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1  | WHY ARE C ANCERS NOT JUST 
GENETIC MUTATIONS?

Mutagenic forces introducing 1–10 somatic mutations per cell divi-
sion throughout life lead to the gradual accumulation of point mu-
tations in otherwise healthy tissues. Most of these mutations are 
selectively neutral passenger events, including single nucleotide 
substitutions that result in no change in the amino-acid composi-
tion of the encoded protein (synonymous mutations) and a majority 
of nonsynonymous mutations that have no impact on cell behavior. 
Some rare events are potentially advantageous driver mutations 
in oncogenes and tumor suppressors. Contrary to germ cells that 
efficiently eliminate deleterious mutations, somatic cells could 
use a variety of subterfuges to tolerate potentially toxic genetic 
alterations with a near complete absence of negative selection 
(Martincorena et al., 2017; Williams, Werner, Barnes, Graham, & 
Sottoriva, 2016).

Cancer is commonly seen as a consequence of this process of 
somatic evolution in which driver mutations accumulate in a cell, 
typically in a stem cell or a progenitor. Then, the forces that shape 
the malignant genome and promote tumor growth, progression, and 
relapse are viewed as the results of an evolutionary process mainly 
fueled by genetic (Gerstung et al., 2020) and epigenetic diversifi-
cation (Gaiti et al., 2019). These forces include endogenous reor-
ganization of the genome (Alexandrov et al., 2020; Cortés-Ciriano 
et al., 2020; Rodriguez-Martin et al., 2020) and the epigenome 
(Pastore et al., 2019) as well as integration of external pathogen ge-
nomes (Zapatka et al., 2020). This evolution precludes cancer cure 
with cytotoxic agents and targeted drugs as resistant clones expand 
under the additional selection pressure exerted by these treatments, 
needing sophisticated measurements and algorithms to optimize the 
use of these agents (Bolan et al., 2020; Siravegna et al., 2015). While 
the diverse genetic and epigenetic alterations and their evolution 
along the progression of established tumors are well studied and 
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Abstract
Somatic mutations in oncogene and tumor suppressor genes accumulate in healthy 
tissues throughout life and delineate clones with limited expansion. Lifestyle-related 
toxic insults increase the size and number of these clones that participate to tissue 
aging. Their identification has blurred the boundaries between clonal expansion and 
malignant tumor and has drawn more attention to the role of the host environment 
in tumor emergence and progression. Local tissue factors such as disrupted cell in-
teractions and stromal cell senescence combine with systemic and distant alterations 
to initiate the reiterative process of clonal expansion, multilayer intrinsic diversifica-
tion and clonal selection that eventually characterize overt tumor evolution. In turn, 
tumors remodel their close and distant environments, establishing positive feedback 
loops that contribute to disease progression. Strategies emerge to preserve the 
tumor suppressive properties of healthy tissue landscapes and delay age-induced 
changes that eventually lead to cancer.
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increasingly understood, the boundary between normal evolution 
and malignant progression remains blurred.

Alterations are not restricted to cancer cells. Analyses of adja-
cent tissues that appear histologically normal have shown genetic, 
epigenetic, and transcriptomic alterations, sometimes referred 
to “field cancerization” (Slaughter, Southwick, & Smejkal, 1953). 
Whether these alterations predate or follow the emergence of can-
cer is still a matter of debate (Abdalla et al., 2017; Aran et al., 2017; 
Teschendorff et al., 2016). More strikingly, an increasing number of 
studies show the presence of mutated clones in tissues of healthy 
individuals. Initial detection of clonal derivation of cells in healthy 
tissues was based on analysis of random X-chromosome inactiva-
tion in females. At the beginning of the 60s, each X-chromosome in 
excess of one was shown to be randomly inactivated in cells during 
the early development of female embryo (Lyon, 1962). All the female 
tissues are a mosaic pattern of two cell populations, one express-
ing maternal and the other paternal X-linked genes with a theoreti-
cal ratio of 1:1. This process was used to demonstrate the clonality 
of established tumors; that is, all the tumor cells express the same 
X-linked alleles (Linder & Gartler, 1965). Subsequently, a skewing 
of random X-chromosome inactivation was detected in healthy tis-
sues and was shown (a) to increase with age and (b) to differ among 
tissues, with blood cells being more skewed than any other tissue. 
Several mechanisms could explain random X-chromosome inacti-
vation skewing and its prevalence in hematopoietic cells (Ayachi, 
Buscarlet, & Busque, 2020). For example, such a skewing could be 
due to a selective growth advantage conferred by an X-gene allele, 
inducing a polyclonal expansion of cells with a skewed ratio of inacti-
vated X-chromosomes. Alternatively, a stem cell could have acquired 
a mutation in a gene conferring a growth advantage, leading to clonal 
expansion. Such a situation was identified in 2012 when an acquired 
clonal mutation in TET2, a tumor suppressor gene commonly mu-
tated in myeloid malignancies, was shown to be compatible with nor-
mal hematopoiesis (Busque et al., 2012).

In the following years, clonally restricted hematopoiesis was 
identified as a common aging-associated biological state (designated 
either as ARCH for age-related clonal hematopoiesis or CHIP for 
clonal hematopoiesis of indeterminate significance) that not only 
predisposes to subsequent development of a hematological ma-
lignancy but also to cardiovascular death (Genovese et al., 2014; 
Jaiswal et al., 2014; Lee-Six et al., 2018; Xie et al., 2014). Somatic 
mutations leading to limited clonal expansion were subsequently 
detected in a variety of other healthy tissues, including skin 
(Martincorena et al., 2015), esophagus (Martincorena et al., 2018; 
Yokoyama et al., 2019), liver (Brunner et al., 2019; Zhu et al., 2019), 
colon (Kakiuchi et al., 2020; Lee-Six et al., 2019; Nanki et al., 2020), 
lung (Yoshida et al., 2020), endometrium (Moore et al., 2020), and 
many others (Yizhak et al., 2019).

Widespread positive selection of these mutant clones may con-
tribute to tissue aging by negatively affecting tissue function. Toxic 
exposures further increase mutational burden, cell-to-cell hetero-
geneity and driver mutations, as observed in the bronchial epithe-
lium of tobacco smokers (Yoshida et al., 2020) and in hepatocytes 

of cirrhotic patients (Brunner et al., 2019). Toxic insults expand the 
size of pre-existing clones while generating new mutational signa-
tures. In the normal liver, stem cells have a low mutational burden 
and limited diversity of signatures. When progressing from health 
to disease, including hepatic inflammation, cirrhosis, liver failure and 
finally hepatocellular carcinoma, mutational signatures chronicle the 
exposures, toxicity, regeneration and clonal structure of the tissue 
(Brunner et al., 2019).

While this accumulative process looks simple, explaining why 
one of the clones that emerge in a given tissue becomes an overt 
malignant tumor while the others do not remains challenging. For 
example, positive selection of a driver gene mutation can be decou-
pled from the risk of malignant transformation. In the esophagus, 
a strong positive selection of clones carrying mutations in cancer 
genes was identified. With aging, these clones cover much of the 
epithelium, with inactivating NOTCH1 mutations affecting up to 80% 
of cells (Martincorena et al., 2018). NOTCH1 mutations are much less 
prevalent in esophageal carcinomas. This could indicate that the 
presence of epithelial progenitors with inactivated NOTCH1 could 
be less likely to accumulate additional cancer-promoting mutations 
such as TP53 mutation (Laconi, Marongiu, & DeGregori, 2020). In 
accordance with this hypothesis, the ability of clonal expansion to 
exert a protective effect toward malignancies was observed in a cir-
rhotic liver (Zhu et al., 2019) and NFKBIZ-mutant clones, which are 
highly prevalent in inflamed intestine of patients with ulcerative coli-
tis, are selected against during colorectal carcinogenesis (Kakiuchi 
et al., 2020).

These rapidly expanding observations indicate how little we 
know about somatic evolution that is likely to take place in every 
normal tissue. Genetic alterations lead to small, nonmalignant 
clones. Their persistence indicates that they do not activate negative 
selection processes but also that some mechanisms might limit their 
expansion. Their accumulation in an aging, yet nonmalignant tissue, 
may promote cancer development through diverse trajectories; that 
is, either one of the clone toggles to a malignant tumor or a new 
clone with cancer properties independently emerges. Both events 
could take advantage of tissue malfunction induced by the accumu-
lation of nonmalignant clones or by external factors. Whatever the 
mechanism, detection of a clonal mutation in a driver oncogene or a 
tumor suppressor is no more sufficient to define a malignant clone 
and these observations create new challenges to detect or prevent 
cancer emergence.

When a cancer has evolved, the lineage history is tradition-
ally charted by single-cell integration of genetic, epigenetic and 
transcriptional information (Gaiti et al., 2019; Rodriguez-Meira 
et al., 2019). The dynamic regulation that contributes to cancer initi-
ation and progression includes pre-mRNA splicing, RNA binding pro-
tein activity and the so-called epitranscriptome (Jiang, Crews, Holm, 
& Jamieson, 2017). However, before going through the reiterative 
process of clonal expansion, multilayer intrinsic diversification and 
clonal selection that characterizes its evolution, a malignant tumor 
must emerge, meaning that clonal cells must compete with the nor-
mal microenvironment and overcome antitumorigenic pressures. 



1758  |     SOLARY And LAPAnE

Tissue homeostasis and architecture may inhibit cancer emergence 
and development, and changes in the microenvironment are re-
quired to shift the balance of these signals to a procancerous state. 
Many components located near a clone or abroad then combine with 
intrinsic, cell-autonomous evolution to move from clonal expansion 
to malignancy. The following part of this paper focuses on how tis-
sue and host environments affect cancer emergence and evolution.

2  | WHY DON'T WE GET MORE C ANCER?

Most of the individuals that cancer kills are postreproductive; that 
is, more than 90% of cancers are diagnosed in humans older than 
50 years (Laconi et al., 2020). The low rate of cancer diagnosis during 
reproductive age in multicellular organisms suggests a long evolu-
tionary history of adaptation and natural selection against life-dis-
rupting cancer growths (Cairns, 1975; Frank, 2003, 2007; Nowak, 
Michor, & Iwasa, 2003). Most of the typically rare pediatric cancers 
do not affect the epithelia, as adult cancers, but develop in the lym-
phoid tissue and the central nervous system, which have both un-
dergone more recent evolutionary change (Leroi, Koufopanou, & 
Burt, 2003). The capacity of the other tissues in the human body to 
restrain the aberrant growth of precancerous cells is an exciting feat 
of evolutionary biology.

A major transition in evolution to multicellular organisms re-
lies on the repression of cell over-proliferation (Maynard Smith & 
Szathmary, 1995). Normal cells and tissues have developed multiple 
adaptive mechanisms that prevent or delay tumorigenesis, including 
cell-autonomous mechanisms such as DNA repair, cell cycle control 
and cell death programs, and non-cell-autonomous processes that 
include immune surveillance and tissue structure maintenance (Bhat 
& Bissell, 2014; Bissell & Radisky, 2001; Ewald & Swain Ewald, 2013). 
To develop, a cancer must overcome these diverse protective 
mechanisms, which generates a breakdown in multicellular coop-
eration (Aktipis & Nesse, 2013; Buss, 1987; Godfrey-Smith, 2009; 
Nunney, 2013; Pradeu, 2019).

Not only do we accumulate clones of mutated cells throughout 
life (Tomasetti, 2019), but some malignant tumors at early stages may 
emerge, yet remain under control of the neighboring cells for a long 
time (Bissell & Hines, 2011). Almost one century ago (Rich, 1935), 
routine histological examination of prostate tissues from autopsied 
young men who had died from unrelated causes already identified in 
situ intraepithelial neoplasms with a surprisingly high frequency, for 
example, in 9% of men in their twenties (Sakr, Haas, Cassin, Pontes, 
& Crissman, 1993). This observation was extended to many other 
tissues, suggesting that overt tumors may appear several decades 
before clinically detected carcinomas and arguing for normal con-
textual cues refraining malignant tumor emergence and expansion 
(Bissell & Hines, 2011; Greaves, 2014). Pushing the concept to its 
climax, the clinically defined entity “cancer of unknown primary 
site” describes a disease revealed by a metastasis, while the ana-
tomical site of the primary tumor remains occult after detailed in-
vestigations, indicating that some tissue control on primary tumor 

development had persisted partially, even though metastatic migra-
tion has become effective (Varadhachary & Raber, 2014).

Initial studies on carcinogenesis demonstrated that, to generate 
a cancer, mutagenic chemicals such as benzo(a)pyrene derivatives 
required to be combined with another agent acting as a tumor pro-
moter by overcoming the protective role of the microenvironment 
(Slaga, 1983). Wounding was identified as a highly effective tumor 
promoter (Sieweke & Bissell, 1994). Seminal experiments performed 
by Mina Bissell's group provided strong support to these concepts. 
In a virus-induced sarcoma model, virus injection to hatch birds 
was shown to cause a rapidly growing tumor at the site of injection 
(Dolberg & Bissell, 1984). The same virus replicated but was not tu-
morigenic in bird embryos, while the cells derived from infected tis-
sues expressed a transformed phenotype in culture. While the virus 
was present in the blood of tumor bearing animals, no other tumors 
were found distant from the site of inoculation during its life span, 
except if a wound was made away from the primary tumor (Martins-
Green, Boudreau, & Bissell, 1994). Together, these experiments 
established that virus infection could initiate a tumor whose devel-
opment was dependent on the tissue environment. In the following 
years, using a variety of sophisticated models and techniques, it was 
shown that the microenvironment could revert a malignant (mam-
mary cancer cells, melanoma cells) into a normal phenotype whose 
genotype remained unchanged (Bussard, Boulanger, Booth, Bruno, & 
Smith, 2010; Hendrix et al., 2007; Weaver et al., 1997), building on the 
early observation that teratocarcinoma cells transplanted in normal 
mouse embryo blastocysts participate to the healthy development 
of these animals (Illmensee & Mintz, 1976; Mintz & Illmensee, 1975). 
Normalization of altered cells in healthy environment could result 
from cell–cell contact with normal cells (Rubin, 2006, 2008), or from 
soluble proteins released by surrounding cells (Rubin, 2003). Thus, 
most probably, the tissue environment has a stabilizing influence on 
clones and occult tumors that accumulate with age.

Some of the cancer cells that disseminate from an established 
primary tumor reside in patient organs for years before their out-
growth, entering a long-lasting dormant state with occasional cell 
divisions (Giancotti, 2013). Mechanistically, these cancer cells enter 
a reversible and programmed growth arrest known as quiescence for 
periods that, in estrogen-positive breast cancer and prostate cancer, 
can be longer than a decade, overriding the driver genetics that may 
fuel their growth. These cells have also to evade the immune sys-
tem, which involves a variety of sophisticated mechanisms (Pommier 
et al., 2018; Saudemont & Quesnel, 2004). Inflammation can reacti-
vate dormant cancer cells, for example, activated neutrophils release 
nucleases that alter the host tissue matrix, releasing basement mem-
brane components that activate kinases in dormant cancer cells and 
induce their proliferation (Albrengues, Meneguzzi, & Gaggioli, 2014), 
leading to clinically detectable metastases.

It remains unclear to which extend a normal cell progeny spreads 
in a given tissue and whether the clones identified by the presence of 
a somatic mutation extend beyond the size of a normal cell progeny. 
Some of the clones detected in the peripheral blood are defined by 
the presence of a passenger mutation that may not confer any fitness 
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advantage to its progeny (Genovese et al., 2014; Zink et al., 2017). 
Although still controversial (Watson et al., 2020), these observations 
suggest that the formation of a mutated clone is compatible with 
neutral evolution. When barriers to oncogenesis, that is, mechanisms 
that prevent essential steps in cell transformation such as the occur-
rence of an oncogenic mutation, are crossed, then restraints to on-
cogenesis; that is, mechanisms that inhibit the exacerbating effect of 
various events, may operate (Ewald & Swain Ewald, 2013). Examples 
of such restraints include the capacity of adaptive immunity to hold 
occult cancers in equilibrium (Koebel et al., 2007) and resource or 
space limitations (Aktipis, Boddy, Gatenby, Brown, & Maley, 2013).

3  | WHY DO C ANCERS E VENTUALLY 
EMERGE?

According to the current representation of cancer, accumulation of 
mutations inducing a fitness advantage is the rate-limiting factor of 
disease development. An alternative model suggests that aged-re-
lated alterations of the microenvironment may be the major rate-lim-
iting factor (Rozhok, Salstrom, & DeGregori, 2014). The components 
of the host environment playing active roles in cancer development 
can span from the local cells surrounding an emerging clone to sys-
temic and distant elements (Laplane, Duluc, Larmonier, Pradeu, & 
Bikfalvi, 2018; Figure 1).

3.1 | Cell competition

To emerge, a clone must outcompete its neighboring cells. Somatic 
cell competition is a process that is conserved from Drosophila to 
mammals and corrects developmental errors, maintains adult tissue 

health, and delays aging effects by eliminating less fit cells (Merino 
et al., 2015). In Drosophila, cells that harbor mutations in a gene 
called “Minute” survive in a homogenous population of cells, while 
they are eliminated as soon as they are mixed with wild-type cells 
(Mello & Bohmann, 2020; Morata & Ripoll, 1975). Following a simi-
lar principle, cells of the wing disks that overexpress the oncogene 
Myc induce the death of neighboring wild-type cells (de la Cova, 
Abril, Bellosta, Gallant, & Johnston, 2004; Moreno & Basler, 2004). 
In this cell competition via short-range cell–cell interaction, elimi-
nated cells are called “losers,” while the others are called “winners” 
(Nagata & Igaki, 2018). Flower, a membrane protein that exists in 
different isoforms, is a fingerprint of winner and loser cells; that 
is, some isoforms (called Flower-lose) mark cells to eliminate while 
others (called Flower-win) are expressed at the surface of winner 
cells (Rhiner et al., 2010). Flower-lose and Flower-win isoforms 
were recently identified in humans. For a clone of mutated cells 
to persist in an otherwise healthy tissue, wild-type and mutated 
neighboring cells should express similar levels of Flower-lose and 
Flower-win. Disruption of this equilibrium, for example, if healthy 
cells increasingly express Flower-lose as they age and/or if can-
cer cells overexpress Flower-win, could favor the emergence of a 
tumor by activating a nonimmune cell recognition and selection 
mechanism. Accordingly, the expression of the two human Flower-
win isoforms was observed to be higher in cancer cells of expand-
ing tumors than in surrounding tissues (Madan et al., 2019). Thus, 
deregulation of Flower gene splicing in a population, either tumor 
cells or surrounding healthy cells, could permit a clone to escape 
the control of its immediate environment. Whether this mecha-
nism may be sufficient to initiate the shift from a clone to a malig-
nancy remains unclear.

Another way by which mutated clones can compete is related 
to their differential resistance to external insults. Therapy-related 

F I G U R E  1   At younger, reproductive ages, tissue cells are highly diverse and their protective mechanisms (DNA repair, cell death, immune 
system) are very efficient. Clones only rarely form. At middle age, clonal diversity decreases and clones of cells expand, some of them 
exhibiting mutations in oncogenes and tumor suppressor genes, without generating tumors as their environment remains protective. With 
aging, the microenvironment becomes permissive (cell interactions are modified, stromal cells undergo senescence) and combines with host 
changes in metabolism, immune defense and microbiota to license the clone for uncontrolled grow
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myeloid neoplasms, including acute myeloid leukemias and myel-
odysplastic syndromes, provide a unique example of how external 
perturbations can promote cancer evolution. This clinical entity 
typically occurs as a late complication of chemotherapy and ra-
diotherapy administered for a primary cancer. Next-generation 
sequencing of peripheral blood cells collected at the time of a 
primary tumor identified clonal hematopoiesis of indeterminate 
potential in 25% of cancer patients, with ~5% harboring presump-
tive leukemia driver mutations. In multiple cases, the exact TP53 
or PPM1D mutation found at diagnosis of a therapy-related he-
matological malignancy was also present at a very low frequency 
(<1%) in blood leukocytes before any chemotherapy was given for 
treating the primary tumor (Schulz et al., 2015; Wong et al., 2015). 
Accordingly, TP53 or PPM1D gene mutations can be detected in 
small populations of peripheral blood cells of some healthy, che-
motherapy-naïve, elderly individuals. In mouse, bone marrow 
chimaera models containing both wild-type and Tp53- or Ppm1d-
mutated hematopoietic stem cells, these mutated preferentially 
expand after exposure to chemotherapy (Coombs et al., 2017; 
Gibson et al., 2017; Hsu et al., 2018). These data support a model 
in which rare stem cells carrying age-related TP53 or PPM1D mu-
tations have resisted to initial cytotoxic therapy, then expanded 
preferentially. Rather than inducing a leukemia-specific mutation 
by itself, cytotoxic treatment facilitated the expansion of a pre-ex-
isting clone. Mechanistically, mutant p53 interacts with the epi-
genetic regulator EZH2 to alter the expression of genes regulating 
stem cell self-renewal and differentiation, establishing EZH2 as 
a potential therapeutic target for TP53-mutated clones and ma-
lignancies (Chen et al., 2019). Importantly, a similar selection of 
TP53-mutated clones could be observed in the skin exposed to UV 
light exposure (Klein, Brash, Jones, & Simons, 2010) and in chron-
ically inflamed intestine (Vermeulen et al., 2013). Similar mecha-
nisms apply to other DNA repair pathway gene mutations such as 
RAD21 and BRCC3 (Husby et al., 2020). However, all pre-existing 
clones do not similarly expand upon therapy exposure, indicating 
that the risk of leukemic evolution depends on the mutations they 
harbor.

3.2 | Alteration of local tissue environment

Some years ago, a debate emerged regarding the respective role 
of intrinsic factors—the number of stem cell divisions and inherited 
genetic factors—and extrinsic factors—exposure to toxic insults—in 
the accumulation of somatic mutations leading to cancer (Tomasetti 
& Vogelstein, 2015; Wu, Powers, Zhu, & Hannun, 2015). The as-
sumption was that selective advantage is a fixed attribute of genetic 
changes; that is, this debate did not consider the dynamic properties 
arising at the interface of the mutated cells and their environment 
(Rozhok & DeGregori, 2019). Actually, the normal tissue landscape 
plays a role in maintaining structural organization, inhibiting cell 
growth and clonal expansion, eliminating the cells with damaging 
alterations and reversing malignant phenotypes, indicating that any 

alteration of these repressive forces may contribute to the emer-
gence and growth of malignant tumors.

Within tissues across the body, fibroblasts are the most com-
mon component of the stroma, synthesize the extracellular matrix 
that regulates tissue structure, and secrete a variety of soluble fac-
tors, providing a growth-restricted microenvironment for premalig-
nant cells (Krtolica, Parrinello, Lockett, Desprez, & Campisi, 2001; 
Sahai et al., 2020). Other stromal cells include endothelial cells, 
adipocytes, immune cells, and nerves (Boilly, Faulkner, Jobling, & 
Hondermarck, 2017; Quail & Dannenberg, 2019). Correlations have 
been established in the breast and the liver between an altered tis-
sue stroma; for example, an increased density of the breast stroma 
measured by imaging methods (Boyd et al., 2010) and the risk of can-
cer. Experimental settings supporting the role of the tissue stroma in 
tumor emergence include expression of stromelysin-1 in mouse nor-
mal epithelial cells that promotes malignant conversion in mammary 
glands (Sternlicht et al., 1999), and inactivation of the TGF-beta type 
II receptor gene in mouse fibroblasts that modulates the growth and 
oncogenic potential of adjacent epithelia (Bhowmick et al., 2004). 
These experiments supported the idea that, when tissue homeo-
stasis declines, adaptive phenotypes are selected, of which some 
defined by somatic mutations and epimutations evolve toward an 
overt cancer.

Natural selection has invested into tissue maintenance to max-
imize organismal reproductive fitness, whereas physiological aging 
along the postreproductive lifetime progressively degrades tissue 
maintenance, which can be accelerated by toxic environmental 
insults. Aging promotes both degenerative pathologies through 
debilitating loss of tissue or cellular functions and hyperplastic 
pathologies of which the deadliest is cancer. The cellular stress 
response common to these pathologies is cellular senescence, a 
potent tumor suppressive mechanism that also generates toxic 
inflammation (Campisi, 2013). Senescence is a trait that elicits a 
beneficial phenotype early in life and becomes detrimental with 
aging, which has been proposed to define a so-called “antago-
nistic pleiotropy” (Fane & Weeraratna, 2020). Cells undergoing 
senescence secrete a variety of soluble factors (typically ~75 cy-
tokines, chemokines, growth factors and proteases) that form the 
senescence-associated secretory phenotype (SASP; Faget, Ren, & 
Stewart, 2019).

In young tissue, the SASP is mostly beneficial by attracting im-
mune cells that clear altered cells following an injury. In aging tis-
sue, the SASP becomes detrimental and drives tumor progression 
as well as many other aging-related diseases. Recent evidence in-
dicates that aging modifies the secretome of fibroblasts and other 
stromal cells to a state that is more permissive for the growth and 
invasion of malignant cells (Kaur et al., 2016; Krtolica et al., 2001; 
Liu & Hornsby, 2007). Several mechanisms may account for age-re-
lated stromal cell senescence, including DNA damage, epigenetic 
changes, and retrotransposable element derepression (Coppé, 
Desprez, Krtolica, & Campisi, 2010; De Cecco et al., 2019; Liu 
et al., 2019). Their permissive effect on tumor emergence involves 
a great diversity of secreted factors (Fane & Weeraratna, 2020). 
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As an example, genetic deletion of the senescence-inducing factor 
SIN3B (a histone deacetylase-associated protein) in a KrasG12D-
driven mouse model of pancreatic intraepithelial neoplasia 
significantly reduces the initiation and progression of the pancre-
atic lesions by decreasing IL-1β secretion (Rielland et al., 2014). 
Osteoblasts, the cells that build the bone, generate an extracellu-
lar matrix that is mineralized and their senescence increases bone 
remodeling by releasing the cytokine IL-6 to activate osteoclasts, 
the cells that destroy the bone, and promote the growth of tumor 
metastasis in mouse models (Luo et al., 2016). Together, these data 
indicate that senescence of fibroblasts and other stromal cell pop-
ulations in an aging tissue generates a microenvironment that is 
mostly protumorigenic (Faget et al., 2019).

3.3 | Systemic and distant alterations

Systemic alterations could complement the effects of tissue mi-
croenvironment aging in the promotion of cancer emergence. 
One of them, which is shared by the causes and effects of aging, 
is low level of chronic inflammation. The so-called “inflammag-
ing” includes elevated levels of pro-inflammatory cytokines and 
chemokines, both within the tissue microenvironment and the 
systemic milieu. It also provokes a low-level persistent infiltration 
of tissues with immune cells, primarily but not exclusively cells of 
the innate immune system (Balkwill & Mantovani, 2001; Cevenini, 
Monti, & Franceschi, 2013; Pinti et al., 2016). Interleukin-6 (IL-6) 
and C-reactive protein are commonly used as indicators of this 
inflammation and increase in an age-dependent manner, even 
in subjects never diagnosed with diseases commonly associated 
with age. The origin of inflammation includes the already men-
tioned accumulation of senescent cells that become maladaptive 
and promote diseases through their secretome or SASP (Faget 
et al., 2019). Two other factors that may account for low-grade 
chronic inflammation associated with aging include the adipose 
tissue and the microbiota.

Among the lifestyle choices that affect cancer risk, obesity, 
whose prevalence is increasing rapidly, now competes with to-
bacco as the leading preventable risk factor for cancer. Obesity 
is associated with both increased cancer incidence and mortality. 
It induces substantial and complex metabolic and inflammatory 
changes in the adipose tissue that disrupt physiological homeo-
stasis within local tissues and systemically (Lengyel, Makowski, 
DiGiovanni, & Kolonin, 2018). Not only the volume but also the 
quality of adipose tissue (inflammation, hypoxia, adipocyte hyper-
trophy) and its distribution may affect the risk of disease through 
driving metabolic aberrancies that include insulin resistance and 
metabolic syndrome (Quail & Dannenberg, 2019). The normal 
aging process also modifies the adipose tissue, that is, increases 
levels of visceral and subcutaneous adipose tissue. The role of ad-
ipose tissue in the progression of established cancer is well docu-
mented. Whether it could also promote cancer initiation remains 
debated but it creates an inflammatory milieu in which radical 

oxygen species production is elevated to a level at which genomic 
instability may ensue.

Independently of overt inflammation and obesity, consumption 
of a high-fat diet can enhance adenocarcinoma development and 
metastasis formation in K-rasG12Dint mice. In this model, high-fat diet 
promotes the progression from low-level dysplasia in normally fed 
mice to small bowel carcinogenesis and metastasis by inducing a 
dysbiosis. Importantly, the carcinogenic phenotype could be repro-
duced by fecal transplants, demonstrating that cancer arises from an 
interaction between genes and the bacteria (Schulz et al., 2014). This 
model suggests that microbiota could play a central role in absorbing 
the impact of various dietary insults and passing the consequences 
on to the host.

Initial relationships between the human microbiome composition 
and cancer development were more correlative than causative. For 
example, Fusobacterium, predominantly F. nucleatum, was observed 
to preferentially colonize colorectal cancer over normal colon tissue 
and, accompanied by other microorganisms, to persist during meta-
static tumor growth, yet is unlikely a colorectal cancer driver by it-
self (Bullman et al., 2017). Very recently, unique microbial signatures 
were detected in the tissues and the peripheral blood of the major 
types of cancers, suggesting that identification of cell-free microbial 
DNA circulating in the peripheral blood plasma might be tested as an 
early diagnostic tool (Poore et al., 2020). Finally, metagenomics of 
patient stool samples established a correlative link between microbi-
ome composition and clinical tumor response to chemotherapeutic 
drugs (Geller et al., 2017) as well as immune checkpoint inhibitors 
(Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al., 2018).

A more causative relationship was detected in mouse models in 
which dysfunction of the small-intestinal barrier allows for bacterial 
translocation that promotes an amplification of Tet2-deficient hema-
topoietic cells (Meisel et al., 2018). Some members of the microbi-
ome may be directly damaging to human cell DNA and shape a tumor 
genome (Barrett, Hand, Shanahan, Murphy, & O'Toole, 2020). For 
example, a certain strain of the gut-dwelling bacterium Escherichia 
coli encodes a genotoxin called colibactin that, in human colon cell 
derived organoids cultured in vitro, generates a typical mutational 
signature that is detected also in a fraction (4%–8%) of human 
primary colorectal cancers and their metastases (Pleguezuelos-
Manzano et al., 2020). Still uncertain, the causal role of this bacterial 
strain, which is enriched in gut microbiota of a large fraction of peo-
ple who have colorectal cancer, may depend on the local context and 
involve crosstalks with immune cells (Jin et al., 2019; Ma et al., 2018) 
and with other microbes (Barrett et al., 2020). All these observa-
tions raise important questions with clinical implications. A first one 
is whether routine sequencing of the microbiome and analysis of mi-
crobial signatures in tumors or the peripheral blood plasma will pro-
vide much-needed predictive biomarkers and early diagnostic tools. 
Another question is whether cautious manipulation of factors that 
modify the microbiome composition, including diet and probiotics, 
could prevent or delay cancer development. Finally, the use of some 
medications, such as antibiotics, may need careful control in patients 
with overt cancer receiving certain cytotoxic or immune therapies.
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3.4 | Can the environment cause cancer?

In light of the important role played by the host environment in 
cancer development, one open question is whether its altera-
tion could induce malignant transformation (Sonnenschein & Soto, 
1999, 2020). Myeloid neoplasms, whose origin is the transforma-
tion of a hematopoietic stem or progenitor cell, illustrate this cur-
rent interrogation. The bone contains a heterogeneous population 
of stromal cells organized into anatomically defined regulatory 
environments or niches, some of these niches supporting the sur-
vival and differentiation of hematopoietic stem and progenitor cells 
(Wei & Frenette, 2018). Recent experimental evidence supports the 
concept of bone marrow niche-driven malignant transformation in 
which primary alterations of niche cells drive the malignant trans-
formation of hematopoietic cells and disease progression (Pronk & 
Raaijmakers, 2019).

Initial studies in mice showed that deletion of RARγ (Walkley 
et al., 2007) or IkBa (Rupec et al., 2005) genes from the microenvi-
ronment resulted in neoplasms with a myeloproliferative component. 
Subsequent studies targeted the deletion of Dicer1, which encodes 
a microRNA-processing endonuclease (Raaijmakers et al., 2010), and 
that of Sbds, which is mutated in Shwachman-Diamond syndrome 
(SDS; Zambetti et al., 2016) in osteoblast precursors, generating a 
phenotype that mimics myelodysplastic syndromes. Specific mu-
tations targeted to bone marrow mesenchymal stromal cells also 
triggered a myeloid phenotype, that is, an activating mutation of 
β-catenin resulted in a myelodysplastic syndrome through Notch 
signaling activation in hematopoietic stem and progenitor cells 
(Kode et al., 2014), whereas Ptpn11 mutation promoted a trans-
plantable myeloproliferation (Dong et al., 2016). Deletion of Sipa1 
(signal-induced proliferation associated-1) in the microenvironment 
also drove a myeloid phenotype in mice (Xiao et al., 2018). Finally, 
mesenchymal stromal cells, expanded ex vivo, could promote the 
propagation of human myelodysplastic stem cells in xenograft mod-
els (Medyouf et al., 2014).

Mechanistically, genetic alterations in bone marrow stromal cells 
may activate the WNT/β-catenin signaling pathway and induce an 
oxidative stress. They also induce the release of soluble inflamma-
tory factors such as CCL3 and the alarmins S100A8 and S100A9, 
which, either directly or through recruiting inflammatory cells, may 
accumulate at very high concentration in the local environment that 
forms the niche and promote genetic alterations and subsequent 
transformation of a HSPC. Similar abnormalities could be observed 
in the bone marrow niches as an effect of aging, making it conceiv-
able, though difficult to demonstrate in humans, that primary alter-
ations in the mesenchymal niche are inducing myeloid malignancies 
(Pronk & Raaijmakers, 2019).

Alterations of the host environment could also contribute to the 
emergence of solid tumors. For example, in the rat, healthy mammary 
epithelial cells injected in a fat pad previously cleared from mammary 
tissue, then exposed to a carcinogen, can transform into an epithelial 
tumor (Maffini, Soto, Calabro, Ucci, & Sonnenschein, 2004). Another 
example was obtained in mice in which obesity, through increasing 

tissue stiffness, promotes the malignant transformation of premalig-
nant human breast epithelial cells (Seo et al., 2015). Overexpression 
of some matrix metalloproteases in mouse mammary glands also 
promotes malignant transformation of mammary epithelial cells (Ha 
et al., 2001; Sternlicht et al., 1999), which explains why these im-
portant components of the extracellular matrix were compared to 
carcinogens (Radisky & Bissell, 2006).

Altogether, accumulating evidence has shown that we eventually 
get a cancer as quality control mechanisms that take place in the 
tissue to prevent clonal expansion and tumor development during 
our reproductive life are disrupted by external stimuli or progres-
sively slacken with age. In addition to a better control of lifestyle 
risks, aging increasingly appears as a modifiable risk factor. Efforts to 
target the main biological drivers of aging include caloric restriction, 
free radical inhibition and cellular senescence control. These efforts 
may restore or prolong bodily functions by decreasing inflammatory 
responses, proteostasis and epigenetic changes, with the hope that it 
may decrease the risk of cancer and multiple other chronic diseases.

4  | HOW DO TUMORS GET THE UPPER 
HAND ON THEIR ENVIRONMENT?

When a tumor grows, cancer cells receive from their microenviron-
ment a complex array of cues that regulate their survival and bio-
logical behavior. Surrounding healthy cells, which are in competition 
with tumor cells for survival factors or mechanical stress, have a de-
creased fitness. To optimize their interactions, cancer cells remodel 
a number of cell components in their environment; that is, they 
promote angiogenesis, compromise the functions of stromal cells, 
damage nerve fibers, neutralize immune cells, and generate immu-
nosuppressive cells (Costa et al., 2018).

Such a symbiotic interaction between cancer cells and their 
environment has been depicted in myeloid neoplasms in which a 
crosstalk between leukemic cells and their bone marrow environ-
ment likely drives disease evolution. In mouse models and human 
diseases, leukemic cells affect, either directly or indirectly, the cell 
components of the bone marrow niche, including mesenchymal 
stromal cells (Arranz et al., 2014; Baryawno et al., 2019; Hanoun 
et al., 2014; Mead et al., 2017; Schepers et al., 2013), sympathetic 
nerve fibers (Arranz et al., 2014), bone marrow adipocytes (Boyd 
et al., 2017), and endothelial cells (Duarte et al., 2018). This reshuf-
fling of the environment includes the reprogramming of mesenchy-
mal stromal cells by clonal megakaryocytes into myofibroblasts that 
induce myelofibrosis (Schneider et al., 2017). Leukemic cells thereby 
create a local environment in which an intricate network of inter-
actions promotes mesenchymal cell senescence or differentiation 
into myofibroblasts, functional repression of normal hematopoietic 
stem cells, modification of the extracellular matrix, leukemic cell 
expansion, and disease progression (Pronk & Raaijmakers, 2019). In 
chronic myeloid neoplasms in which cell differentiation is preserved, 
mature cells of the clone contribute to the bone marrow niche in 
which normal and transformed hematopoietic stem and progenitor 
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cells accommodate. These mature cells synthesize and secrete cy-
tokines such as IL-6 that promotes the expansion of leukemic stem 
cells in a positive feedback loop (Reynaud et al., 2011). In a preclinical 
model, therapeutic inhibition of this cytokine could prevent disease 
installation and progression (Welner et al., 2015).

Similar crosstalks between tumor cells and neighboring cells are 
observed in other tissues where cancer cells orchestrate a tumor 
microenvironment comprised of fibroblasts, immune cells, and en-
dothelial cells embedded in a robust extracellular matrix. Normal fi-
broblasts are the major producers of connective tissue extracellular 
matrix, a function that changes with age (Kaur et al., 2016). Typically, 
they become activated as myofibroblasts during wound healing, 
expressing alpha smooth muscle actin and producing transforming 
growth factor-β (Sahai et al., 2020). Fibroblast expansion may pre-
cede the conversion to malignancy as they often circumscribe early 
or premalignant lesions, suggesting an initial tumor-suppressive 
function (Lockwood et al., 2003). In overt tumors, cancer-associated 
fibroblasts (CAFs) result from the activation of local tissue-resident 
fibroblasts by multiple cues received from tumor cells or their tis-
sue microenvironment. They modulate cancer growth and metasta-
sis with both protumorigenic and antitumorigenic effects, remodel 
the extracellular matrix, modify tissue stiffness, and secrete soluble 
factors that modulate anticancer immune response, influence angio-
genesis, and affect therapy responses. Single-cell analyses recently 
pointed to the heterogeneity and plasticity of CAFs, some of them 
(myoCAFs) producing matrix while others (iCAFs) regulate inflamma-
tory and immune responses (Costa et al., 2018; Pelon et al., 2020; 
Puram et al., 2017). Various strategies are currently developed and 
tested, including clinically, to therapeutically manipulate these CAFs 
in order to improve the tumor response to other therapeutic ap-
proaches (Sahai et al., 2020).

This microenvironment reshuffled by cancer cells is overtly 
immunosuppressive, leading to cytotoxic T-cell dysfunction 
(Anderson, Stromnes, & Greenberg, 2017). Some key players in 
immune surveillance escape are tumor-associated macrophages 
(Cassetta et al., 2019), myeloid-derived suppressor cells (Kumar, 
Patel, Tcyganov, & Gabrilovich, 2016), and regulatory T cells (Najafi, 
Farhood, & Mortezaee, 2019) that release cytokines and growth fac-
tors and regulating cancer cell plasticity. To hijack the host immune 
response and generate such an immunoprivileged microenviron-
ment, cancer cells induce an angiogenic switch, which is an essential 
step to go beyond a microscopic size and disseminate. The growth 
of microvessel is orchestrated by a range of angiogenic factors and 
inhibitors that have become conventional therapeutic targets in 
cancer therapy (De Sanctis, Ugel, Facciponte, & Facciabene, 2018). 
Finally, as in myeloid neoplasms, cancer cells could interact with 
other cells of the malignant clone; for example, minor cell popula-
tions could support the growth of bigger clones (Aceto et al., 2014; 
Marusyk et al., 2014), which was shown to involve Wnt (Tammela 
et al., 2017) and Notch (Lim et al., 2017) pathways in lung cancers.

Precluding the dormancy of metastatic cells, primary tumors ac-
tively and selectively modify target tissues before metastatic spread 
has even started. Tumor released factors and exosomes that provoke 

vascular leakiness, alter local resident cells, remodel the extracellu-
lar matrix, and recruit nonresident cells such as bone marrow-de-
rived cells, which induces the stepwise formation of a conducive 
tissue stroma called a “premetastatic niche” (Peinado et al., 2017). 
Adjuvant epigenetic therapy could disrupt this niche by inhibiting 
the trafficking of myeloid-derived suppressive cells or promoting 
their differentiation (Lu et al., 2020). The organotropism of metas-
tasis formation illustrates the diversity of tissue environments (Gao 
et al., 2019; Müller et al., 2001) and the specificity of their interac-
tion with cancer cells (Hoshino et al., 2015; Wortzel, Dror, Kenific, 
& Lyden, 2019).

As mentioned above, the tumor environment extends beyond 
the tissue microenvironment to tumor–host interactions, which con-
sists of metabolites, cytokines, and chemokines that circulate in the 
blood, connecting systemic metabolism and cancer cell proliferation. 
The term “adaptive homeostasis” was proposed to describe short-
term adaptations of biological systems, that is, transient expansion or 
contraction of the homeostatic range, in response to mild changes in 
conditions such as exercise training or subtoxic, nondamaging events 
(Davies, 2016). This concept could apply to cancer cells. Typically, 
these cells consume more glucose than normal cells. Activation of 
intrinsic pathways contributes to adapt this requirement but may not 
be sufficient to provide the quantity of glucose that is needed to 
drive robust cancer cell growth. Therefore, malignant cells reduce 
the glucose utilization of normal tissues, such as muscle and adipose 
tissue. Thus, analogous to parasites, cancer cells compete with the 
host for essential systemic resources. For example, leukemic cells 
induce high-level production of IGFBP1 (Insulin growth factor bind-
ing protein 1) from adipose tissue to mediate insulin sensitivity. In a 
mouse model of leukemia, disease-induced gut dysbiosis, serotonin 
loss, and incretin inactivation were shown to combine to suppress 
insulin secretion. Importantly, attenuated disease progression and 
prolonged survival could be achieved through disruption of this 
leukemia-induced adaptive homeostasis (Ye et al., 2018). Tumor-
derived waste could be also repurposed and subsequently utilized as 
fuel for tumor growth. For example, lactate, a waste product of hy-
poxic cancer cells, can serve as a substrate for oxidative metabolism 
of oxygenated tumor cells (Sonveaux et al., 2008).

In this respect, specific components of the circadian clock ma-
chinery may be highly susceptible to factors secreted by the tumor. 
In the KrasLSL-G12D/+;p53fl/fl mouse model, lung adenocarcinoma 
rewires the circadian transcriptome and metabolome in the liver 
through tumor-dependent inflammation that releases IL-6, which 
dampens insulin and glucose sensitivity and alters hepatic circadian 
lipid metabolism (Masri et al., 2016). A similar effect was detected 
in a mouse model of triple-negative breast cancer, resulting in in-
creased oxidative stress (Hojo et al., 2017), suggesting that circadian 
oscillations of metabolism are highly susceptible to systemic cues 
that reorganize physiological homeostasis.

Clonal hematopoiesis is associated also with a substantial in-
crease in the risk of cardiovascular and other diseases of aging 
(Jaiswal et al., 2017). Mechanistically, blood cells that harbor the 
mutations give rise to immune cells that reside in nearly all tissues. 
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Somatic mutations that generate the clone may amplify the inflam-
matory response of immune cells. The best example of damage 
induced by cancers to distal tissues is paraneoplastic syndromes, 
which are due to cancer but not to the local presence of cancer cells. 
These indirect effects of tumors on distal tissues are thought to be 
generated by circulating tumor-derived soluble factors, including cy-
tokines and hormones, as well as by immune and inflammatory cells. 
The generated symptoms such as neurological defects, thrombosis, 
anemia, or glomerulonephritis partially overlap with phenotypes 
that are common among nondiseased elderly. Thus, cancers drive 
the development of noncancer pathologies associated with aging. 
This effect is amplified by cancer treatments that frequently result 
in a long-term burden of senescent cells and their proinflammatory 
SASP.

5  | CONCLUDING REMARKS

Enforcing former identification of small overt cancers in young peo-
ple died from other causes, recent improvement of genomic tech-
nique have identified a number of cell clones, as defined by somatic 
mutations in driver oncogenes or tumor suppressor genes, in healthy 
tissues. These events may appear decades before the clinical diag-
nostic of cancers, blurring the frontier between premalignant and 
malignant tumors while indicating that contextual cues may long re-
frain malignant tumor expansion. The fitness of cancer cells is rela-
tive to their environment whose impact on clonal evolution largely 
depends on age. Typically, young healthy tissues are tumor suppres-
sive; that is, they eliminate or limit the expansion of cells that have 
acquired somatic mutations, whereas aging or damaged tissues be-
come tumor tolerant and even promoting; they are progressively un-
able to eliminate these cells and counteract their selection (Laconi 
et al., 2020; Figure 1).

Parsing the causes of the switch of a tissue toward a protum-
origenic behavior identifies a number of potential mechanisms that 
could be schematically classified into (a) general—all tissues may 
become protumorigenic while aging— versus specific—for example, 
some tissues become protumorigenic as a consequence of a local 
insult such as lung tissue exposed to tobacco smoke; (b) direct—the 
tissue environment actively promotes tumor growth—versus indi-
rect—changes in the environment becomes deleterious to normal 
cells; (c) active—for example, the tissue recruits protumorigenic 
immunosuppressive cells— versus passive—for example, the tissue 
fails to recruit antitumor immune cells; (d) mandatory—for example, 
changes in the microenvironment are required for a cancer to grow— 
versus contributive— these changes favor cancer progression.

In addition to avoiding well-identified lifestyle insults, accumu-
lating evidence indicates that healthy tissue landscape endowed 
with tumor suppressive properties could be actively preserved by 
adopting favorable behaviors such as caloric restriction or balanced 
diet and exercise. Although efficient in animal models, the long-
term use of anti-inflammatory and senolytic drugs to promote tissue 

rejuvenation must be balanced with potential side effects. In estab-
lished cancers, it has become crucial to distinguish diseases that may 
be cured through therapeutic intervention focusing on cancer cells 
from those who will benefit from stimulation of surrounding cells, 
as illustrated by the transformative results obtained with targeting 
T-cell immune checkpoints in some cancers. Although more specu-
lative, by improving our ability to measure cell fitness in specific 
contexts, we could develop adaptive therapy to protect the less ag-
gressive clones that, in a heterogeneous tumor, limit the dominance 
of the most aggressive cells (Acar et al., 2020; Gatenby, Silva, Gillies, 
& Frieden, 2009). Finally, early diagnostic of cancers, which may pro-
vide the best chance of cure, will integrate an appropriate evaluation 
of the surrounding tissue in order to spare patients from unneces-
sary treatments.
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