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Abstract10

The ability of high-resolution synthetic aperture radar (SAR) to detect marine atmospheric bound-

ary layer (MABL) roll-induced roughness modulation of the sea surface wave field is well known.

This study presents SAR measurements of MABL rolls using global coverage data collected by

the European Space Agency’s C-band Sentinel-1A satellite in 2016-2017. An automated classifier

is used to identify likely roll events from more than 1.3 million images that were acquired at two

incidence angles of 23◦ and 36.5◦ in either VV or HH polarization. Characteristics of the detected

rolls are examined for different wind speeds, polarizations, incidence and relative azimuth angles.

Roll detection counts are much higher at the higher incidence angle and nearly equivalent for VV

and HH polarizations. Detection depends strongly on the relative azimuth with roll detection rates

at crosswind being 3-10 times lower than for up- or downwind. All data show a low wind speed

threshold near 2 m·s−1 and that rolls are most commonly observed at wind speeds near 9 m·s−1.

For all viewing configurations, we find that rolls induce a wide range of mean surface wind speed

modulation with the most frequent value being 8% (±3.5%). Roll detection at crosswind is associ-

ated with stronger roll-induced surface wind enhancement. Dependencies of roll detection on the

incidence and relative azimuth angles are consistent with rapid short-scale wind-wave adjustments

to the roll-induced surface wind gusts. These cm-scale waves are highly directional and provide

limited crosswind backscatter at shallower incidence angles. The same roll-induced surface forc-

ing is thus not equally detectable at all viewing geometries or polarizaions. Stronger and possibly

longer-duration wind forcing is likely needed to produce detectable roll-induced modulations at

crosswind.
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aperture radar (SAR), Sentinel-1 wave mode, Imaging sensitivity12

1. Introduction13

The mean flow in the marine atmospheric boundary layer (MABL) frequently includes an or-14

ganized secondary circulation in the form of long helical rolls that are approximately aligned along15

the mean wind direction. They are sometimes made visible by the low-level cloud streets that form16

in the organized updrafts between rolls (Weston, 1980; Hein and Brown, 1988; Rowe and Houze,17

2015). However, rolls are a common feature of the MABL when shear production of turbulence18

plays an important role and are thus frequently present in the absence of clouds. Investigation19

of the phenomenon extends back decades, including field, theoretical, numerical, and experimen-20

tal efforts (Kuettner, 1959; LeMone, 1973; Brown, 1980; Etling and Brown, 1993; Atkinson and21

Wu Zhang, 1996; Young et al., 2002), and there is evidence that these coherent structures have22

a measurable impact on turbulent fluxes of heat and momentum across the MABL (Glendening,23

1996; Zhang et al., 2008; Zhu, 2008; Brilouet et al., 2017). This inhomogeneous contribution is24

seldom included in the standard boundary layer parameterizations used in weather forecast and25

climate models. This is largely because the process occurs at small horizontal length scales that26

are within the so-called numerical modeling grey zone of 1-10 km (Shin and Hong, 2013; Bauer27

et al., 2015). Moreover, because they are often invisible to standard remote or in situ sensors, even28

basic measures of roll characteristics over the oceans have not been established. The fundamental29

particulars are the frequency of occurrence, strength, wave length, alignment direction, and forma-30

tion conditions (Levy, 2001; Weckwerth et al., 1997; Zhao et al., 2016; Atkinson and Wu Zhang,31

1996; Young et al., 2002).32

Synthetic aperture radar (SAR) ocean imagery is able to resolve the parallel backscatter streaks33

that are associated with the roll-induced surface wind stress changes in day-and-night and most34

weather conditions (Gerling, 1986; Alpers and Brümmer, 1994; Young, 2000; Vandemark et al.,35

2001). Case studies using ocean SAR measurements have been conducted to examine MABL36

rolls in numerous air-sea investigations (Alpers and Brümmer, 1994; Li et al., 2013; Zhao et al.,37

2016; Babin et al., 2003; Sikora et al., 2011; Alpers et al., 2016). These applications have been38

limited in scope and mostly dedicated to coastal regions because wide-swath ocean SAR imagery39

is not acquired routinely nor globally. But a narrow swath option with nearly global coverage,40
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sufficient resolution and scene size has been available from the Sentinel-1 SAR satellites since41

2014 (Torres et al., 2012). The SAR Wave Mode (WV) extends a legacy of global ocean surface42

wave monitoring from previous satellite SAR missions. For the purposes of MABL studies, the43

two most important differences of S-1 WV compared to the legacy data is the increase in image44

size to 20 by 20 km, while retaining a high spatial resolution of 5 m pixels, and the addition45

of a higher incidence angle sample. The European Space Agency (ESA) currently operates two46

identical Sentinel-1 (S-1) satellites (A&B) for Copernicus that routinely collect ∼130,000 images47

each month over most of the ocean surface. At the time of this writing, more than six million48

images have been acquired.49

A required first step for MABL roll studies using SAR data is event detection (Weckwerth et al.,50

1997; Young et al., 2008). To date, visual inspection has been used to determine the presence of roll51

imprints in SAR images (e.g. Levy, 2001; Zhao et al., 2016). Given the large number of S-1 WV52

scenes, as automated method is required. A machine learning tool for S-1 WV image classification53

was developed from the Inception-v3 convolutional neural network (CNN) to classify each WV54

image into one of the ten different geophysical categories (Wang et al., 2019b). Note that this55

classifier very rarely tags non-roll events as rolls but can miss-categorize roll events into other56

classes. The present study uses only the images that are classified as roll events. More than 1.357

million WV SAR scenes collected in 2016-2017 were analyzed for the presence of MABL rolls,58

resulting in ∼155,000 roll cases in total. This far surpasses the largest previous SAR MABL roll59

study of Levy (2001), for which, 7150 SAR images were examined.60

The S-1 WV SAR images are acquired at two fixed incidence angles of 23◦ (WV1) and 36.5◦61

(WV2), and with two transmit and receive linear polarization configurations, VV (default) and HH62

(experimental). This provides an opportunity for rigorous evaluation of C-band SAR detection and63

imaging of MABL rolls for varied wind speeds and radar viewing geometries. These characteris-64

tics have received limited attention in most previous SAR-based MABL roll investigations (Alpers65

and Brümmer, 1994; Young, 2000; Sikora and Ufermann, 2004; Li et al., 2013; Zhao et al., 2016),66

and in ocean SAR studies where the surface wind direction is inferred from roll imprint analyses67

(Gerling, 1986; Koch, 2004; Christiansen et al., 2006; Lin et al., 2008; Li and Lehner, 2014; Zec-68

chetto, 2018). Alpers and Brümmer (1994) proposed that SAR backscatter due to the roll-induced69

wave-roughening can be interpreted using the empirical geophysical model functions (GMFs) that70

relate 20-40 km scale radar scatterometer measurements to surface wind speed and radar viewing71

geometry. However, field measurements have shown that surface wind-wave and radar backscatter72

changes during roll impacts are associated with short-duration and short length-scale wind forcing73
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(Vandemark et al., 2001). These roll-induced forces primarily affect the shortest and highly direc-74

tional wind waves, and not the whole spectrum of surface waves (LeMone, 1973; Lemone, 1976;75

Young, 2000; Mourad et al., 2000; Vandemark et al., 2001). This interpretation is used to explain76

the results regarding MABL roll detection and sea surface modulation using the global S-1 WV77

SAR data that are presented in this paper, and to explain the differences between WV observations78

and a GMF applied to these observations.79

The paper is organized as follows. Data and methods are described in Section 2, includ-80

ing the S-1 WV SAR data, supporting surface environmental variables, and a description of the81

methods used to classify WV images and to estimate the radar backscatter modulation related to82

roll-induced wind perturbations. Statistics of the identified MABL roll events are given in Section83

3. Section 4 provides analyses of the extracted roll modulation parameters, and compared them to84

a GMF simulation. Discussion and conclusions follow in Section 5.85

2. Data and methods86

2.1. Sentinel-1 WV87

Sentinel-1 is a polar-orbiting, sun-synchronous SAR satellite constellation mission designed88

for long-term operation extending into the next decades. Currently, two satellites (A&B), which89

share the same orbital plane offset by a 180◦ phase difference, were launched in April of 2014 and90

2016, respectively (Torres et al., 2012). The satellites are equipped with identical C-band SAR91

instruments that operate in four pre-programmed imaging modes: Interferometric Wide swath,92

Extra Wide swath, Strip Map and WaVe mode (WV). WV is the default mode over the world’s93

ocean except in the Arctic, closed seas and coastal areas, or when S-1 has not been programmed94

to one of the other imaging modes. There is no WV data acquisition over land except the Amazon95

rainforest for calibration purposes. WV acquires small SAR image scenes (termed imagettes) at al-96

ternating incidence angles of 23◦ (WV1) and 36.5◦ (WV2). Both usually operate in linear vertical97

(VV) transmit and receive polarization and, during special phases, in horizontal (HH) polarization.98

Each WV image size is 20 km by 20 km, with 5 m pixel resolution. Neighboring images are spaced99

by 100-120 km. The orbital repeat cycle is 12 days. Approximately 65,000 imagettes per month100

are collected by each satellite. The S-1 WV SAR data used in this paper are the Level-1 Sin-101

gle Look Complex (SLC) repository, which are managed at IFREMER (http://www.ifremer.102

fr/datavore/exp/dvor/#/s1quicklook), and are also freely available at ESA’s Sentinel Open103

Access Hub (https://sentinel.esa.int/web/sentinel/sentinel-data-access).104
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This study uses S-1A WV SAR data in VV polarization spanning 2016-2017, and S-1B WV105

data in HH polarization from 15 March to 01 July 2017. Inland, near-coastal and poleward of 55◦106

to avoid possible sea ice images are removed. Fig. 1 illustrates the sample population for the VV107

and HH datasets on a 5◦ by 5◦ global spatial grid. The typical S-1 WV coverage is nearly complete108

over the Pacific, Indian and south Atlantic oceans. There is partial coverage for the eastern north109

Atlantic because, by default, other standard imaging modes are in operation. The total numbers of110

image evaluated from these S-1A and S-1B datasets are 1,182,540 and 197,442, respectively.111

Each image is co-located in time and space with surface variables from the ERA5 hindcast112

model, including 10 meter wind components, sea surface temperature, 2 meter air temperature,113

2 meter dew-point temperature and surface pressure. ERA5 is the latest generation ECMWF114

reanalysis product and provides these environmental variables hourly on a global spatial grid of115

0.25◦ by 0.25◦. The data are publicly available at: https://cds.climate.copernicus.eu.116

From these variables, we estimate the bulk Richardson number RiB at 10 meter height, using the117

COARE 3.0 air-sea flux algorithm (Fairall et al., 2003).118

Fig. 1. Ocean SAR data coverage for S-1 study datasets, (a) S-1A in VV polarization in 2016-2017 and
(b) S-1B in HH polarization, from 15 Mar to 01 Jul in 2017. Color denotes the number of WV images
within each 5◦ by 5◦ spatial bin. The total number of imagettes in these datasets is 1,182,540 and 197,442,
respectively.
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2.2. Automated WV image classification119

Oceanic SAR images have been used to identify numerous oceanic, atmospheric, and sea ice120

features (e.g. Jackson et al., 2004; Wang et al., 2019a,b). The automated image classifier method121

applied to this WV data catalogue is briefly detailed here, with an emphasis on MABL roll iden-122

tification (Wang et al., 2019a,b). We first defined the ten most commonly observed geophysical123

phenomena in the WV image data (Wang et al., 2019a). These phenomena were ocean swell,124

wind streaks (induced by MABL rolls), micro-convective cells, rain cells, biological slicks, sea125

ice, icebergs, low wind areas, atmospheric fronts, and oceanic fronts. Visual selection was used to126

build a large representative collection for each class, leading to an open-access labelled database127

called TenGeoP-SARwv (Wang et al., 2018). We then developed an automated classification tool128

based on a deep learning pattern recognition approach. The tool, namely CMwv, was created by129

fine-tuning the Inception-v3 deep convolutional neural network (CNN) to discriminate between130

the ten input training sets (Szegedy et al., 2016; Wang et al., 2019b). Separate CMwv models131

were built for VV-pol WV1 and WV2 data, which are applicable for both S-1A and S-1B WV132

SAR data. Although the model skill has only been formally evaluated for the VV-polarized SAR133

images, results suggested that it performs similarly for the HH SAR data, at least for the task of134

MABL roll identification and analyses presented in this study.135

CMwv assigns each WV image probability scores for the ten pre-defined classes. These prob-136

abilities add up to 1, and a WV image is considered to represent a case of visually-distinct MABL137

roll impacts (i.e. wind streaks) if the roll class score is the largest among the ten. The quantified138

skill for this approach has a Recall (sensitivity) of 83% for both modes (WV1 and WV2), and139

Precision (positive detection rate) of 77% and 96% for WV1 and WV2, respectively (Wang et al.,140

2019b). The precision difference between WV1 and WV2 is likely due to a weaker MABL roll141

imprint in WV1 images, which is one focus of this study. Wang et al. (2019a,b) documented that142

image contrasts due to roll imprints for WV2 were qualitatively stronger than for WV1 during the143

visual labelling procedure. Specific to the CMwv machine learning approach, the ability of this144

deep CNN model to differentiate between phenomena in each SAR image relies on the efficient145

extraction of optimal features into convolutional layers, and then to amplify feature differences146

through pooled layers (LeCun et al., 2015; Zhang et al., 2016). That is, distinct image features147

cannot be extracted if roll imprints are insufficiently clear. Even with these caveats, the overall148

CMwv precision scores are high. Potential study limitations due to the classification model are149

discussed in section 5.150
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2.3. Extraction of roll-induced backscatter modulation amplitude and direction151

Prior to estimation of roll-induced SAR backscatter modulation for varying wind conditions, an152

objective SAR backscatter recalibration method is used to correct S-1 SAR normalized radar cross-153

section (NRCS, σ0) as described in Li et al. (2019b). Specific details are provided in Appendix154

A.155

Fig. 2. Analysis of roll modulations in S-1 WV sea surface roughness images. Panel (a) is a typical roll
image after smoothing to a 200-m pixel resolution σ0 image. White, blue and red arrows indicate North, the
ERA5 wind direction and extracted wind streak orientation, respectively. (b) 2-D FFT spectrum, S (k, φ),
of the full resolution image within the expected wavenumber range of MABL patterns (λ= 0.8 and 4 km).
Angle φ is in SAR image coordinates, i.e. clockwise rotating from the azimuth to range direction. (c)
Integral of S at each φ, maximum marked as a red dot. (d) SAR-estimated wind speeds derived using the
C-SARMOD GMF. (e) σ0 transect profile along the black scan line in (a): from A to B. The profile (dashed
line) has been smoothed with a 1 km length Hanning window. Red and blue dots indicate the detected local
maximum and minimum. (f) similar to (e) but for SAR-retrieved local wind speed U.

Fig. 2 illustrates the process used to extract the roll-induced NRCS modulation from each WV156

roll imagette. The full resolutionσ0 image is box averaged to 200 m as shown in Fig. 2 (a), in order157
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to filter out most of the ocean swell features. The chosen 200 m scale follows recommendations158

from previous studies (Koch, 2004; Horstmann and Koch, 2005; Christiansen et al., 2006). White159

and blue arrows in Fig. 2 (a) indicate North and the ERA5 10-meter wind direction, respectively.160

An image modulation spectrum S (kx, ky) is calculated using a 2-D FFT over the full resolution161

σ0 image. The spectrum S (kx, ky) is converted from Cartesian to Polar coordinates, S (k, φ). Fig.162

2 (b) displays the partial spectrum in the 0.8-4.0 km wavelengths band. The angle φ is in SAR163

image coordinates. φ = 0◦ is in the increasing SAR azimuth direction along the satellite heading.164

φ = 90◦ is in the increasing SAR range direction (S-1 looks to the right). Since there is a 180◦165

direction ambiguity in wind streak orientation, the spectral energy peak maximises near φ=140◦166

and 320◦. Note that multiple peaks are visible, principally associated with irregularities in the main167

linear features throughout the image scene. Still a dominant azimuthal peak direction is apparent168

and similar FFT methodologies have been used to extract the dominant orientation of MABL rolls169

(Gerling, 1986; Mourad and Walter, 1996; Li et al., 2013; Huang et al., 2018). For the example170

case of Fig. 2, panel (c) shows the corresponding profile of S (φ) =
∫ k=2π/800

k=2π/4000
S (k, φ)dkdφ with the171

maximum shown as a red dot. The red arrow in Fig. 2 (a) defines this dominant roll direction φWS172

(with 180◦ ambiguity).173

For each image, an estimate of the roll-induced σ0 modulation along a 15 km transect is ex-174

tracted. This σ0 transect is located at the center of SAR scene and normal to the dominant wind175

streak direction, as shown in Fig. 2 (a). Five parallel lines (1 km width) of the backscatter are av-176

eraged and then smoothed using a Hanning window. As depicted in Fig. 2 (e), quasi-periodic σ0
177

variations along the cross-roll transect are shown. The local maxima (red dots) and minima (blue178

dots) correspond to the alternating bright and dark bands on the backscatter image. The distance179

between adjacent bright or dark (roll wavelength) varies from 1 to 3 km. It reveals local irregular180

roughness modulations with local changes of the surface wind intensity and/or direction, consis-181

tent with the multiple peaks present in the 2-D image spectrum. The modulation depth is defined182

as the difference between the mean bright (σ0
B) and dark (σ0

D) NRCS. The relative modulation183

depth, or contrast, is obtained after normalization by their average (σ0
B + σ0

D)/2.184

As shown in Fig. 2 (d), fine-scale (∼200 m) surface wind speed is also retrieved from each185

down-sampled WV σ0 imagette using the C-SARMOD GMF (Mouche and Chapron, 2015). Here186

we used the co-located ERA5 wind direction instead of the extracted roll direction as input to the187

GMF. Similar to above, a SAR-retrieved wind speed (U) cross-roll modulation transect is extracted188

and smoothed in Fig. 2 (f). The obtained wind variations range from 0.5-1.5 m·s−1.189

In summary, the following parameters relevant to roll-induced impacts on sea surface rough-190
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ness are extracted from each CMwv-identified MABL roll WV SAR scene:191

1) φWS [◦]: Roll orientation with 180◦ ambiguity in image coordinates: clockwise rotating from192

azimuth to range.193

2) σ0
B [linear]: Mean NRCS for brightest roll modulation peaks.194

3) σ0
D [linear]: Mean NRCS for the darkest roll modulation troughs.195

4) dσ0 = σ0
B − σ

0
D [linear]: Modulation depth.196

5) dσ0/σ0 = dσ0/[(σ0
B + σ0

D)/2] [linear]: Roll-induced NRCS perturbation.197

6) UB [ms−1]: Mean of the wind speed peaks.198

7) UD [ms−1]: Mean of the wind speed troughs.199

8) dU/U = (UB − UD)/[(UB + UD)/2]: SAR-derived wind speed perturbation due to rolls.200

3. MABL roll occurrence rates201

3.1. Occurrence statistics202

Fig. 3. Monthly statistics of detected roll events from all S-1A WV VV SAR imagettes. The top and bottom
panels provide the percent-detected and the total number of imagettes examined in each month.

The automated classification considers a SAR imagette as a MABL roll event if clear evidence203

of organized quasi-linear wind streaks can be distinguished, and they dominate scene compared204

to other possible geophysical phenomena. Fig. 3 shows the percentage of MABL roll events205
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relative to the total number of WV scenes acquired in each month. The image count per month206

of approximately 20k is about the same for WV1 and WV2. The overall fraction of identified roll207

events in WV2 is ∼15%, while that for WV1 is ∼9% with no apparent monthly variability in roll208

frequency observed for either WV1 or WV2. The higher identification rate for WV2 compared209

to WV1 is likely related to higher visibility of the roll-induced wind speed changes at the larger210

incidence angle. The percentages of CMwv-classified roll events using the much smaller S-1B HH211

SAR dataset are approximately 11% and 6% for WV2 and WV1, respectively (not shown). Note,212

these detection rates are significantly lower than the reported average of 40-50% using visually-213

selected images in coastal studies (Levy, 2001; Zhao et al., 2016).214

Fig. 4. Wind speed distributions of all S-1A WV VV SAR data and the CMwv-identified roll WV1 and
WV2 data.

The probability density functions (PDFs) of the ERA5 surface wind speed when rolls were215

identified in the VV SAR data are shown in Fig. 4, along with the distribution for the entire S-1A216

WV dataset. The distributions for WV1 and WV2 roll events are similar. The most likely wind217

speed when rolls are identified is 9-10 m·s−1, which is higher than the 7 m·s−1 mode for the entire218

dataset. The low wind speed threshold for roll detection is near 2 to 3 m·s−1 for both WV1 and219

WV2. This is consistent with a postulated threshold of 3 m·s−1 (Weckwerth et al., 1997; Young220

et al., 2002; Zhao et al., 2016). The probability for roll detection rises rapidly with wind speed221

above this threshold. This is consistent with theoretical models that rolls usually form when shear222

production is an important aspect of the MABL dynamics (Brown, 1980; Etling and Brown, 1993).223

MABL roll identification versus wind speed and relative azimuth, which is the angle between224
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the radar beam and surface wind direction, is shown in Fig. 5. Data are averaged in 20◦ relative225

azimuth angle bins. Angles 0◦, 90◦/270◦ and 180◦ are indicative of upwind, crosswind and down-226

wind radar viewing directions. The bottom panel of Fig. 5 shows the S-1A WV sampling as a227

function of relative azimuth. Because S-1 SAR is right-side-looking and in a polar orbit, more228

data are acquired in upwind and downwind looks compared to crosswind due to the prevailing229

low-latitude easterlies and mid-latitude westerlies. However, thousands of roll images are col-230

lected at crosswind, which are mostly associated with the meridional flow around low and high231

pressure centers in the mid-latitudes.232

Fig. 5 (a, b) show that, for wind speeds above 6 m·s−1, roll event detection rates are dramat-233

ically lower at crosswind for both incidence angles. Note that the roll detection rates for either234

WV1 or WV2 can reach 25-35%, which are above the average 9% and 15% rates shown in Fig. 3235

and are closer to the preciously reported detection rates (Levy, 2001; Zhao et al., 2016). While not236

shown, the detection rates of rolls from the smaller S-1B HH SAR dataset show similar behavior237

as S-1A VV for various wind speeds and relative azimuth. It is thus clear that the identification238

of roll events in S-1 SAR WV data depends strongly on all of incidence angle, wind speed and239

relative azimuth.240

3.2. Case study investigation241

To examine the MABL roll detection differences between WV1 and WV2, a section of Pacific242

Ocean (15◦S-30◦N, 170◦E-180◦E) data is extracted from a descending S-1A pass on Feb 2, 2017243

(Fig. 6). The SAR look direction is 287◦ clockwise from North. Wind information from ERA5244

shows that the wind field is fairly homogeneous at 9.5 m·s−1 and about 80◦ direction in meteoro-245

logical convention, so the relative azimuth is 333◦. The central locations of the WV1 and WV2246

imagettes reflect the standard leap-frog acquisition pattern. Concentrating on the 5◦N to 18◦N re-247

gion, seven consecutive WV2 imagettes are classified as rolls. The atmospheric stability parameter248

RiB is slightly unstable at about -0.006, which indicates that conditions are favorable for MABL249

roll development (Brown, 1980; Etling and Brown, 1993; Young et al., 2002). Thus, one would250

expect S-1 to observe clear roll imprints in both WV1 and WV2. However, only one WV1 case is251

classified as a roll event.252

Fig. 6 shows the three pairs of WV1 and WV2 images that were acquired within a 2 minute253

span. WV2 images are displayed on the left column, and all these show clear periodic linear im-254

prints of rolls. They have the same orientation, which is close to the ERA5 surface wind direction255

(blue arrows on images). In contrast, roll imprints are almost invisible on the three neighboring256
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Fig. 5. Statistics of identified roll events from S-1A VV WV SAR images for different relative azimuth
angles. (a) and (b) show the WV1 and WV2 percentages of identified rolls for selected wind speed ranges,
and (c) gives the total of all images collected in each mode, respectively.

WV1 images shown in right column. Although one roll event was identified, the linear features on257

that image are weaker than those in the nearby WV2 images.258

The computed image modulation parameters for these six cases are given in Table 1. The259

SAR-estimated wind speeds UB and UD, corresponding to σ0
B and σ0

D, are close to the mean ERA5260

wind speed and approximately the same dU levels are found in all six WV imagettes. However,261

the modulation depths, dσ0, extracted from WV1 images are larger than that from WV2 data.262

When the modulation depth is normalized to contrast, dσ0/σ0, the three WV2 images have larger263

values than the three neighboring WV1 cases. This indicates that even though a smaller NRCS264

modulation is induced in WV2, it has a better roll detection capability than WV1 for the same265

wind conditions. Visually, roll imprints are more easily visible in WV2 than WV1 images as266

shown in Fig. 6. Roll detection is apparently sensitivity to the modulation contrast, which depends267

on the relative change in NRCS induced by small wind perturbation and the mean NRCS. These268
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Fig. 6. Center panel shows center points of WV1 and WV2 acquisitions along an S-1A descending pass on
2017-02-02. Images identified by CMwv as roll events are shown with red circles. Three neighboring pairs
WV2 and WV1 images (green box in the middle panel) are shown in the left and right panels. The blue
and red arrows on the images indicate the ECMWF ERA5 surface wind and SAR backscatter-estimated roll
directions, respectively.

two variables both vary as a function of wind speed, incidence and relative azimuth angles. Note,269

however, that the sole WV1 image classified as rolls has the least dσ0/σ0 among the six cases. It270

implies that the explanation for different roll detection rates between WV1 and WV2 is not simple.271

A statistical analysis of roll-related modulation parameters is thus necessary and given in Section272

4.273
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Table 1 Environmental variables and extracted roll modulation parameters for the six S-1A WV1 (23◦) and
WV2 (36.5◦) image cases in Fig 6. U10 and φU10 are the ERA5 10 meter wind speed and direction in
meteorological convention. RiB is the atmospheric stability parameter estimated from the ERA5 variables.
φ
′

WS is the extracted roll orientation in the same coordinate as φU10. σ0
B and σ0

D are the mean NRCS over
roll-induced bright and dark on SAR images. dσ0, dσ0/σ0 and dU/U represent the roll-induced NRCS
variation, relative NRCS variation (image contrast) and surface wind perturbation.

Case ID Swath U10
[m·s−1]

φU10
[◦]

RiB

[×10−3]
φ
′

WS
[◦]

σ0
B

[linear]
σ0

D
[linear]

dσ0

[linear]
dσ0

σ0

UB

[m·s−1]
UD

[m·s−1]
dU
U

Fig 6 (1) WV1 10.0 84 -6.98 96 0.346 0.326 0.021 0.06 10.35 9.82 0.05
Fig 6 (3) WV1 9.6 75 -5.56 93 0.339 0.307 0.032 0.10 10.44 9.61 0.08
Fig 6 (5) WV1 9.5 70 -6.99 55 0.302 0.278 0.024 0.08 9.54 8.99 0.06
Fig 6 (2) WV2 9.0 84 -7.38 67 0.051 0.046 0.005 0.10 9.58 9.05 0.06
Fig 6 (4) WV2 10.2 77 -6.29 70 0.053 0.047 0.006 0.12 10.09 9.39 0.07
Fig 6 (6) WV2 9.9 77 -6.36 62 0.056 0.049 0.007 0.12 10.34 9.68 0.07

4. S-1 WV NRCS response to roll imprints274

In this section, we take advantage of the large dataset to address the question of roll detection275

systematically. The parameters dσ0, dσ0/σ0 and dU/U are extracted from all the WV images that276

were identified as rolls by CMwv. The distributions of these quantities are binned as functions of277

ERA5 surface wind speed and relative azimuth for the different incidence angles and polarizations.278

4.1. Wind speed dependence279

The roll-induced modulation depth dσ0 as a function of ERA5 wind speed for WV1 and WV2280

in VV and HH polarization states are shown in Fig. 7 (a1,2). Box-plots are used to show the dσ0
281

distribution in 2 m·s−1 bins from 3 to 19 m·s−1. Beyond this wind speed range, data are sparse282

particularly for HH. For both incidence angles and polarizations, dσ0 increases with wind speed.283

WV1 dσ0 values are clearly larger than for WV2 for both VV and HH measurements. For winds284

larger than 13 m·s−1, VV dσ0 values exceed HH dσ0. These observations consistently follow the285

fact that the implied slope, ∂σ0/∂U, is on average larger at the lower incidence angle for both VV286

and HH.287

The SAR backscatter modulation contrast dσ0/σ0 is shown in Fig. 7 (b1,2). This roll-induced288

NRCS contrast is much less sensitive to surface wind speed than the modulation depth. One289

exception is the slightly larger values at low winds (3-7 m·s−1), particularly for HH data. This290

is likely because σ0 can be very low in light winds even dσ0 remains unchanged. A second291

observation is a likely roll identification threshold. For both WV1 and WV2 in either VV and292

HH polarization, the 10th percentile of dσ0/σ0 is almost constant near 0.04. We hypothesize that293

this value corresponds to the effective roll detection floor for the end-to-end S-1 SAR WV and294
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Fig. 7. Box plots of dσ0, dσ0/σ0 and dU/U for identified roll events from WV1 and WV2 in VV polariza-
tion (left panel) and HH (right panel). Statistics were conducted within each 2 m·s−1 bin from 3 to 19 m·s−1.
Boxes indicate the 25th to 75th percentiles in each bin. Data mean and median are denoted using the point
and line. The 10th and 90th percentiles are given by whiskers. The red line and shaded red in bottom panels
represents the overall average and standard deviation of dU/U.

automated CMwv model system. Roll cases with image contrasts below this 4% level might be295

discernible by trained eyes, but by design, the non-supervised CMwv model was trained to only296

identify clearly visible and delineated roll cases (Wang et al., 2019b).297

Referring again to Fig. 7 (b1,2), it is clear that WV2 dσ0/σ0 levels are generally higher than298

these for WV1 in both VV and HH measurements. This difference is consistent with the detection299

rate differences shown in Fig. 3 and Fig. 5. This indicates that roll-induced SAR backscatter300

contrast is greater at the higher incidence angle, which improves the chances of CMwv to identify301

roll events. Regarding polarization dependencies in the S-1 data, there is little dσ0/σ0 difference302

between VV and HH measurements.303
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As noted earlier, ocean radar backscatter can be converted to wind speed using a GMF, which304

provides a means to normalize the results across the four WV mode incidence angle and polar-305

ization combinations. It also provides a geophysical quantification of MABL impact in terms of306

the surface wind speed perturbation. Global statistics of SAR-derived wind modulations (dU/U)307

versus mean wind speed are shown in Fig. 7 (c1) and (c2). Similar to the dσ0/σ0 measurements,308

dU/U mean values for WV1 and WV2 in VV and HH are relatively constant with wind speed.309

The average level of wind perturbation is 8% (standard deviation of 3.5%). This value is con-310

sistent with previous field measurements of 7-10% obtained using low-level aircraft observations311

(Vandemark et al., 2001). The global ocean estimates show a slightly wider range of roll-induced312

wind perturbations, and the maximum wind perturbation seldom exceeds 15%. For both VV and313

HH, the dU/U levels are slightly larger at low winds (3-7 m·s−1), which is similar to the dσ0/σ0
314

behavior. For wind speeds above 13 m·s−1, the detected rolls in WV1 (WV2) tend to be those with315

stronger (weaker) roll-induced wind perturbations.316

4.2. Dependence of roll detection on relative azimuth317

Fig. 8. Average dσ0/σ0 and dU/U data from MABL roll events at up-, cross- and downwind SAR viewing
angles as a function of wind speed. Data are from the 2016-2017 period with VV polarization. Statistics
were computed for a ±15◦ bin about the three relative azimuth angles, and within each 2 m·s−1 wind speed
bin from 3 to 19 m·s−1. The line and shaded areas indicate the mean and one standard deviation.

For a given wind speed, MABL roll event data show that the observed SAR backscatter and318
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wind speed perturbation estimates depend on the relative azimuth. Image contrast and wind pertur-319

bations within ±15◦ of the up-, cross- and downwind sectors for different wind speeds are shown in320

Fig. 8. Up- and downwind dσ0/σ0 and dU/U are comparable for all wind speeds. When the SAR321

view is crosswind, both parameters markedly increase, particularly for WV1 measurements. For322

winds below 10 m·s−1, the identified crosswind roll events are associated with perturbation levels323

twice these for up- and downwind. These differences are largest at lower wind speeds. In terms of324

wind perturbation, detected crosswind roll events suggest a level twice that for up/down looks at325

speeds of 6-8 m·s−1. It is worth noticing that the limited S-1B HH SAR data show similar results326

with S-1A VV and thus not shown in the paper. The explanation for this is mostly a combination327

of roll dynamics, SAR sampling and image processing. Most of the crosswind WV images come328

from the flow around mid-latitude highs and lows and hence are in different thermal advection329

regimes, which are known to affect the rolls differently (Foster and Levy, 1998). However, about330

25% of crosswind roll detection with the strongest relative perturbation strength occur at very low331

latitudes.332

It is likely that this strong difference in directional radar sensitivity is related to short wind-333

wave variability and Bragg-scattering from these waves, which is polarization dependent. Fig.334

9 shows dσ0 distributions in VV and HH for both WV1 and WV2 at 9±1 m·s−1. As expected,335

the difference between polarizations is much more distinct at 36◦ (WV2) than at 23◦ (WV1),336

and with larger NRCS variability at VV than at HH. The mean polarization difference (PD =337

σ0
VV − σ

0
HH) is greater for WV2 observations (Quilfen et al., 1999; Kudryavtsev et al., 2013).338

This is consistent with the increasing impact of resonant small scatters that have short space-time339

relaxation scales, with increasing incidence angle (e.g. Mouche et al., 2007; Kudryavtsev et al.,340

2014). The differences between dσ0 distributions at VV and HH are much less pronounced for341

crosswind configurations in the WV2 results.342

Quantitatively, Fig. 9 shows that VV downwind dσ0 levels are 3 times those of HH dσ0 at 36◦343

(WV2). This is consistent with the pure-Bragg wave scattering theory prediction of a four times344

VV-HH σ0 difference according to typical scattering coefficient formulations (e.g. Eq. 3 and 4345

in Kudryavtsev (2003)). For WV1, pure-Bragg wave growth predicts a factor of 1.75 between346

VV and HH σ0, which is consistent with the global downwind WV1 observations in Fig. 9. But347

at crosswind, the statistical distributions of HH and VV dσ0 are similar, and the mean levels are348

much lower than the along-wind data. So for crosswind, the dominant radar scattering mechanism349

must be almost scalar. That is because non-polarized scatters control the C-band radar-detected350

contrasts at crosswind. These waves are likely to be steeper intermediate scale (10-50 cm) gravity351
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waves that require much stronger and longer duration wind forcing than for cm-scale Bragg waves352

(Kudryavtsev, 2003; Kudryavtsev et al., 2014). The data then suggest that the roll-induced wind353

perturbations must be significantly enhanced when the S-1 SAR detects roll events in crosswind.354

This implication is that the crosswind roll detections are biased toward the strongest events.355

Fig. 9. dσ0 distributions at up-, cross- and downwind (±15◦ bin) for WV1 (left panel) and WV2 (right
panel) in VV and HH with wind speed of 9±1 m·s−1. Azimuth averaging is the same as for Fig. 8

4.3. Comparison with C-band GMF simulations356

To further examine the C-band SAR NRCS response to rolls with respect to wind speed and357

relative azimuth, we interpret the S-1 WV dσ0 measurements with a simple GMF simulation in the358

right column of Fig. 10. C-SARMOD calculations were performed assuming an 8% roll-induced359

wind speed change (dU/U) at each wind speed and direction for incidence angles of 23◦ and 36.5◦360

over a wind speed range of 4.5 to 13.5 m·s−1 across the full range of relative azimuth angle.361

Corresponding SAR measurement statistics are collected in 20◦ relative azimuth and 3 m·s−1
362

wind speed bins (left column of Fig. 10). The modulation depth dσ0 is largest at upwind and363

downwind. In light winds (3-6 m·s−1), WV1 and WV2 dσ0 are nearly constant for both VV and364
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Fig. 10. Observed vs. predicted dσ0 for roll events as function of wind speed and relative azimuth for
WV1 and WV2 in VV and HH. Left panel are S-1 SAR WV results. Mean values are calculated for each
20◦ relative azimuth angle. For clarity, estimates of the standard deviation (shaded) are only shown for one
wind speed in each panel. The right panel provides the C-SARMOD simulations under an assumed 8%
wind speed change due to roll impacts.

HH with WV1 around 0.02 and WV2 about 0.002. With increasing wind speed, both VV and HH365

dσ0 increase, with largest variations at up- and downwind.366

The observed dσ0 variations are generally similar, but there are some significant differences. In367

light winds (3-6 m·s−1), C-SARMOD dσ0 is also nearly direction independent, but at a lower mag-368

nitude than the SAR measurements. For moderate wind speeds, C-SARMOD predicts a stronger369

dσ0 dependence on the relative azimuth than we observe. For instance, within the 9-12 m·s−1 wind370
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speed range, WV1 VV dσ0 varies from 0.036 at upwind to about 0.026 at crosswind, and 0.037371

at downwind. The corresponding C-SARMOD VV dσ0 are 0.042, 0.013 and 0.046, respectively.372

Similar discrepancies are found for other wind speed ranges. These differences between S-1 WV373

and C-SARMOD simulations are larger for WV1 than for WV2 in both VV and HH, and increase374

with increasing wind speed.375

As might be expected from the results discussed in section 4.2, crosswind data show the largest376

differences with C-SARMOD. For WV1, the SAR dσ0 is larger than 0.02, and increases with377

wind speed. In contrast, the C-SARMOD dσ0 is less than 0.02, with no obvious wind speed trend.378

For WV2 at crosswind, both C-SARMOD and WV dσ0 increase with wind speed, although C-379

SARMOD increases less rapidly. It should be noted that the constant 8% wind modulation due to380

rolls will not be valid across the full scope of the model-data comparison.381

5. Discussion and Conclusions382

The combination of S-1 SAR WV data with automated image classification provides thousands383

of new MABL roll observations across most of the global ocean. Assessment results show that the384

36◦ incidence angle measurements have a clear benefit for MABL roll investigations and improve385

on wave mode data from the earlier ERS and Envisat SAR ocean missions. In particular, there is386

a nearly 50% increase in event detection for WV2 compared to WV1. While more roll events are387

detected at the larger incidence angle, the two incidence angles show several important similarities388

for MABL roll remote sensing. First, they share a lower detection threshold near 4% in NRCS389

contrast at wind speeds from 3 to 19 m·s−1. Estimates of the roll-induced surface wind speed390

perturbations at both incidence angles fall in the range of 5-10%. Finally, WV1 and WV2 SAR391

roll event detection rates are 3-10 times greater for up- and down-wind compared to crosswind392

(Fig. 5). These results generally hold for both VV and HH, although WV2 VV is slightly more393

sensitive than HH to wind streak signatures as seen in Figs. 7 and 9. It is thus apparent that the394

best option for S-1 SAR measurements of this process is the WV2 VV-pol configuration. These395

findings suggest that any ocean SAR investigations of MABL rolls should carefully consider the396

relative azimuth and SAR incidence angles.397

The central geophysical explanation for the observed radar dependencies under MABL roll398

forcing appears to be the combination of surface wind stress impacts and adjustment to this forc-399

ing by highly directional short wind waves. As discussed in Section 4.2, roll imprints are best400

captured by WV2 VV in the up and downwind configurations. It demonstrates that the local dσ0
401

changes due to the roll field are significantly polarized. Short-scale polarizing surface structures402
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correspond to the cm-scale Bragg waves. These waves have short relaxation times, and they quasi-403

instantaneously adjust to wind changes. Thus in the majority of cases, SAR-imaged rolls are likely404

to reflect this rapid adjustment in cm-scale waves for km-scale regions under the helical roll vortex405

field (Alpers and Brümmer, 1994; Young, 2000; Vandemark et al., 2001). Using a C-band radar406

GMF as a first-order model for this wind-wave adjustment, Fig. 7 (c1) and (c2) show that the407

global-averaged 8% (±3.5) level for wind speed fluctuations does a reasonable job of explaining408

the roll-induced NRCS modulation depth. This appears to be a robust observation, valid across409

most wind speeds, and consistent with previous aircraft wind measurements showing a range of410

7-10% (Vandemark et al., 2001). Results also indicate that the strength of the coherent secondary411

circulation scales with the intensity of the mean flow. These satellite-derived estimates of sur-412

face perturbation magnitude may help guide analytical and numerical models of eddy-impacted413

boundary layers.414

An explanation for the largest difference of MABL roll detection between up and crosswind415

SAR viewing angles (see Figs. 5 and 8) is more nuanced. It is asserted that the dominant crosswind416

NRCS modulation mechanism under roll forcing must come from changes in steeper intermedi-417

ate scale breaking or nearly breaking surface scattering facets (Kudryavtsev, 2003; Kudryavtsev418

et al., 2013). This conclusion is consistent with VV and HH pol differences observed in Fig. 9.419

Accordingly, and particularly at lower incidence angles, roll-induced surface wind variations must420

be increasingly vigorous in magnitude and duration for wind streak detection under crosswind421

conditions, as seen in Fig. 8.422

Looking forward, this discrepancy in roll-field detection may be related to other environmental423

conditions that accompany events classified as MABL rolls using CMwv. Because S-1 is polar-424

orbiting and right-looking, roll observations at crosswind will be primarily associated with flows425

around mid-latitudinal lows and highs. These conditions are associated with particular thermal426

advection regimes that induce first-order modulations of the rolls. So, crosswind rolls present427

complication in both remote sensing and in geophysical interpretation. More generally, this re-428

inforces the hypothesis that the forcing conditions needed to generate sufficient surface waves429

for wind streak detection may change, and be convolved with the SAR look direction and inci-430

dence angle. Further work is required to clarify this issue as it pertains to MABL roll process431

studies using S-1 data. Future investigations may also take advantage of these findings to focus432

on radar measurements under highly unstable atmospheric conditions, possibly using dual- and433

quad-polarized SAR measurements (Kudryavtsev et al., 2014, 2019; Fan et al., 2019).434

It is certain that observed detection rates and thresholds depend to some extent on the per-435
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formance of the CMwv automated image recognition algorithm. In the case of MABL rolls, the436

model was intentionally trained to find scenes that were clearly visible by eye. Given the con-437

sistent roll detection statistics and results in Fig. 7, this visibly-evident criterion corresponds to a438

4 % threshold in backscatter modulation. This implies that conditions with weaker, less visible,439

roll imprints are not captured in the present analysis and datasets. This limitation suggests that440

the overall percentage of occurrence rates for MABL rolls over the ocean seen in Figs. 3 and 5441

represent conservative or lower-end estimates. In principle this may also affect the SAR-derived442

estimate of the low wind threshold for observed rolls (∼2 m·s−1 ) shown in Fig. 4, but this value is443

consistent with previous estimates from theory and observations (Etling and Brown, 1993; Weck-444

werth et al., 1997). CMwv model limitations are not expected to impact the study conclusions445

drawn above pertaining to radar sensitivity to MABL roll impacts with changing incidence angle,446

relative azimuth, or polarization.447

These new S-1 WV observations open avenues for further studies. On one hand, the revealed448

differences in SAR sensitivity to waves generated by roll impacts, particularly for crosswind views,449

should be further investigated. This may lead to new approaches for identifying unstable condi-450

tions, and RiB retrieval methods. In that context, dual- and quad-polarized SAR observations (Fan451

et al., 2019), might be favored. In particular, short-scale polarized scatter contributions can be452

isolated to more precisely analyze local roll signatures. The growing number of quad-polarization453

observations, from Radarsat-2, Gaofen-3 and the new Radarsat Constellation Mission (RCM), are454

expected to serve this purpose. On the other hand, though the weak roll imprint cases are excluded455

in the present classified dataset, this S-1 SAR database is still state-of-the-art in terms of providing456

an overall global view of roll field characteristics (wavelength & orientation) as well as the ability457

to relate these data to near-surface forcing from the tropics to high latitudes. This massive classi-458

fied WV SAR images can thus be used to support boundary layer studies over the world’s ocean459

to advance understandings of km-scale MABL coherent roll structures on turbulent momentum460

fluxes.461
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Appendix A. S-1 WV NRCS recalibration469

For each WV SAR image, ESA’s Level-1 SLC product provides the digital number DN =470 √
I2 + Q2 per pixel (I and Q indicate the real and imaginary parts of SAR measurements). It can471

be used to compute the NRCS through radiometric calibration and noise correction:472

σ0
ES A = DN2

i /A
2
i − NES Z [Linear]

where Ai is the calibration lookup table (LUT) provided in the annotation files for each image473

pixel. NESZ is the noise equivalent σ0 estimated from the mode of DN2
i /A

2
i histogram for wind474

speeds less than 1 m·s−1 (Li et al., 2019a,b). The NESZ is 0.0014 and 0.0062 for S-1A WV1 and475

WV2 in VV, and 0.0012 and 0.0040 for S-1B WV1 and WV2 in HH.476

Fig. A.11. NRCS residual of pre- and post-recalibration (top and bottom) as function of wind speed for
WV1 and WV2 in VV and HH. VV data are for S-1A in 2016-2017 and HH data are for S-1B from 15
Mar to 01 Jul in 2017. Color denotes the normalized data density. The red dashed line indicates the 0 dB
baseline. Black dots are the mean residual within 1 m·s−1 bin and the error bars represent one standard
deviation. The σ0 reference comes from the C-SARMOD model noted in the text.

The chosen NRCS reference, or benchmark, is the C-band SAR GMF of C-SARMOD477

(Mouche et al., 2006). It is selected because of its applicable skill in both VV and HH polariza-478
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tions. NRCS comparisons between standard ESA WV data (σ0
ES A) and C-SARMOD predictions479

for WV1 and WV2 in VV and HH are given in the top panel of Fig. A.11. We then computed480

the mean σ0
ES A per image for WV data and fed the collocated ERA5 wind speed and direction as481

well as image center incidence angle into C-SARMOD to derive the expected σ0
C−S ARMOD. Note482

that SAR data with mean DN2
i /A

2
i less than the NESZ are excluded. The error bar plots show483

the mean and 1st standard deviation within each 1 m·s−1 bin and the color denotes the normalized484

data density. It is clear that the NRCS residual (σ0
ES A-σ0

C−S ARMOD) for WV1 data in both VV and485

HH is nearly 0 dB for all wind speeds. However, the WV2 NRCS residual has a nearly constant486

negative bias at all wind speeds of about -1.6 dB for VV and -2 dB for HH. This is consistent with487

the NRCS assessment that discrepancies exist between S-1 WV data (after built-in calibration pro-488

cessing) and CMOD5.N predictions, particularly for measurements at the WV2 incidence angle489

of 36◦ (Li et al., 2019b,a).490

A recalibration constant COC is calculated for each 12 day repeat cycle using C-SARMOD and491

ERA5 wind direction. This factor is then used to correct the WV NRCS as σ0 = σ0
ES A/COC in492

linear space. This procedure is applied for both WV1 and WV2 in VV and HH. The bottom panel493

of Fig. A.11 displays the NRCS residuals after recalibration. As expected, the WV2 mean NRCS494

values now lie within 0.1-0.2 dB of the C-SARMOD prediction for most wind speeds.495
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List of Figure Captions683

• Figure 1: Ocean SAR data coverage for S-1 study datasets, (a) S-1A in VV polarization in684

2016-2017 and (b) S-1B in HH polarization, from 15 Mar to 01 Jul in 2017. Color denotes685

the number of WV images within each 5◦ by 5◦ spatial bin. The total number of imagettes686

in these datasets is 1,182,540 and 197,442, respectively.687

• Figure 2: Analysis of roll modulations in S-1 WV sea surface roughness images. Panel688

(a) is a typical roll image after smoothing to a 200-m pixel resolution σ0 image. White,689

blue and red arrows indicate North, the ERA5 wind direction and extracted wind streak690

orientation, respectively. (b) 2-D FFT spectrum, S (k, φ), of the full resolution image within691

the expected wavenumber range of MABL patterns (λ= 0.8 and 4 km). Angle φ is in SAR692

image coordinates, i.e. clockwise rotating from the azimuth to range direction. (c) Integral693

of S at each φ, maximum marked as a red dot. (d) SAR-estimated wind speeds derived using694

the C-SARMOD GMF. (e) σ0 transect profile along the black scan line in (a): from A to695

B. The profile (dashed line) has been smoothed with a 1 km length Hanning window. Red696

and blue dots indicate the detected local maximum and minimum. (f) similar to (e) but for697

SAR-retrieved local wind speed U.698

• Figure 3: Monthly statistics of detected roll events from all S-1A WV VV SAR imagettes.699

The top and bottom panels provide the percent-detected and the total number of imagettes700

examined in each month.701

• Figure 4: Wind speed distributions of all S-1A WV VV SAR data and the CMwv-identified702

roll WV1 and WV2 data.703
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• Figure 5: Statistics of identified roll events from S-1A VV WV SAR images for different704

relative azimuth angles. (a) and (b) show the WV1 and WV2 percentages of identified rolls705

for selected wind speed ranges, and (c) gives the total of all images collected in each mode,706

respectively.707

• Figure 6: Center panel shows center points of WV1 and WV2 acquisitions along an S-1A708

descending pass on 2017-02-02. Images identified by CMwv as roll events are shown with709

red circles. Three neighboring pairs WV2 and WV1 images (green box in the middle panel)710

are shown in the left and right panels. The blue and red arrows on the images indicate the711

ECMWF ERA5 surface wind and SAR backscatter-estimated roll directions, respectively.712

• Figure 7: Box plots of dσ0, dσ0/σ0 and dU/U for identified roll events from WV1 and713

WV2 in VV polarization (left panel) and HH (right panel). Statistics were conducted within714

each 2 m·s−1 bin from 3 to 19 m·s−1. Boxes indicate the 25th to 75th percentiles in each bin.715

Data mean and median are denoted using the point and line. The 10th and 90th percentiles716

are given by whiskers. The red line and shaded red in bottom panels represents the overall717

average and standard deviation of dU/U.718

• Figure 8: Average dσ0/σ0 and dU/U data from MABL roll events at up-, cross- and down-719

wind SAR viewing angles as a function of wind speed. Data are from the 2016-2017 period720

with VV polarization. Statistics were computed for a ±15◦ bin about the three relative az-721

imuth angles, and within each 2 m·s−1 wind speed bin from 3 to 19 m·s−1. The line and722

shaded areas indicate the mean and one standard deviation.723

• Figure 9: dσ0 distributions at up-, cross- and downwind (±15◦ bin) for WV1 (left panel) and724

WV2 (right panel) in VV and HH with wind speed of 9±1 m·s−1. Azimuth averaging is the725

same as for Fig. 8726

• Figure 10: Observed vs. predicted dσ0 for roll events as function of wind speed and relative727

azimuth for WV1 and WV2 in VV and HH. Left panel are S-1 SAR WV results. Mean728

values are calculated for each 20◦ relative azimuth angle. For clarity, estimates of the stan-729

dard deviation (shaded) are only shown for one wind speed in each panel. The right panel730

provides the C-SARMOD simulations under an assumed 8% wind speed change due to roll731

impacts.732

• Figure A1: NRCS residual of pre- and post-recalibration (top and bottom) as function of733
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wind speed for WV1 and WV2 in VV and HH. VV data are for S-1A in 2016-2017 and HH734

data are for S-1B from 15 Mar to 01 Jul in 2017. Color denotes the normalized data density.735

The red dashed line indicates the 0 dB baseline. Black dots are the mean residual within736

1 m·s−1 bin and the error bars represent one standard deviation. The σ0 reference comes737

from the C-SARMOD model noted in the text.738

List of Table Captions739

• Table 1: Environmental variables and extracted roll modulation parameters for the six S-1A740

WV1 (23◦) and WV2 (36.5◦) image cases in Fig 6. U10 and φU10 are the ERA5 10 meter741

wind speed and direction in meteorological convention. RiB is the atmospheric stability742

parameter estimated from the ERA5 variables. φ
′

WS is the extracted roll orientation in the743

same coordinate as φU10. σ0
B and σ0

D are the mean NRCS over roll-induced bright and dark744

on SAR images. dσ0, dσ0/σ0 and dU/U represent the roll-induced NRCS variation, relative745

NRCS variation (image contrast) and surface wind perturbation.746
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