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Abstract. We investigate the flow of a concentrated suspension of colloidal particles at deformation rates
higher than the discontinuous shear thickening transition shear rate. We show that, under its own weight,
a jet of a concentrated enough colloidal suspension, simultaneously flows while it sustains tensile stress and
transmits transverse waves. This results in a new flow instability of jets of shear-thickening suspensions:
the jet is submitted to rapid transverse oscillations, that we characterize.

PACS. PACS-key 82.70.Dd — PACS-key 83.60.Rs

1 Introduction

Submitted to high strain rates, the flow of concentrated
suspensions exhibits a transition towards a strongly shear
thickening behavior [1-3], both in the colloidal and in the
non-colloidal regimes [4]. The deformation rate and the
volume fraction at which shear thickening develops de-
pend on the exact nature of the suspension, in particular
on the shape and smoothness of the particles [5,6] and
their short distance interactions [7], being lubrication [8]
or friction interactions [9].

Under high shear rates, the suspension strongly shear thick-
ens; at higher shear stresses, the suspension is able to sus-
tain a constant applied stress : it is jammed [11]. Both
states have a finite lifetime after the cessation of shear [12].
These behaviors may be rationalized by assuming that a
fabric of force chain develops under shear [10] and, that,
above some shear rate, becomes dense enough to yield
a jammed state [11]. A phenomenological model has been
proposed for non-Brownian suspensions [13] in which shear-
thickening appears as a first order transition between two
Newtonian branches of flow: a lubricated one whose vis-
cosity diverges at some volume fraction and a frictional
one whose viscosity diverges at a lower volume fraction.
Assuming that particles can make contacts, a stress scale
appears above which the lubricated branch of flow is un-
stable. Depending on the volume fraction of the suspen-
sion, the transition leads to a discontinuity in the apparent
viscosity, which defines the discontinuous shear transition
(DST). This describes well the experimentally measured
phase diagram [11].

At the discontinuous shear thickening transition (DST),
the suspension becomes dilatant: a strong normal force de-
velops at or close to the transition. Dilatance is related to
the existence of a compression axis under the applied de-
formation and to the formation of a force network [11,14].

One may thus expect that the nature of the deformation
flow plays a role in the DST. Experiments in extensional
geometry using corn starch suspensions, demonstrate that
shear DST occurs at extension rates one order of magni-
tude smaller than the corresponding shear rate in a sim-
ple shear flow [15]. The absence of a rotational compo-
nent of the deformation field thus seems to promote the
shear thickening behavior. On the opposite, it has been
observed [16] by Stokesian Dynamics simulations of the
flow of dense suspensions that shear thickening occurs at
similar deformation rates under a simple shear and an
extensional shear flow. Moreover, the confinement of the
particles, either by solid boundaries or by surface tension
is usually thought to be necessary to maintain the jammed
state [17] and indeed, free surfaces become rough at the
jamming transition due to the particles pressure. Never-
theless, jamming also occurs far from boundaries: it ap-
pears as a transient response to an impact to the suspen-
sion and a solid-like region is separated from a fluid zone
by a solidification front [18,19].

Most of the previous observations have been performed
under shear, using geometries in which a stress is applied
at the surface.

Here, we wish to study the response of a concentrated
suspension to the application of a controlled stress in a
geometry where the suspension is free to dilate in all di-
rections. Contrasting to extension experiments performed
at controlled extension rate, where one pulls at both ex-
tremities of a column of material, we study the emptying
of a funnel. The falling extremity of the column of liquid is
free, and the end-to-end distance is not fixed by external
conditions. This is a relevant situation in many natural
flows, such as geophysical mud flows [20] and industrial
processes that imply extrusion [21]. We perform an extru-
sion experiment in which the stress is imposed by gravity.
We are not interested in the flow inside a pipe where it
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has been shown that particles may jam under the appli-
cation of an external pressure [22], but by the flow at the
outlet. The dynamics and stability of a Newtonian jet are
well understood [23,24], but we consider here a strongly
non-Newtonian behavior. We show that, under these con-
ditions, DST occurs, leading to a transverse instability.

2 Experimental setup

We consider a suspension of silica particles (FOC, New

Bedford, USA), dispersed in water at well controlled pH=7.

Their radius is 775+ 75 nm, as measured by dynamic light
scattering. A suspension at ¢ = 0.5 is first prepared. Then,
using this batch as a reference, and working in a humid-
ity saturated glove box in order to avoid evaporation, the
studied samples are prepared by dilution or by the addi-
tion of dry silica powder to a volume fraction ranging from
0.48 to 0.54. At the highest volume fraction, DST occurs
at such low deformation rates that the suspension is dif-
ficult to handle. 10 mL of the suspension are placed in a
funnel made of a polyacrylate resin. The funnel angle is
a = 30° and its output diameter 2a = 3 mm. We measure
the evolution of the weight of the funnel as a function of
time when the suspension falls down as a gravitational jet.
The jet is imaged at 500 im/s (Mikrotron EOS CL). The
preparation of the suspension and all of the experiments
are performed in a glove box at humidity ratio ~ 97 % in
order to avoid evaporation. By weighing a suspension over
several hours, much longer than a typical jet experiment,
we checked that evaporation is smaller than 1075 w/w-
min~!, which is negligible during the duration of the ex-
periment (less than 10 min).

3 Rheological behaviour of the suspensions

The rheological properties of the suspensions at differ-
ent volume fractions have been measured as a function
of the shear rate, in a cone/plate geometry (Anton Paar
MCR301, angle 1°, radius 25 mm and truncation gap
50 pm) at controlled shear rate between 1 and up to 1000
s~!. The normal and tangential stresses are measured for
30 s at each shear rate value. The results are plotted in
Fig. 1. At all the considered volume fractions, the suspen-
sions shear thin at low shear rates, and viscosity fluctu-
ations, precursors to the shear-thickening transition, may
be observed [25].Then, at higher shear rates, they shear
thicken. The onset of shear thickening decreases with the
volume fraction. Then, for ¢ > 0.53, the suspension ex-
hibits DST, and shear thickening is associated to a diver-
gence of the normal stress (Fig. 1 top). These behaviors
are characteristic of many of the systems for which discon-
tinuous shear thickening and shear jamming have been re-
ported [6,25], although the values of the volume fraction
and the shear rate at which jamming occurs depend on
the interactions between particles [1,6,26].
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Fig. 1. Bottom : Evolution of the viscosity as a function of
the shear rate ¥, for ¢ = 0.48 (x), 0.5 (x), 0.505 (»), 0.51 (<),
0.515 (+), 0.52 (4), 0.53 (W), 0.5325(A), 0.5375 (V), 0.54 (e),
from black to light grey. Top : evolution of the normal force
as a function of the shear rate for the same suspensions. Data
corresponding to volume fractions ¢ = 0.48 to 0.52 refer to the
right axis coordinate. Out of range point corresponds to ¢ =
0.52 and has coordinates (376 s~*,2.165 N). Data for volume
fraction 0.53 to 0.54 refer to the left axis coordinate (the axis
is broken at 0 and its scale is smaller for positive values). The
vertical black arrows point to the curve corresponding to ¢ =
0.53.

4 Jet flows
Low volume fraction

Let us now consider the free fall of a jet of such a suspen-
sion. Several flow regimes are observed, as a function of
the volume fraction. At low volume fraction (¢ < 49 %,
Fig. 2(a)), the shape of the jet cannot be distinguished
from the free fall of a Newtonian fluid. From the evolution
of the mass with time, the volume flow may be computed
at the output and the extensional rate at the output of
the funnel, é may be evaluated. Considering the radius a
of the funnel as a characteristic length and computing the
velocity U of the fluid from the time needed for 10 mL of
suspension to flow out of the funnel of output radius a, rel-
evant adimensional flow numbers are computed. Reynolds
number Re = %, p being the density of the suspension

1

and 7 its viscosity at 10 s™*, measured in Fig. 1, compares

the inertia to viscous forces. Weber number, We = £ l{f“,
o ="72-10"3 N- m~! being the surface tension, measured
using the pendant droplet technique (Teclis tensiometer)

and that does not depend on the silica particles concen-
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tration, is the ratio of the kinetic energy of a droplet com-
ing from the jet and to its surface energy. Lastly, Froude
number, Fr = Z—Q
compares gravitational to inertia forces. At low volume
fractions, all these adimensional numbers are much larger
than 1 (Fig. 2(e)) and the flow is inertial. In this regime,
the shape of the jet is solely given by the conservation of
energy and conservation of mass: the shape of the jet can
be described ignoring viscous losses. Writing Bernoulli’s
law and mass conservation, one finds the radius of the jet
r as a function of the distance from the funnel output,

z [23]:

, g being the acceleration of gravity,

where we have taken into account that the last term of
the sum, involving the Weber number, is approximately
one tenth of the first two terms.
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Fig. 2. (a) to (d) Images of the falling jet at ¢ = 0.48, 0.515,
0.5325 and 0.5375 out of a funnel of output diameter 3 mm.
White bar = 1 cm. (e) Reynolds (B), Froude (A) and Weber
(#) numbers at the output of the funnel, as a function of the
volume fraction. Grey lines are guides to the eye. The solid line
marks a value of 1.

This describes very well the shape of the jet with no
adjustment parameter (Fig. 3 (a) light grey curve).

Intermediate volume fraction

As the volume fraction of the jet increases, the viscosity
of the suspension increases and the jet velocity decreases,
so that the role of surface tension becomes dominant. The
Weber number being of the order of 1, interfacial instabil-
ities advected by the jet develop: their velocity does not
depend on the volume fraction. The amplitude of capil-
lary waves increases exponentially from the output of the
funnel, with a characteristic length ¢ = vWef(kR) where
k is the wave number of the considered wave and R the
radius of the jet [27,28]. In the range of concentration
where droplets are observed, both the radius of the jet
and the wave number of the dominant mode are approxi-
mately constant, so that ﬁ = avWe where « is a dimen-
sional number, independent of the system and that should
be determined experimentally [27]. The evolution of the
length of the jet with v/We is plotted in Fig. 3(c). We
indeed obtain a linear relationship between ¢ and vWe
and a = 9.1, slightly smaller than the coefficient obtained
by Weber(aw = 12). Nevertheless, it has been argued [29]
that this coeflicient might not be constant and may de-
pend on the flow rate, which may explain the observed
discrepancy.

High volume fraction

But one observes a transition to another regime : at ¢ =
0.53, the behavior of the jet dramatically changes. Its
length suddenly increases (Fig. 3(c) and (d)) and one no
longer observes the occurence of droplets. The jet breaks
before reaching the solid surface under the funnel and
solid-like chunks of suspension fall down onto the surface.
They keep a cylindrical shape for a few seconds before they
become spherical, after a few seconds, in agreement with
previously measured finite time of the jammed state [12].
The shape of the jet is markedly different in this regime.
Its radius r(z) is no longer described by Eq. 2. As will
be discussed later, the jet does not remain vertical, but
exhibits oscillations (Fig. 2 (d)). The curvilinear distance
along the jet is thus different from the height and we now
compute its radius at a given vertical height, z. Fig. 3(a)
gives its shape as a function of z. Two regimes may be dis-
tinguished: close to the output of the funnel, the jet radius
decreases linearly, defining a conical shape of angle ~ 80°
that does not depend on ¢ in the narrow volume fraction
window where it is defined (between 0.53 and 0.54). Then,
the diameter of the jet is slightly decreasing.

It may be expected that, at some position of the jet, the
deformation rate reaches the critical rate at which the sus-
pensions shear thickens. Let us compute the local exten-
sion along the jet, €;(z) = Oh/dz, where h is the thickness
of a slice along the jet. Writing the volume conservation
along the jet, ¢,(2) = —20R/0zh(z)/R(z), R(z) being the
radius of the jet at position z, leading to the local exten-
sional rate :

Q 2Q OR

= RG)RG)  rR() 92

(3)
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Fig. 3. (a) Shape of the jet at ¢ = 0.49 (light grey points)
and ¢ = 0.5325 (dark points). Continuous curve is a fit of the
shape of the jet in the fluid regime according to the shape of
a Bernoulli jet, r(z) = a (1 + %5)_1/4 with no adjustment
parameter. Dashed lines are fits of the shape of the jet in the
jammed regime at the output of the funnel (up to 8 mm below)
and far from the output (40 to 80 mm below the output). (b)
Evolution of the average length (calculated from the opening
of the funnel output until the emptying of the funnel), ¢, as
a function of the volume fraction. Dashed lines are guides to
the eye. (c) Length of the jet as a function of vWe in the
droplet regime. Dashed line is a linear fit of the data, leading
to : £ = 54.6/We mm. Error bars represent one standard
deviation of ¢, obtained by repeating the measurement 3 to 7
times.

where @ is the volume flow rate, computed from the evo-
lution of mass of the jet with time. The extensional defor-
mation rate is plotted as a function of the distance from
the output of the funnel in Fig. 4 inset. It first increases
at the output of the funnel, in the conical region of the
jet, and reaches a maximum, close to the transition to an
almost constant radius jet. The position of the maximum
extension rate along the jet is indicated by horizontal seg-
ments in Fig. 4, main graph. The value of the maximum
extensional rate increases when the output funnel diam-
eter increases, from 14 s~! (output diameter 3 mm), to
65 s~! (diameter 7 mm). These values are of the same or-
der of magnitude than the critical strain rate measured by
rheology (Fig. 1, 4. = 23 s1). Finally, the jet flows down
to a point close to the end of the conical shape, at which
the deformation rate reaches the value critical value DST
value, and the jet enters the DST regime and exhibits sev-
eral features of a solid-like structure.

The extensi%n(S ;Iate inside the cone at the output of the

funnel, € = 5; %7 where H is the height of a given volume
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Fig. 4. Shape of the falling jet at volume fraction ¢ = 0.5325
for different output funnel radii, a. From black to light grey,
a = 1.5, 1.75, 2, 2.5 and 3.5 mm. Inset : extension rate ¢
along the jet according to eq. 3. The color code is the same
as in the main graph. The position of maximal extension rates
(indicated by circles) are indicated by horizontal bars along
the jet shape in the main graph.

at the entrance of the cone, immediately at the output of
the funnel, and 6H = H,,; — H;, its variation inside the
conical shape, can be estimated from the flow rate (0.17
mL-s~! for ¢ = 0.53) and the shape of the cone (¢ =

2
(#) 1 =10.1, where Ry = 1.5 mm and Rou, = 0.45

mm). The volume of the cone being 4.5-1072 mL, the time
spent in the conical shape is 4.5-1072/0.17 = 0.28 s and
the extension rate ¢ = 10.1/0.28 = 36 s~!, of the same
order of magnitude than the critical DST rate (Fig. 1),
23.1 s~1. This result contrasts with the result of [15] where
extension controlled experiments showed that DST occurs
at smaller rates under an extension geometry than in shear
geometry, but is consistent with simulation results [16].
The stress at the bottom of the conical section of the jet,
below the output of the funnel and above the part with a
roughly constant radius, under the weight of the jet may
be moreover estimated as pghcy = 350 Pa where hey; is
the height of the column underneath, 70 mm (see Fig. 3
(a)), much above the critical DST stress of suspensions at
0.53 < ¢ < 0.54 (between 11 and 17 Pa).

5 Discussion
Let us first consider the time evolution of the mass. The

total weight of the funnel is measured (Fig.6). For vol-
ume fractions strictly smaller than ¢ = 0.53, the jet flows
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Fig. 5. Detail of the rupture of a jet at ¢ = 0.5325. a) Full
image of the jet immediately after a rupture event. (b) to (d)
detailed images of the jet at the rupture point taken at 2 ms
intervals. Withe bars correspond to 1 mm. (e) Shape of the
jet before and after rupture at 2 ms intervals. The shapes are
translated horizontally for clarity. The length of the horizontal
bar is 5 mm. f) Width of the jet above (disks) and below
(triangles) the rupture event, in a time interval [—20 ms, 20 ms]
around a rupture event.

out of the funnel and, when ¢ is larger than 0.50, breaks
into droplets (Fig. 3). In this regime, the weight decreases
smoothly. Conversely, for volume fractions larger than 0.53,
well-defined steps are observed, separated by regions where
the mass is constant. This implies that the weighing de-
vice does not measure the mass of the funnel and of the
remaining suspension inside the funnel at a given time,
but that it also measures the weight of the jet underneath
the output. The mass losses correspond to ruptures of the
jet, and between two such ruptures, the mass remains con-
stant although the jet continues flowing out of the funnel.
As a consequence, tensile stress is transmitted along the
jet. This result is consistent with previous observations
that, in the DST regime, stress is transmitted by a stress
supporting structure, and suggests that, in our geometry,
forces propagate up to a distance larger than the diameter
of the jet. The surface of the jet is put under tension by
normal stresses [17], and strong capillary forces, generated
by the menisci at the surface of the jet, transmit tensile
stress along the column.

One may assume that DST occurs at the highest sheared
regions (Fig. 4), 3 to 10 mm from the funnel output, where
the local extension rate is of the order of the DST shear
rate, and then a solid-like rope falls down under the effect
of gravity. The lifetime of the DST state depends on the
volume fraction of the suspension, but has been measured

14
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Fig. 6. Evolution of the mass of the funnel as a function of
time for ¢ = 0.49, 0.5, 0.52, 0.525, 0.53, 0.535 and 0.5375, from
left to right. Inset: zoom of the mass loss for ¢ = 0.53 (bottom
curve) and 0.535 (top curve). Mass losses dw are defined by
abrupt losses of mass, as indicated by arrows.

to be of the order of few seconds after cessation of ap-
plication of shear stress [12], long enough so that the jet
stays in the DST state until it breaks. It is fed with parti-
cles inside the cone underneath the output of the funnel,
and remains attached to the funnel by capillary tension
of the cone. Then, the second part of the jet shape whose
radius slightly decays with height transmits stress, both
by the fabric of force chains in volume and by capillary
forces at the surface. At some point, the jet exhibits brit-
tle fracture, as observed in [17]. The fracture events are
very different from breaking of liquid columns, that in-
volves thinning of the column before rupture [23]. Here
(Fig. 5), solid-like fracture is observed, during which the
diameter of the jet remains constant close to the fracture
event. These fractures lead to steps in the evolution of
mass with time. These steps are well defined and may be
easily identified for ¢ = 0.53 but their amplitude becomes
of the same order of magnitude of the horizontal force
exerted by the oscillating jet on the funnel, when the vol-
ume fraction increases (Fig. 6(a)inset) and they cannot
unambiguously be distinguished from noise of the weight
curve, that is mainly induced by the forces exerted by the
jammed structure inside the cone underneath the funnel
output, onto the funnel itself.

Finally, in this regime, the jet is no longer vertical, but
transverse oscillations propagate along the jet. We observe
this instability for output diameters ranging from 3 to 7
mm. At ¢ = 0.52, the jet remains stable whereas at larger
output diameters, the increase of the deformation rate at
the output of the funnel leads to jet instability. Their ve-
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Fig. 7. Probability densities of transverse waves celerities for
¢ = 0.5375 ((b)). Positive values correspond to waves prop-
agating downwards and negative values to waves propagating
upwards. Thick black lines are average velocities of waves trav-
elling downward and upward.

locity is measured by the evolution of their maxima as
a function of time. Some waves travel upwards whereas
some travel downwards. The distribution of velocities is
given in Fig. 7 for ¢ = 0.5375. Waves travelling downward
(positive velocities) and upward are measured, but most
of them (77 %) travel downward. This suggests that the
breaking of chunks at the bottom of the jet is not the dom-
inant mechanism of wave generation. Most of them seem
to be generated in the conical region at the output of the
funnel, when heterogeneities of the concentration or of the
deformation rate induce the formation of chunks of parti-
cles. The generation of these oscillations may also be due
to stress fluctuations [25,30] in the DST regime, at any
position along the column. Moreover, the average celerity
of waves travelling upward is 0.43 m-s~* and downward
—0.44 m-s~!. Surprisingly, they do not seem to be ad-
vected by the falling jet whose average velocity of 0.16
m-s~1 would lead to Doppler shift of travelling waves.

Let us model the jet as a rope under its own weight.
The propagation of a single wave along the rope would
have the velocity ¢ = v/fg = 1 m-s~! where £ is the length
of the jet. This value is twice as large than the average
measured phase velocity. This is due to the fact that we
observe superpositions of downward and upward travelling
waves. Indeed, depending on the phase shift between the
two, the apparent phase velocity will change. Assuming a
reflection coefficient equal to 0.5, the average phase veloc-
ity is equal to 0.5 m-s~!, in agreement with measurements.

6 Conclusion

Our observation of a falling jet of a concentrated sus-
pension confirms that discontinuous shear thickening is
observed in jet flow geometries and occurs at extension
rates similar to shear rates at the DST transition. Associ-
ated with strong confinement stress induced by capillary
stresses at the surface, this allows the jet to sustain tensile
stress and to propagate transverse waves.
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