolic disease. This is the case for methylamines 
such as trimethylamine (TMA) and trimethylamine N-oxide 
(TMAO).

TMA and TMAO were first associated with metabolic 
disorders through a study on insulin resistance and fatty liver 
disease [37]. TMAO was later on associated with atheroscle-
rosis [38]. TMA typically results from bacterial metabolism 
of choline [39, 40], through choline:TMA lyase activity. 
l-Carnitine is another dietary substrate [41], converted to 
TMA through a microbial oxygenase [42]. This pathway 
is quite complex as γ-butyrobetaine, an intermediary sub-
strate is also converted into TMA [43]. Finally, we recently 
demonstrated that the human gut microbiota retroconverts 
TMAO into TMA [44], following initial observations from 
Robert Smith et al. in the late 1980s [45].

TMA is absorbed and oxidised into TMAO by flavin-
containing monooxygenase 3 (FMO3) during first-pass 
metabolism. Mutations in FMO3 cause trimethylaminu-
ria, otherwise known as fish odour syndrome [46]. TMA 
also undergoes demethylation to form dimethylamine and 
monomethylamine.

Through its association with atherosclerosis, TMAO is 
mostly considered as proatherogenic, with a role in platelet 
hyperreactivity [47] and this has led to the development of 
inhibitors of the choline:TMA lyase, such as 3,3-dimethyl-
1-butanol (DMB) and substituted analogues [48, 49]. TMA 
and TMAO are associated with metabolic improvements 
induced by Akkermansia muciniphila treatment in high-fat 
diet-fed mice [50]. TMAO also was associated with reduced 
endoplasmic reticulum (ER) stress, whilst chronic TMAO 
treatment in mice improves glucose tolerance and increases 
insulin secretion [51]. This is consistent with TMAO being 
an osmolyte, stabilising protein conformation and therefore 
counteracting ER stress generally observed in obesity and 
diabetes [52].

Indoles

The gut bacterial ecosystem is also involved in the degrada-
tion of dietary aromatic amino acids (tryptophan, tyrosine, 
phenylalanine and histidine).

Tryptophan bacterial metabolism, in particular, has been 
extensively studied. Tryptophan is an essential amino acid, 
particularly abundant in cheese, poultry, red meat, egg white 
and seeds [53]. Tryptophanase is a lyase present in many 
bacterial species (e.g., Bacteroides thethaiotamicron, Pro-
teus vulgaris and Escherichia coli) [54]; it directly cataly-
ses the conversion of tryptophan to indole, which is further 
sulphated in the liver into 3-indoxylsulphate [55]. Although 
tryptophanase is the most studied enzyme, it represents only 
a small part of the complex network of bacterial reactions 
involved in the bacterial degradation of tryptophan. Trypto-
phan can also undergo deamination by Clostridium and Lac-
tobacillus spp., producing a range of other indole-containing 
molecules (indole-3-lactate, indole-3-acetate and 3-methyl-
indole) [56, 57]. Metabonomic studies demonstrated that the 
production of indoles depends heavily on bacterial activity: 
in an MS-based study comparing plasma extracts from con-
ventional and germ-free mice, 3-indoxylsulphate and indole-
3-propionate were present only in the serum of conventional 
mice [57].

Indoles were shown to impact several homeostatic pro-
cesses relevant to its mammalian host (e.g., inflammation 
[58], gut barrier permeability [59]). Indoles exhibit affinity 
for the aryl hydrocarbon receptor (AhR), which has recog-
nised functions in innate immunity and xenobiotic responses 
[55]. Of note, the effect is not homogenous: while indole-
3-acetate is suggested to be a weak AhR agonist and partial 
antagonist [60], indole itself showed antagonist activity [61].

Indole-3-propionate is a pregnane X receptor (PXR) 
ligand in synergy with indole, which promotes the mainte-
nance of the intestinal barrier integrity. As high-fat diets are 
known to increase intestinal permeability, bacterial translo-
cation and increase inflammation, it is significant that IPA 
can promote beneficial effects on the host’s metabolism [62].

Impact of microbial metabolites on behaviour

The connection between microbiota and brain has been an 
unexplored field until recently. There is increasing evidence 
that gut microbes participate in a myriad of neurological 
processes, from neurodevelopment, behaviour and ageing 
to neurodegenerative diseases [63].

Interestingly, there is a co-morbidity of neurological 
pathologies with metabolic and intestinal disorders. For 
example, numerous studies show a reciprocal relationship 
between anxiety or depression and obesity [64, 65]. Signifi-
cantly, obese patients have a different microbiota composi-
tion and increased intestinal permeability and inflammation 
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[66]. But is there a causal link between the gut microbiota 
and behavioural changes in obese patients? 4-Ethylphe-
nylsulfate (4EPS), is a microbial metabolite derived from 
the intestinal fermentation of tyrosine, which is converted 
into 4-ethylphenol and subsequently sulfated in the liver. 
Increased levels of 4-ethylphenol have been found in urine 
of rats that are more prone to develop insulin resistance and 
obesity using drug and dietary insults [67]. Intriguingly, 
mice treated with 4EPS display anxiety-like behaviours [68]. 
Although these models suggest that a microbial metabolite 
could be related to both metabolic and neuronal perturba-
tions, further metagenomic, metabolomic and behavioural 
studies in obese patients will be required to confirm this 
association.

A recent study comparing metabolically healthy obese 
patients (i.e., absence of inflammation and normal blood 
pressure, insulin sensitivity and lipid profiles), with 
unhealthy ones, found that the latter were more prone to 
suffer depression and anxiety [69]. Moreover, an intensive 
lifestyle improvement program has been shown to reduce the 
glycemic and lipid control as well as weight, along with sig-
nificant changes in adipokines, cytokines and gut hormones 
levels even after 1 year post-intervention [70]. A full char-
acterisation of the metabolome and metagenome of these 
patients might give more insight into the causality of these 
differences.

SCFAs are able to cross the blood–brain barrier (BBB) 
[71] and have been shown to be related with satiety. Par-
ticularly, acetate and propionate are able to suppress appe-
tite through GPCR and neuronal signalling pathways [10, 
72]. This implies that increasing fibre ingestion might have 
a synergistic positive effect on obesity, by reducing daily 
caloric intake and promoting satiety thanks to the increase in 
microbial-derived SCFA. At the same time, SCFAs are able 
to induce serotonin (5-HT) synthesis by enterochromaffin 
cells in the intestine [73]. Serotonin is involved in gut motil-
ity and has been also shown to have a feeding–suppressing 
action [74]. Intestinal serotonin is not capable of crossing 
the blood–brain barrier, however, its precursor tryptophan is. 
Tryptophan can also be synthesized by the intestinal micro-
biota, which can indirectly influence serotonin levels in the 
brain [75]. Finally, serotonin can also be involved in motor 
activity and circadian rhythm, which are important players 
in metabolic disorders.

The importance of metabolomics to characterise 
the functional effects of the microbiome

The relationships between human gut microbiome compo-
sition, metabolism and disease risk are already established 
[76–78]. Therefore, metabolomics, the systematic study of 
the unique metabolic profile of a cell, tissue, organ or organ-
ism, can play a key role in gut microbiome research [79]. 

The most widely used techniques for metabolic profiling are 
proton nuclear magnetic resonance (1H NMR) spectroscopy 
[80] and mass spectrometry (MS) [81, 82]. 1H NMR pro-
duces reproducible and robust metabolomic data in biofluids 
(urine, cell media, blood, etc.) and requires minimal sample 
preparation. On the other hand, MS is more sensitive and 
capable of detecting metabolites at much lower levels and 
to improve its resolution, MS is usually coupled with either 
liquid (LC) or gas (GC) chromatography [83].

Several studies have associated many gut microbiome 
metabolite levels and health outcomes. Methylamines (tri-
methylamine, trimethylamine-N-oxide etc.) have been linked 
with progressive renal fibrosis/dysfunction [84], insulin 
resistance [37] and non-alcoholic fatty liver disease [83], 
atherosclerosis [41] and even in the experimental treatment 
of type 2 diabetes with A. muciniphila [50]. Moreover, 
branched-chain amino acids (BCCAs), membrane phospho-
lipids and triacylglycerols have been connected with insu-
lin resistance. Furthermore, short-chain fatty acids (SCFAs) 
and aromatic amino acids (AAAs), which are produced by 
bacterial fermentation of carbohydrates and proteins, also 
influence the host’s health [85]: in a recent study on the 
role of the microbiome in hepatic steatosis, phenylacetic 
acid, a microbial product of phenylalanine, was associated 
with steatosis and increased lipid storage in human primary 
hepatocytes and in mice [86].

Conclusion

Increasing evidence identifies a determinant role of gut 
microbiota in the host’s health, and one underlying mecha-
nism is via gut–microbial metabolites–host interaction 
in modulating host’s cellular functions. As these micro-
bial communities are dynamic and can influence many 
physiological functions in our body, modifications in this 
gut–microbial ecology by external stimuli such as dietary 
factors, antibiotics, as well as pro- and prebiotics will con-
tribute to host health and disease state. In particular, some 
metabolic disorders of the host have been associated with an 
inflammation-related environment caused by the imbalance 
of the specific gut bacterial strains. In view of the potential 
role of dietary fibre-derived SCFA on human health benefits, 
many studies from in vitro cell culture studies to animal 
model studies to human subjects have been conducted. The 
recent report that colonic delivery of SCFA has been associ-
ated with improved beta-cell function and insulin secretion 
[87], illustrating this association therefore signifies prom-
ising therapeutic avenue of the gut–microbial metabolites. 
Despite the increasingly strong evidence supporting the 
significant contribution of the gut–microbial community 
and its metabolites in host health and disease, more stud-
ies are needed to unravel the missing links between the 
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gut–microbial and host metabolic axis to understand and 
improve human health in relation to metabolic disorders.
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