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Abstract

We compute effective energies of thin bilayer structures composed by soft nematic elastic-liquid
crystals in various geometrical regimes and functional configurations. Our focus is on order-strain
interaction in elastic foundations composed of an isotropic layer attached to a nematic substrate.
We compute Gamma-limits as the layers thickness vanishes in two main scaling regimes exhibiting
spontaneous stress relaxation and shape-morphing, allowing in both cases out-of-plane displace-
ments. This extends the plane strain modelling of [10], showing the asymptotic emergence of
fully coupled macroscopic active-nematic foundations. Subsequently, we focus on actuation and
compute asymptotic configurations of an active plate on nematic foundation interacting with an
applied electric field. From the analytical standpoint, the presence of an electric field and its asso-
ciated electrostatic work turns the total energy into a non-convex and non-coercive functional. We
show that equilibrium solutions are min-max points of the system, that min-maximising sequences
pass to the limit and, that the limit system can exert mechanical work under applied electric fields.
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1 Introduction

Nematic Liquid Crystal Elastomers (NLCEs) are classes of soft shape-memory alloys where order states
and optical instabilities can be triggered, tuned, or suppressed by means of mechanical deformations
and electrostatic fields. NLCEs, typically synthesised as thin strips, appear in the form of gels or
rubbery solids. Structurally, they are constituted by polymeric chains which act as the structural
backbone of the material, to which attach molecules of a nematic liquid crystal, the optically active
units. Liquid crystal molecules have a two-fold response to stimuli. Indeed, they re-orient as a
consequence of elastic deformations and stretches dictated by internal energy minimisation and they
rotate collectively parallel to electric or magnetic forces, activated by external fields.

From the structural perspective, NLCE membranes enjoy mechanical instabilities which are typical
of thin structures and interact with the rich multi-physical phenomenology of the material.

In the present contribution we test and analyse the interaction between elastic, optic, and electro-
static forces (characterising the material behaviour) versus geometric constraints (which cause struc-
tural instabilities) in two distinct physical regimes, and configurations relevant for technological appli-
cations.

We consider continuum models in the framework of linearised elasticity. Despite intrinsic limitations
of an approach with infinitesimal displacements, a linearised model is particularly suitable for treating
the coupling of multiphysyical phenomena, by superposition. In our setting, these are represented by
the interplay between nematic ordering and elasticity, pertaining to the coupling of polymeric chains
with optical states of the liquid crystal, and the opto-electric interaction, associated to the connection
between the liquid crystal and the dielectric vector field. We consider an energy model introduced in
[9] for the description of equilibrium states of NLCEs under an electric field. In the present work, we
are interested in the asymptotic behaviour of sequences of functionals for bi-layer structures where a
NLCE membrane sustains a stiff and thin isotropic film.

In this setting, two non-dimensional parameters (length scales) collapse several material and geo-
metric parameters, allowing us to separately analyse two opposite phenomenological regimes, namely,
that of thin films of large planar extent (the “large body” regime) and that of thin films of small area
(referred to as “thin particles”). The main contribution in this paper is the derivation, the analysis,
and the computation of effective two-dimensional plate models for multilayer structures comprising
active soft nematic plates, in the regimes of spontaneous relaxation and shape-morphing actuation.
In both limits the underlying elastic behaviour is represented by an effective linear plate energy of
Kirchhoff-Love type, enriched by an additional nonlinear active foundation term which we explicitly
characterise.

The first regime (that of large bodies) entails the relaxation of elastic stresses by formation of opti-
mal optic microstructure, with full or partial coupling between in-plane and out-of-plane deformations
depending on the thickness scaling. This process ultimately characterises the mechanical behaviour
of large thin elastic sheets. This setting is explored in the first part of this paper, inspired by ob-
servations of pattern formation and opto-elastic relaxation in bilayer systems of nematic elastomers,
see [18]. There, a complex material-structure interaction is observed in thin membranes of NLCE
in contact with an overlying isotropic film, resulting in formation of micro-wrinkles competing with
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visible shear-band microstructures of the optical axis. The former manifestation is a typical struc-
tural instability, also observed in thin stretchable membranes [24, 5] whereas the latter is a material
instability observed in various classes of media, encompassing, e.g. solid elastic crystals [4] besides
liquid crystal elastomers. This paper complements and completes the analysis developed in [10] on
planar-constrained nematic bilayers by exploring the full three-dimensional elastic model allowing for
out-of plane elastic deformations.

The second regime (small particles), corresponds to the physical setting of small multilayer domains
which can be actuated into nontrivial out-of-plane deformation modes by uniform fields, as we show
in the second part of the paper. Elaborating on the relaxation result, we describe this asymptotic
behaviour, where the optic director is free to rotate and re-align under the influence of applied external
fields, albeit homogeneously. These small domains may be regarded as elementary “building blocks”
for more complex morphing shapes that can be assembled via actuation of the frozen director, in
presence of suitable boundary conditions. In the second part of this article we turn our attention
on actuation, i.e. the capability of controlling the shape of a membrane thanks to the activation
of liquid crystal molecules by external fields. Our investigation is inspired by a number of recent
experimental realisations. In [23], [22] design of complex shapes is performed via thermal actuation
of heterogeneously patterned nematic elastomer films, in [1], [19] opto-elasticity in nematic elastomers
is investigated to show that “soft” NLCE robots can execute work cycles thanks to the cooperative
interaction between light absorption and mechanical deformations. We refer to [25] for a review
focussed on liquid crystalline materials from the view point of thermal-photo-elastic coupling.

From the mathematical perspective, we perform the exact computation of the Γ-limit of a family
of energy functionals parametrised by the two scale parameters. For the actuation problem, because of
the presence of an energetic contribution due to external fields possibly unbounded below, we face the
issue of non-convexity and non-coercivity of the total energy functional which lacks sequential lower
semicontinuity. The asymptotic analysis is nonetheless successful in showing that limit regime enjoys
a saddle structure and, by computing the exact expression of asymptotic Lagrangians, we demon-
strate that the limit system can indeed transform and convert work produced by electrostatic forces
into shape deformation, which is, to date, a challenge in soft robotics. To illustrate our purpose,
we numerically solve a simple actuation problem for membrane bending and show, as a mathemat-
ically relevant example, the equilibrium configuration of a nematic bilayer activated by an applied
electrostatic potential.

The outline of the paper is as follows. After we formally present the functional setting in the
Introduction, discussing the kinematics and the mechanics of the problem (Sec. 2) Section 3 is devoted
to the analysis of relaxation results for thin and large NLCE bilayers. This part of the paper builds
upon material produced in [10] which we systematically refer to. Finally, in Section 4 we analyse limit
functionals for thin and small NLCE bi-layers. We characterise the asymptotic behaviour of the saddle
points of the energy functionals and, as an example of our analytical work, we describe numerical
calculations showing shape-actuation.

1.1 Notation

Throughout the paper, Greek indices run from 1 to 2 whereas Latin indices run from 1 to 3. The
summation convention on repeated indices is assumed, unless explicitly stated. To highlight the de-
pendency with respect to in-plane vs. out-of-plane coordinates, a prime sign indicates planar compo-
nents of a vector, of second order tensor, and of differential operators, e.g. v′ = vαeα, B′ = bαβeαeβ ,
and ∇′(·) = ∂α(·)eα, where eα indicate the unit vectors in the x1 − x2 plane. In order to distinguish
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Figure 1: Physical three-dimensional domain of a thin bilayer system consisting in one nematic elas-
tomer layer supporting a stiff thin film. The system undergoes in-plane (membrane) and out-of-plane
(bending) displacements, subject to mechanical volume and surface loads as well as electrical work
inducing nematic reorientation. We distinguish two physically relevant regimes, depending on the
scaling laws of physical parameters: the relaxation regime (with formation of microstructure) and the
actuation regime (with frozen optic tensor).

homologue quantities defined in the two layers, we superpose a hat to those which refer to the nematic
layer, as in k, k̂ to indicate limit rescaled strains in the film and nematic layer, respectively. The inner
product is denoted by a dot. In general (but with some exceptions, like ν), material parameters or
effective coefficients are indicated by sans serif letters, cf. Table 1 for a collection of relevant param-
eters and physical constants. With u ⊗s v we signify the symmetrised outer product 1

2 (uivj + ujvi)
between vectors u, v and by I the identity matrix in Rn×n. Throughout the paper, C stands for a
generic constant which may change from line to line. Thickness averages are indicated by an overbar,
as in v̄(x′) := 1/H

∫
v(x′, x3)dx3 where H denotes the size of the (transverse) integration domain.

We adopt standard notation for functional spaces, such as L2(Ω,Rn), L2(Ω,Rn×n), and H1(Ω,Rn),
H1(Ω,Rn×n), for the Lebesgue spaces of square integrable maps from Ω onto Rn and Rn×n, and the
Sobolev space of square integrable maps with square integrable weak derivatives on Ω. Concisely, we
write L2(Ω) and H1(Ω) whenever n = 1.

All ε-dependent quantities refer to the physical three-dimensional system, a thin bilayer structure
whose thickness depends on ε. After introducing appropriate scalings for all material quantities and
rescaling the physical domain we drop the ε-dependence.

2 Setting of the problem

Domain. Let Ωε be a sufficiently smooth three-dimensional domain, constituted by the union of
two thin layers: a linearly elastic film occupying Ωεf = ω × (0, εL) and a soft nematic elastomer

occupying Ωεb = ω × (−εp+1L, 0]. The two layers are attached to a rigid substrate which imposes a
hard condition of place, see Figure 1. The basis of the cylindrical three-dimensional domain is ω ⊆ R2

with characteristic size L. We focus on thin limit systems as ε→ 0, by requiring that p+ 1 > 0.
The elastic film can deform both in-plane through membrane deformations and out-of-plane, by

bending. The nematic elastomer is subject to a hard boundary condition at the interface with the
underlying (rigid) substrate.
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Order tensors. We define the set of biaxial (De Gennes) tensors [14] as

QB :=
{
Q ∈ R3×3, trQ = 0, Q = QT : −1

3
≤ λmin(Q) ≤ λmax(Q) ≤ 2

3

}
, (1)

where λmin(Q) and λmax(Q) denote the smallest and largest eigenvalue of the matrix Q. We remind
that QB is convex, closed and bounded.

We introduce QU , that is, the subset of QB populated by all uniaxial tensors [16]. These are
matrices that can be written in the form

Q = s(n⊗ n− 1

3
I) (2)

for some n ∈ R3 with |n| = 1 and some − 1
2 ≤ s ≤ 1. Without loss of generality, the set of uniaxial

tensors is defined as follows

QU :=
{
Q ∈ QB : |Q|6 = 54(detQ)2

}
. (3)

Indeed, the two algebraic characterizations in (2) and (3) can be proven to be equivalent. We remark
(3) is non-convex, pointwise closed and therefore closed in all the strong topologies. Also, we introduce
the set of (uniaxial) Frank tensors [17] which uses only the eigenframe of Q as the nematic state
variable, constrained to have eigenvalues 2/3,−1/3,−1/3. Uniaxial tensors range in the set

QFr :=
{
Q ∈ QU : λmax(Q) =

2

3
, λmin(Q) = −1

3

}
. (4)

Observe that any tensor in 4 can be represented in the following manner:

Q = n⊗ n− 1

3
I (5)

for some |n| = 1 (which is equivalent to requiring s = 1 in (2)). This clarifies an order tensor
taken in the illustrative example of Fig. 2 is indeed a Frank tensor (see Caption of Fig. 2.) It is
important to remark that, whenever a liquid crystal system is described by a tensor in the form (5),
then n (which is called the director) represents the common direction of the perfectly aligned nematic
molecules. Instead, QU and QB describe, additionally, order states, that is, configurations where the
liquid crystal fails to be perfectly ordered and aligned to a director. Instead, the description of such
systems should be performed in probabilistic terms, and QU and QB model probabilistic information
derived from the theories of Ericksen and de Gennes, respectively. Notice that, since trQ = 0, this
suffices to describe the spectrum of Q. It follows by the definition that QFr is a closed and non-convex
set and the inclusion QFr ⊂ QU ⊂ QB holds. Importantly, QB coincides with the convex envelope of
QFr and of QU .

Mechanical model. The total energy of the system is modelled on the classical theory of linearised
elasticity. Thus, we may assume physical forces are additive and their effects are algebraically super-
posed. The total energy combines a film contribution (measured on Ωεf ) to the contribution of the
nematic bonding layer (defined on Ωεb). The latter, in turn, is the sum of three terms: a bulk energy
density which measures the strain-order interaction of nematic elastomers according to the well-known
model defined in [9] and analysed in [7, 6, 8]; a curvature term (or Frank energy) proportional to
the square of the gradient of the Q-tensor which induces molecules to be parallel to each other; and
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finally, a loading term representing the external work, the only possibly non-positive contribution to
the energy.

Considering here only electrostatic work and summing all contributions, the total energy reads

Eε(v,Q) :=
1

2

∫
Ωεf

Eε

1 + ν

(
|e(v)|2 +

1

1− 2ν
tr2 e(v)

)
dy

+
1

2

∫
Ωεb

Eε

1 + ν

(
|e(v)−Q|2 +

1

1− 2ν
tr2 e(v)

)
dy

+
1

2

∫
Ωεb

Kε
Fr|∇εQ|2dy −

1

2

∫
Ωεb

∇ϕ̃T D̃(Q)∇ϕ̃dy, (6)

where admissible spaces for displacements v, the optic tensor Q, and the electrostatic potential ϕ̃ read

v ∈ Vε := {H1(Ωε,R3), v(x′,−εp+1) = 0 a.e. x′ ∈ ω}, Q ∈ H1(Ωεb,QFr), ϕ̃ ∈ H1(Ωεb).

Material regime (assumptions on the scaling of material parameters) We explicitly, for
definiteness, the assumptions on material parameters by fixing a parametric scaling law defining the
relative stiffness and the relative curvature energy. Considering that the nematic bonding layer is much
softer than the overlying film, while being elastically compressible, we assume the following

(Eε, νε)(x) =

{
(E, ν), x in Ωf

(εqE, ν), x in Ωb
, with q > 0, Kε

Fr =
εqE

1 + ν
δ̃2
ε . (7)

Here, E is the Young modulus of the elastic film and −1 < ν < 1/2 its Poisson ratio. From now on, to
simplify the notation without any loss of generality we assume E = 1, leaving explicit reference to the
only meaningful elastic nondimensional parameter, the Poisson ratio ν. Note that this is always licit
and amounts to a rescaling of displacements. In the expression above, δ̃ε represents the characteristic
length scale which emerges from the competition of the shear modulus of nematic rubber vs. the Frank
constant of the liquid crystal. For the purpose of our analysis, δ̃ε identifies a critical material parameter
which, as ε goes to zero, may vanish or blow up, leading to the two separate regimes of relaxation
or of director actuation, respectively. In order to bootstrap the asymptotic procedure and focus on
the interplay between membrane and bending modes, we further scale dependent and independent
variables as follows.

v(y′, y3) =

{
L(εuα(Lx′, Lεx3), u3(Lx′, Lεx3)) in Ωf

L(εuα(Lx′, Lεp+1x3), εru3(Lx′, Lεp+1x3)) in Ωb,
(8)

where r is the magnitude of vertical displacements, a parameter that ultimately depends on the loads.
The scaling above has a twofold goal, that of mapping the physical, ε-dependent domain onto a fixed,
unit, domain, and that of exposing the interplay between in-plane vs. out-of-plane displacements
which, in turn, depends on the type and intensity of the loads.

Similarly, we introduce the nondimensional (rescaled) electrostatic potential ϕ

ϕ̃(y′, y3) = ϕε0ϕ(Lx′, Lεp+1x3) in Ωb, (9)

where ϕε0 is the electrostatic scale gauge. Note that, because the electric field is solved independently
of the opto-elastic problem, its scale is imparted by its boundary conditions which, in turn, can be
freely chosen in such a way that the electric energy is of the same order of magnitude as the elastic
terms, which ultimately depend upon ε.
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Figure 2: Illustrative numerical calculation of a thin nematic bilayer plate in the actuation regime,
cf. Section 4, Theorems 3. The effective model given by the asymptotic theory is a fully coupled
macroscopic opto-elastic plate. By exploiting strain-order coupling, spontaneous deformations of a
multilayer composite achieve out-of-plane bending deformations under external electric stimulation.
Here, an initially flat and thin active bilayer, clamped at the boundaries, is actuated by a uniform
optic tensor Q = n0 ⊗ n0 − 1

3I described by the homogeneous director n0 = (e1 + e3)/
√

2 (cf. image
left). Colour coding in figure refers to the euclidean norm of in-plane deformations |ζ ′|, the legend for
ζ3 is displayed to indicate the relative scaling of transverse displacements.

Film energy. Writing the energy (6) in terms of the scaled quantities identified in (8), the film
contribution reads

ε3L3Jεf (u) = ε3L3 1

2

∫
Ωf

((
|eαβ(u)|2 + (ε−2e33(u))2 + 2|ε−1eα3(u)|2

))
dx

+ ε3L3 1

2

∫
Ωf

1

1− 2ν

(
(eαα(u)) + ε−2e33(u)

)2
dx (10)

Nematic energy. On the other hand, using (8), the nematic contribution to the total energy (6)
reads

ε3L3εq+p−2Jεb (u,Q) :=

L3 1

2
εqεp+1

∫
Ωb

(
|εeαβ(u)−Qαβ |2 +

(
εr

εp+1
e33(u)−Q33

)2

+ 2

∣∣∣∣12 (εr∂αu3 +
ε

εp+1
∂3uα

)
−Qα3

∣∣∣∣2
)
dx

+ L3 1

2
εqεp+1

∫
Ωb

1

1− 2ν

(
εeαα(u) +

εr

εp+1
e33(u)

)2

dx, (11)

while the curvature energy writes

1

2
L

∫
Ωb

Kε
Fr

(
|∇′Q|2 +

∣∣∣∣ ∂3Q

εp+1

∣∣∣∣2
)
εp+1dx =

1

2
L

∫
Ωb

δ̃2
ε

εp+1

(
ε2p+2|∇′Q|2 + |∂3Q|2

)
dx.
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Symbol Quantity

Kε
Fr,KFr Frank constant

D̃(Q),D(Q),D(Q) dimensional matrix of dielectric coefficients, nondimensional, averaged

B(Q) relaxed matrix of dielectric coefficients
dij(Q) Coefficients of D(Q)
εo Dielectric constant (in vacuum)
ε⊥, ε|| Relative perpendicular and parallel, dielectric constant
Ωεf ,Ωf Film layer

Ωεb,Ωb Bonding layer
Ωε,Ω Bilayer (union of film and bonding layer)
ω Membrane planar section
L Diameter
ν, (λ, µ) Elastic constants: Poisson ratio, Lamé coefficients
Jεb Rescaled energy, nematic layer

Jpε , J̃
p
ε , Energy functional, mechanical model

J0, J− Relaxation limit energies
Iε, I0 Electrostatic work, limit
K(ζ ′, ζ3) Effective stiffness of nematic foundation

Table 1: Material and geometric parameters.

We choose to keep an explicit dependence upon p because, depending on its value (the relative thickness
of the film layers), we identify phenomenologically different limit regimes.

Electrostatic work. The electrostatic work density is the (scalar) product of the electrostatic vector
e by the dielectric displacement vector d. Based on the linear model of nematic liquid crystals, the
relation between d and e is obtained introducing the tensor of dielectric coefficients D̃(Q) so that
d := D̃(Q)e, see [14], [21].

Upon introduction of the electrostatic potential, related to the electric field by e = −∇ϕ̃, the
electrostatic work density is given by d · e = eT D̃(Q)e where D̃(Q) = ε0D(Q). The tensor of dielectric
coefficients depends linearly on the order tensor Q. In turn, the electric field is obtained by optimisation
and depends, in an intricate way, upon Q. We shall elaborate on their connection in the Actuation,
Section 4. The scaled electrostatic work density reads

Jεele(Q, ϕ̃) =
1

2

∫
Ωεb

∇ϕ̃T D̃(Q)∇ϕ̃ dy = ε3(ϕε0)2εp−2ε0L
1

2

∫
Ωb

∇Tε ϕD(Q)∇εϕdx. (12)

where we have concisely denoted by ∇εϕ the scaled gradient of a scalar function, namely ∇εϕ :=(
∇′ϕ, 1

εp+1 ∂3ϕ
)
. Note that the work integral above, for a fixed Q ∈ QX (X being a place-holder for

Fr, U or B) and for a fixed ε > 0, is a standard elliptic functional modelled upon the symmetric
positive definite matrix of nondimensional dielectric coefficients D(Q).

Additional mechanical loads. Finally, we consider applied body and surface loads by prescribing
two force densities, fε in the interior and gε on the upper face of the film domain. Without loss
of generality, we scale imposed loads in such a way that the corresponding work is of the order of
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magnitude of the elastic film energy. Accordingly, we set fε := ε2f, gε := ε3g with f : L2(Ωεf ,R3), g :

L2(Ωεf
+,R3) so that the scaled linear form corresponding to mechanical loads reads

Lε(v) = ε3L(v) = ε3L3

∫
Ωf

fvdy + ε3L2

∫
ω+

gvdy′, (13)

where ω+ = ω × {1}, see [12]. Our assumption on the scaling of loads is not restrictive owing to the
fact that the mechanical work is a continuous perturbation to the total energy.

2.1 Scaling regimes

We specialise the scaling laws introduced in (7), (8) in order to focus on the material regime in which
there is possible coupling between membrane and bending deformation modes, as well as with the
optoelastic behaviour of the nematic layer. Heuristically, the bending energy of the film scales like ε3,
thus we fix the scaling parameters of the system in such a way that both i) the energy of the nematic
bonding layer is of the same order of magnitude of the bending energy of the film, ii) we focus on
vertical displacements which are of the same order of the thickness of the overlying film, and iii) the
electrostatic work is of the same order of magnitude of the membrane energy of the film. Respectively,
we set

i) q + p− 2 = 0, ii) r = p+ 1, iii) ϕε0 = ε−1−p/2ε0
−1/2. (14)

Under these assumptions, the total energy, i.e., the sum of film and nematic layer energies minus the
external work, as defined in (10), (11) and (12), reads

J̃pε (v,Q, ϕ) := Jεf (v) + Jεb (v,Q)− Jεele(Q,ϕ)

=
1

2

∫
Ωf

(
|eαβ(v)|2 + (ε−2e33(v))2 + 2|ε−1eα3(v)|2

)
dx+

1

1− 2ν

(
(eαα(v)) + ε−2e33(v)

)2
dx

+
1

2

∫
Ωb

(
|εeαβ(v)−Qαβ |2 + (e33(v)−Q33)

2
)
dx

+
1

2

∫
Ωb

2

∣∣∣∣12 (εp+1∂αv3 + ε−p∂3vα
)
−Qα3

∣∣∣∣2 dx+
1

1− 2ν
(εeαα(v) + e33(v))

2
dx

+
1

2

∫
Ωb

δ̃2
ε

L2ε2p+2

(
L2ε2p+2|∇′Q|2 + |∂3Q|2

)
dx− 1

L2

1

2

∫
Ωb

(
∇′ϕ, 1

εp+1
∂3ϕ

)T
D(Q)

(
∇′ϕ, 1

εp+1
∂3ϕ

)
dx.

(15)

In the expression above, the quantity

δ2
ε :=

δ̃2
ε

L2ε2p+2
, (16)

identifies a material length scale stemming from the ratio between Frank’s curvature constant and the
bonding layer’s stiffness, relatively to the size of the domain L and the thickness of the nematic layer.
Notice that this quantity is scaled with respect to the thickness, hence, depending on the material
regime and geometric dimensions may either vanish or blow up, as ε→ 0. These two scenarios indeed
correspond to the distinct material regimes of actuation (with fixed orientation of the director) and
that of spontaneous relaxation (with emergence micro-textured patterns).
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More precisely, the relaxation scenario is dominated by the rescaled length scale δε, in the regime
δε → 0. In this setting, δε is the smallest scale of the system well below the layers’ thickness and
allows for vanishing transition layers with negligible energetic cost. Contrarily, the actuation regime is
characterised by the macroscopic length scale δ̃ε, in the limit δ̃ε →∞. In this context the optic tensor
is much more rigid, its homogeneity is forced under the influence of applied external fields.

Because an electric field generated by an external device acts on the nematic elastomer by orienting
the LC molecules and thus performing work, the sign of the functional is undefined. A careful analysis is
required to study critical points of the total energy which are of saddle-type. We devote Section 4 to the
analysis of the nematic elastic foundations and electric fields, whereas we focus our attention in the next
section to the analysis of the regime of nematic relaxation where optoelastic patterns spontaneously
emerge, without external stimuli, in such a way to relax mechanical stresses. Accordingly, we set ϕ ≡ 0
in (15) and compute the asymptotics as ε→ 0 of the energy J̃pε (v,Q, 0).

3 Relaxation

The relaxation regime for nematic multilayers is characterised by the spontaneous emergence of tex-
tured microstructures and a strong two-way coupling between optic axis and elastic displacements.
This scenario, in turn, occurs as Frank’s curvature energy is small and transitions between differently
oriented microscale domains can be accommodated with little energetic cost. Indeed, in this case,
Frank’s stiffness provides the smallest length scale of the system. Therefore, the relaxation regime is
characterised by a vanishing δε which corresponds to the regime of a large plates with low bending
constant. Thus, we assume δε → 0 as ε→ 0, the precise rate of decay will be specified in the following.

The program is to explicitly compute the effective stress relaxation induced by a local accommo-
dation of the optical texture under mechanical deformation, a mechanism which is responsible of the
emergence of fine scale, possibly periodic, optical patterns. In energetic terms, this amounts to first
computing locally-optimal nematic textures at microscale and then performing the dimension reduc-
tion to derive a macroscopic two-dimensional model, as described by the following one-variable model
[10, 11, 7, 15]

Jpε (u) :=

 inf
Q∈H1(Ωb,QX)

J̃pε (u,Q, 0) if u ∈ V

+∞ if u ∈ L2(Ω,R3) \ V,
(17)

where
V := {H1(Ω,R3), u(x′,−1) = 0} (18)

is the set of kinematically admissible three-dimensional displacements and X stands for either Fr, U
or B, according to the available order tensor models. We will show that, remarkably, the Γ-limit of
(17) is common to all available models.

Remark 1. By introducing scaled strain tensors in the film κε and in the nematic layer κ̂ε, reading
respectively

κε(u) =

(
eαβ(u) 1

2ε (∂αu3 + ∂3uα)
sym ε−2e33(u)

)
and κ̂ε(u) =

(
εeαβ(u) 1

2ε

(
εp+1∂αu3 + ε−p∂3uα

)
sym e33(u)

)
, (19)

10



we may rewrite (17) in compact notation, namely for u ∈ V

Jpε (u) =
1

2

∫
Ωf

(
|κε|2 +

1

1− 2ν
tr2 κε

)
dx

+
1

2
inf

Q∈H1(Ωb,QX)

∫
Ωb

(
|κ̂ε −Q|2 +

1

1− 2ν
tr2 κ̂ε +

1

2
δ2
ε

(
εp+2|∇′Q|2 + |∂3Q|2

))
dx. (20)

The convergence properties of minimising sequences of displacements associated to the functional
above characterise the limit space of displacements, which is independent of the thickness ratio p.
However, it is the rate of convergence of minimising sequences (depending on values of p) which iden-
tifies the contributions entering into the limit asymptotic models. For this reason, we choose to carry
explicit dependence on p in the total energy functional. Also note that, because it is the bounded-
ness of scaled terms that implies the sharp convergence properties of displacements, the formulation
via rescaled strains (20) proves to be effective in clarifying and rendering explicit the compactness of
minimising sequences in (17).

3.1 Estimates and compactness

We start with two preliminary results frequently invoked in the reminder of the article.

Lemma 1. Let u ∈ L2(Ω,R3), with Ω = ω×(−1, 1) and u ∈ H1(−1, 1) with u(x′,−1) = 0 a.e. x′ ∈ ω.
Then there exists a constant C > 0 depending only on ω, such that

||u||2L2(Ω) ≤ C||∂3u||2L2(Ω)

The next result, proved in [10, Section 4.1], allows to characterise the weak limit of the (suitably
rescaled) gradient of a bounded displacement field within the nematic layer.

Lemma 2 (Convergence of gradients). Let fε ∈ H1(Ωb,R3) for every ε. Let K > 0. Suppose
fε ∈ L2(Ωb,R3) uniformly bounded in ε and εK‖∂αfε‖L2(Ωb,R3) ≤ C, with C independent of ε. Then
εK∂ifε ⇀ 0 weakly in L2(Ωb,R3), for i = 1, 2, 3.

Proof. See Paragraph Compactness of Section 4.1 in [10].

Remark, importantly, that considering admissible minimising sequences (uε) ⊂ L2(Ω,R3) that leave
the energy uniformly finite alongside Lemma 1 implies the uniform boundedness of three-dimensional
displacements in L2(Ω,R3), hence there exists a compact set of L2(Ω,R3) such that minimising se-
quences are compact therein.

The two lemmas above allow to establish the following characterisation of limit strains. In what
follows, we denote thickness averages by an overline (cf. notation in Section 1.1). Also, observe thanks
to Jensen inequality we have, for f ∈ L2(Ωf ), that ‖f‖L2(Ωf ) ≥ ‖f‖L2(ω).

Proposition 1 (Characterisation of limit strains). Consider a sequence uε ⊂ L2(Ω,R3) for every ε
such that uε(·,−1) = 0 and uε → u strongly in L2(Ωf ,R3) as ε→ 0 and plug uε into Jpε (uε). Uniform
boundedness Jpε (uε) ≤ C implies that

a) there exists a limit k̂ ∈ L2(Ωb,R3×3) such that κ̂ε ⇀ k̂ in L2(Ωb,R3×3).

11



b) there exists k ∈ L2(Ωf ,R3×3) such that κε ⇀ k in L2(Ωf ,R3×3), and

k33 = − 1

2− 2ν
eαα(u), kαβ = eαβ(u)

c) ei3(uε)→ 0 strongly in L2(Ωf ,R3×3),

d) there exists e ∈ L2(Ωf ,R3×3) such that eαβ(uε) ⇀ eαβ weakly in L2(Ωf ,R3×3),

e) ||e33(uε)||L2(Ωb,R3×3) ≤ C,

f) εeαβ(uε) ⇀ 0 weakly in L2(Ωb,R2×2),

g) εp+1∂αu
ε
3 ⇀ 0, weakly in L2(ω).

Proof. To carry the proof of the items above we systematically use Jensen’s inequality to obtain lower
bounds upon integration of a convex function along the thickness, as in ||f̄ ||L2(ω) ≤ ||f ||L2(Ωb),∀f ∈
L2(Ωb), where the overbar stands for the thickness average. Item a) simply follows from the uniform
boundedness of ‖κ̂ε‖L2(Ωb,R3×3), and the boundedness of Q. Furthermore, b) derives from the uniform
boundedness ‖κε‖L2(Ωf ,R3×3) by optimising with respect to the k33 component and noticing that the

convergence of minimising sequences uε in Ωf is actually weak H1(Ωf ,R3), hence limit rescaled strains
can be identified with scaled components of the strain in the limit. To prove c) observe that b) implies
the existence of constants C,C ′

‖ε−1eα3‖L2(Ωf ,R3×3) ≤ C, and ‖ε−2e33‖L2(Ωf ,R3×3) ≤ C ′.

To prove d) observe that a) implies ‖eαβ(uε)‖L2(Ωf ,R3×3) ≤ C. Then, e) is implied by b). To prove f)
we need to use ‖εeαβ(uε)‖L2(Ωb,R3×3) ≤ C, uniformly in ε (implied by a)), and then invoke Lemma 2.

To prove g) we first claim the following: there exist constants C,C ′ such that

εp+1||∂αūε3||L2(Ωb) ≤ C and ε−p||∂3ū
ε
α||L2(Ωb) ≤ C

′. (21)

These terms vanish in the limit energy owing to the boundedness of the gradient terms and the fact
that they are multiplied by a vanishing sequence. To establish the estimate (21) it suffices to integrate
the energy estimate for the shear term exploiting convexity and use a). Indeed,

||εp+1∂αū
ε
3 + ε−p∂3ū

ε
α||L2(ω) ≤ ||εp+1∂αu

ε
3 + ε−p∂3u

ε
α||L2(Ωb) ≤ C, (22)

then use triangle inequality. By explicit integration we obtain a boundary norm whose boundedness in
H1(Ω(ω)) is ensured by the compactness of trace operator, the continuity of displacements, and their
weak convergence, through the use of the trace theorem [12, Theorem 6.1-7]. We can thus write

εp+1||∂αūε3||L2(ω) ≤ ||εp+1∂αū
ε
3 + ε−p∂3ū

ε
α||L2(ω) + ||ε−puεα(x′, 0)||L2(ω) ≤ C, (23)

hence ∂αū
ε
3 goes to zero weakly in L2(ω) thanks to Lemma 2.

In (23), notice that uεα(x′, 0) → uα(x′, 0) strongly in L2(ω) by the trace theorem and therefore
||uεα(x′, 0)||L2(ω) is uniformly bounded in ε.
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3.1.1 Kirchhoff-Love sets of displacements KL and KL]

The structure of limit displacements is determined upon integration with respect to z3 of the film
relations (see c) in Prop. 1)

e33 = 0 =⇒ ∂3u3 = 0, eα3 = 0 =⇒ ∂u3

∂xα
= −∂uα

∂x3
. (24)

The first implies that u3 is a function of x′ only, that is u3(x) = ζ3(x′). For such functions, the latter
relations yield, upon integration in x3,

(u′(x′, x3), u3(x′)) = (ζ ′(x′)− x3∇′ζ3(x′), ζ3(x′)). (25)

These relations identify the limit space as the set of (Kirchhoff-Love) displacements

KL := {v ∈ H1(Ωf ,R3) : v′ = ζ ′ − x3∇′ζ3, v3 = ζ3,

with ζ ′ ∈ H1(ω,R2), ζ3 ∈ H2(ω), x3 ∈ (0, 1)} (26)

which is equivalent (cf. [12]) to set of functions u ∈ V for which (24) holds. Observe then that items c),
d) of Proposition 1), and Korn’s inequality [12, Theorem 6.3-3] imply the weak convergence of uε to
u ∈ KL. In the definition above, ζ ′ coincides with the trace of the three-dimensional displacement u at
interface between the two layers ω×{0}. By analogy, we introduce the set of shifted limit displacements

KL] := {v ∈ H1(Ωf ,R3) : v′ = ζ ′] − (x3 −
1

2
)∇′ζ3, v3 = ζ3,

with ζ ′] ∈ H1(ω,R2), ζ3 ∈ H2(ω), x3 ∈ (0, 1)}, (27)

where the functions ζ ′] represent the trace of the three-dimensional displacement u in correspondence
to the mid-section of the film ω × {1/2}. Note that, from the topological and functional standpoint
KL coincides with KL] and the functions representing in-plane displacements are related by

ζ ′(x′) = ζ ′](x
′) +

1

2
∇′ζ3(x′), a.e. x′ ∈ ω (28)

3.2 Gamma-limits of nematic plate foundations

We now turn to the mathematical analysis and mechanical discussion of the two physically relevant
material regimes, as a function of the aspect ratio represented by p, referred to as the ‘thin nematic’,
for p = 0, and the ‘thick nematic’ case, for −1 < p < 0. This first setting leads to a full opto-elastic
coupling between the nematic layer and the overlying elastic plate, whilst the second scenario involves
only a partial (transverse) opto-elastic coupling. The following is the main result of this section.

Theorem 1 (Fully coupled, thin nematic). Let J0
ε (u) be the energy defined in (17), with p = 0. Then,

J0(u) = Γ- lim
ε→0

J0
ε (u)
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in the strong L2(Ωf ,R3)-topology, where u ∈ KL,

J0(u) =



1

2

∫
ω

(
|e′(ζ ′)|2 − e′(ζ)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2

)
dx′

+
1

2

∫
ω

2

3− 2ν

(
(tr(ζ ′))2 + tr(ζ ′)∆′ζ3 +

1

3
(∆′ζ3)2

)
dx′

+
1

2

∫
ω

(
dist2(K(ζ ′, ζ3),QB) +

1

1− 2ν
ζ2
3

)
dx′ if (ζ ′, ζ3) ∈ H1(ω,R2)×H2(ω)

+∞ otherwise in ∈ L2(ω,R3),

(29)
(ζ ′, ζ3) are the in-plane and transverse displacements at the interface ω × {0} defined in (27),

K(ζ ′, ζ3) =

 0 0 1
2ζ1

0 0 1
2ζ2

1
2ζ1

1
2ζ2 ζ3

 , (30)

and
dist2(K(ζ ′, ζ3),QB) = inf

Q∈QB
|Q̄− K(ζ ′, ζ3)|2. (31)

Proof. This is based on computing and matching a structural lower bound (the Γ-liminf inequality)
with a suitably constructed upper bound which shows the existence of an optimal recovery sequence
(Γ-limsup inequality) to Γ- limε→0 J

0
ε (u).

Imposing p = 0 in Proposition 2 we have the Γ-liminf inequality. Then, from Proposition 3 fixing
p = 0, we obtain the Γ-limsup inequality and the result follows.

Theorem 2 (Weakly coupled, thick nematic). Let −1 < p < 0 and Jpε (u) as in (15) and (17)
respectively. Then,

J−(u) = Γ- lim
ε→0

Jpε (u)

in the strong L2(Ωf ,R3)-topology, where u ∈ KL] and

J−(u) =


1

2

∫
ω

(
|e′(ζ ′])|2 +

1

3
|∇′∇′ζ3|2 +

2

3− 2ν

(
tr2 e′(ζ ′]) +

1

3
(∆′ζ3)2

))
dx′

+
1

2

∫
ω

(
dist2(K(0, ζ3),QB) +

1

1− 2ν
ζ2
3

)
dx′ if (ζ ′], ζ3),∈ H1(ω,R2)×H2(ω)

+∞, otherwise in L2(ω,R3)

(32)
where K is defined in (30) and (ζ ′], ζ3) are the in-plane and transverse displacements at the mid-section
of the film ω × {1/2} defined in (27).

Theorem 2 is a consequence of Proposition 2 (Γ-liminf inequality) and of Proposition 3 (Γ-limsup
inequality) for a functional defined on displacements at the mid-section of the film. The proof of
Theorem 2 is postponed to Section 3.3.1.

3.3 Proof of Gamma-convergence theorems for −1 < p ≤ 0

We analyse thin and thick models of nematic foundations condensing two relaxation results. Propo-
sitions 2 (lower bound) and 3 (upper bound) suffice to characterize Γ-limits for nematic foundations

14
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for −1 < p ≤ 0 comprehensively, by characterizing the asymptotic plate regime in terms of KL-
displacements measured at the interface between nematic and film layer. While this is precisely the
requested result for coupled nematic foundations (p = 0), we are left with performing a final shift
mapping from KL to KL] to represent the Γ-limit in terms of the film mid-section for plates without
shear coupling (−1 < p < 0). This is done in Section 3.3.1.

Proposition 2 (Lower bound inequality). Consider Jp as in (17), for −1 < p ≤ 0. Then for sequences
(uε) ⊂ L2(Ω,R3) converging to u strongly in L2(Ωf ,R3) we have

Γ- lim inf
ε→0

Jpε (u) ≥ Jp(u), (33)

where

Jp(u) =



1

2

∫
ω

(
|e′(ζ ′)|2 − e′(ζ ′)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2

)
dx′

+
1

2

∫
ω

2

3− 2ν

(
tr2 e′(ζ ′)− tr e′(ζ ′)∆′ζ3 +

1

3
(∆′ζ3)2

)
dx′

+
1

2

∫
ω

(
dist2(K((ζ [p])′, ζ3),QB) +

1

1− 2ν
ζ2
3

)
dx′, if (ζ ′, ζ3) ∈ H1(ω,R2)×H2(ω)

+∞, otherwise in ∈ L2(ω,R3)

(34)
where we write (ζ [p])′ = ζ ′ if p = 0 and (ζ [p])′ = 0 if p ∈ (−1, 0).

Proof. We consider a general sequence (uε) ⊂ L2(Ω,R3) converging to u in L2(Ωf ,R3) and such that
J0
ε (uε) is uniformly bounded in ε. Thanks to Proposition 1, it necessarily follows uε → u ∈ KL

strongly in L2(Ωf ,R3) and we have

lim inf
ε→0

Jpε (uε) ≥ lim inf
ε→0

{
1

2

∫
Ωf

[
|eαβ(uε)|2 +

2

3− 2ν
(eαα(uε))

2

]
dx+ inf

Q∈H1(Ωb,QFr)

1

2

∫
Ωb

[
|εeαβ(uε)−Qαβ |2+

2| 12 (ε−p∂3u
ε
α + εp+1∂αu

ε
3)−Qα3|2 +

1

1− 2ν
(εeαα(uε) + e33(uε))2 + (e33(uε)−Q33)2

]
dx

}
. (35)

The inequality in (35) is obtained by neglecting shear terms in film, and optimising with respect to
transverse component ε33 of the strain gradient in the film layer, which implies

1

ε2
e33(uε) = − 2

3− 2ν
eαα(uε) (36)

Integrating with respect to x3 applying Jensen’s inequality, we expose all averaged quantities (in-
dicated by an overhead bar). Observe that εp+1∇′uε3 ⇀ 0 weakly in L2(ω), as proved in Proposition

1-g) and ε−p
∫ 0

−1
∂3u

ε
αdx3 ⇀ 0 weakly in L2(ω) for −1 < p < 0, and ε−p

∫ 0

−1
∂3u

ε
αdx3 ⇀ ζα(x′) weakly

in L2(ω) for p = 0. We obtain a further lower bound by extending the optical minimisation from
H1(Ωb,QFr) to the larger L2(Ωb,QB). This leads to

lim inf
ε→0

Jpε (uε) ≥ lim inf
ε→0

{
1

2

∫
ω

[
|eαβ(uε)|2 +

2

3− 2ν
(eαα(uε))

2

]
dx+ inf

Q∈L2(Ωb,QB)

1

2

∫
ω

[
|Qαβ |2+

2| 12ζ
[p]
α −Qα3|2 +

1

1− 2ν
(e33(uε))2 + (e33(uε)−Q33)2

]
dx

}
. (37)
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where we use the short-hand notation (ζ [p])′ = ζ ′ if p = 0 and (ζ [p])′ = 0 if −1 < p < 0. Using the
characterization of the set of limit displacements introduced in Paragraph 3.1.1, we read the energy in
terms of the traces of displacements (ζ ′, ζ3) at the interface ω × 0.

By taking the infimum over all sequences in (35), owing to the lower semicontinuity of all convex
terms we have

Γ- lim inf
ε→0

Jpε (uε) ≥ 1

2

∫
ω

(
|e′(ζ ′)|2 − e′(ζ ′)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2

)
dx′

+
1

2

∫
ω

2

3− 2ν

(
tr2 e′(ζ ′)− tr e′(ζ ′)∆′ζ3 +

1

3
(∆′ζ3)2

)
dx′

+ inf
Q∈L2(ω,QB)

1

2

∫
ω

[
|Q′|2 + 2

∣∣∣ 12ζ [p]
α (x′)−Qα3

∣∣∣2 +
1

1− 2ν
ζ2
3 +

(
ζ3 −Q33

)2]
dx′. (38)

where we remind ζ
[p]
α = ζα if p = 0 and ζ

[p]
α = 0 if p ∈ (−1, 0). Notice that in (38) we pass to infimum

over L2(ω,QB) because the integrand is independent of x3. Finally the claim follows because

inf
Q∈L2(ω,QB)

1

2

∫
ω

[
|Q′|2 + 2

∣∣∣ 12ζ [p]
α (x′)−Qα3

∣∣∣2 +
(
ζ3 −Q33

)2]
dx′ ≡ 1

2

∫
ω

dist2
(
K
(

(ζ [p])′, ζ3

)
,QB

)
dx′,

(39)
which holds by virtue of the convexity of the set QB .

Remark 2. Observe that the energy (39) is written in terms of the trace of displacements at the
common interface ω × {0}, which is necessarily well defined by the limits from above (in the film) and
below (in the nematic), owing to the compactness of displacements. In-plane and out-of-plane terms
are coupled through cross products between the first in-plane derivatives of in-plane displacements and
the second in-planes derivatives of the transverse component.

Proposition 3. [Upper bound inequality, −1 < p ≤ 0] Let Jpε as in (17). For every u ∈ KL, there
exists a sequence (vε) ⊂ L2(Ω,R3) such that vε → u = (ζ ′ − x3∇′ζ3, ζ3) strongly in L2(Ωf ,R3) such
that

lim sup
ε→0

Jpε (vε) ≤ 1

2

∫
ω

(
|e′(ζ ′)|2 − e′(ζ ′)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2

)
+

1

2

∫
ω

2

3− 2ν

(
tr2 e′(ζ ′)− tr e′(ζ ′)∆′ζ3 +

1

3
(∆′ζ3)2

)
dx′+

inf
Q∈L2(ω,QB)

1

2

∫
ω

(
|Q′|2 + 2| 12ζ

[p]
α −Qα3|2 + (ζ3 −Q33)2 +

1

2− 2ν
ζ2
3

)
dx′ (40)

where we write ζ ′
[p]

= ζ ′ if p = 0 and ζ ′
[p] ≡ 0 if p ∈ (−1, 0).

Before showing the proof of Proposition 3, we need to introduce a collection of auxiliary results.
We decompose Ωb into a finite partition of (columnar) grains so that Ωb =

⋃m
j Aj up to a set of

measure zero, and construct the recovery sequence for displacements and tensors on each individual
grain. Then, glueing individual grains will be performed after showing that boundary layer error terms
can be made as small as desired.
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Lemma 3. Let {Aj}mj=1 be a finite collection of domains of the form ωj × (−1, 0), where ωj ⊂ ω are

open and bounded sets. For any Q ∈ L2(Aj ,QB) there exists

1. a sequence (Qη) ⊂ L2(Aj ,QFr) of piecewise constant tensors parameterised by η > 0 such that
Qη(x) ⇀ Q weakly as η → 0 with Qη(x) ∈ QFr for every η for a.e. x ∈ Aj;

2. a sequence (Qη,δ) ⊂ C∞(Aj ,QFr) such that Qη,δ(x) ⇀ Q weakly in L2(Ωb,R3×3) as η, δ → 0
with δ

η → 0 with Qη,δ(x) ∈ QFr for every η, δ > 0 ∀x ∈ Aj;

3. a compact set Bj well contained in Aj such that Qη and Qδ,η are constant over Bj and meas(Aj \
Bj) ≤ δ/η, provided that η � δ > 0; 1

4. a constant C > 0 such that, for every (fixed) α > 0

1

2

∫
Aj\Bj

∣∣εα∇′Qη,δ∣∣2 +
∣∣∂3Q

η,δ
∣∣2 ≤ Cj δη

mδ2
η−2; (41)

5. a piecewise-affine vector map f(x) : R3 7→ R3 such that Q1(x) = ∇f+∇T f
2 (x) where Q1 2 is the

periodic extension to R3 of the tensor Qη computed for η = 1.

Proof. These are explicit constructions. See Appendix to [10].

Remark 3. Lemma 3 revolves around a two-fold limiting process parameterized by δ, η. The first limit
(in η → 0) identifies piece-wise constant maps approximating biaxial optic states which are constant
with respect to the thickness by exhibiting fine scale optic textures (item 1 and 5). The second limit
(in δ → 0) allows to smoothly interpolate such oscillating optic states by smooth transition occurring
across small boundary layers whose thickness is related to the smallest material length scale of the
system (item 2 and 3), namely the one associated to Frank’s curvature energy, with explicit control on
the total energy (item 4).

Proof of Proposition 3. We introduce the recovery sequence

vε(x) :=

{
vεf (x) in Ωf

vε,ηb (x) in Ωb
, (42)

where

vεf (x) :=

{
ζα(x′)− x3∂αζ3(x′)
ζ3(x′) + ε2hε(x)

, (x′, x3) ∈ ω × (0, 1), and

vε,ηb (x) := v?(x) + ϑ(x)wε,η(x), (x′, x3) ∈ ω × (−1, 0) (43)

where v? := ζi(x
′)(x3+1) is the affine extension (along x3) of the film displacement and ζ3 ∈ H2(ω), ζ ′ ∈

H1(ω,R2) and hε, ϑ, fε,η, wε,η are defined in the following sections. The recovery sequence is three
dimensional and accounts for mechanical reduction and the emergence of optic textures at two different
length scales η, ε in Ωb. Displacements are continuous across the interface so that vε ∈ H1(Ω,R3) for
every ε. In the film, the displacement profile entails a vanishing shear, whilst the converging term hε

1how do i link this to ϑ?
2this Q instead ?
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is introduced to satisfy optimality between the in-plane and the out-of-plane deformations. Within
the nematic bonding layer, in order to recover boundary conditions and interface continuity, a tailored
microstructure is necessary to relax the optic tensor by formation of (weakly converging) sequences of
micro-scale three-dimensional deformation patterns at length scale η. Finally, tight transition layers
allow to smoothly accommodate these rapidly varying optic domains. For the reader’s convenience we
split the discussion, treating film layer and bonding layer separately.

Γ-limsup film. We start with the rescaled energy, defining the recovery sequence in the film

vεf (x) :=

{
ζα(x′)− x3∂αζ3(x′)
ζ3(x′) + ε2hε(x)

, ζ3 ∈ H2(ω), ζα ∈ H1(ω). (44)

Here, we choose hε ∈ C∞c (Ωf ) such that ∂3hε(x) → −1
2−2ν eαα(u) = −1

2−2ν (∂αζα − ∂ααζ3x3) strongly in

L2(Ωb) as ε→ 0 in order to satisfy optimality of transverse strains. The associated strain components
are

eαβ(vε) = eαβ(ζ ′)− x3∂αβζ3, ε−2e33(vε) = ∂3hε, ε−1eα3(vε) = ε∂αhε, (45)

note the cancellation in the shear term which allows to approximate vanishing shear deformations, for
ε → 0. Plugging into Jpε , passing to the limit using the characterization of hε, and computing the
exact integral along the vertical coordinate, leads to

lim
ε→0

1

2

∫
ω

∫ 1

0

(
|e′(ζ ′)|2 − 2x3e

′(ζ)∇′∇′ζ3 + x2
3|∇′∇′ζ3|2 + (∂3hε)

2 +
ε2

2
|∇′hε|2

)
dx

+
1

2

∫
ω

∫ 1

0

1

1− 2ν
(tr e′(ζ ′)− x3∆ζ3 + ∂3hε)

2
dx

=
1

2

∫
ω

(
|e′(ζ ′)|2 − e′(ζ ′)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2

)
dx′

+
1

2

∫
ω

2

3− 2ν

(
tr2 e′(ζ ′)− tr e′(ζ ′)∆ζ3 +

1

3
(∆ζ3)2

)
dx′. (46)

This gives us the asymptotic film energy, a common contribution to both the thick-nematic and thin-
nematic regimes. Here the unknown is the displacement at the interface ω × {0}.

Γ-limsup nematic layer. In the active layer, the strategy consists in finding an upper bound to the
two-variable energy J̃pε (which is turn an upper bound to Jpε ). We evaluate along a recovery sequence
that combines mechanical displacement oscillations with an ad-hoc optic texture of (smooth) nematic
tensors, both introduced in the sequel.

We target a piecewise constant Q̄ ∈ (ω,QB) by constructing a recovery sequence tailored to account
for the dimension reduction in the elastic regime as well as for the optical relaxation thorough a
martensite-like microstructure on a collection of grains. There, we approximate our relaxed target
biaxial optic tensor by a weakly converging oscillating sequence. The key elements for the construction
of the optic sequence draw heavily from [10] and are recalled in Lemma 3. The careful estimates of
error terms and boundary layers require lengthy calculations which we omit, referring the interested
reader to [10] for explicit details. We treat the regime p ∈ (−1, 0) as a particular characterised by the
decoupling of membrane deformations from bending modes.
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The recovery sequence for displacements in the nematic layer can be written (cf. (43)) as follows

vε,ηb (x) = v∗(x) + ϑ(x)wε,η(x) (47)

where v∗(x) is a target affine limit displacement and ϑ(x) ∈ C∞(Aj) : Aj 7→ [0, 1] is a smooth three-
dimensional cutoff function which, in each grain, is used to recover homogeneous displacements at
the grain boundary. We choose ϑ ≡ 1 on a compact set well contained in Aj at distance ρ from its
boundary and can always assume |∇ϑ| ≤ ρ−1.

The oscillating sequence wε,η reads

fε,η :=

{
ηfα(x′/(εη), x3/(ηε

−p))
ηε−pf3(x′/(ηε), x3/(ηε

−p))
(48)

where f is the vector field defined in Lemma 3, properly rescaled to account for the thin film scaling.
Notice the difference in frequency of oscillations between in-plane and the out-of-plane displacements.
We thus define

wε,η := fε,η − Q̄
(
x′/ε, x3/ε

−p)T , (49)

Observe that, by construction, |wε,η| ≤ η uniformly in x and ε. Furthermore, vε,η matches the
displacement of the film at the interface ω × {0} ensuring the necessary continuity. Recalling the
definition of scaled strains introduced in (19), we can compute κ̂ε(vε,η) term by term. Scaled strains
of the target displacement v∗ read

κ̂ε(v∗) =

(
εe′(ζ ′) 1

2

(
εp+1(x3 + 1)∂αζ3 + ε−pζα

)
sym ζ3

)
. (50)

As expected, depending on the value of p, either both in-plane and transverse components of
displacements, or only transverse displacements contribute in the limit.

Similarly, scaled strains associated to the optic contribution read

κ̂ε(ϑwε,η) =

(
ε∇′ϑ⊗s w′ 1

2

(
εp+1∇′ϑw3 + ε−p∂3ϑw

′)
sym ∂3ϑw3

)
+ ϑκ̂ε(wε,η) (51)

where the last summand is equal to ϑ(Qη,δ − Q̄) by construction.
We now show that the recovery sequence just built is optimal on a generic grain Aj by splitting

the energy integral in a bulk and a boundary layer contribution. Indeed, considering a compact set
Bρj = Bj ∩ {x : dist(x, ∂Aj) > ρ} well contained in Aj where Bj is the set introduced in Lemma 3-3,
constructed in such a way that the gap between Aj and Bρj is of order ρ+ δ/η.

In this fashion, Bρj is the smallest compact set where simultaneously ϑ and Qη,δ are constant. The

gap between Aj and Bρj is made up of 1/η2 tubular domains (whose area is δη) plus a region of width
ρ along the boundary of Aj The gap between Bj and Aj is of the order η/δ.

Considering the optic layer energy (15), we can now compute the grain energy contribution (that
is, the localised energy on Aj) along the recovery sequence (vε,η, Qη,δ) by isolating the bulk term and
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estimating the residual energy of boundary layers. We write

Jε(v
ε,η, Qη,δ;Aj) =

1

2

∫
Bρj

|κ(vε,η)−Qη,δ|2 +
1

1− 2ν
tr2 κ(vε,η)dx︸ ︷︷ ︸

(A)

1

2

∫
Aj\Bρj

∣∣∣∣κ(v∗) + ϑκ(wε,η) +

(
ε∇′ϑ⊗s (wε,η)′ 1

2ε
p+1∇′ϑwε,η3 + ε−p∂3ϑ(wε,η)′

sym ∂3ϑw
ε,η
3

)
−Qη,δ

∣∣∣∣2 dx︸ ︷︷ ︸
(B)

+
1

2

∫
Aj\Bρj

1

1− 2ν
tr2(κ(v∗) + ε∇′ϑ⊗s (wε,η)′ + ∂3ϑw

ε,η
3 e3 ⊗ e3)dx︸ ︷︷ ︸

(C)

+
1

2
δ2
ε

∫
Aj\Bρj

∣∣εp+1∇′Qη,δ
∣∣2 +

∣∣∂3Q
η,δ
∣∣2 dx︸ ︷︷ ︸

(D)

.

Using some algebra, we obtain

(B) + (C) ≤M
(∫

Aj\Bρj
|κ(v∗)|2 + tr2(κ(v∗))dx︸ ︷︷ ︸

(E1)

+

∫
Aj\Bρj

∣∣ϑκ(wε,η)−Qη,δ
∣∣2 dx︸ ︷︷ ︸

(E2)

)

+M

∫
Aj\Bρj

[∣∣∣∣(ε∇′ϑ⊗s (wε,η)′ 1
2ε
p+1∇′ϑwε,η3 + ε−p∂3ϑ(wε,η)′

sym ∂3ϑw
ε,η
3

)∣∣∣∣2 +
(
tr2(ε∇′ϑ⊗s (wε,η)′) + (∂3ϑw

ε,η
3 )2

)]
dx︸ ︷︷ ︸

(E3)

where M > 0 is a constant which may differ from line to line. First, because the integrands are
bounded and the measure of domain of integration has been estimated above, we have the bound

(E1) + (E2) ≤ C
(
ρ+

δ

η

)
. (52)

Indeed, the transition region where 0 ≤ ϑ < 1 is of size ρ while the total measure of the region
where the optical tensor Qη,δ differs from the strain tensor κ(wε,η) is δ/η. For the cross term, using
Schwartz’ inequality and the fact that |wε,η| ≤ η, we have

(E3) ≤ C
∫
Aj\Bρj

|∇ϑ|2|wε,η|2 ≤ C η
2

ρ
. (53)

Finally, in light of Lemma 3-item 3, we have

(D) ≤ C δ
2
ε

δη
. (54)

Using the grain estimates (52), (53), and (54), we sum over the entire partition {Aj} to reconstruct
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the three-dimensional limiting energy of the active layer along the recovery sequence, namely

lim sup
ε→0

Jεb (vε,η, Qη,δ; Ωb) =

m∑
j=1

lim sup
ε→0

Jε(v
ε,η, Qη,δ;Aj)

= lim sup
ε→0

1

2

∫
Bρ

(∣∣κε(v?)−Q∣∣2 +
1

1− 2ν
tr2(κε(v?))

)
+ C1

δ2
ε

δη
+ C2

(
ρ+

δ

η

)
+ C3

η2

ρ

≤ 1

2

∫
ω

(
|Q′|2 + 2| 12ζ

[p]
α −Qα3|2 + (ζ3 −Q33)2 +

1

2− 2ν
ζ2
3

)
+ C4ρ, (55)

where Bρ = ∪jBρj and the Cis are positive constants for i = 1, ..., 4. In the last line we have computed

the limit as ε → 0 choosing a diagonal sequence η = η(ε) and δ = δ(ε) such that η(ε)
ε → 0 and

δ(ε)
ε → 0 as ε → 0 for fixed ρ > 0 and extended the integration domain from Bρ to Ωb owing to the

non-negativity of the local (additive) energy. We finally pass to the limit two-dimensional domain ω
using the columnar structure of the integration domains along the recovery sequence. Here, we use

ζ
[p]
α as a short-hand notation for ζ

[p]
α ≡ ζα if p = 0 and ζ

[p]
α ≡ 0 if p ∈ (−1, 0). Because ρ is fixed and

arbitrary the last contribution may be made arbitrarily small. Finally, we are able to integrate over
x3 and read the results separately

lim sup
ε→0

Jεb (vε,η, Qη,δ; Ωb) ≤
1

2

∫
ω

(
|Q̄′|2 + 2|Q̄α3|2 + (ζ3 − Q̄33)2 +

1

2− 2ν
ζ2
3

)
dx′, if p ∈ (−1, 0)

(56)
and

lim sup
ε→0

Jεb (vε,η, Qη,δ; Ωb) ≤
1

2

∫
ω

(
|Q̄′|2 + 2|1

2
ζα − Q̄α3|2 + (ζ3 − Q̄33)2 +

1

2− 2ν
ζ2
3

)
dx′, if p = 0

(57)

Now, replacing a general Q with the argmin Q ∈ L2(ω,QB) (which is unique, owing to the convexity
and compactness of QB) of the right-hand-side of (56) or (57), respectively, using the characterisation∫
ω

(
|Q′|2 + 2| ζ

[p]
α

2 −Qα3|2 + (ζ3 −Q33)2
)
dx′ =

∫
ω

dist2(K((ζ
[p]
1 , ζ

[p]
2 ), ζ3),QB)dx′ and summing up film

and nematic layer contributions, we obtain

Γ- lim sup
ε→0

Jpε (u) ≤ lim sup
ε→0

(
inf

Q∈L2(ω,QB)
Jεb (vε,η, Q; Ωb) + Jεb (vε,η; Ωf )

)
≤ lim sup

ε→0

(
Jεb (vε,η, Qη,δ; Ωb) + Jεb (vε,η; Ωf )

)
≤ 1

2

∫
ω

[
|e′(ζ ′)|2 − e′(ζ ′)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2 +

2

3− 2ν

(
tr2 e′(ζ ′)− e tr e′(ζ ′)∆ζ3 +

1

3
(∆ζ3)2

)]
dx′

+
1

2

∫
ω

[
dist2

(
K
(

(ζ [p])′, ζ3

)
,QB

)
+

1

1− 2ν
ζ2
3

]
dx′. (58)

3.3.1 Decoupled representation for shear-free plates (−1 < p < 0)

In order to read the result in the thick plate regime (−1 < p < 0) we perform a change of variable to de-
couple membrane from flexural deformations. Indeed, the peculiar structure of limit KL-displacements
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(cf. (27)) can be further exploited in the case at hand, where the nematic foundation is active only
against transverse displacements, to represent the effective energy as a function on the traces of dis-
placements at the mid-section of the film.

Proof of Theorem 2. Proposition 2 (Γ-liminf inequality) and Proposition 3 (Γ-limsup inequality) show
that, for u ∈ KL, we have

J−(u) =

∫
ω

1

2

(
|e′(ζ ′)|2 − e′(ζ ′)∇′∇′ζ3 +

1

3
|∇′∇′ζ3|2

)
dx′

+
1

2

∫
ω

2

3− 2ν

(
tr2 e′(ζ ′)− tr e′(ζ ′)∆′ζ3 +

1

3
(∆′ζ3)2

)
dx′ +

1

2

∫
ω

dist2 (K (0, ζ3) ,QB) dx′. (59)

To write the Γ-limit result in KL] we replace

ζ ′(x′) = ζ ′](x
′) +

1

2
∇′ζ3(x′), a.e. x′ ∈ ω, (60)

so that, after straightforward algebraic manipulations, (59) yields

J−(u) =
1

2

∫
ω

(
|e′(ζ ′])|2 +

1

12
|∇′∇′ζ3|2

)
dx′

+
1

2

∫
ω

2

3− 2ν

(
tr2 e′(ζ ′]) +

1

12
(∆′ζ3)2

)
dx′ +

1

2

∫
ω

dist2 (K (0, ζ3) ,QB) dx′, (61)

for u ∈ KL] and therefore Theorem 2 is proven.

4 Actuation

In this section we analyse the asymptotic models of nematic elastomer bilayers in the thin and thick
plate regimes, where the LC order tensor is assumed to be constant. Since the LC orientation (as well
as order states) are frozen but can be controlled by means of external forces and boundary conditions.
We refer to such a class of boundary value problems as Actuation because tuning of the order tensor
Q leads to spontaneous shape morphing. From the mathematical standpoint, we deal with the limit as
ε→ 0 and δ →∞, corresponding to the processes of structural relaxation for constant Q with no optic
relaxation. Additionally, we require δ2εp+2 →∞. This corresponds to the limit regime of thin elastic
foundations of small size. This way, we describe the modeling of small NLCE units which are building
blocks of structures with heterogeneously patterned LC orientations, a proxy to non-isometric origami
or optically active membranes [23], [22]. As a paradigm for externally-controlled shape morphing, we
perform the analysis of NLCE bilayers under an external electric field.
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In presence of an electric field, the complete form of energy as introduced in (15) is

Jpε (v,Q, ϕ) = J̃εf (v) + Jεb (v,Q)− Jεele(Q,ϕ) =

1

2

∫
Ωf

(
|eαβ(v)|2 + (ε−2e33(v))2 + 2|ε−1eα3(v)|2

)
dx+

1

1− 2ν

(
(eαα(v)) + ε−2e33(v)

)2
dx

+
1

2

∫
Ωb

(
|εeαβ(v)−Qαβ |2 + (e33(v)−Q33)

2
)
dx

+
1

2

∫
Ωb

2

∣∣∣∣12 (εp+1∂αv3 + ε−p∂3vα
)
−Qα3

∣∣∣∣2 dx+
1

1− 2ν
(εeαα(v) + e33(v))

2
dx

+
1

2

∫
Ωb

δ2
ε

(
εp+2|∇′Q|2 + |∂3Q|2

)
dx− 1

2

∫
Ωb

(∇εϕ)TD(Q)∇εϕdx, (62)

where we have used the concise notation ∇ε(·) :=
(
∇′(·), 1

εp+1 ∂3(·)
)

to indicate the scaled gradient of
a scalar function.

Dielectric tensor. To characterise the dielectric tensor explicitly, we write

ε0D(Q) := εo

(
2ε⊥ + ε||

3
I + (ε|| − ε⊥)Q

)
. (63)

Constants appearing in (63) (including ε0 > 0) are defined in Table (1) and represent dielectric param-
eters of the nematic liquid crystal. The main point here is that, for every Q ∈ QX , with X = Fr, U
or B, D(Q) is a symmetric positive definite matrix. Consequently, there exists a constant C > 0 such
that

1

C
|ξ|2 ≤ ξTD(Q)ξ ≤ C|ξ|2, ∀ξ ∈ R3. (64)

As a direct consequence of (64), ϕ 7→ −Jεele(·, Q) is a concave (and non-positive) functional and
therefore the total energy is not bounded below. Before proceeding with the analysis of (62), we
elucidate on the admissible space of electrostatic potentials we envision in our experiments.

Remark 4. We assign boundary conditions for the electrostatic potential in the following manner.
We define a function ϕ0 ∈ H1(Ωb) such that ∂3ϕ0 = 0 a.e. in ω × (−1, 0). Then, define a subset
∂Dω ⊂ ∂ω with H1(∂Dω) > 0 and define ∂DΩ := ∂Dω × [−1, 0]. We take ϕ ∈ H1(Ωb) equal to ϕ0 on
∂DΩ (in the sense of traces) and we say ϕ− ϕ0 ∈ H1

D(Ωb) where

H1
D(Ωb) := {f ∈ H1(Ωb), f = 0 on ∂DΩ}. (65)

For fixed ε and δε > 0 analysis of critical points of (62) is pursued in [9]. We summarise here the
result.

Proposition 4. Fix Q ∈ L2(Ωb,QX) where X stands for either Fr, U or B. Let ε > 0 and fixed. Let
D(Q) as defined in (63) Let ϕo as in Remark 4. First, there exists a unique solution to

min
ϕ∈H1

D(Ωb)+ϕo

∫
Ωb

(∇εϕ)
T D(Q)∇εϕdx. (66)

Equivalently, the minimiser of (66) is the (unique) solution to (full, 3D) Gauss Law

−divε (D(Q)∇εϕ) = 0 in H−1(Ωb), (67)
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where divε = ( ∂
∂x1

+ ∂
∂x2

+ 1
εp+1

∂
∂x3

).

Second. Label ϕQ the solution to (66) for the given Q ∈ L2(Ωb,QX). Take a sequence {Qk} ⊂
L2(Ωb,QX) such that Qk → Q strongly in L2(Ωb,QX). Then,

ϕQk → ϕQ strongly in H1(Ωb), (68)

where ϕQk is the solution to (66) when Q is replaced by Qk. Third,

Jεele(Qk, ϕQk) =
1

2

∫
Ωb

(∇εϕQk)
T D(Qk)∇εϕQkdx→

1

2

∫
Ωb

(∇εϕQ)
T D(Q)∇εϕQdx = Jεele(Q,ϕQ),

(69)
as k →∞.

Remark 5. Precisely, ϕQ is defined as an operator mapping L2(Ωb,QX) 7→ H1(Ωb). In this sense
(68) is a statement regarding the continuity of such operator with respect to the strong L2(Ωb,R3×3)
topology of order tensors. With some abuse of notation, we adopt the same symbol to indicate both the
abstract operator ϕQ : L2(Ωb,QX) → H1(Ωb) as well as the function obtained when mapping a fixed
Q with the mapping ϕQ.

Proof of Proposition 4. It is enough to see that, for fixed Q ∈ L2(Ωb,QX), ϕ → Jεele(Q, ·) is coercive
thanks to (64) and Poincaré inequality. Thanks to (63), ϕ → Jεele(Q, ·) is strictly-convex and hence
weakly lower semicontinuous. Therefore by applying the direct method of the calculus of variations we
have (66) is indeed attained as a minimum with a unique minimiser. Characterization of the unique
minimiser of (66) as the unique solution to (67) is a classical result for elliptic integrals. Then, (68)
and (69) are also standard. A proof is contained in [9], Proposition 2.2.

Proposition 5 (Theorem 2.1, [9]). Let Jpε (v,Q, ϕ) as in (62) and ϕ0 as in Remark (4) where ε, δε > 0
are fixed. Then, (u∗, Q∗, ϕ∗) is a min-max point of Jpε (v,Q, ϕ) that is

Jpε (u∗, Q∗, ϕ∗) = min
u∈V,Q∈H1(Ωb,QX)

max
ϕ∈H1

D(Ωb)+ϕ0

Jpε (u,Q, ϕ), (70)

if and only if (u∗, Q∗, ϕ∗) is a solution to

min
{
Jpε (u,Q, ϕQ) : u ∈ V, Q ∈ H1(Ωb,QX)

}
, (71)

where ϕQ ∈ H1
D(Ωb) + ϕ0 solves

−divε (D(Q)∇εϕ) = 0 in H−1(Ωb). (72)

Proof. Consider (70) first, Proposition 4 shows that the maximum problem in (70) has a unique
solution, for given Q ∈ L2(Ωb,QX), denoted by ϕQ. Thanks to ellipticity (64), one has

max
ϕ∈H1

D(Ωb)+ϕo
−Jεele(Q,ϕ) ≥ − C

ε2p+2
‖∇ϕo‖2L2(Ωb)

. (73)

Thanks to continuity ofQ→ Jεele(Q,ϕQ) in the strong L2(Ωb,R3×3) topology (69) and the boundedness
from below (73) it follows that

Jpε (u,Q, ϕQ) = max
ϕ∈H1

D(Ωb)+ϕ0

Jpε (u,Q, ϕ), (74)
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which is now a functional in the two variables (u,Q), is coercive and lower semicontinuous in the weak-
H1(Ω,R3) topology for u and weak-H1(Ωb,R3×3) topology for Q. Therefore the claim follows with
ϕ∗ := ϕQ∗ . To show (71) coincides with (70), observe the unique solution maxϕ∈H1

D(Ωb)+ϕ0
Jpε (u,Q, ϕ)

is characterised by (72) as shown in Proposition 4, see Eqs. (66) and (67).

Our strategy is as follows. First, we compute the Γ-limits of the electrostatic work functional for
general materials and conclude using a general stability property of Γ-convergence to the situation at
hand. In computing our Γ-convergence Theorem we identify a class of dielectric materials which we call
“regular” (that is, non-singular). This is the only class of materials for which we are able to compute
the limiting functional. However, the regular character of the dielectric matrix is a consequence of
the strong convergence of optic tensors and the continuity of the dielectric matrix, thus the regularity
requirement is not restrictive in our context. We start with a lemma.

Lemma 4. Let {Dk} ⊂ L2(Ωb,R3×3) with Dk symmetric, uniformly bounded and positive definite
(that is, Dk = DTk and 1

C |ξ|
2 ≤ ξTDkξ ≤ C|ξ|2 for every ξ ∈ R3, for some C > 0) and Dk → D strongly

in L2(Ωb,R3×3). Let {fk} ⊂ L2(Ωb) with fk ⇀ f weakly in L2(Ωb,R3). Then∫
Ωb

fTDfdx ≤ lim inf
k→∞

∫
Ωb

fTk Dkfkdx. (75)

Proof. Observe, ∫
Ωb

(fk − f)TDk(fk − f)dx ≥ 1

C
‖fk − f‖2L2(Ωb,R3) ≥ 0 ∀k ∈ N. (76)

Then, notice that, for each ϑ ∈ L2(Ωb,R3),

lim
k→∞

∫
Ωb

ϑTDkfkdx =

∫
Ωb

ϑTDfdx. (77)

To prove (77) observe |ϑTDk| ≤M |ϑ| for some M > 0 and ϑTDk → ϑTD pointwise almost everywhere
in Ωb (up to a subsequence here not relabelled) and therefore ϑTDk → ϑTD strongly in L2(Ωb,R3) for
the Lebesgue Dominated Convergence Theorem. Hence (77) follows. Expanding (76) we have

lim inf
k→∞

∫
Ωb

fTk Dkfkdx ≥ lim
k→∞

2

∫
Ωb

fTDkfkdx− lim
k→∞

∫
Ωb

fTDkfdx. (78)

Thanks to 77 (replacing ϑ with f) we have the claim.

In Section 3 we deal with dimension reduction problems for materials with uniform elastic constants,
that is, E and ν do not depend on x. A similar assumption for dielectric coefficients is restrictive in
that the dielectric tensor depends linearly on the variable Q which is, in general, x-dependent. To this
end, we introduce a class of nearly homogeneous material, that is, materials whose dielectric tensor
-although not constant over Ωb- lies in a neighbourhood of its average controlled by the layer thickness.

Definition 1 (Nearly transversely homogeneous dielectric tensor). Let Dε ⊂ L∞(Ωb,R3×3) for every
ε and symmetric and positive definite uniformly in ε, that is there exists a universal constant C > 0
such that

1

C
|ξ|2 ≤ ξTDε(x)ξ ≤ C|ξ|2, ∀ξ ∈ R3; for a.e. x ∈ Ωb;∀ε > 0. (79)
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We define a nearly transversely homogeneous dielectric tensor a matrix such that

Dε(x1, x2, x3) = D(x1, x2) + zεD
∼(x1, x2, x3) (80)

where D(x1, x2) :
∫ 0

−1
Dε(x1, x2, x3)dx3, zεD

∼(x1, x2, x3) := Dε(x1, x2, x3)−D(x1, x2), ‖D∼‖L∞(Ωb,R3×3) ≤
M where M does not depend on ε and zε → 0 when ε→ 0.

Intuitively, nearly homogeneous materials defined above generalise materials with homogeneous
properties in the following sense. Over a thin layer of thickness ε (that is, the geometrical dimension
which is asymptotically small) we admit oscillations x3 → D(x′, ·) ε-close to a constant matrix. Such
an assumption is designed to rule out the presence of additional length scales smaller than ε, in
which case, on top of the dimension-reduction relaxation, further homogenisation of dielectric material
constants in direction x3 might occur. We will show that the behaviour of the dielectric tensor for
our dimension reduction problem responds precisely to our assumption (80). Therefore, focussing on
the class of nearly homogeneous materials is not a restriction. Indeed, for nematic elastomers in the
actuation configuration, hypothesis (80) is shown to be a consequence of the topology for the admissible
minimising sequences of order tensors and not a true material restriction.

From the functional point of view, observe that near-homogeneity is an assumption on the strong
convergence of dielectric tensors in the sense that, for matrices specified in (80) we have

Dε(x1, x2, x3)→ D(x1, x2) strongly in L2(Ωb) as ε→ 0. (81)

(and vice-versa). Importantly, the same does not hold for the weak convergence of matrices. Indeed,

Dε(x1, x2, x3) ⇀ D(x1, x2) weakly in L2(Ωb) as ε→ 0 (82)

does not imply (80).

4.1 Convergence of the electrostatic work for nearly transversely homoge-
neous dielectric tensors

Lemma 5. Let ϕ0 as in Remark 4 and Dε(x) and D as in Definition (1).

Iε(ϕ) :=
1

2


∫

Ωb

(∇εϕ)
T Dε(x)∇εϕdx if ϕ ∈ H1

D(Ωb) + ϕ0

+∞ otherwise in L2(Ωb)

(83)

Then, the Gamma-limit of Iε in the strong L2(Ωb) topology as ε→ 0 is

I0(ϕ) :=


1

2

∫
Ωb

(∇′ϕ)T B(x′)∇′ϕBx′ if ϕ ∈ H1
D(ω) + ϕ0

+∞ otherwise in L2(ω)

(84)

where

B(x′) =


d11 −

d
2

13

d33

d12 −
d13 d23

d33

d12 −
d13 d23

d33

d22 −
d

2

23

d33

 (x′) = D′(x′) + Bsh(x′), (85)

and dij = dij(x
′) are components of D(x′), D′(x′) is the top-left 2 × 2 submatrix of D(x′) and Bsh =

− 1
d33

dα3dβ3.

26



Proof. We prove the statement in three steps, first, we show compactness of minimising sequences,
second, we show the lower bound inequality, third we prove the upper bound inequality.

Compactness. Take an admissible minimising sequence (ϕε) ⊂ L2(Ωb) for which uniform bounded-
ness of the energy Iε(ϕε) ≤ C implies∥∥∥∥(∇′ϕε, 1

εp+1
∂3ϕε

)∥∥∥∥2

L2(Ωb)

≤ C;
1

ε2p+2
‖(∂3ϕε)‖2L2(Ωb)

≤ C ′, (86)

which yields, thanks to Poincaré’s inequality, that

ϕε ⇀ ϕ weakly in H1(Ωb); ∂3ϕε → 0 strongly in L2(Ωb);
1

εp+1
∂3ϕε ⇀ c weakly in L2(Ωb). (87)

This identifies the limit space

H1
D(ω) := {ϕ ∈ H1(ω), ϕ = 0 on ∂Dω}. (88)

Gamma-liminf inequality. It is enough to consider sequences making the functional finite and
uniformly bounded in ε. We write

C ≥ lim inf
ε→0

Iε(ϕε) = lim inf
ε→0

1

2

∫
Ωb

(∇εϕ)
T Dε(x)∇εϕdx

≥ 1

2

∫
Ωb

(∇′ϕ, c)T D(x′) (∇′ϕ, c) dx ≥ 1

2

∫
ω

(∇′ϕ, c)T D(x′) (∇′ϕ, c) dx, (89)

where D(x′) is the average of D(x) over the height; ϕ and c are the weak limits introduced above. We
remark that the inequality above holds due to lower semicontinuity thanks to Lemma (4) because Dε
converges strongly to D in L2(Ωb) according to Definition (1). The last inequality above follows from
Jensen’s inequality, where the only function which possibly depends on x3 is c. Here c is the average
of c over x3. Then,∫

ω

(∇′ϕ, c)T D(x′) (∇′ϕ, c) dx ≥
∫
ω

(∇′ϕ, c∗)T D(x′) (∇′ϕ, c∗) dx =

∫
ω

(∇′ϕ)
T
B(x′) (∇′ϕ) dx (90)

where

c∗ = −d
13
∂1ϕ+ d

23
∂2ϕ

d
33 (x′) (91)

has been obtained by pointwise minimisation of the transverse term in the integrand of (90). A
substitution in the expression of the energy returns the final statement in (90).

Gamma-limsup. Consider a general ϕ̂ ∈ H1
D(ω) + ϕ0, Take ϕ̂ε,η = ϕ + εp+1c∗(x3 + 1) ∗ ρη where

c∗ is defined in (91). Here ρη is the standard mollifier in C∞c (ω). Notice that with this choice
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εp+1c∗(x3 + 1) ∗ ρη ∈ C∞c (ω)∩C∞(Ωb) so ϕ̂ε,η satisfies prescribed boundary conditions and ϕ̂ε,η → ϕ
strongly in L2(Ωb) as ε→ 0, for a fixed η > 0. Plugging ϕ̂ε,η into Iε(·) we have

Iε(ϕ̂ε,η) =
1

2

∫
Ωb

(∇εϕ̂ε,η)
T Dε(x)∇εϕ̂ε,ηdx =

1

2

∫
Ωb

(∇′ϕ, c∗ ∗ ρη)
T
Dε(x) (∇′ϕ, c∗ ∗ ρη) dx+

1

2

∫
Ωb

2 (∇′ϕ, c∗ ∗ ρη)
T
Dε(x)

(
εp+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)
dx

+
1

2

∫
Ωb

(
εp+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)T
Dε(x)

(
εp+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)
dx. (92)

We now discuss the three summands appearing on the right-hand side of (92). First, observe∫
Ωb

(∇′ϕ, c∗ ∗ ρη)
T
Dε(x) (∇′ϕ, c∗ ∗ ρη) dx→

∫
ω

(∇′ϕ, c∗)T D(x′) (∇′ϕ, c∗) dx

=

∫
ω

(∇′ϕ)
T
B(x′)∇′ϕdx, (93)

as both η, ε → 0 since c∗ ∗ ρη → c∗ strongly in L2(ω), Dε → D(x′) strongly in L2(Ωb) with Dε(x)
uniformly bounded for every ε. Second, observe,

|2
∫

Ωb

(∇′ϕ, c∗ ∗ ρη)
T
Dε(x)

(
εp+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)
dx| ≤

Mεp+1‖∇′ϕ, c∗ ∗ ρη‖L2(ω)‖∇′(c∗ ∗ ρη), 0‖L2(ω) ≤Mεp+1‖c∗ ∗ ∇′ρη‖L2(ω) ≤ O(η), (94)

for ε = ε(η). Finally, consider∫
Ωb

(
εp+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)T
Dε(x)

(
εp+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)
dx ≤ ε2p+2M‖∇′(c∗ ∗ ρη)‖2L2(ω,R2)dx (95)

Observe that |∇′(c∗ ∗ ρη)| = |c∗ ∗ ∇′ρη| ≤ Mη−2 and therefore for fixed η > 0 there exists ε = ε(η)
small enough such that∫

Ωb

(
ε(η)p+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)T
Dε(η)(x)

(
ε(η)p+1(x3 + 1)∇′(c∗ ∗ ρη), 0

)
dx ≤ O(η). (96)

Thus one can take the sequence ϕ̂ε(η),η = ϕ+ ε(η)p+1c∗(x3 + 1) ∗ ρη to read the result.

Remark 6. Because of the ellipticity of the three-dimensional matrix D, the effective matrix B defined
by Equation (85) is, in particular, symmetric and positive definite.

4.2 Continuity of electrostatic work

Lemma 6. Let ϕ0 as in Remark 4, Q constant in Ωb and a sequence {Qk} ⊂ H1(Ωb,QX) of uniformly
bounded order tensors. Define, for ε > 0 and k ∈ N

Ik,ε(ϕ) :=


1

2

∫
Ωb

(∇εϕ)
T D(Qk)∇εϕdx in H1

D(Ωb) + ϕ0

+∞ otherwise in L2(Ωb)

(97)
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Let Qk → Q strongly in L2(Ωb,R3×3) as k →∞. Then, the Γ-limit of Ik,ε in the strong L2(Ωb) topology
as ε→ 0 and k →∞ is

I∞,0(ϕ) :=


1

2

∫
Ωb

(∇′ϕ)T B(Q)∇′ϕdx′ in H1
D(ω) + ϕ0

+∞ otherwise in L2(Ωb),
(98)

where

B(Q) =

 d11(Q)− d2
13(Q)

d33
d2

12(Q)− d13(Q)d23(Q)

d33

d12(Q)− d13(Q)d23(Q)

d33(Q)
d22(Q)− d2

23(Q)

d33(Q)

 . (99)

Also, denoting by divε = ( ∂
∂x1

+ ∂
∂x2

+ 1
εp+1

∂
∂x3

) the rescaled divergence and by ϕQk,ε the solution to
(3D) Gauss equation

ϕ ∈ H1
D(Ωb) + ϕ0 : −divε (D(Qk)∇εϕ) = 0 in H−1(Ωb), (100)

we have

ϕQk,ε → ϕQ strongly in H1(Ωb), (101)

with ϕQ ∈ H1(Ωb) such that ∂3ϕQ = 0 in (−1, 0) (equivalently, ϕQ ∈ H1(ω) constantly extended along
x3) and

1

εp+1
∂3ϕQk,ε → −

d13(Q)∂1ϕQ + d23(Q)∂2ϕQ

d33(Q)
strongly in L2(Ωb), (102)

where and dij(Q) are components of the matrix D(Q) and ϕQ is a solution to (2D) Gauss Law

ϕ ∈ H1
D(ω) + ϕ0 : −div′(B(Q)∇′ϕ) = 0 in H−1(ω), (103)

with B according to (85). Additionally,

min
ϕ∈H1

D(Ωb)+ϕo

∫
Ωb

(∇εϕ)
T D(Qk) (∇εϕ) dx =

∫
Ωb

(∇εϕQk,ε)
T D(Qk)∇εϕQk,εdx

→
∫
ω

∇ϕT
Q
B(Q)∇ϕQdx

′ = min
ϕ∈H1

D(ω)+ϕo

∫
ω

∇′ϕTB(Q)∇′ϕdx′, (104)

as k →∞ and ε→ 0.

Proof. For fixed k, there exists ε = ε(k) such that D(Qk) is a nearly transversely homogeneous dielectric
matrix. Therefore, Theorem 4.1 applies verbatim to the convergence of (97) to (98) in the limit
k →∞, ε = ε(k)→ 0. Consequently, (104) follows directly from the convergence of the minimum and
minimiser of (97) to the minimum and minimiser of (98). We are left with showing (101) and (102).
First, from (104) one has that∫

Ωb

(
∇′ϕQk,ε(k),

1

ε(k)p+1
∂3ϕQk,ε(k)

)T
D(Qk)

(
∇′ϕQk,ε(k),

1

ε(k)p+1
∂3ϕQk,ε(k)

)
dx,≤ C (105)
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and by equi-coercivity there exists ϕ∗ ∈ H1(Ωb) such that, as k →∞,

ϕQk,ε(k) ⇀ ϕ∗ weakly in H1(ω), ∂3ϕQk,ε(k) → 0 strongly in L2(Ωb),

1

ε(k)p+1
∂3ϕQk,ε(k) ⇀ c∗ weakly in L2(Ωb) (106)

up to a subsequence here not relabelled. Thanks to the Fundamental Theorem of Γ-convergence, such
a sub-sequence converges to the minimiser ϕQ of the right hand side of (104) in the sense specified by
the first two terms in (106). This uniquely determines ϕ∗ ≡ ϕQ. We notice that, since the solution to
both the ε, k-dependent problem and the Γ-limits are unique due to strict-convexity, the convergence
is indeed recovered for the entire k-sequence and it is not necessary to pass to subsequences.

In order to identify c∗, we derive the associated Euler equations and pass to the limit, exploiting
convergences established so far. Consider a generic test function ϑ ∈ H1(ω) + ϕ0. We have∫

Ωb

(∇′ϕQk,ε(k),
1

ε(k)p+1
∂3ϕQk,ε(k))

TD(Qk)(∇′ϑ, 0)dx = 0, ∀ϑ ∈ H1(ω) + ϕ0, (107)

and in the limit k →∞∫
Ωb

(∇′ϕQ, c
∗)TD(Q)(∇′ϑ, 0)dx = 0, ∀ϑ ∈ H1(ω) + ϕ0. (108)

(Notice we have replaced ϕ∗ with ϕQ above as they are identified thanks to Γ-convergence.) Addition-
ally, ϕQ is such that ∫

ω

(∇′ϕQ)TB(Q)∇′ϑdx = 0, ∀ϑ ∈ H1(ω) + ϕ0 (109)

by minimality, and we can map the integral to Ωb by a constant extension of its argument along x3.
Observe that we have the identity∫

Ωb

(∇′ϕQ, c̃)
TD(Q)(∇′ϑ, 0)dx ≡

∫
Ωb

(∇′ϕQ)TB(Q)(∇′ϑ)dx = 0 ∀ϑ ∈ H1(ω) + ϕ0 (110)

where we have written the right hand side of (102) as c̃. Therefore (108) and (110) coincide, and the
last property in (106) follows with c̃ ≡ c∗. Finally, to pass from the weak convergence to the strong
convergence we consider again (104). Upon replacing D(Qk) with D(Q) in the second integral in
(104) we obtain, as k →∞,∫

Ωb

(
∇ε(k)ϕQk,ε(k)

)T
D(Q)∇ε(k)ϕQk,ε(k)dx→

∫
Ωb

(∇ϕQ, c
∗)TD(Q)(∇ϕQ, c

∗)dx (111)

and, in turn,∫
Ωb

(
∇′ϕQk,ε(k) −∇ϕQ,

1

ε(k)p+1
∂3ϕQk,ε(k) − c∗

)T
D(Q)

(
∇′ϕQk,ε(k) −∇ϕQ,

1

ε(k)p+1
∂3ϕQk,ε(k) − c∗

)
dx→ 0.

By using the estimate for elliptic dielectric matrices (64) we have∥∥∥∥∇′ϕQk,ε(k) −∇ϕQ,
1

ε(k)p+1
∂3ϕQk,ε(k) − c∗

∥∥∥∥2

L2(Ωb)

→ 0, as k →∞, (112)

and (102) is proven.

30



The strong L2(Ωb,R3×3)-convergence of order tensors is key in ensuring the strong H1-convergence
of the electrostatic potential solving Gauss equation and, in turn, the global Γ-convergence result
for nematic foundations with an applied electric field. This is a problem of G-closure ([13]) of ellip-
tic operators under strong convergence of elliptic coefficients. An outstanding open problem is the
characterization of the G-closure for elliptic operators of the form − div(D(Qk)∇·) under the weak
L2(Ωb,R3×3)-convergence of order tensors.

Remark 7 (Opto-electric effects in bilayer structures). In the wake of relaxation induced by the
dimension reduction over x3, the limit system is described by an effective matrix of relaxed dielectric

parameters B (85). Analogoulsy as for (85), we can decompose B(Q) = D
′
(Q) + Bssh(Q) where we

have denoted by D′ the upper-left 2× 2 submatrix of B(Q), and by Bsh a matrix constructed only with
shear terms, namely,

B
′

=

(
d11 d12
d12 d22

)
(Q), Bsh = − 1

d33

(
d13

2
d13d23

d13d23 d23
2

)
(Q). (113)

The former of the matrices is the dielectric tensor matrix that describes purely planar electric fields
ϕ = ϕ(x′) albeit in 3D structures which cannot relax via dimension reduction. The matrix B coincides
with (113) if and only if d13 = d23 = 0. Recalling that the plane components of the dielectric vector
are linear with respect to the α3 components of the order tensor, namely dα3 ∝ qα3, this circumstance
occurs when the optical axis or order states induced by the liquid crystal molecules are either planar in
the x1, x2 plane or antiplanar, i.e., parallel in the x3 direction. This setting identifies a plane dielectric
state, which is the electric analogue of mechanical plane stress conditions. All other states involving
sheared out-of-plane states induce a relaxation of the dielectric matrix.

4.3 Convergence of elastic energies with rigid Q

In this section we discuss the dimension reduction problem for nematic bi-layer with rigid order tensor,
analysing mechanical energies in the variables (u,Q). Indeed, unlike in the relaxation section 3, we
do not perform an initial minimization over allowed order tensors Q which is treated as an indepen-
dent variable. This will allow us to discuss parametric problems which are relevant for applications
(Paragraph 4.5.2). The energy functional (here X stands for either Fr, U , or B) reads

Jpε (u,Q) :=

{
J̃pε (u,Q, 0) if (u,Q) ∈ V ×H1(Ωb,QX)

+∞ otherwise in L2(Ω,R3)×H1(Ω,R3×3).
(114)

where J̃pε (u,Q, 0) reads as in (62).
We start with p = 0. Below and in the remainder of this section, we introduce parametrised

sequences δεj ≡ δj → ∞ and εj → 0 (with δ2
j ε
p+2
j → ∞) indexed by N 3 j → ∞, adopting the

short-hand notation uj instead of uδj ,εj and Qj instead of Qδj ,εj .

Theorem 3. Let Jpε (u,Q) as in (114) where X stands for either Fr, U or B. For p = 0 we have

Γ- lim
j→+∞

J0
ε (u,Q) = J0(u,Q) (115)

in the product of the strong L2(Ωf ,R3) with the strong H1(Ωb,R3×3) topologies where

J0(u,Q) =

{
j0(ζ ′, ζ3, Q) in H1(ω,R2)×H2(ω)×QX
+∞ otherwise in L2(ω,R2)× L2(ω)× L2(ω,R3×3),

(116)
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and the limit energy density reads

j0(ζ ′, ζ3, Q) =
1

2

∫
ω

[
|eαβ(ζ)|2 − eαβ(ζ)∂αβζ3 +

1

3
|∇2ζ3|2 +

2

3− 2ν

(
(∂αζα)2 + ∂αζα∂ββζ3 +

1

3
(∂ααζ3)2

)]
dx′

+
1

2

∫
ω

[
|Q̄′|2 + 2|1

2
ζα − Q̄α3|2 + (ζ3 − Q̄33)2 +

1

1− 2ν
ζ2
3

]
dx′

(117)

Proof. We discuss compactness of sequences, liminf inequality and limsup inequality separately.

Compactness. Taking sequences (uj , Qj) such that J0
ε (uj , Qj) ≤ C, where C does not depend on

εj nor δj , shows that the limit set of displacements is given by KL (see Proposition 1). Furthermore,
to determine the limit set for the order tensors, observe that δ2

j

∫
Ωb
|∇Qj |2dx ≤ I(uj , Qj) ≤ C implies

Qj → Q strongly in H1(Ωb,QX) where X stands for either Fr, U or B and Q : Ωb → QX is necessarily
constant in (x1, x2, x3).

Liminf inequality. The proof in the film layer is identical to the proof of Proposition 2 because the
physics in the film layer do not directly depend on δ nor on Q.

For the nematic layer the argument of Proposition 2 can be easily adapted to the present situation.
Indeed, notice that

lim inf
j→∞

1

2

∫
Ωb

(κ̂(uj)−Qj)2 +
1

1− 2ν
tr2 κ̂(uj) +

1

2
δ2
j

(
εp+2|∇′Qj |2 + |∂3Qj |2

)
=

lim inf
j→∞

1

2

∫
Ωb

(κ̂(uj)−Q)2 +
1

1− 2ν
tr2 κ̂(uj) (118)

To show (118) it is enough to observe δ2
j

∫
Ωb

(
εp+2|∇′Qj |2 + |∂3Qj |2

)
→ 0 as j →∞ and use the fact

that
∣∣κ̂(uj)−Qj ±Q

∣∣2 = |κ̂(uj)−Q|2 + |Q−Qj |2 + 2
(
κ̂(uj)−Q

)
·
(
Q−Qj

)
. Now observe that∫

Ωb

(
(Q−Qj)2 +

(
κ̂(uj)−Q

)
· (Q−Qj)

)
dx→ 0 (119)

when Qj → Q strongly in L2(Ωb,R3×3) and κ(uj) is bounded in L2(Ωb,R3×3) as j → ∞ thanks to
Lebesgue Dominated Convergence Theorem. Then, reasoning along the lines of the proof of Proposition
2 we get

lim inf
j→∞

1

2

∫
Ωb

[
(κ̂(uj)−Qj)2 +

1

1− 2ν
tr2 κ̂(uj) + δ2

j

(
εp+2|∇′Qj |2 + |∂3Qj |2

)]
dx ≥

lim inf
j→∞

1

2

∫
Ωb

[
(κ̂(uj)−Q)2 +

1

1− 2ν
tr2 κ̂(uj)

]
dx ≥ 1

2

∫
ω

[
|Q|2 + 2|1

2
ζα −Qα3|2 + (ζ3 −Q33)2 +

1

1− 2ν
ζ2
3

]
dx′,

By summing contributions in film and active layers and taking infimum over all sequences we conclude

Γ- lim inf
j→∞

J0
ε (u,Q) ≥ J0(u,Q),

where u = (ζ ′(x′)− x3∂αζ3(x′), ζ3(x′)), as requested.
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Limsup inequality. The proof of Proposition (3) applies here as well. It is enough to take the trivial
recovery sequence Q̂j ≡ Q constant in Ωb, without the need to introduce smooth boundary layers.

Consider now −1 < p < 0.

Theorem 4. Let Jpε (u,Q) as in (114) with X stands for either Fr, U or B. For −1 < p < 0 we have

Γ- lim
j→+∞

Jpε (u,Q) = J−(u,Q) (120)

in the product of the strong L2(Ωf ,R3) with the strong H1(Ωb,R3×3) topologies where

J−(u,Q) =

{
j−(ζ ′], ζ3, Q) in H1(ω,R2)×H2(ω)×QX
+∞ otherwise in L2(ω,R3)×H1(ω,R3×3),

(121)

with

j−(ζ ′], ζ3, Q) =
1

2

∫
ω

[
|e′(ζ ′])|2 +

1

3
|∇2ζ3|2 +

2

3− 2ν

(
tr2 e′(ζ ′]) +

1

3
(∆ζ3)2

)]
dx′ +

1

2

∫
ω

[
|Q′|2 + 2

∣∣Qα3

∣∣2 +
1

1− 2ν
ζ2
3 +

(
ζ3 −Q33

)2]
dx′. (122)

Proof. Follows as in Proof of Theorem (3) with obvious modifications.

4.4 Convergence of mechanical energy and electrostatic work

Finally, we are in a position to discuss the global Gamma-convergence of the total energy of the system
composed of elastic bending energy of the tensor Q, the bulk mechanical energy in the nematic layer
(Jpb (v,Q)), the mechanical bulk energy in film layer (Jεf (v)) and the electrostatic work stemming from
an external source (Jεele(Q,ϕ)). The full asymptotic result follows readily by combining the Gamma-
convergence results of Theorems 3 and 4 for the mechanical energies only and by noticing that the
electrostatic work is a continuous perturbation (in the sense specified by Lemma 6) of the total energy
in the prescribed topology.

For the sake of conciseness we present in detail the results for the fully coupled scenario, that
of thin nematics (p = 0), and discuss the thick nematic (−1 < p < 0) case, which requires simple
modifications, at the end of the section.

Consider Jpε as in (62). We define the functional

Epε (u,Q) =

 max
ϕ∈H1

D(Ω)+ϕ0

Jpε (u,Q, ϕ) in KL×H1(Ωb,QX)

+∞ otherwise in L2(Ω,R3)× L2(Ω,R3×3),
(123)

for which the following holds.

Theorem 5. Let Epε (u,Q) as in (123) and Jpε , J
p, jp as in Theorem 3 for p = 0. We have

Γ- lim
j→+∞

Epεj (u,Q) = Ep(u,Q) (124)
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in the strong-L2(Ωf ,R3)×strong-H1(Ωb,R3×3) topology, where

Ep(u,Q) =

{
max

ϕ∈H1
D(ω)+ϕ0

Ẽp(ζ ′, ζ3, Q, ϕ) on H1(ω,R2)×H2(ω)×QX

+∞ otherwise in L2(ω,R3)×H1(ω,R3×3),
(125)

with

Ẽp(ζ ′, ζ3, Q, ϕ) = jp(ζ ′, ζ3)− 1

2

∫
ω

∇′ϕTB(Q)∇′ϕdx (126)

where jp is given in (117) for p = 0 and (122) for −1 < p < 0, B is as in (99), and u = (ζ ′(x′) −
x3∂αζ3(x′), ζ3(x′)).

Proof. This follows from a direct application of Theorem 6 and Theorem 3. Observe

Epε (u,Q) =

[
Jpε (u,Q)− inf

ϕ∈H1
D(Ωb)+ϕ0

1

2

∫
Ωb

∇ϕTD(Q)∇ϕdx
]
.

In light of Theorem 6, Q → maxϕ∈H1
D(Ω)+ϕ0

[−
∫

Ωb
∇ϕTD(Q)∇ϕdx] is a continuous perturbation of

J0
ε in the strong L2(Ωb,R3×3) topology and there follows

max
ϕ∈H1

D(Ω)+ϕ0

[
−
∫

Ωb

∇ϕTD(Qk)∇ϕdx
]
→ max

ϕ∈H1
D(ω)+ϕ0

[
−
∫

Ωb

∇ϕTD(Q)∇ϕdx′
]
, (127)

as Qk → Q strongly in L2(Ωb,R3×3) for Qk ∈ QX , ∀k ∈ N and Q : ω → QX is constant. Therefore the
claim follows by a standard property of Γ-convergence ensuring stability with respect to continuous
perturbations [13].

4.5 Physical implications

We prove convergence of minima and minimisers of Epε (Q, u). This follows from equicoercivity. We
show this property follows easily. Let Q ∈ H1(Ω,QX). By minimality and (63) we have

inf
ϕ∈H1

D(Ωb)+ϕ0

∫
Ωb

∇ϕTD(Q)∇ϕdx ≤M
∫

Ωb

|∇ϕ0|2dx = 2C, (128)

for some M > 0. Now we can write, for every (u,Q) ∈ H1(Ω,R3) × H1(Ωb,QX), where X stands
either for Fr, U or B,

Epε (u,Q) = max
ϕ∈H1

D

J̃pε (u,Q, ϕ) ≥ J̃pε (u,Q, ϕ0) = Jpε (u,Q)− C, (129)

(notice constants appearing in 128 and (129) are equal) and hence equicoercivity is obtained in
H1(Ω,QX) × H1(Ω,R3) by applying Korn’s and Poincaré inequality and considering that QX is a
bounded set. As a direct consequence, we obtain the standard result (see [13])

Theorem 6 (Fundamental theorem of Γ-convergence). Consider Epε and Ep as defined in Theorem 5
where p stands for 0. Then:

min Ep = lim
j→+∞

(
min Epεj

)
(convergence of minima).
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Then, let {uj , Qj} ⊂ L2(Ω,R3)×H1(Ωb,R3×3) be a minimising sequence for Epε (i.e. limj→∞ Epεj (Qj , uj) =

limj inf Epεj ). Then, up to a subsequence (not relabeled), uj ⇀ u, Qj → Q with u = (ζ ′(x′) −
x3∂αζ3(x′), ζ3(x′)); ζ ′ ∈ H1(ω,R2), ζ3 ∈ H2(ω), with Q ∈ QX and constant where

Ep(Q, u) = min Ep (convergence of minimum points). (130)

4.5.1 Convergence of saddle-points

Corollary 5 implies convergence for the min-max problem. We make this explicit.

Theorem 7 (Convergence of min-max problems). Consider Epε and Ep as defined in Theorem 5 with
p = 0. Then we have (here X stands either for Fr, U or B).

1. (Convergence of min-max values)

min

(
max

ϕ∈H1
D(ω)+ϕ0

Ep(u,Q, ϕ)

)
= lim
j→∞

 inf
(u,Q)∈V×H1(Ωb,QX)

max
ϕ∈H1

D(Ωb)+ϕ0

Jpε (u,Q, ϕ)

 .

This is equivalent to

min
(
Ep(u,Q, ϕ) sub 2D Gauss Law (103)

)
(131)

= lim
j→+∞

 inf
(u,Q)∈V×H1(Ωb,QX)

{
Jpε (u,Q, ϕ) sub 3D Gauss Law (100)

} .

Denote by ϕQ the solution to the 3D Gauss equation (100) for some Q ∈ H1(Ωb,QX). Let {uj , Qj , ϕQj} ⊂
V ×H1(Ωb,QX)×H1

D(Ωb) + ϕ0 be a min-maximising sequence for {Jpεj}, i.e.

lim
j→+∞

Jpε
(
Qj , uj , ϕQj

)
= lim
j→+∞

inf
(u,Q)∈V×H1(Ωb,QX)

max
ϕ∈H1

D(Ωb)+ϕ0

Jpε (Q, u, ϕ),

or, equivalently,

lim
j→+∞

Jpε
(
Qj , uj , ϕQj

)
= lim
j→+∞

inf
(u,Q)∈V×H1(Ωb,QX)

{
Jpε
(
Q, u, ϕ

)
sub 3D Gauss Law (100)

}
.

Then, up to a subsequence (not relabelled), uj ⇀ u∗ ∈ KL weakly in H1(Ωf ,R3) with u∗ = ((ζ∗)′ −
x3∂αζ

∗
3 , ζ
∗
3 ); (ζ∗)′ ∈ H1(ω,R2), ζ∗3 ∈ H2(ω); Qj → Q

∗
strongly in H1(Ωb,R3×3) with Q

∗ ∈ QX
constant; and ϕQj → ϕQ∗ strongly in H1(Ωb), as j →∞, and:

2. (Convergence of min-max points)

Ep(Q∗, u∗, ϕQ∗) = min

(
max

ϕ∈H1
D(ω)+ϕ0

Ep(Q, u, ϕ)

)
or, equivalently,

Ep(Q∗, u∗, ϕQ∗) = min
(
Ep(Q, u, ϕ) sub 2D Gauss Law (103)

)
.
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Proof. The results above follow from Theorem 6 in light of Proposition 5.

As a consequence of convergence of saddle points, we infer that the saddle structure is preserved
in the limit problem, thus equilibrium in the limit system is given by min-max points

Remark 8. Theorems (6) and (7) have an analogue for the regime −1 < p < 0 (not displayed here).
The results for −1 < p < 0 follow with a change of variables.

4.5.2 Application to the mechanical actuation of the director

Results of the previous section still apply when minimisation over the pair (u,Q) is replaced with a
parametric minimisation over the displacement u only and for a given matrix Q ∈ QX . The following
lemma describes the situation where the order tensor Q is frozen, that is, is considered as imposed by
an external field (not necessarily electric) and not subject to minimisation. This problem corresponds
to determining the spontaneous deformation and shape change of bilayer structures when the liquid
crystal order tensor is regarded as a load parameter. The purpose is to highlight two mechanisms.
When the tensor describes perfect alignment of liquid crystal molecules with a distinguished optical
axis, that is Q ∈ QFr, minimisation represents the controlled shape change of a bilayer driven by
collective reorientation of molecules. Contrarily, in conceptual experiment where the Q tensor is taken
in the set QU or QB , low order sates, such as optical isotropy, biaxial states, and order melting are
admissible. In this case falls the thermal actuation of plates, when one controls separately the director
and optical axis (represented by the eigenframe of the tensor Q ∈ QU ) and the degree of order of
nematic molecules (represented by the eigenvalues of Q ∈ QU ), see [23, 22],

Theorem 8. Let J0(u,Q) as in Theorem (3). Fix Q ∈ H1(ω,QX), where X stands for either Fr, U
or B. Then there exists a unique solution to

min
L2(ω,R3)

J0(ζ ′, ζ3, ·). (132)

Proof. This follows from an application of the direct method in the calculus of variations. Taking a
minimising sequence (ζ ′, ζ3)k ∈ H1(ω,R2) × H2(ω) for every k ∈ N such that J0((ζ ′, ζ3)k, ·) ≤ C, it
follows that

|eαβ(ζ)k|2L2(ω) + |∇2(ζ3)k|2L2(ω) + |(ζα)k|2L2(ω) + |(ζ3)k|2L2(ω) ≤ C, ∀k ∈ N.

By invoking Poincaré and Korn inequalities, along the transverse direction and for the in-plane sym-
metrised gradient respectively, we have

(ζα)k ⇀ (ζα)∗, weakly in H1(ω,R2), (ζ3)k ⇀ (ζ3)∗, weakly in H2(ω),

for some (ζα, ζ3)∗ ∈ H1(ω,R2)×H2(ω). Then, by convexity, J0(ζ ′, ζ3, ·) is weakly lower semicontinuous
and therefore the claim follows.

Remark 9. Theorem 8 has an analogue for the regime −1 < p < 0, which is a consequence of Theorem
(4), whose proof follows with obvious modifications.
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Numerical example of Fig. 2. To illustrate the purpose of the analysis so far performed, we
have presented in Figure 2 a numerical actuation experiment for a thin nematic bilayer membrane
which exemplifies a nontrivial solution of a complex actuation mechanism performed on the basis of
simple ingredients. We are interested in inducing out-of-plane displacements via nematic actuation,
and, through coupling between membrane deformations and bending modes, possibly exert work.
Consider the square domain ω = (0, 1)2 clamped a the boundaries and subject to an imposed (frozen)
director Q0 = n0⊗n0− 1

3I3 where n0 = (e1 +e3)/
√

2, as displayed in the cartoon in Figure 2.left. Our
computation refers to the fully coupled model of Theorem 3, where nematic actuation directly activates
a spontaneous in-plane stretch and transverse displacements. The (unique) equilibrium configuration,
cf. Theorem 8, displays a non-symmetric bending mode coupled to planar membrane deformations, in
competition with homogeneous Dirichlet-type boundary conditions on ∂ω. The spontaneous stretch is
triggered by the strong opto-elastic strain coupling which characterises the nematic active layer in the
actuation regime.

In Figure 2-right we plot the value of (the norm of) in-plane displacements |ζ ′|, in the deformed
configuration, with a discrete colour coding for readability. Note that the explicit coupling between
the in-plane and out-of-plane deformation is due to the cross term in Equation (117), resulting in an
out-of-plane deflection above the reference z = 0 surface. In addition, because the actuator field is
tilted with respect to the azimuthal axis, both shear and vertical terms of the active foundation are
effective.

The numerical solution has been obtained by finite elements discretisation in the FEniCS environ-
ment [20] using PETSc as data management and linear algebra package [2, 3].
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