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GEOMETRIC TRIANGULATIONS AND THE TEICHMÜLLER TQFT
VOLUME CONJECTURE FOR TWIST KNOTS

FATHI BEN ARIBI, FRANÇOIS GUÉRITAUD AND EIICHI PIGUET-NAKAZAWA

Abstract. We construct a new infinite family of ideal triangulations and H-triangulations
for the complements of twist knots, using a method originating from Thurston. These trian-
gulations provide a new upper bound for the Matveev complexity of twist knot complements.

We then prove that these ideal triangulations are geometric. The proof uses techniques
of Futer and the second author, which consist in studying the volume functional on the
polyhedron of angle structures.

Finally, we use these triangulations to compute explicitly the partition function of the
Teichmüller TQFT and to prove the associated volume conjecture for all twist knots, using
the saddle point method.
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1. Introduction

Quantum topology began in 1984 with the definition of the Jones polynomial [23], a knot
invariant that Witten later retrieved in the Chern-Simons quantum field theory on the three-
sphere with gauge group SU(2) [48]. Following Witten’s intuitions from physics, several
Topological Quantum Field Theories (or TQFT for short, meaning certain functors from
cobordisms to vector spaces [7]) were defined in the nineties and provided new invariants of
knots and 3-manifolds [11, 12, 42, 43, 46].

The volume conjecture of Kashaev and Murakami-Murakami is perhaps the most studied
conjecture in quantum topology currently [26, 33, 35, 36]; it states that the colored Jones
polynomials of a given hyperbolic knot evaluated at a certain root of unity asymptotically
grow with an exponential rate, which is the hyperbolic volume of this knot. As such, it hints at
a deep connection between quantum topology and classical geometry. In the last twenty years,
several variants of the volume conjecture have been put forward for other quantum invariants:
for instance the Baseilhac-Benedetti generalisation in terms of quantum hyperbolic invariants
[10], or the Chen-Yang volume conjecture on the Turaev-Viro invariants for hyperbolic 3-
manifolds [16]. Some of these conjectures have been proven for several infinite families of
examples, such as the fundamental shadow links [15], the Whitehead chains [47] and integral
Dehn fillings on the figure-eight knot complement [38]. See [33, 35] for more examples.



TRIANGULATIONS & TEICHMÜLLER TQFT VOLUME CONJECTURE FOR TWIST KNOTS 3

In [2], Andersen and Kashaev constructed the Teichmüller TQFT, a generalised Topolog-
ical Quantum Field Theory, in the sense that the operators of the theory act on infinite-
dimensional vector spaces. The partition function of the Teichmüller TQFT yields a quan-
tum invariant |Z~(X,α)| ∈ R>0 (indexed by a quantum parameter ~ > 0) of a triangulated
3-manifold X endowed with a family of dihedral angles α, up to certain moves on such trian-
gulations with angles (see [2] for details). Taking its roots in quantum Teichmüller theory and
making use of Faddeev’s quantum dilogarithm, this infinite-dimensional TQFT is constructed
with state integrals on tempered distributions from the given triangulation with angles. The
Teichmüller TQFT already admits several formulations and generalisations (see [2, 3, 4, 27]),
and it is still not clear at the time of writing which formulation one should favor in order to
best reduce the technical constraints in the definitions and computations.

Nevertheless, two points remain clear regardless of the chosen formulation. Firstly, the
Teichmüller TQFT is a promising lead for obtaining a mathematical model of quantum Chern-
Simons theory with non-compact gauge group SL(2,C) [2, 4, 32]. Secondly, the Teichmüller
TQFT should also satisfy a volume conjecture, stated as follows without details:

Conjecture 1.1 (Conjecture 1 of [2], Conjecture 2.12). LetM be a closed oriented 3-manifold
and K ⊂ M a knot whose complement is hyperbolic. Then the partition function of the
Teichmüller TQFT associated to (M,K) follows an exponential decrease in the semi-classical
limit ~→ 0+, whose rate is the hyperbolic volume Vol(M \K).

Generally speaking, solving a volume conjecture requires to find connections between quan-
tum topology and hyperbolic geometry hidden in the invariant, and to overcome technical
difficulties (often analytical in nature). The payoff is worth the hassle, though: the previ-
ously mentioned connections can enrich both domains of mathematics and may provide new
insights on how best we can mathematically model physical quantum field theories. In the
present paper, we solve the Teichmüller TQFT volume conjecture for the infinite family of
hyperbolic twist knots in S3 (see Figure 3 for a picture of these knots). Up until now, the
conjecture was proven for the first two knots of this family [2] and numerically checked for
the next nine [6, 8]. Moreover, some computations were done for some knots in lens spaces
[39]. To the authors’ knowledge, the twist knots are now the first family of hyperbolic knots
in S3 for which a volume conjecture is proven. We hope that the techniques and results of
this paper can provide valuable insights for further studies of this volume conjecture or its
siblings that concern other quantum invariants [16, 26, 33]. Notably, it would be interesting
to try to apply the techniques of this paper to prove other conjectures for the twist knots.

Let us now precise the objects used and the results proven in this paper. Before all, we
should clarify that the results split in two halves: Sections 3 to 7 focus on the hyperbolic twist
knots with an odd number of crossings, while the even twist knots are studied in Section 8.
Indeed, the constructions and proofs vary slightly whether the crossing number is odd or even.
Hence, the reader interested in discovering for the first time our objects and techniques should
focus on the odd twist knots in Sections 3 to 7. Likewise, Section 8 is for the experienced reader
who wants to understand the difficulties in generalising our results from one infinite family
of knots to another, and can be a starting point for future further proofs of the Teichmüller
TQFT volume conjecture.



TRIANGULATIONS & TEICHMÜLLER TQFT VOLUME CONJECTURE FOR TWIST KNOTS 4

The first part of this paper deals with topological constructions of triangulations for twist
knot complements (Sections 3 and 8.1).

In the seventies, Thurston showed that hyperbolic geometry was deeply related to low-
dimensional topology. He notably conjectured that almost every (irreducible atoroidal) 3-
manifold admits a complete hyperbolic metric [45], which was later proved by Perelman. For
3-manifolds with toroidal boundary, such as complements of knots in the three-sphere, this
hyperbolic metric is unique up to isometry, by the Mostow-Prasad rigidity theorem [34, 40].
Hyperbolic geometry can thus provide topological invariants, such as the hyperbolic volume
of a knot complement.

Several knot invariants can be computed from an ideal triangulation X = (T1, . . . , TN ,∼)
of the knot complement S3 \K, that is to say a gluing of N ideal (i.e. without their vertices)
tetrahedra T1, . . . , TN along a pairing of faces ∼. As a given knot complement admits an
infinite number of triangulations, it is therefore natural to look for convenient triangulations
with as few tetrahedra as possible.

The twist knots Kn of Figure 3 form the simplest infinite family of hyperbolic knots (when
n > 2, starting at the figure-eight knot). Recall that a knot is hyperbolic if its complement
admits a complete hyperbolic structure of finite volume. In order to study the Teichmüller
TQFT for the family of twist knots, we thus constructed particularly convenient ideal trian-
gulations of their complements.

An intermediate step was to construct H-triangulations of (S3,Kn), which are triangula-
tions of S3 by compact tetrahedra, where the knot Kn is represented by an edge. We now
state the first result of this paper.

Theorem 1.2 (Theorem 3.1). For every n > 2, there exist an ideal triangulation Xn of
the twist knot complement S3 \ Kn with bn+4

2 c tetrahedra and a H-triangulation Yn of the
pair (S3,Kn) with bn+6

2 c tetrahedra. Moreover, the edges of all these triangulations admit
orientations for which no triangle is a cycle.

The condition on edge orientations implies that every tetrahedron comes with a full order
on its vertices: such a property is needed to define the Teichmüller TQFT, see Section 2.
Note that in [10], this property is called a branching on the triangulation (the first of several
similarities between the Teichmüller TQFT and the Baseilhac-Benedetti quantum hyperbolic
invariants).

To prove Theorem 1.2, we study the cases “n odd” and “n even” separately. In both
cases, we use a method introduced by Thurston [45] and later developed by Menasco and
Kashaev-Luo-Vartanov [28, 31]: we start from a diagram of the knot Kn and we obtain a
combinatorial description of S3 as a polyhedron glued to itself, where Kn is one particular
edge. We then apply a combinatorial trick to reduce the number of edges in the polyhedron,
and finally we triangulate it. This yields an H-triangulation Yn of (S3,Kn), which then gives
the ideal triangulation Xn of S3 \Kn by collapse of the tetrahedron containing the edge Kn.

The numbers bn+4
2 c in Theorem 1.2 give new upper bounds for the Matveev complexities

of the manifolds S3 \Kn, and experimental tests on the software SnapPy lead us to conjec-
ture that these numbers are actually equal to the Matveev complexities for this family (see
Conjecture 3.3).
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In the second part of this paper (Sections 4 and 8.2), we prove the geometricity of these new
ideal triangulations, which means that their tetrahedra can be endowed with positive dihedral
angles corresponding to the complete hyperbolic structure on the underlying hyperbolic 3-
manifold.

In [44], Thurston provided a method to study geometricity of a given triangulation, which is
a system of gluing equations on complex parameters associated to the tetrahedra; if this system
admits a solution, then this solution is unique and corresponds to the complete hyperbolic
metric on the triangulated manifold.

However, this system of equations is difficult to solve in practice. In the nineties, Casson
and Rivin devised a technique to prove geometricity (see the survey [20]). The idea is to
focus on the argument part of the system of complex gluing equations (this part can be
seen as a linear system) and use properties of the volume functional. Futer and the second
author applied such a method for particular triangulations of once-punctured torus bundles
and two-bridge link complements [21].

In this vein, we prove that the ideal triangulations Xn of Theorem 1.2 are geometric.

Theorem 1.3 (Theorems 4.1 and 8.2). For every n > 2, Xn is geometric.

To prove Theorem 1.3, we use techniques of Futer and the second author (see [20, 21]).
We first prove that the space of angle structures on Xn is non-empty (Lemma 4.2 for the odd
case), and then that the volume functional cannot attain its maximum on the boundary of
this space (Lemma 4.4 for the odd case). Then Theorem 1.3 follows from a result of Casson
and Rivin (see Theorem 2.2).

In the third part of this paper (Sections 5, 6 and 8.3), we compute the partition functions
of the Teichmüller TQFT for the triangulations Xn and Yn, and we notably prove that
they satisfy the properties expected in Conjecture 2.12. Without going into details, we can
summarise these properties as:

Theorem 1.4 (Theorems 5.2, 8.4, 6.1 and 8.6). For every n > 2 and every ~ > 0, the partition
function Z~(Xn, α) of the ideal triangulation Xn (resp. Z~(Yn, α) of the H-triangulation Yn)
is computed explicitly for every angle structure α of Xn (resp. of Yn).

Moreover, the value |Z~(Xn, α)| depends only on three entities: two linear combinations
of angles µXn(α) and λXn(α) (related to the meridian and longitude of the knot Kn), and a
function (x 7→ JXn(~, x)), defined on some open subset of C, and independent of the angle
structure α.

Furthermore, the value |JXn(~, 0)| can be retrieved in a certain asymptotic of the partition
function Z~(Yn, α) of the H-triangulation Yn.

The function (~ 7→ JXn(~, 0)) should be seen as an analogue of the Kashaev invariant
〈·〉N of [25, 26], or of the colored Jones polynomials evaluated at a certain root of unity
J·(N, e2iπ/N ), where ~ behaves as the inverse of the color N . It is not clear at the time
of writing that (~ 7→ JXn(~, 0)) always yields a proper knot invariant independent of the
triangulation. However, Theorem 1.4 states that we can attain this function in at least two
ways (as anticipated in the volume conjecture of [2]), which increases the number of available
tools for proving such an invariance. Theorem 1.4 is also of interest for studying the AJ-
conjecture for the Teichmüller TQFT, as stated in [5].
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To prove Theorem 1.4, we compute the aforementioned partition functions, and especially
their parts that encode how the faces of the triangulation are glued to one another (such a part
is called the kinematical kernel). We then show a connection between this kinematical kernel
and the gluing equations on angles for the same triangulation, which allows us to prove that
the partition function only depends on the angle structure α via the weight of α on each edge
(which is constant equal to 2π) and via two angular holonomies µXn(α) and λXn(α) related to
the meridian and longitude of the twist knot Kn. Finally, we need to establish some uniform
bounds on the quantum dilogarithm in order to apply the dominated convergence theorem in
the computation of the asymptotic of Z~(Yn, α).

At the time of writing, whether or not the partition function always contains such topolog-
ical information (the meridian and longitude of the knot) is an open question. Nevertheless,
we hope that the patterns noticed for this infinite family of examples can illuminate the path.

In the fourth and final part of this paper (Sections 7 and 8.4), we prove that the function
(~ 7→ JXn(~, 0)) (extracted from the partition functions of the Teichmüller TQFT in Theo-
rem 1.4) exponentially decreases in the semi-classical limit ~ → 0+, with decrease rate the
hyperbolic volume. Or in other words:

Theorem 1.5 (Theorems 7.1 and 8.7). For every n > 2, we have the following limit:
lim
~→0+

2π~ log |JXn(~, 0)| = −Vol(S3\Kn).

To prove Theorem 1.5, we apply the saddle point method on the semi-classical approx-
imation of |JXn(~, 0)| (expressed with classical dilogarithms Li2), and we then bound the
remaining error terms with respect to ~.

More precisely, the saddle point method is a common designation of various theorems that
state that an integral

∫
γ exp(λS(z))dz behaves mostly as exp (λmaxγ(<(S))) when λ → ∞

(see Theorem 2.17 for the version we used, and [49] for a survey). In order to apply this
method, we must check technical conditions such as the fact that the maximum of <(S) on
γ is unique and a simple critical point. Fortunately, in the present paper, these conditions
are consequences of the geometricity of the ideal triangulations Xn (Theorem 1.3); indeed,
the equations ∇S = 0 here correspond exactly to the complex gluing equations, and their
unique solution (the complete hyperbolic angle structure) provides the expected saddle point.
Geometricity was the main ingredient we needed, in order to go from a finite number of
numerical checks of the Teichmüller TQFT volume conjecture [8] to an exact proof for an
infinite family.

Note that thanks to Theorem 1.3, we did not need to compute the exact value of the
complete hyperbolic structure or of the hyperbolic volume, although such computations would
be doable in the manner of [14] with our triangulations Xn.

The previously mentioned error bounds follow from the fact that JXn(~, 0) does not de-
pend exactly on the potential function S made of classical dilogarithms, but on a quantum
deformation S′~ using quantum dilogarithms. An additional difficulty stems from the fact
that we must bound the error uniformly on a non-compact contour, when ~ → 0+. To the
authors’ knowledge, this difficulty never happened in studies of volume conjectures for other
quantum invariants, since asymptotics of these invariants (such as the colored Jones polyno-
mials) involve integrals on compact contours. Hence we hope that the analytical techniques
we developed in this paper (that are not specific to the twist knots) can be of use for future
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studies of volume conjectures with unbounded contours. More precisely, the parity trick in
Lemma 7.12 and its application in the bound for the whole non-compact contour (Lemma
7.13) are our main additions from the previous techniques of [1].

Part of the results in this paper (Theorems 3.1, 5.2, 8.4, 6.1 and 8.6) were announced in [8].
Sections 3, 4 and 8.1 appeared in the arXiv preprint [9].

The paper is organised as follows: in Section 2, we review preliminaries and notations; in
Section 3 we construct the triangulations for odd twist knots; in Section 4, we prove geometric-
ity of these triangulations for odd twist knots; in Section 5 (resp. 6) we compute the partition
function of the Teichmüller TQFT for the ideal triangulations (resp. H-triangulations), still
for odd twist knots; in Section 7, we prove the volume conjecture for odd twist knots (readers
eager to arrive at Section 7 can skip Section 6 after reading Section 5); finally, in Section 8,
we explain how the proofs of the previous sections differ for the even twist knots.
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2. Preliminaries and notations

2.1. Triangulations. In this section we follow [2, 27]. A tetrahedron T with faces A,B,C,D
will be denoted as in Figure 1, where the face outside the circle represents the back face and
the center of the circle is the opposite vertex pointing towards the reader. We always choose
an order on the four vertices of T and we call them 0T , 1T , 2T , 3T (or 0, 1, 2, 3 if the context
makes it obvious). Consequently, if we rotate T such that 0 is in the center and 1 at the top,
then there are two possible places for vertices 2 and 3; we call T a positive tetrahedron if they
are as in Figure 1, and negative otherwise. We denote ε(T ) ∈ {±1} the corresponding sign
of T . We orient the edges of T accordingly to the order on vertices, and we endow each edge
with a parametrisation by [0, 1] respecting the orientation. Note that such a structure was
called a branching in [10].

Thus, up to isotopies fixing the 1-skeleton pointwise, there is only one way of gluing two tri-
angular faces together while respecting the order of the vertices and the edge parametrisations,
and that is the only type of face gluing we consider in this paper.

Note that a tetrahedron T like in Figure 1 will either represent a compact tetrahedron
homeomorphic to a 3-ball B3 (notably when considering H-triangulations) or an ideal tetra-
hedron homeomorphic to a 3-ball minus 4 points in the boundary (when considering ideal
triangulations).

A triangulation X = (T1, . . . , TN ,∼) is the data of N distinct tetrahedra T1, . . . , TN and an
equivalence relation ∼ first defined on the faces by pairing and the only gluing that respects
vertex order, and also induced on edges then vertices by the combined identifications. We
call MX the (pseudo-)3-manifold MX = T1 t · · · t TN/ ∼ obtained by quotient. Note that
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Figure 1. The positive tetrahedron T

MX may fail to be a manifold only at a quotient vertex of the triangulation, whose regular
neighborhood might not be a 3-ball (but for instance a cone over a torus for exteriors of links).

We denote Xk (for k = 0, . . . , 3) the set of k-cells of X after identification by ∼. In this
paper we always consider that no face is left unpaired by ∼, thus X2 is always of cardinal
2N . By a slight abuse of notation we also call Tj the 3-cell inside the tetrahedron Tj , so
that X3 = {T1, . . . , TN}. Elements of X1 are usually represented by distinct types of arrows,
which are drawn on the corresponding preimage edges, see Figure 2 for an example.

An ideal triangulation X contains ideal tetrahedra, and in this case the quotient space
minus its vertices MX \X0 is an open manifold. In this case we will denote M = MX \X0

and say that the open manifold M admits the ideal triangulation X.
A (one-vertex) H-triangulation is a triangulation Y with compact tetrahedra so that M =

MY is a closed manifold and Y 0 is a singleton, with one distinguished edge in Y 1; this edge
will represent a knot K (up to ambient isotopy) in the closed manifold M , and we will say
that Y is an H-triangulation for (M,K).

Finally, for X a triangulation and k = 0, 1, 2, 3, we define xk : X3 → X2 the map such that
xk(T ) is the equivalence class of the face of T opposed to its vertex k.

Example 2.1. Figure 2 displays two possible ways of representing the same ideal triangu-
lation of the complement of the figure-eight knot M = S3 \ 41, with one positive and one
negative tetrahedron. Here X3 = {T+, T−}, X2 = {A,B,C,D}, X1 = { →, �} and X0 is a
singleton. On the left the tetrahedra are drawn as usual and all the cells are named; on the
right we represent each tetrahedron by a “comb” with four spikes numbered 0, 1, 2, 3,
from left to right, we join the spike j of T to the spike k of T ′ if xj(T ) = xk(T ′), and we add
a + or − next to each tetrahedron according to its sign.

2.2. Angle structures. For a given triangulation X = (T1, . . . , TN ,∼) we denote SX the
set of shape structures on X, defined as

SX =
{
α = (a1, b1, c1, . . . , aN , bN , cN ) ∈ (0, π)3N ∣∣ ∀k ∈ {1, . . . , N}, ak + bk + ck = π

}
.

An angle ak (respectively bk, ck) represents the value of a dihedral angle on the edge −→01
(respectively −→02, −→03) and its opposite edge in the tetrahedron Tk. If a particular shape
structure α = (a1, . . . , cN ) ∈ SX is fixed, we define three associated maps αj : X3 → (0, π)
(for j = 1, 2, 3) that send Tk to the j-th element of {ak, bk, ck} for each k ∈ {1, . . . , N}.

Let (X,α) be a triangulation with a shape structure as before. We denote ωX,α : X1 → R
the associated weight function, which sends an edge e ∈ X1 to the sum of angles αj(Tk)
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Figure 2. Two representations of an ideal triangulation of the knot comple-
ment S3 \ 41.

corresponding to tetrahedral edges that are preimages of e by ∼. For example, if we de-
note α = (a+, b+, c+, a−, b−, c−) a shape structure on the triangulation X of Figure 2, then
ωX,α( →) = 2a+ + c+ + 2b− + c−.

One can also consider the closure SX (sometimes called the space of extended shape struc-
tures) where the ak, bk, ck are taken in [0, π] instead. The definitions of the maps αj and ωX,α
can immediately be extended.

We finally define AX :=
{
α ∈ SX

∣∣ ∀e ∈ X1, ωX,α(e) = 2π
}
the set of balanced shape struc-

tures on X, or angle structures on X, and AX :=
{
α ∈ SX

∣∣ ∀e ∈ X1, ωX,α(e) = 2π
}
the set

of extended angle structures on X.

2.3. The volume functional. In this section we recall some known facts about the volume
functional on the space of angle structures. See for example the survey [20] for details.

One can understand a shape structure (a, b, c) on an ideal tetrahedron T as a way of
realising T in the hyperbolic space H3, with its four vertices at infinity. In this hyperbolic
ideal tetrahedron, the angles a, b, c will represent dihedral angles between two faces.

The Lobachevsky function Λ: R→ R given by:

Λ(x) = −
∫ x

0
log |2 sin(t)| dt

is well defined, continuous on R, and periodic with period π. Furthermore, if T is a hyperbolic
ideal tetrahedron with dihedral angles a, b, c, its volume satisfies

Vol(T ) = Λ(a) + Λ(b) + Λ(c).

Let X = (T1, . . . , TN ,∼) be an ideal triangulation and AX its space of angle structures,
which is a (possibly empty) convex polytope in R3N . Then we define a volume functional
V : AX → R, by assigning to an (extended) angle structure α = (a1, b1, c1, . . . , aN , bN , cN )
the real number

V (α) = Λ(a1) + Λ(b1) + Λ(c1) + · · ·+ Λ(aN ) + Λ(bN ) + Λ(cN ).

By [21, Propositions 6.1 and 6.6] and [20, Lemma 5.3], the volume functional V is strictly
concave on AX and concave on AX . The maximum of the volume functional is actually
related to the complete hyperbolic structure, see for example [20, Theorem 1.2] that we re-
state below.
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Theorem 2.2 (Casson-Rivin). LetM be an orientable 3-manifold with boundary consisting of
tori, and let X be an ideal triangulation of M . Then an angle structure α ∈ AX corresponds
to a complete hyperbolic metric on the interior of M (which is unique) if and only if α is a
critical point of the functional V : AX → R.

In this last case, we say that the ideal triangulation X of the 3-manifold M is geometric.

2.4. Thurston’s complex gluing equations. To a shape structure (a, b, c) on an ordered
tetrahedron T (i.e. an element of (0, π)3 of coordinate sum π) we can associate bijectively a
complex shape structure z ∈ R+ iR>0, as well as two companion complex numbers of positive
imaginary part

z′ := 1
1− z and z′′ := z − 1

z
.

Each of the z, z′, z′′ is associated to an edge, in a slightly different way according to ε(T ):

• In all cases, z corresponds to the same two edges as the angle a.
• If ε(T ) = 1, then z′ corresponds to c and z′′ to b.
• If ε(T ) = −1, then z′ corresponds to b and z′′ to c.

Another way of phrasing it is that z, z′, z′′ are always in a counterclockwise order around a
vertex, whereas a, b, c need to follow the specific vertex ordering of T .

In this article we will use the following definition of the complex logarithm:

Log(z) := log |z|+ i arg(z) for z ∈ C∗,

where arg(z) ∈ (−π, π].
We now introduce a third way of describing the shape associated to a tetrahedron, by the

complex number

y := ε(T )(Log(z)− iπ) ∈ R− iε(T )(0, π).

We now list the equations relating (a, b, c), (z, z′, z′′) and y for both possible signs of T :

Positive tetrahedron: y + iπ = Log(z) = log
(sin(c)

sin(b)

)
+ ia.

− Log(1 + ey) = Log(z′) = log
( sin(b)

sin(a)

)
+ ic.

Log(1 + e−y) = Log(z′′) = log
(sin(a)

sin(c)

)
+ ib.

y = log
(sin(c)

sin(b)

)
− i(π − a) ∈ R− i(π − a).

z = −ey ∈ R + iR>0.
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Negative tetrahedron: − y + iπ = Log(z) = log
(sin(b)

sin(c)

)
+ ia.

− Log(1 + e−y) = Log(z′) = log
( sin(c)

sin(a)

)
+ ib.

Log(1 + ey) = Log(z′′) = log
(sin(a)

sin(b)

)
+ ic.

y = log
(sin(c)

sin(b)

)
+ i(π − a) ∈ R + i(π − a).

z = −e−y ∈ R + iR>0.

For clarity, let us define the diffeomorphism

ψT : R + iR>0 → R− iε(T )(0, π), z 7→ ε(T )(Log(z)− iπ),

and its inverse

ψ−1
T : R− iε(T )(0, π)→ R + iR>0, y 7→ − exp (ε(T )y) .

We can now define the complex weight function ωC
X,α : X1 → C associated to a triangulation

X and an angle structure α ∈ AX , which sends an edge e ∈ X1 to the sum of logarithms of
complex shapes associated to preimages of e by ∼. For example, for the triangulation X of
Figure 2 and an angle structure α = (a+, b+, c+, a−, b−, c−), we have:

ωC
X,α( →) = 2Log(z+) + Log(z′+) + 2Log(z′−) + Log(z′′−)

= log
(

sin(c+)2 sin(b+) sin(c−)2 sin(a−)
sin(b+)2 sin(a+) sin(a−)2 sin(b−)

)
+ iωX,α( →).

Let S denote one toroidal boundary component of a 3-manifold M ideally triangulated by
X = (T1, . . . , TN ,∼), and σ an oriented normal closed curve in S. Truncating the tetrahedra
Tj at each vertex yields a triangulation of S by triangles coming from vertices of X (called
the cusp triangulation). If the curve σ intersects these triangles transversely (without back-
tracking), then σ cuts off corners of each such encountered triangle. Let us then denote
(z1, . . . , zl) the sequence of (abstract) complex shape variables associated to these corners
(each such zk is of the form zTjk , z

′
Tjk

or z′′Tjk ). Following [20], we define the complex holonomy
HC(σ) as HC(σ) :=

∑l
k=1 εkLog(zk), where εk is 1 if the k-th cut corner lies on the left of σ

and −1 if it lies on the right. The angular holonomy HR(σ) of σ is similarly defined, replacing
the term Log(zk) by the (abstract) angle dk (which is of the form aTjk , bTjk or cTjk ) lying in
the i-th corner. For example, in the triangulation of Figure 15, we have

HC(mXn) = Log(zU )− Log(zV ) and HR(mXn) = aU − aV .

The complex gluing edge equations associated to X consist in asking that the holonomies
of each closed curve in ∂M circling a vertex of the induced boundary triangulation are all
equal to 2iπ, or in other words that

∀e ∈ X1, ωC
X,α(e) = 2iπ.

The complex completeness equations require that the complex holonomies of all curves gen-
erating the first homology H1(∂M) vanish (when M is of toroidal boundary).
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Remark that once one asks that a shape structure α of X satisfies the complex gluing edge
equations of X (in particular α ∈ AX), then for any toroidal boundary component S of M ,
if one calls l,m two curves generating H1(S), then the following are equivalent formulations
of the complex completeness equation for S:

• HC(m) = 0,
• HC(l) = 0,
• HR(m) = 0 and HR(l) = 0.

This can be compared with the equivalent definitions for a quadrilateral ABCD to be a
parallelogram: either you ask that AB and CD are parallel of same length, or the same for
AD and BC, or equivalently that AB and CD are parallel and AD and BC are too.

If M is an orientable 3-manifold with boundary consisting of tori, and ideally triangulated
by X, then an angle structure α ∈ AX corresponds to the complete hyperbolic metric on the
interior of M (which is unique) if and only if α satisfies the complex gluing edge equations
and the complex completeness equations.

2.5. The classical dilogarithm. For the dilogarithm function, we will use the definition:

Li2(z) := −
∫ z

0
Log(1− u)du

u
for z ∈ C \ [1,∞)

(see for example [50]). For z in the unit disk, Li2(z) =
∑
n≥1 n

−2zn. We will use the following
properties of the dilogarithm function, referring for example to [1, Appendix A] for the proofs.

Proposition 2.3 (Some properties of Li2).
(1) (inversion relation)

∀z ∈ C \ [1,∞), Li2
(1
z

)
= −Li2(z)− π2

6 −
1
2Log(−z)2.

(2) (integral form) For all y ∈ R + i(−π, π),
−i
2πLi2(−ey) =

∫
v∈R+i0+

exp
(
−iyvπ

)
4v2 sinh(v) dv.

2.6. The Bloch–Wigner function. We define the Bloch–Wigner function by
D(z) := =(Li2(z)) + arg(1− z) log |z| for z ∈ C\[1,∞).

This function is real analytic on C\{0, 1} and plays a central role in hyperbolic geometry.
The following result will be important for us (for a proof, see [37]).

Proposition 2.4. Let T be an ideal tetrahedron in H3 with complex shape structure z. Then,
its volume is given by

Vol(T ) = D(z) = D

(
z − 1
z

)
= D

( 1
1− z

)
.

2.7. Twist knots. We denote by Kn the unoriented twist knot with n half-twists and n+ 2
crossings, according to Figure 3.

For clarity, we list the names of the 13 first twist knots in the table of Figure 4, along
with their hyperbolic volume and the coefficient of the Dehn filling one must apply on the
Whitehead link to obtain the considered knot. This last one is useful for studying Kn for
large n on the software SnapPy without having to draw a huge knot diagram by hand.
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crossingsn

Figure 3. The twist knot Kn

n Kn
Dehn Surgery coefficient
from the Whitehead link Hyperbolic volume

0 01 (1, 0) not hyperbolic
1 31 (1,−1) not hyperbolic
2 41 (1, 1) 2.02988321...
3 52 (1,−2) 2.82812208...
4 61 (1, 2) 3.16396322...
5 72 (1,−3) 3.33174423...
6 81 (1, 3) 3.42720524...
7 92 (1,−4) 3.48666014...
8 101 (1, 4) 3.52619599...
9 11a247 (1,−5) 3.55381991...
10 12a803 (1, 5) 3.57388254...
11 13a3143 (1,−6) 3.588913917...
12 14a12741 (1, 6) 3.600467262...

Figure 4. The first twist knots

The twist knots form, in a sense, the simplest infinite family of hyperbolic knots (for n > 2).
This is why our initial motivation was to study the volume conjecture for the Teichmüller
TQFT for this particular family (see [8]).

Remark 2.5. The twist knots K2n−1 and K2n are obtained by Dehn filling on one component
of the Whitehead link with respective coefficients (1,−n) and (1, n). As a consequence of the
Jørgensen-Thurston theorem [37, 44], the hyperbolic volume ofKn tends to 3.6638623767088...
(the volume of the Whitehead link) as n→ +∞.

2.8. Faddeev’s quantum dilogarithm. Recall [2] that for ~ > 0 and b > 0 such that

(b + b−1)
√
~ = 1,

Faddeev’s quantum dilogarithm Φb is the holomorphic function on R + i
(
−1

2
√
~
, 1

2
√
~

)
given by

Φb(z) = exp
(

1
4

∫
w∈R+i0+

e−2izwdw

sinh(bw) sinh(b−1w)w

)
for z ∈ R + i

( −1
2
√
~
,

1
2
√
~

)
,

and extended to a meromorphic function for z ∈ C via the functional equation

Φb

(
z − ib

±1

2

)
=
(
1 + e2πb±1z

)
Φb

(
z + i

b±1

2

)
.
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Note that Φb depends only on ~ = 1
(b+b−1)2 . Furthermore, as a consquence of the functional

equation, the poles of Φb lie on i
[

1
2
√
~
,∞
)
and the zeroes lie symmetrically on i

(
−∞, −1

2
√
~

]
.

We now list several useful properties of Faddeev’s quantum dilogarithm. We refer to [2,
Appendix A] for these properties (and several more), and to [1, Lemma 3] for an alternate
proof of the semi-classical limit property.

Proposition 2.6 (Some properties of Φb).

(1) (inversion relation) For any b ∈ R>0 and any z ∈ R + i
(
−1

2
√
~
, 1

2
√
~

)
,

Φb(z)Φb(−z) = ei
π
12 (b2+b−2)eiπz

2
.

(2) (unitarity) For any b ∈ R>0 and any z ∈ R + i
(
−1

2
√
~
, 1

2
√
~

)
,

Φb(z) = 1
Φb(z) .

(3) (semi-classical limit) For any z ∈ R + i (−π, π),

Φb

(
z

2πb

)
= exp

( −i
2πb2 Li2(−ez)

)(
1 + Ob→0+(b2)

)
.

(4) (behavior at infinity) For any b ∈ R>0,
Φb(z) ∼

<(z)→−∞
1,

Φb(z) ∼
<(z)→∞

ei
π
12 (b2+b−2)eiπz

2
.

In particular, for any b ∈ R>0 and any d ∈
(
−1

2
√
~
, 1

2
√
~

)
,

|Φb(x+ id)| ∼
R3x→−∞

1,

|Φb(x+ id)| ∼
R3x→+∞

e−2πxd.

2.9. The Teichmüller TQFT of Andersen-Kashaev. In this section we follow [2, 24, 27].
Let S (Rd) denote the Schwartz space of smooth rapidly decreasing functions from Rd to C.
Its continuous dual S ′(Rd) is the space of tempered distributions.

Recall that the Dirac delta function is the tempered distribution S (R) → C denoted
by δ(x) or δ and defined by δ(x) · f :=

∫
x∈R δ(x)f(x)dx = f(0) for all f ∈ S (R) (where

x ∈ R denotes the argument of f ∈ S (R)). Furthermore, we have the equality of tempered
distributions

δ(x) =
∫
w∈R

e−2πixw dw,

in the sense that for all f ∈ S (R),(∫
w∈R

e−2πixw dw

)
(f) =

∫
x∈R

∫
w∈R

e−2πixwf(x) dw dx = f(0) = δ(x) · f.

The second equality follows from applying the Fourier transform F twice and using the fact
that F (F (f))(x) = f(−x) for f ∈ S (R), x ∈ R. Recall also that the definition of the Dirac
delta function and the previous argument have multi-dimensional analogues (see for example
[24] for details).
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Given a triangulation X of tetrahedra T1, . . . , TN , we identify X3 to a set of formal real
variables tj , j = 1, . . . , N via the map t : Tj 7→ tj . We also denote t = (t1, . . . , tN ) a formal
vector in RX3 .

Definition 2.7. Let X be a triangulation such that H2(MX \X0,Z) = 0. The kinematical
kernel of X is a tempered distribution KX ∈ S ′

(
RX3

)
defined by the integral

KX(t) =
∫

x∈RX2
dx

∏
T∈X3

e2iπε(T )x0(T )t(T )δ (x0(T )− x1(T ) + x2(T )) δ (x2(T )− x3(T ) + t(T )) .

Here, with a slight abuse of notation, xk(T ) denotes the real variable xxk(T ) that is part of
the vector x ∈ RX2 .

One should understand the integral of the previous formula as the following equality of
tempered distributions, similarly as above :

KX(t) =
∫

x∈RX2
dx
∫

w∈R2N
dw e2iπtTRxe−2iπwTAxe−2iπwTBt ∈ S ′

(
RX

3)
,

where w = (w1, . . . , wN , w
′
1, . . . , w

′
N ) is a vector of 2N new real variables, such that wj , w′j are

associated to δ (x0(Tj)− x1(Tj) + x2(Tj)) and δ (x2(Tj)− x3(Tj) + t(Tj)), and where R,A,B
are matrices with integer coefficients depending on the values xk(Tj), i.e. on the combinatorics
of the face gluings. More precisely, the rows (resp. columns) of R are indexed by the vector of
tetrahedron variables t (resp. of face variables x) and R has a coefficient ε(Tj) at coordinate
(tj , x0(Tj)) and zero everywhere else; B is indexed by w (rows) and t (columns) and has a 1
at the coordinate (w′j , tj); finally, A is such that Ax + Bt is a column vector indexed by w
containing the values x0(Tj)− x1(Tj) + x2(Tj), x2(Tj)− x3(Tj) + tj in order.

Lemma 2.8. If the 2N × 2N matrix A in the previous formula is invertible, then the kine-
matical kernel is simply a bounded function given by:

KX(t) = 1
| det(A)|e

2iπtT (−RA−1B)t.

Proof. The lemma follows from the same argument as above (swapping integration symbols
and applying the Fourier transform F twice), this time for the multi-dimensional function
ft :=

(
x 7→ e2iπtTRx

)
. More precisely:

KX(t) =
∫

x∈RX2
dx
∫

w∈R2N
dw e2iπtTRxe−2iπwTAxe−2iπwTBt

=
∫

w∈R2N
dw e−2iπwTBt

∫
x∈R2N

dx ft(x)e−2iπwTAx

=
∫

w∈R2N
dw e−2iπwTBt F (ft) (ATw)

= 1
|det(A)|

∫
v∈R2N

dv e−2iπvTA−1Bt F (ft) (v)

= 1
|det(A)|F (F (ft)) (A−1Bt) = 1

|det(A)|ft(−A−1Bt) = 1
|det(A)|e

2iπtT (−RA−1B)t.

�
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The product of several Dirac delta functions might not be a tempered distribution in gen-
eral. However the kinematical kernels in this paper will always be, thanks to the assumption
that H2(MX \X0,Z) = 0 (satisfied by the twist knot complements). See [2] for more details,
via the theory of wave fronts. The key property to notice is the linear independance of the
terms x0(Tj)− x1(Tj) + x2(Tj), x2(Tj)− x3(Tj) + tj .

Definition 2.9. Let X be a triangulation. Its dynamical content associated to ~ > 0 is a
function D~,X : AX → S

(
RX3

)
defined on each set of angles α ∈ AX by

D~,X(t, α) =
∏
T∈X3

exp
(
~−1/2α3(T )t(T )

)
Φb

(
t(T )− i

2π
√
~
ε(T )(π − α1(T ))

)ε(T ) .

Note that D~,X(·, α) is in S
(
RX3

)
thanks to the properties of Φb and the positivity of the

dihedral angles in α (see [2] for details).
More precisely, each term in the dynamical content has exponential decrease as described

in the following lemma.

Lemma 2.10. Let b ∈ R>0 and a, b, c ∈ (0, π) such that a+ b+ c = π. Then

∣∣∣∣∣∣ e
1√
~
cx

Φb
(
x− i

2π
√
~
(b+ c)

)
∣∣∣∣∣∣ ∼
R3x→±∞

∣∣∣∣e 1√
~
cxΦb

(
x+ i

2π
√
~

(b+ c)
)∣∣∣∣


∼

R3x→−∞
e

1√
~
cx
.

∼
R3x→+∞

e
− 1√

~
bx
.

Proof. The lemma immediately follows from Proposition 2.6 (4). �

Lemma 2.10 illustrates why we need the three angles a, b, c to be in (0, π): b and c must
be positive in order to have exponential decrease in both directions, and a must be as well so
that b+ c < π and Φb

(
x± i

2π
√
~
(b+ c)

)
is always defined.

Now, for X a triangulation such that H2(MX \ X0,Z) = 0, ~ > 0 and α ∈ AX an angle
structure, the associated partition function of the Teichmüller TQFT is the complex number:

Z~(X,α) =
∫

t∈RX3
KX(t)D~,X(t, α)dt ∈ C.

Andersen and Kashaev proved in [2] that the module |Z~(X,α)| ∈ R>0 is invariant under
Pachner moves with positive angles, and then generalised this property to a larger class of
moves and triangulations with angles, using analytic continuation in complex-valued α [4].

Remark 2.11. If we denoteX] themirror image of the triangulationX (obtained by applying
a reflection to each tetrahedron), then all tetrahedron signs ε(Tj) are multiplied by −1.
Therefore, it follows from the definition of the Teichmüller TQFT and Proposition 2.6 (2)
that Z~(X], α) = Z~(X,α), and thus

∣∣∣Z~(X], α)
∣∣∣ = |Z~(X,α)|. Consequently, the following

results will stand for the twist knots Kn of Figure 3 and their mirror images K]
n.

We can now state our version of the volume conjecture for the Teichmüller TQFT, in
a slightly different (and less powerful) way from Andersen-Kashaev in [2, Conjecture 1].
Notably, we make the statements depend on specific chosen triangulations X and Y ; thus
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we will not be interested in the present paper in how the following properties change under
Pachner moves or depend on the triangulations. For some insights on these points, see [2]. We
also introduced a new combination of angles µX , which has a interesting topological origin.

Conjecture 2.12 (see [2], Conjecture 1). Let M be a connected closed oriented 3-manifold
and let K ⊂ M be a hyperbolic knot. There exist an ideal triangulation X of M \ K and
a one-vertex H-triangulation Y of (M,K) such that K is represented by an edge −→K in a
single tetrahedron Z of Y , and −→K has only one pre-image. Moreover, there exists a function
JX : R>0 × C→ C such that the following properties hold:

(1) There exist µX , λX linear combinations of dihedral angles in X such that for all angle
structures α ∈ AX and all ~ > 0, we have:

|Z~(X,α)| =
∣∣∣∣∣
∫
R+iµX (α)

2π
√
~

JX(~, x)e
1

2
√
~
xλX(α)

dx

∣∣∣∣∣ .
Moreover, ifM = S3, then JX can be chosen such that µX , λX are angular holonomies
associated to a meridian and a preferred longitude of K.

(2) For every b > 0, and for every τ ∈ SY \Z ×SZ such that ωY,τ vanishes on the edge
−→
K and is equal to 2π on every other edge, one has, denoting ~ = 1

(b+b−1)2 :

lim
α→ τ
α ∈ SY

∣∣∣∣∣∣Φb

π − ωY,α
(−→
K
)

2πi
√
~

Z~(Y, α)

∣∣∣∣∣∣ = |JX(~, 0)| ,

(3) In the semi-classical limit ~→ 0+, we retrieve the hyperbolic volume of K as:

lim
~→0+

2π~ log |JX(~, 0)| = −Vol(M\K).

The rest of the paper consists in proving Conjecture 2.12 for the infinite family of hyperbolic
twist knots (in Theorems 3.1, 5.2, 6.1, 7.1, 8.4, 8.6 and 8.7). Several remarks are in order
concerning Conjecture 2.12.

Remark 2.13. In Conjecture 2.12 (1), one may notice that JX , µX and λX are not unique,
since one can for example replace (JX(~, x), x, µX , λX) by

• either (JX(~, x)e−
1

2
√
~
Cx
, x, µX , λX + C) for any constant C ∈ R,

• or (DJX(~, Dx′), x′, µX/D,DλX) for any constant D ∈ R∗ (via the change of variable
x′ = x/D).

Note however that in both cases, the expected limit lim~→0+ 2π~ log |JX(~, 0)| does not
change. When M = S3, a promising way to reduce ambiguity in the definition of JX is
to impose that µX(α) and λX(α) are uniquely determined as the angular holonomies of a
meridian and a preferred longitude of the knot K. In proving Conjecture 2.12 (1) for the
twist knots in Theorems 5.2 and 8.4, we find such properties for µX and λX .

Remark 2.14. The function (~ 7→ JX(~, 0)) should play the role of the Kashaev invariant in
the comparison with the Kashaev-Murakami-Murakami volume conjecture [26, 33]. Notably,
the statement of Conjecture 2.12 (2) has a similar form as the definition of the Kashaev
invariant in [25] and Conjecture 2.12 (3) resembles the volume conjecture stated in [26],
where ~ corresponds to the inverse of the color N .
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Remark 2.15. The final form of the Teichmüller TQFT volume conjecture is not yet set
in stone, notably because of the unoptimal definitions of the function (~ 7→ JX(~, 0)) (in
Conjecture 2.12 (1) and (2)) and the uncertain invariance of the variables and statements
under (ordered) Pachner moves. Nevertheless, we hope Conjecture 2.12 as stated here and
its resolution can help us understand better how to solve these difficulties in the future.

2.10. Saddle point method. Let n > 1 be an integer. Recall [29] that a complex-valued
function (z1, . . . , zn) 7→ S(z1, . . . , zn) defined on an open subset of Cn is called analytic (or
holomorphic) if it is analytic in every variable (as a function of one complex variable). More-
over, its holomorphic gradient ∇S is the function valued in Cn whose coordinates are the par-
tial derivatives ∂S

∂zj
, and its holomorphic hessian Hess(S) is the n×n matrix with coefficents

the second partial derivatives ∂2S

∂zjzk
; in both of these cases, the holomorphic denomination

comes from the absence of partial derivatives of the form ∂

∂zj
.

The saddle point method is a general name for studying asymptotics of integrals of the form∫
feλS when λ→ +∞. The main contribution is expected to be the value of the integrand at

a saddle point of S maximizing <S. For an overview of such methods, see [49, Chapter II].
Before going in detail in the saddle point method, let us recall the notion of asymptotic

expansion.
Definition 2.16. Let f : Ω→ C be a function where Ω ⊂ C is unbounded. A complex power
series

∑∞
n=0 anz

−n (either convergent or divergent) is called an asymptotic expansion of f if,
for every fixed integer N ≥ 0, one has

f(z) =
N∑
n=0

anz
−n + O(z−(N+1))

when z →∞. In this case, one denotes

f(z) ∼=
z→∞

∞∑
n=0

anz
−n.

For various properties of asymptotic expansions, see [49].
The following theorem is due to Fedoryuk and can be found in [19, Section 2.4.5] (for the

statement) and in [18, Chapter 5] (for the details and proofs, in Russian). To our knowledge,
this is the only version of the saddle point method in the literature for f, S analytic functions
in several complex variables.
Theorem 2.17 (Fedoryuk). Let m > 1 be an integer, and γm an m-dimensional smooth
compact real sub-manifold of Cm with connected boundary. We denote z = (z1, . . . , zm) ∈ Cm
and dz = dz1 · · · dzm. Let z 7→ f(z) and z 7→ S(z) be two complex-valued functions analytic
on a domain D such that γm ⊂ D ⊂ Cm. We consider the integral

F (λ) =
∫
γm
f(z) exp(λS(z)) dz,

with parameter λ ∈ R.
Assume that maxz∈γm <S(z) is attained only at a point z0, which is an interior point of

γm and a simple saddle point of S (i.e. ∇S(z0) = 0 and det Hess(S)(z0) 6= 0).
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Then as λ→ +∞, there is the asymptotic expansion

F (λ) ∼=
λ→∞

(2π
λ

)m/2 exp
(
λS(z0)

)√
det Hess(S)(z0)

[
f(z0) +

∞∑
k=1

ckλ
−k
]
,

where the ck are complex numbers and the choice of branch for the root
√

det Hess(S)(z0)
depends on the orientation of the contour γm.

In particular, limλ→+∞
1
λ log |F (λ)| = <S(z0).

2.11. Notations and conventions. Let p ∈ N. In the various following sections, we will
use the following recurring conventions:

• A roman letter in bold will denote a vector of p + 2 variables (often integration
variables), which are the aforementioned letter indexed by 1, . . . , p, U,W . For example,
y = (y1, . . . , yp, yU , yW ).
• A roman letter in bold and with a tilde ˜ will have p + 3 variables indexed by

1, . . . , p, U, V,W . For example, ỹ′ = (y′1, . . . , y′p, y′U , y′V , y′W ).
• Matrices and other vectors of size p+ 3 will also wear a tilde but will not necessarily
be in bold, for example C̃(α) = (c1, . . . , cp, cU , cV , cW ).
• A roman letter in bold and with a hat ̂ will have p + 4 variables indexed by

1, . . . , p, U, V,W,Z. For example, t̂ = (t1, . . . , tp, tU , tV , tW , tZ).
For j ∈ {1, . . . , p, U, V,W,Z}, we will also use the conventions that:

• the symbols ej , fj are faces of a triangulation (for j ∈ {1, . . . , p}),
• the symbol −→ej is an edge of a triangulation (for j ∈ {1, . . . , p}),
• the integration variable tj lives in R,
• the symbols aj , bj , cj are angles in (0, π) (sometimes [0, π]) with sum π,
• the integration variable y′j lives in R± i(π−aj)

2π
√
~
,

• the integration variable yj lives in R± i(π − aj),
• the symbols xj , dj are the real and imaginary part of yj ,
• the symbol zj lives in R + iR>0,

and are (each time) naturally associated to the tetrahedron Tj . Moreover, we will simply note
U, V,W,Z for the tetrahedra TU , TV , TW , TZ .

3. New triangulations for the twist knots

We describe the construction of new triangulations for the twist knots, starting from a knot
diagram and using an algorithm introduced by Thurston in [45] and refined in [28, 31]. For
the odd twist knots the details are in this section, and for the even twist knots they are in
Section 8.

3.1. Statement of results.

Theorem 3.1. For every n > 3 odd (respectively for every n > 2 even), the triangulations
Xn and Yn represented in Figure 5 (respectively in Figure 6) are an ideal triangulation of
S3 \Kn and an H-triangulation of (S3,Kn) respectively.

Figures 5 and 6 display an H-triangulation Yn of (S3,Kn), and the corresponding ideal
triangulation Xn of S3 \Kn is obtained by replacing the upper left red tetrahedron (partially
glued to itself) by the dotted line (note that we omitted the numbers 0, 1, 2, 3 of the vertices
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tetrahedrap

Figure 5. An H-triangulation Yn of (S3,Kn) (full red part) and an ideal
triangulation Xn of S3 \Kn (dotted red part), for odd n > 3, with p = n−3

2 .

�

�

+

+

+ + +

tetrahedrap

Figure 6. An H-triangulation Yn of (S3,Kn) (full red part) and an ideal
triangulation Xn of S3 \Kn (dotted red part), for even n > 2, with p = n−2

2 .

for simplicity). Theorem 3.1 is proven by applying an algorithm due to Thurston (later
refined by Menasco and Kashaev-Luo-Vartanov) to construct a polyhedral decomposition of
S3 where the knot Kn is one of the edges, starting from a diagram of Kn; along the way
we apply a combinatorial trick to reduce the number of edges and we finish by choosing a
convenient triangulation of the polyhedron. Once we have the H-triangulation of (S3,Kn),
we can collapse both the edge representing the knot Kn and its underlying tetrahedron to
obtain an ideal triangulation of S3 \Kn. This is detailed in Section 3.3 (for odd n) and in
Section 8.1 (for even n).

3.2. Consequences on Matveev complexity. An immediate consequence of Theorem 3.1
is a new upper bound for the Matveev complexity of a general twist knot complement. Recall
that the Matveev complexity c(S3 \K) of a knot complement is equal to the minimal number
of tetrahedra in an ideal triangulation of this knot complement S3 \ K (see [30] for this
definition and the original wider definition using simple spines).

Corollary 3.2. Let n > 2. Then the Matveev complexity c
(
S3 \Kn

)
of the n-th twist knot

complement satisfies:
c
(
S3 \Kn

)
6
⌊
n+ 4

2

⌋
.

Corollary 3.2 follows immediately from Theorem 3.1 and is of double interest.
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Firstly, this new upper bound, which is roughly half the crossing number of the knot, is
stricly better that the upper bounds currently in the literature (to the authors’ knowledge).
Indeed, the usual upper bound for c

(
S3 \Kn

)
is roughly 4 times the crossing number (see for

example [30, Proposition 2.1.11]); a better upper bound for two-bridge knots is given in [22,
Theorem 1.1], and is equal to n for the n-th twist knot Kn.

Secondly, experiments on the software SnapPy lead us to conjecture that the bound of
Corollary 3.2 is actually an exact value. Indeed, up to n = 12, when we generated an ideal
triangulation for S3 \Kn on SnapPy, it always had at least

⌊
n+4

2

⌋
tetrahedra. Of course, this

is only experimental evidence, and proving that
⌊
n+4

2

⌋
is an actual lower bound seems like

a tall order. Notably, lower bounds for c
(
S3 \Kn

)
have not yet been found, to the authors’

knowledge.
Nevertheless, we propose the following conjecture:

Conjecture 3.3. Let n > 3. Then the Matveev complexity c
(
S3 \Kn

)
of the n-th twist knot

complement satisfies:

c
(
S3 \Kn

)
=
⌊
n+ 4

2

⌋
.

In the rest of this section, we present one last lead that gives credence to Conjecture 3.3,
via the notion of complexity of pairs.

As defined in [41], the Matveev complexity c
(
S3,Kn

)
of the knot Kn in S3 is the minimal

number of tetrahedra in a triangulation of S3 where Kn is the union of some quotient edges.
Since H-triangulations (as defined in this article) are such triangulations, we deduce from
Theorem 3.1 the following corollary:

Corollary 3.4. Let n > 2. Then the Matveev complexity c
(
S3,Kn

)
of the n-th twist knot in

S3 satisfies:

c
(
S3,Kn

)
6
⌊
n+ 6

2

⌋
.

The upper bound of
⌊
n+6

2

⌋
for the knots Kn in Corollary 3.4 is better than the upper

bound of 4n + 10 in [41, Propostion 5.1], which can be a motivation to see how the results
of this section can be expanded to other families of knots in S3. For these same knots Kn,
the best lower bound to date seems to be in log5(n), see [41, Theorem 5.4]. Still, we offer the
following conjecture:

Conjecture 3.5. Let n > 3. Then the Matveev complexity c
(
S3,Kn

)
of the n-th twist knot

in S3 satisfies:

c
(
S3,Kn

)
=
⌊
n+ 6

2

⌋
.

If true, Conjecture 3.5 would be all the more astonishing that the H-triangulation Yn of
cardinality

⌊
n+6

2

⌋
would be minimal although it has the double restriction that the knot Kn

lies in only one edge of the triangulation of S3 and that Yn admits a vertex ordering.
Conjectures 3.3 and 3.5 are equivalent if and only if the following question admits a positive

answer:
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Question 3.6. Let n > 2. Do the respective Matveev complexities of the n-th twist knot
complement and of the n-th twist knot in S3 differ by 1, i.e. do we always have

c
(
S3,Kn

)
= c

(
S3 \Kn

)
+ 1 ?

Question 3.6 looks far from easy to solve, though. On one hand, it is not clear that
the minimal triangulation for the pair (S3,Kn) can always yield an ideal triangulation for
S3 \ Kn by collapsing exactly one tetrahedron (which is the case for Xn and Yn as we will
see in the following section). On the other hand, it is not clear that one can always construct
an H-triangulation of (S3,Kn) from an ideal triangulation of S3 \ Kn by adding only one
tetrahedron.

The previously mentioned lower bound of the form log5(n) for c
(
S3,Kn

)
comes from the

general property that
1
2c(Mn) 6 c

(
S3,Kn

)
whereMn is the double branched cover of (S3,Kn) [41, Proposition 5.2]. HereMn happens to
be the lens space L(2n+ 1, n) (see for example [13, Section 12]), whose Matveev complexity
is not yet known but conjectured to be n− 1 through a general conjecture on the complexity
of lens spaces [30, Section 2.3.3 page 77].

Hence, if the lens space complexity conjecture holds, then we would have from Corollary
3.4 the double bound ⌈

n− 1
2

⌉
6 c

(
S3,Kn

)
6
⌊
n+ 6

2

⌋
,

which would imply that c
(
S3,Kn

)
can only take four possible values. All this makes Conjec-

ture 3.5 sound more plausible, and Conjecture 3.3 as well by extension.

3.3. Construction for odd twist knots. We first consider a general twist knot Kn for
n > 3, n odd. We will construct an H-triangulation of (S3,Kn) and an ideal triangulation of
S3 \Kn starting from a knot diagram of Kn. The method dates back to Thurston [44] and
was also described in more detail in [28, 31].

For the first step, as in Figure 7, we choose a middle point for each arc of the diagram,
except for one arc where we choose two (the upper right one on the figure), and we draw
quadrilaterals around the crossings with the chosen points as vertices (in dashed lines in
Figure 7).

We consider the equivalence relation on dotted edges generated by “being part of the same
quadrilateral”, and we choose a way of drawing each class. In Figure 7 there are two such
edges, one with a simple arrow and one with a double arrow. We orient the arrows such that
the directions keep alternating when one goes around any quadrilateral.

There remains one quadrilateral with three dotted edges and one edge from the knot Kn.
We cut this one into two triangles m and r, introducing a third arrow type, the “white
triangle” one (see Figure 7).

Here m, r, s,D,E are the polygonal 2-cells that decompose the equatorial plane around the
knot; note that m, r, s are triangles, D is an (n+ 1)-gon and E is an (n+ 2)-gon.

In Figure 7 we can see that around each crossing of the diagram, there are six edges (two
in blue from the knot, four dotted with arrows) that delimit an embedded tetrahedron. We
will now collapse each of these tetrahedra into one segment, so that each of the two “knot
edges” are collapsed to an extremal point of the segment and all four dotted edges fuse into a



TRIANGULATIONS & TEICHMÜLLER TQFT VOLUME CONJECTURE FOR TWIST KNOTS 23

. . .

D

m

r

sE

Figure 7. Building an H-triangulation from a diagram of Kn

(a) (b)

. . .

D

ms
r

E

. . .

D

m

s
rE

Figure 8. Boundaries of B+ and B−

single one, with natural orientation. The homeomorphism type of (S3,Kn) does not change
if we collapse every tetrahedron in such a way, and that is what we do next.

After such a collapse, the ambient space (that we will call again S3) decomposes as one
0-cell (the collapsed point), four edges (simple arrow, double arrow, arrow with a triangle and
blue edge coming from Kn), five polygonal 2-cells still denoted m, r, s,D,E, and two 3-balls
B+ and B−, respectively from upper and below the figure. The boundaries of B+ and B− are
given in Figure 8. Note that the boundary of B+ is obtained from Figure 7 by collapsing the
upper strands of Kn, and B+ is implicitly residing above Figure 8 (a). Similarly, B− resides
behind Figure 8 (b). Note that the boundary of D, read clockwise, is the sequence of n + 1
arrows �,←,→, . . . ,← with the simple arrows alternating directions.

We can now give a new description of S3 by gluing the balls B+ and B− along the face E;
the two 3-cells fuse into one, and its boundary is now as in Figure 9 (a). Indeed, since B− is
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Figure 9. A cellular decomposition of (S3,Kn) as a polyhedron glued to itself

behind Figure 8 (b) and B+ in front of Figure 8 (a), we can picture the gluing along E in the
following way, from front to back:

• the faces D,m, r, s of B−,
• the 3-cell B−,
• the face E of B−,
• the face E of B+,
• the 3-cell B+,
• the faces D,m, r, s of B+.

Note that in Figure 9 (a) the red dashed faces lie on the back of the figure, and the only
3-cell now lives inside the polyhedron. Finally we can rotate this polyhedron and obtain the
cellular decomposition of S3 in Figure 9 (b), where one face m is in the back and the seven
other faces lie in front.

We will now use the bigon trick to find another polyhedral description of (S3,Kn) with
many fewer edges. The bigon trick is described in Figure 10 (a) to (f). We start at (a),
with the two faces F having several edges in common, and a triangle u adjacent to F (note
that there is a second face u adjacent to the other F somewhere else). Then we go to (b)
by cutting F along a new edge (with double full arrow) into F ′ and a triangle v. The CW-
complex described in (b) is the same as the one in (c), where the right part is a 3-ball whose
boundary is cut into the triangles u and v and the bigon w. The picture in (d) is simply the
one from (c) with the ball rotated so that v lies in the back instead of w. Then we obtain (e)
by gluing the two parts of (d) along the face v, and finally (f) by fusing F ′ and w into a new
face F ′′. As a result, we replaced two simple arrows by one longer different (full) arrow and
we slided the face u up.
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Figure 10. The bigon trick

Let us now go back to our cellular decomposition of (S3,Kn). We start from Figure 9 (b)
and cut D into new faces u and D′ as in Figure 11 (a). Then we apply the bigon trick p
times, where p := n−3

2 , to slide the cell u on the left D′, and finally we cut the face obtained
from D′ a final time into a p + 2-gon G and a triangle v by adding a double full arrow. See
Figure 11 (b).

Note that if n = 3, i.e. p = 0, we do not use the bigon trick, and simply denote D′ by v.
In this case, G is empty and the double full arrow should be identified with the simple full
arrow.

Then, if p > 1, we triangulate the two faces G as in Figure 12: we add p − 1 new edges
drawn with simple arrows and circled k for k = 1, . . . , p− 1 (and drawn in different colors in
Figure 12 but not in the following pictures), and G is cut into p triangles e1, . . . , ep. This still
makes sense if p = 1, in this case we have G = ep = e1 and no new edges.
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Figure 11. A cellular decomposition of (S3,Kn) before and after the bigon trick
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Figure 12. Decomposing the two faces G in a tower of tetrahedra

Now, by combining Figures 11 (b) and 12, we obtain a decomposition of S3 as a polyhedron
with only triangular faces glued to one another, and Kn still represents the blue edge after
identifications. In order to harmonize the notations with the small cases (p = 0, 1), we do the
following arrow replacements:

• full black simple arrow by simple arrow with circled 0,
• full black double arrow by simple arrow with circled p,
• white triangle simple arrow by simple arrow with circled p+ 1.
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Moreover, we cut the previous polyehdron of Figures 11 (b) and 12 into p+ 4 tetrahedra, in-
troducing new triangular faces ep+1 (behind r, u, v), g (behind r, s, v), s′ (completing m,m, s),
fp (completing g, s′, u) and f1, . . . , fp−1 at each of the p − 1 “floors” of the tower of Figure
12 (from front to back of the figure). We add the convention f0 = e1 to account for the case
p = 0. We also choose an orientation for the blue edge and thus a sign for the tetrahedron
that contains it (this choice will not have any influence on the ideal triangulation, though).

Finally, we obtain the H-triangulation for (S3,Kn) described in Figure 13, for any p > 0
(recalling the convention f0 = e1 if need be).
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Figure 13. The H-triangulation Yn for (S3,Kn), n odd, n > 3, with p = n−3
2

In the H-triangulation of Figure 13 there are
• 1 common vertex,
• p+ 5 = n+7

2 edges (simple arrow −→es , double arrow −→ed , blue simple arrow −→Kn, and the
simple arrows −→e0 , . . . ,

−−→ep+1 indexed by 0, . . . p+ 1 in circles),
• 2p+ 8 = n+ 5 faces (e1, . . . , ep+1, f1, . . . , fp, g,m, r, s, s

′, u, v),
• p+ 4 = n+5

2 tetrahedra (T1, . . . , Tp, U, V,W,Z) .

We are now ready to obtain an ideal triangulation of S3 \Kn. From the H-triangulation of
(S3,Kn) of Figure 13, let us collapse the whole tetrahedron Z into a triangle: this transforms
the blue edge (corresponding to Kn) into a point, collapses the two faces m, and identifies
the faces s and s′ in a new face also called s, and the double arrow edge to the arrow with
circled p+ 1.

Hence we get an ideal triangulation of the knot complement S3 \Kn, detailed in Figure 14.
In Figure 14 there are
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Figure 14. The ideal triangulation Xn for S3 \Kn, n odd, n > 3, with p = n−3
2

• 1 common vertex,
• p + 3 = n+3

2 edges (simple arrow −→es and the simple arrows −→e0 , . . . ,
−−→ep+1 indexed by

0, . . . p+ 1 in circles),
• 2p+ 6 = n+ 3 faces (e1, . . . , ep+1, f1, . . . , fp, g, r, s, u, v),
• p+ 3 = n+3

2 tetrahedra (T1, . . . , Tp, U, V,W ).

3.4. Proof of Theorem 3.1. We can now conclude with the proof of Theorem 3.1.

Proof of Theorem 3.1. The triangulations of Figures 13 and 14 correspond to the common
“comb representation” of Figure 5.

Similarly, the triangulations of Figures 22 and 23 (constructed in Section 8.1) correspond
to the common “comb representation” of Figure 6. �

4. Angle structures and geometricity (odd case)

In this section, n will be an odd integer greater than or equal to 3.

4.1. Geometricity of the ideal triangulations. Here we will compute the balanced angle
relations for the ideal triangulations Xn and their spaces of angle structures AXn . We will
then prove that the Xn are geometric.

Theorem 4.1. For every odd n > 3, the ideal triangulation Xn of the n-th twist knot com-
plement S3 \Kn is geometric.
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To prove Theorem 4.1, we follow Futer-Guéritaud [20]: we first prove that the space of
angle structures AXn is non-empty (Lemma 4.2); then we prove by contradiction that the
volume functional cannot attain its maximum on the boundary AXn \AXn (Lemma 4.4).

For the remainder of this section, n will be a fixed odd integer, n > 7. Recall that p = n−3
2 .

The cases n = 3, 5 (i.e. p = 0, 1) are similar and simpler than the general following n > 7
case, and will be discussed at the end of this section (Remark 4.5).

Recall that we denoted −→e0 , . . . ,
−−→ep+1,

−→es ∈ (Xn)1 the p + 3 edges in Xn respectively repre-
sented in Figure 14 by arrows with circled 0, . . . , circled p+ 1 and simple arrow.

For α = (a1, b1, c1, . . . , ap, bp, cp, aU , bU , cU , aV , bV , cV , aW , bW , cW ) ∈ SXn a shape struc-
ture on Xn, we compute the weights of each edge:

• ωs(α) := ωXn,α(−→es) = 2aU + bV + cV + aW + bW
• ω0(α) := ωXn,α(−→e0) = 2a1 + c1 + 2a2 + . . .+ 2ap + aV + cW
• ω1(α) := ωXn,α(−→e1) = 2b1 + c2

• ωk(α) := ωXn,α(−→ek) = ck−1 + 2bk + ck+1 (for 2 6 k 6 p− 1)

• ωp(α) := ωXn,α(−→ep) = cp−1 + 2bp + bU + bV + aW
• ωp+1(α) := ωXn,α(−−→ep+1) = cp + bU + 2cU + aV + cV + bW + cW

The space of angle structures AXn is made of shape structures α ∈ SXn satisfying ωj(α) = 2π
for all j ∈ {s, 0, . . . , p + 1}. The sum of all these equations says that all the angles add up
to (p+ 3)π, which is true in any shape structure, therefore we can drop ω0(α) as redundant.
Using the properties of shape structures, AXn is thus defined by the p+ 2 following equations
on α:

• Es(α) : 2aU = aV + cW
• E1(α) : 2b1 + c2 = 2π

• Ek(α) : ck−1 + 2bk + ck+1 = 2π (for 2 6 k 6 p− 1)

• Ep(α) : cp−1 + 2bp + (bU + bV + aW ) = 2π
• Ep+1(α) : 3cp + (aU + aV + cW ) + 3(cU + cV + bW ) = 3π ;

the last line was obtained as 3Bp+1 + 2Bs − 3FU − 2FV − 2FW , where Fj is the relationship
aj + bj + cj = π and Bj is the relationship ωj(α) = 2π. In other words,

AXn = {α ∈ SXn | ∀j ∈ {s, 1, . . . , p+ 1}, Ej(α)}.

Lemma 4.2. The set AXn is non-empty.

Proof. For small ε > 0, define:ajbj
cj

 :=

 ε
π − ε(j2 + 1)

εj2

 for 1 6 j 6 p− 1,

apbp
cp

 :=

π/2− ε(p2 + 2p− 1)/2
π/2− ε(p2 − 2p+ 1)/2

εp2

 ,
aUbU
cU

 =

aVbV
cV

 =

cWaW
bW

 :=

π/2 + εp2/2
π/3

π/6− εp2/2

 .
By direct computation, we can check that this α is a shape structure (the angles are in (0, π)
if ε is small enough), and that the equations Ej(α) are satisfied for j ∈ {s, 1, . . . , p+ 1}. �
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We will say that a tetrahedron T of a triangulation X endowed with an extended shape
structure α ∈ SX is flat for α if one of the three angles of T is zero, and taut for α if two
angles are zero and the third is π. In both cases, T has a volume equal to zero.

Lemma 4.3. Suppose α ∈ AXn \AXn is such that the volume functional on AXn is maximal
at α. If an angle of α equals 0, then the other two angles for the same tetrahedron are 0
and π. In other words, if a tetrahedron is flat for α, then it is taut for α.

Proof. We refer to [21, Proposition 7.1] for the proof. �

Next, we claim that among the volume maximizers, there is one such that (aU , bU , cU ) =
(aV , bV , cV ) = (cW , aW , bW ). The involution (aV , bV , cV ) ↔ (cW , aW , bW ) preserves all
equations Ej(α), so by concavity of the volume function, there is a maximizer such that
(aV , bV , cV ) = (cW , aW , bW ). By Es(α) this implies aU = aV = cW . The order-3 substitution
of variables

(aU , bU , cU )→ (aV , bV , cV )→ (cW , aW , bW )→ (aU , bU , cU )
then clearly leaves Ep and Ep+1 unchanged, so by concavity we may average out and find a
maximizer such that U, V,W have the same angles, as desired.

These identifications make Es(α) redundant. Moreover, dropping the angles of V and W
as variables, we may now rewrite the system of constraints as

• E1 : 2b1 + c2 = 2π
• Ek : ck−1 + 2bk + ck+1 = 2π (for 2 6 k 6 p− 1)
• E′p : cp−1 + 2bp + 3bU = 2π
• E′p+1 : cp + aU + 3cU = π (not 2π!).

Lemma 4.4. Suppose that the volume functional on AXn is maximal at α. Then α cannot
be on the boundary AXn \AXn, and is necessarily in the interior AXn.

Proof. First, the tetrahedron Tp is not flat, i.e. not taut. Indeed, on one hand cp = π would by
E′p+1 entail aU = cU = 0, hence bU = π, incompatible with E′p. On the other hand, suppose
cp = 0, then the non-negative sequence (0, c1, . . . , cp) is convex, because Ek can be rewritten
ck−1 − 2ck + ck+1 = 2ak ≥ 0 (agreeing that “c0” stands for 0). Hence c1 = · · · = cp = 0, and
bp ∈ {0, π} by Lemma 4.3. If bp = 0 then (E′p, E′p+1) yield (aU , bU , cU ) = (0, 2π/3, π/3). If
bp = π they yield (aU , bU , cU ) = (π, 0, 0). In either case, all tetrahedra are flat so the volume
vanishes and cannot be maximal: this contradiction shows cp > 0.

Next, we show that U is not flat. We cannot have cU = π or bU = π, by E′p+1 and E′p. But
aU = π is also impossible, since by E′p+1 it would imply cp = 0, ruled out above.

We can see by induction that b1, . . . , bp−1 > 0: the initialisation is given by E1, written as
b1 = π − c2/2 ≥ π/2. For the induction step, suppose bk−1 > 0 for some 1 < k ≤ p− 1: then
ck−1 < π, hence Ek implies bk > 0.

Finally, b1, . . . , bp−1 < π: we show this by descending induction. Initialisation: by Ep−1,
we have bp−1 ≤ π − cp/2 < π since Tp is not flat. For the induction step, suppose bk+1 < π
for some 1 ≤ k < p − 1: then 0 < bk+1 < π by the previous induction, hence ck+1 > 0 by
Lemma 4.3, hence Ek implies bk < π. �

Remark 4.5 (Cases p = 0, 1). The above discussion is valid for p ≥ 2. If p = 1, we have
only the weights ωs, ωp+1 and ωp, the latter taking the form 2bp + bU + bV + aW (i.e. the
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variable “cp−1” disappears from equation E′p). The argument is otherwise unchanged — the
inductions in the proof of Lemma 4.4 being empty.

If p = 0, we find only one equation E′p+1 : aU + 3cU = π (i.e. the variable “cp” disappears).
The volume maximizer (aU , bU , cU ) on the segment from (π, 0, 0) to (0, 2π/3, π/3) yields the
complete hyperbolic metric.

Proof of Theorem 4.1. In the case n > 7, we have proven in Lemma 4.2 that AXn is non-
empty, thus the volume functional V : AXn → R admits a maximum at a certain point
α ∈ AXn as a continuous function on a non-empty compact set. We proved in Lemma 4.4
that α /∈ AXn \AXn , therefore α ∈ AXn . It follows from Theorem 2.2 that Xn is geometric.

For the cases n = 3 and n = 5, we follow the same reasoning, replacing Lemma 4.4 with
Remark 4.5. �
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Figure 15. Triangulation of the boundary torus for the truncation of Xn,
n odd, with angles (brown), meridian curve mXn (violet, dashed), longitude
curve lXn (green, dashed) and preferred longitude curve (i)∪ . . .∪(vi) (red).

4.2. The cusp triangulation. If we truncate the ideal triangulation Xn of Figure 14 by
removing a small neighborhood of each vertex, then we obtain a cellular decomposition by
compact truncated tetrahedra of the knot exterior S3 \ν(Kn) (where ν(K) is an open tubular
neighborhood of K). This induces a triangulation on the boundary torus ∂ν(Kn), where each
triangle comes from a pre-quotient vertex of a tetrahedron of X. See Figure 15 for the full
description of the triangulation of this torus.
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The triangles are called (in blue) by the names of the corresponding truncated vertices
(written kj for the k-th vertex in the j-th tetrahedron), the edges are called (in black) by
the names of the truncated faces they are part of, and the angles a, b, c at each corner of a
triangle (in brown) obviously come from the corresponding truncated edges in Xn. Note that
we did not put the indices on a, b, c for readability, but it goes without saying that angles
a, b, c in the triangle kj are actually the coordinates aj , bj , cj . Moreover, for some small faces,
we only indicated the brown a angle for readability; the b and c follow clockwise (since all the
concerned tetrahedra have positive sign).

We drew three particular curves in Figure 15: mXn in violet and dashed, lXn in green
and dashed, and finally the concatenation (i) ∪ . . .∪ (vi) in red. These curves can be seen
as generators of the first homology group of the torus. We call mXn a meridian curve since
it actually comes from the projection to ∂ν(Kn) of a meridian curve in S3 \ Kn, the one
circling the knot and going through faces s and E on the upper left of Figure 7, to be exact
(we encourage the motivated reader to check this fact by following the curve on the several
pictures from Figure 7 to 14). Similarly, lXn and (i) ∪ . . .∪ (vi) are two distinct longitude
curves, and (i) ∪ . . .∪ (vi) corresponds to a preferred longitude of the knot Kn, i.e. a longitude
with zero linking number with the knot.

This last fact can be checked in Figure 16: on the bottom of the figure, the sub-curves (i)
to (vi) are drawn on a truncated tetrahedron U ; on the top of the figure, the corresponding
full longitude curve (in red) is drawn in the exterior of the knot (in blue) before the collapsing
of the knot into one point (compare with Figure 7). We check that in each square on the
left of the figure, the sum of the signs of crossings between blue and red strands is zero (the
signs are marked in green circled + and −), and thus the red longitude curve has zero linking
number with the knot, i.e. is a preferred longitude.

To the curves mXn and lXn are associated combinations of angles (the angular holonomies)

mXn(α) := HR(mXn) = aU − aV and lXn(α) := HR(lXn) = 2(cV − bW ),

following the convention that when the curve crosses a triangle, the lone angle among the
three is counted positively if it lies on the left of the curve, and negatively if it lies on the
right. Remark that this convention cannot rigorously be applied to the red curve (i) ∪ . . .∪
(vi) in Figure 15, since it lies on edges and vertices. Nevertheless, one can see in Figure 15
that in the homology group of the boundary torus, we have the relation

(i) ∪ . . . ∪ (vi) = lXn + 2mXn .

4.3. The complex gluing equations. Here seems to be an appropriate place to list the
complex versions of the balancing and completeness equations for Xn, which will be useful in
Section 7.

For a complex shape structure z̃ = (z1, . . . , zp, zU , zV , zW ) ∈ (R + iR>0)p+3, its complex
weight functions are:

• ωC
s (z̃) := ωC

Xn,α
(−→es) = 2Log(zU ) + Log(z′V ) + Log(z′′V ) + Log(zW ) + Log(z′W )

• ωC
0 (z̃) := ωC

Xn,α
(−→e0) = 2Log(z1) + Log(z′1) + 2Log(z2) + · · · + 2Log(zp) + Log(zV ) +

Log(z′′W )
• ωC

1 (z̃) := ωC
Xn,α

(−→e1) = 2Log(z′′1 ) + Log(z′2)

• ωC
k (z̃) := ωC

Xn,α
(−→ek) = Log(z′k−1) + 2Log(z′′k) + Log(z′k+1) (for 2 6 k 6 p− 1)
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Figure 16. A preferred longitude (i)∪ . . .∪(vi) (in red) for the odd twist knot
Kn, seen in S3 \Kn (top) and on the truncated tetrahedron U (bottom).

• ωC
p (z̃) := ωC

Xn,α
(−→ep) = Log(z′p−1) + 2Log(z′′p ) + Log(z′U ) + Log(z′V ) + Log(zW )

• ωC
p+1(z̃) := ωC

Xn,α
(−−→ep+1) = Log(z′p) + Log(z′U ) + 2Log(z′′U ) + Log(zV ) + Log(z′′V ) +

Log(z′W ) + Log(z′′W )

It follows from Theorem 4.1 that there exists exactly one complex angle structure z̃0 =
(z0

1 , . . . , z
0
p , z

0
U , z

0
V , z

0
W ) ∈ (R + iR>0)p+3 corresponding to the complete hyperbolic metric.

This z̃0 is the only z̃ ∈ (R + iR>0)p+3 satisfying

ωC
s (z̃) = ωC

0 (z̃) = . . . = ωC
p+1(z̃) = 2iπ

as well as the complex completeness equation
Log(zU )− Log(zV ) = 0

coming from the meridian curve mXn .
These conditions are equivalent to the following system E co

Xn
(z̃) of equations on z̃:

• EXn,0(z̃) : Log(z′1) + 2Log(z1) + · · ·+ 2Log(zp) + 2Log(zU ) = 2iπ
• EXn,1(z̃) : 2Log(z′′1 ) + Log(z′2) = 2iπ

• EXn,k(z̃) : Log(z′k−1) + 2Log(z′′k) + Log(z′k+1) = 2iπ (for 2 6 k 6 p− 1)

• E co
Xn,p+1(z̃) : Log(z′p) + 2Log(z′′U )− Log(zW ) = 0

• E co
Xn,s

(z̃) : Log(z′′W )− Log(zU ) = 0
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• zV = zU

Indeed, notice that the equation ωC
p (z̃) = 2iπ was redundant with the other complex balancing

equation. Remark furthermore that the variable zV only appears in the equation zV = zU ,
which is why we will allow a slight abuse of notation to use the equations

EXn,0(z), . . . ,EXn,p−1(z),E co
Xn,p+1(z),E co

Xn,s(z)

also for a variable z = (z1, . . . , zp, zU , zW ) ∈ (R + iR>0)p+2 without the coordinate zV (see
Lemma 7.4).

5. Partition function for the ideal triangulations (odd case)

Notation 5.1. From now, we will denote ?= the equality up to taking the complex module.

In this section, n will be an odd integer greater than or equal to 3, and p = n−3
2 . We will

compute the partition functions of the Teichmüller TQFT for the ideal triangulations Xn of
the twist knot complements S3\Kn constructed in Section 3 and we will prove that they can be
expressed in a simple way using a one-variable function independent of the angle structure, as
well as only two linear combinations of angles, which are two independant angular holonomies
in the cusp link triangulation.

This results in a slightly different version of the first statement in the Andersen-Kashaev
volume conjecture of [2, Conjecture 1 (1)]. Note that our partition functions are computed
only for the specific ideal triangulations Xn. In order to generalise Theorem 5.2 to any ideal
triangulation of a twist knot complement, one would need further properties of invariance
under change of triangulation (more general than the ones discussed in [2]). A version for the
even case is proved in Section 8.3 (see Theorem 8.4).

Theorem 5.2. Let n > 3 be an odd integer and p = n−3
2 . Consider the ideal triangulation

Xn of S3 \Kn described in Figure 14. Then for all angle structures α = (a1, . . . , cW ) ∈ AXn

and all ~ > 0, we have:

Z~(Xn, α) ?=
∫
R+i

µXn
(α)

2π
√
~

JXn(~, x)e
1

2
√
~
xλXn (α)

dx,

with

• the degree one angle polynomial µXn : α 7→ aU − aV ,
• the degree one angle polynomial λXn : α 7→ 2(aU − aV + cV − bW ),
• the map (~, x) 7→

JXn(~, x) =
∫

Y ′
dy′ e2iπ(y′TQny′+x(x−y′U−y

′
W ))e

1√
~(y′TWn−πx) Φb (y′U ) Φb (y′U + x) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

) ,
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where Y ′ = Y ′(~, α) =
∏p
k=1

(
R− i

2π
√
~
(π − ak)

)
×
∏
l=U,W

(
R + i

2π
√
~
(π − al)

)
,

y′ =


y′1
...
y′p
y′U
y′W

 , Wn =



−2pπ
...

−2π
(
kp− k(k−1)

2

)
...

−p(p+ 1)π
(p2 + p+ 1)π

π


and Qn =



1 1 · · · 1 −1 0
1 2 · · · 2 −2 0
...

... . . . ...
...

...
1 2 · · · p −p 0
−1 −2 · · · −p p 1

2
0 0 · · · 0 1

2 0


.

The reader may notice that indices corresponding to V are missing in the integration
variables. This comes from the change of variables x = y′V − y′U , which makes x replace
the variable y′V . Simply speaking, we chose to make V disappear rather than U , because V
appeared a lot less than U in the defining gluing equations (see end of Section 4).

Remark 5.3. Note that, if you fix ~ > 0 and x ∈ R+ i
(
− 1

2
√
~
, 1

2
√
~

)
, the integration contour

Y ′ in the definition of JXn(~, x) depends a priori on the angle structure α; however, since
the integrand in JXn(~, x) is a holomorphic function of the variables in y′ on a neighborhood
of Y ′ in Cp+2, it follows from the Bochner-Martinelli formula (that generalises the Cauchy
theorem, see [29]) and the fast decay properties of this integrand at infinity that Y ′ could
be replaced with a different contour. In this sense, JXn(~, x) is independent of the angle
structure α. Nevertheless, picking the particular contour Y ′ = Y ′(~, α) with the complete
structure α = α0 will help us prove the volume conjecture in Section 7.

Remark 5.4. The quantities µXn(α) and λXn(α) in Theorem 5.2 satisfy the following re-
lations with the angular holonomies corresponding to the meridian and longitude curves
mXn(α), lXn(α) from Section 4.2:

µXn(α) = mXn(α) and λXn(α) = lXn(α) + 2mXn(α).

Hence, λXn(α) is the angular holonomy of a curve on ∂ν(Kn) that is equal in homology to the
curve (i) ∪ . . .∪ (vi) (of Figures 15 and 16), thus λXn(α) comes from a preferred longitude of
the knot, as expected in Conjecture 2.12 (1). Similarly, µXn(α) is associated to a meridian of
the knot.

We will need two lemmas to prove Theorem 5.2.

Lemma 5.5. Let n > 3 be an odd integer and p = n−3
2 . For the ideal triangulation Xn of

S3 \Kn described in Figure 14, the kinematical kernel is KXn(t̃) = exp
(
2iπt̃T Q̃nt̃

)
, where

t̃ = (t1, . . . , tp, tU , tV , tW )T ∈ RX3
n and Q̃n is the following symmetric matrix with half-integer
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coefficients:

Q̃n =



t1 t2 ··· tp−1 tp tU tV tW

t1 1 1 · · · 1 1 −1 0 0
t2 1 2 · · · 2 2 −2 0 0
...

...
... . . . ...

...
...

...
...

tp−1 1 2 · · · p− 1 p− 1 −(p− 1) 0 0
tp 1 2 · · · p− 1 p −p 0 0
tU −1 −2 · · · −(p− 1) −p p+ 2 −3/2 1
tV 0 0 · · · 0 0 −3/2 1 −1/2
tW 0 0 · · · 0 0 1 −1/2 0


.

Proof. Let n > 3 be an odd integer and p = n−3
2 . We will denote

t̃ = (t(T1), . . . , t(W ))T = (t1, . . . , tp, tU , tV , tW )T ∈ RX
3
n

a vector whose coordinates are associated to the tetrahedra (tj for Tj). The generic vector in
RX2

n corresponding to the face variables will be denoted

x = (e1, . . . , ep, ep+1, f1, . . . , fp, v, r, s, g, u)T ∈ RX
2
n .

By definition, the kinematical kernel is:

KXn

(
t̃
)

=
∫

x∈RX2
n

dx
∏

T∈X3
n

e2iπε(T )x0(T )t(T )δ(x0(T )− x1(T ) + x2(T ))δ(x2(T )− x3(T ) + t(T )).

Following Lemma 2.8 we compute from Figure 14 that:

KXn

(
t̃
)

=
∫

x∈RX2
n

dx
∫

w∈R2(p+3)
dw e2iπt̃TRxe−2iπwTAxe−2iπwTBt̃,

where w = (w1, . . . , wW , w
′
1, . . . , w

′
W )T ∈ R2(p+3) and the matrices R,A,B are given by:

R =



e1 ... ep ep+1 f1 ... fp v r s g u

t1 1 0... . . . 0 0
tp 0 1
tU 0 −1 0 0 0
tV 0 0 0 0 0 −1 0
tW 0 0 0 0 −1


,
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A =



e1 e2 ... ep ep+1 f1 f2 ... fp v r s g u

w1 1 −1 1
... . . . . . . 0 . . . 0 0... 0 . . . . . . 0 . . .
wp 1 −1 1
wU 0 −1 1 1 0 0
wV 0 1 0 0 −1 1 0
wW 0 1 −1 0 0 1
w′1 −1 1
... −1 . . . 0 0... . . . . . .
w′p 0 −1 1
w′U 0 0 0 1 −1 0
w′V 1 0 0 0 0 −1
w′W −1 0 1 0 0 0 0



,

B =



t1 ... tp tU tV tW

w1
...
wp 0
wU

wV

wW

w′1 1
... . . . 0
w′p . . .
w′U

w′V 0 . . .
w′W 1



.
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Careful computation yields that det(A) = 1 and that the inverse A−1 is equal to

A−1 =



w1 w2 ... wp−1 wp wU wV wW w′1 w′2 ... w′p−1 w′p w′U w′V w′W

e1 0 · · · 0 0 1 0 −1 −1 · · · −1 1 0 0
e2 −1 0 0 2 0 −1 −2 · · · −2 2 0 0

...
−1 −1 . . . ... . . . ...
... . . . 0 0

...
...

...
...

... 1− p 1− p
...

...
...

ep −1 0 1− p −p
ep+1 −1 · · · −1 0 p+ 1 0 −1 −2 · · · 1− p −p p+ 1 0 0
f1 0 1 0 0 −1 · · · −1 1 0 0

f2 1 0 0 . . . ...
1

... 0
...

...
...

... . . . −1 −1
...

...
...

fp−1 0 0 −1
fp 0 1 0 0 · · · 0 1 0 0
v −1 · · · −1 0 p+ 1 0 −1 −2 · · · −p p+ 1 0 1
r −1 · · · −1 0 p+ 2 −1 −1 −2 · · · −p p+ 2 −1 1
s 1 −1 1 −1 1 0
g 0 1 −1 1 0 −2 1 0
u 0 1 0 1 −1 0



.

Hence, following Lemma 2.8, we have

KXn

(
t̃
)

= 1
|det(A)|e

2iπt̃T (−RA−1B)̃t = e2iπt̃T (−RA−1B)̃t.

The lemma finally follows from the identity 2Q̃n = (−RA−1B) + (−RA−1B)T , where Q̃n is
defined in the statement of the lemma. �

The following lemma relates the symmetric matrix Q̃n to the gluing equations.

Lemma 5.6. Let n > 3 be an odd integer and p = n−3
2 . Let α = (a1, b1, c1, . . . , aW , bW , cW ) ∈

SXn denote a shape structure. If we denote Q̃n the symmetric matrix from Lemma 5.5,
C̃(α) = (c1, . . . , cW )T , and Γ̃(α) := (a1−π, . . . , ap−π, π−aU , π−aV , π−aW )T , then (indexing
entries by k ∈ {1, . . . , p} and U, V,W ) we have the vector equality 2Q̃nΓ̃(α) + C̃(α) =



k=1
...

... k(ωs(α)− 2(p+ 2)π) +
∑k
j=1 jωk−j(α)

k=p
...

ωp+1(α)− ωs(α)−
(
p(ωs(α)− 2(p+ 2)π) +

∑p
j=1 jωp−j(α)

)
+ 2π − 1

2λXn(α)
1
2λXn(α) + ωs(α)− 3π

3π − ωs(α)


,

where λXn(α) = 2(aU − aV + cV − bW ).
In particular, for α ∈ AXn an angle structure, the vector of angles
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2Q̃nΓ̃(α) + C̃(α) =



k=1
...

... −2π
(
kp− k(k − 1)

2

)
k=p

...
(p2 + p+ 2)π − 1

2λXn(α)
1
2λXn(α)− π

π


only depends on the linear combination λXn(α).

Proof. The lemma follows from direct computations. �

We can now proceed with the proof of Theorem 5.2.

Proof of Theorem 5.2. Let n > 3 be an odd integer and p = n−3
2 . We want to compute the

partition function associated to Xn and prove that it is of the desired form. We know the
form of the kinematical kernel from Lemma 5.5. Let us now compute the dynamical content.
Let α = (a1, b1, c1, . . . , aW , bW , cW ) ∈ AXn , ~ > 0 and t̃ = (t1, . . . , tp, tU , tV , tW )T ∈ RX3

n .
By definition, the dynamical content D~,Xn(t̃, α) is equal to:

e
1√
~
C̃(α)T t̃ Φb

(
tU + i

2π
√
~
(π − aU )

)
Φb
(
tV + i

2π
√
~
(π − aV )

)
Φb
(
tW + i

2π
√
~
(π − aW )

)
Φb
(
t1 − i

2π
√
~
(π − a1)

)
· · ·Φb

(
tp − i

2π
√
~
(π − ap)

) ,

where C̃(α) = (c1, . . . , cp, cU , cV , cW )T as in the statement of Lemma 5.6.
Now we can compute the partition function of the Teichmüller TQFT. By definition:

Z~(Xn, α) =
∫

t̃∈RX3
n

dt̃KXn(t̃)D~,Xn(t̃, α).

We do the following change of variables:

• y′k = tk − i
2π
√
~
(π − ak) for 1 6 k 6 p,

• y′l = tl + i
2π
√
~
(π − al) for l ∈ {U, V,W},

and we denote ỹ′ =
(
y′1, . . . , y

′
p, y
′
U , y

′
V , y

′
W

)T
. We also denote

Ỹ ′~,α :=
p∏

k=1

(
R− i

2π
√
~

(π − ak)
)
×

∏
l=U,V,W

(
R + i

2π
√
~

(π − al)
)
,

the subset of Cp+3 on which the variables in ỹ′ will reside. Finally we denote:

Γ̃(α) := 2π
√
~

i
(ỹ′ − t̃) = (a1 − π, . . . , ap − π, π − aU , π − aV , π − aW )T .

as in the statement of Lemma 5.6. We can now compute:
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Z~(Xn, α) =
∫

t̃∈RX3
n

dt̃KXn(t̃)D~,Xn(t̃, α)

=
∫

ỹ′∈Ỹ ′~,α

dỹ′KXn

(
ỹ′ − i

2π
√
~

Γ̃(α)
)

D~,Xn

(
ỹ′ − i

2π
√
~

Γ̃(α), α
)

=
∫

ỹ′∈Ỹ ′~,α

dỹ′e2iπỹ′T Q̃nỹ′+ 2√
~

Γ̃(α)T Q̃nỹ′− i
2π~ Γ̃(α)T Q̃nΓ̃(α)+ 1√

~
C̃(α)T ỹ′− i

2π~ C̃(α)T Γ̃(α) Φb (y′U ) Φb (y′V ) Φb (y′W )
Φb (y′1) · · ·Φb

(
y′p

)
?=
∫

ỹ′∈Ỹ ′~,α

dỹ′e2iπỹ′T Q̃nỹ′+ 2√
~

Γ̃(α)T Q̃nỹ′+ 1√
~
C̃(α)T ỹ′Φb (y′U ) Φb (y′V ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

)
=
∫

ỹ′∈Ỹ ′~,α

dỹ′e2iπỹ′T Q̃nỹ′+ 1√
~
W̃ (α)T ỹ′Φb (y′U ) Φb (y′V ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

) ,

where W̃ (α) := 2Q̃nΓ̃(α) + C̃(α). Now, from Lemma 5.6, we have

W̃ (α) =



−2pπ
...

−2π
(
kp− k(k − 1)

2

)
...

−p(p+ 1)π
(p2 + p+ 2)π − 1

2λXn(α)
1
2λXn(α)− π

π


.

We define a new variable x := y′V − y′U living in the set

Y ′0~,α := R + i

2π
√
~

(aU − aV ),

and we also define y′ (respectively Y ′~,α) exactly like ỹ′ (respectively Ỹ ′~,α) but with the
second-to-last coordinate (corresponding to the tetrahedron V ) taken out. We finally define

Wn =



Wn,1
...

Wn,k
...

Wn,p

Wn,U

Wn,W


:=



−2pπ
...

−2π
(
kp− k(k−1)

2

)
...

−p(p+ 1)π
(p2 + p+ 1)π

π


and Qn :=



1 1 · · · 1 −1 0
1 2 · · · 2 −2 0
...

... . . . ...
...

...
1 2 · · · p −p 0
−1 −2 · · · −p p 1

2
0 0 · · · 0 1

2 0


.

(1)
Notice that Qn is obtained from Q̃n by the following operations:

• add the V -row to the U -row,
• add the V -column to the U -column,
• delete the V -row and the V -column,
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and Wn is obtained from W̃ (α) by the same operations on rows.
We can now use the substitution y′V = y′U + x to compute:

2iπỹ′T Q̃nỹ′ = 2iπ
(
(y′TQny′ − py′U

2 − y′Uy′W ) + (p+ 2)y′U
2 − 3y′Uy′V + 2y′Uy′W + y′V

2 − y′V y′W
)

= 2iπ
(
y′TQny′ − xy′U − xy′W + x2

)
,

and 1√
~
W̃ (α)T ỹ′ = 1√

~

(
W T
n y′ + x(1

2λXn(α)− π)
)
, thus

Z~(Xn, α) ?=
∫

ỹ′∈Ỹ ′~,α

dỹ′e2iπỹ′T Q̃nỹ′+ 1√
~
W̃ (α)T ỹ′Φb (y′U ) Φb (y′V ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

)
?=
∫
dxdy′e2iπ(y′TQny′+x(x−y′U−y

′
W ))+ 1√

~(W T
n y′+x( 1

2λXn (α)−π)) Φb (y′U ) Φb (y′U + x) Φb (y′W )
Φb (y′1) · · ·Φb

(
y′p

) ,

where the variables (y′, x) in the last integral lie in Y ′~,α × Y ′0~,α.
Finally we obtain that

Z~(Xn, α) ?=
∫
x∈R+ i

2π
√
~
µXn (α)

JXn(~, x)e
1

2
√
~
xλXn (α)

dx,

where

JXn(~, x) =
∫

Y ′
dy′ e2iπ(y′TQny′+x(x−y′U−y

′
W ))e

1√
~(y′TWn−πx) Φb (y′U ) Φb (y′U + x) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

)
and µXn(α) = aU − aV , which concludes the proof. �

We conclude this section with a slight rephrasing of Theorem 5.2, in the following Corollary
5.7. Although the expression in Theorem 5.2 was the closest to the statement of [2, Conjecture
1 (1)], we find that the following re-formulation has additional benefits: the integration multi-
contour is now independent of ~ and the integrand is closer to the form e

1
2π~S(y) that we need

in order to apply the saddle point method (see Theorem 2.17, where λ→∞ should be thought
of as 2π~→ 0+).

Corollary 5.7. Let n > 3 be an odd integer and p = n−3
2 . Consider the ideal triangulation

Xn of S3 \Kn from Figure 14. Then for all angle structures α ∈ AXn and all ~ > 0, we have:

Z~(Xn, α) ?=
∫
R+iµXn (α)

JXn(~, x)e
1

4π~ xλXn (α)dx,

with the map

JXn : (~, x) 7→
( 1

2π
√
~

)p+3 ∫
Yα
dy e

iyTQny+ix(x−yU−yW )+yTWn−πx
2π~

Φb
(

yU
2π
√
~

)
Φb
(
yU+x
2π
√
~

)
Φb
(

yW
2π
√
~

)
Φb
(

y1
2π
√
~

)
· · ·Φb

(
yp

2π
√
~

) ,

where µXn , λXn ,Wn, Qn are the same as in Theorem 5.2, and

Yα =
p∏

k=1
(R− i(π − ak))×

∏
l=U,W

(R + i(π − al)) .
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Proof. We start from the expressions in Theorem 5.2, and, with ~ > 0 fixed, we do the change
of variables yj = y′j

2π
√
~
for j ∈ {1, . . . , p, U,W} and x = x

2π
√
~
. �

6. Partition function for the H-triangulations (odd case)

As stated in the introduction, this section is not essential for understanding the proof of
the volume conjecture in Section 7, and thus may be skipped at first read. However similar
this section looks to the previous Section 5, subtle differences remain in the equations and
calculations, and details should thus be read carefully.

Before stating Theorem 6.1, we compute the weights on each edge of the H-triangulation
Yn given in Figure 13 (for n > 3 odd).

Recall that we denoted −→e0 , . . . ,
−−→ep+1,

−→es ,−→ed ,
−→
Kn ∈ (Yn)1 the p + 5 edges in Yn respectively

represented in Figure 13 by arrows with circled 0, . . . , circled p + 1, simple arrow, double
arrow and blue simple arrow.

For α = (a1, b1, c1, . . . , ap, bp, cp, aU , bU , cU , aV , bV , cV , aW , bW , cW , aZ , bZ , cZ) ∈ SYn a shape
structure on Yn, the weights of each edge are given by:

• ω̂s(α) := ωYn,α(−→es) = 2aU + bV + cV + aW + bW + aZ
• ω̂d(α) := ωYn,α(−→ed) = bU + cU + cW + bZ + cZ
• ω0(α) := ωYn,α(−→e0) = 2a1 + c1 + 2a2 + . . .+ 2ap + aV + cW
• ω1(α) := ωYn,α(−→e1) = 2b1 + c2

• ωk(α) := ωYn,α(−→ek) = ck−1 + 2bk + ck+1 (for 2 6 k 6 p− 1)

• ωp(α) := ωYn,α(−→ep) = cp−1 + 2bp + bU + bV + aW
• ω̂p+1(α) := ωYn,α(−−→ep+1) = cp + cU + aV + cV + bW + bZ + cZ

• ω̂−→
Kn

(α) := ωYn,α(−→Kn) = aZ

Note that some of these weights have the same value as the ones for Xn listed in Section 4
(and are thus also denoted ωj(α)), and some are specific to Yn (and are written with a hat).

We can now compute the partition function of the Teichmüller TQFT for the H-triangulations
Yn, and prove the following theorem. We will denote SYn\Z the space of shape structures on
every tetrahedron of Yn except for Z.

Theorem 6.1. Let n > 3 be an odd integer, p = n−3
2 and Yn the one-vertex H-triangulation

of the pair (S3,Kn) from Figure 13. Then for every ~ > 0 and for every τ ∈ SYn\Z ×SZ

such that ωYn,τ vanishes on −→Kn and is equal to 2π on every other edge, one has

lim
α→ τ
α ∈ SYn

Φb

π − ωYn,α
(−→
Kn

)
2πi
√
~

Z~(Yn, α) ?= JXn(~, 0),

where JXn is defined in Theorem 5.2.

Before proving Theorem 6.1, let us mention a useful result: the fact that Φb is bounded on
compact horizontal bands.

Lemma 6.2. Let ~ > 0 and δ ∈ (0, π/2). Then Mδ,~ := max
z∈R+i[δ,π−δ]

|Φb(z)| is finite.
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Proof. Let ~ > 0 and δ ∈ (0, π/2). By contradiction, let us assume that Mδ,~ = ∞. Then
there exists a sequence (zn)n∈N ∈ (R + i[δ, π − δ])N such that |Φb(zn)| →

n→∞
∞.

If (<(zn))n∈N is bounded, then (zn)n∈N lives in a compact set, which contradicts the con-
tinuity of |Φb|.

If (<(zn))n∈N admits a subsequence going to −∞ (resp. ∞), then the image of this subse-
quence by |Φb| should still tend to ∞, which contradicts Proposition 2.6 (4). �

Proof of Theorem 6.1. Let n > 3 be an odd integer and p = n−3
2 . The proof will consist in

three steps: computing the partition function Z~(Yn, α), applying the dominated convergence
theorem in α→ τ and finally retrieving the value JXn(~, 0) in α = τ .

Step 1. Computing the partition function Z~(Yn, α).
Like in the proof of Theorem 5.2 we start by computing the kinematical kernel. We denote

t̂ = (t1, . . . , tp−1, tp, tU , tV , tW , tZ) ∈ RY
3
n

the vector whose coordinates are associated to the tetrahedra (tj for Tj). The generic vector
in RY 2

n which corresponds to the faces variables will be denoted

x̂ = (e1, . . . , ep+1, f1, . . . , fp, v, r, s, s
′, g, u,m) ∈ RY

2
n .

By definition, the kinematical kernel is:

KYn

(
t̂
)

=
∫

x̂∈RY 2
n

dx̂
∏
T∈Y 3

n

e2iπε(T )x0(T )t(T )δ(x0(T )− x1(T ) + x2(T ))δ(x2(T )− x3(T ) + t(T )).

Following Lemma 2.8, we compute from Figure 13 that:

KYn

(
t̂
)

=
∫

x̂∈RY 2
n

dx̂
∫

ŵ∈R2(p+4)
dŵ e2iπt̂T Ŝx̂e−2iπŵT Ĥx̂e−2iπŵT D̂t̂,

where the matrices Ŝ, Ĥ, D̂ are given by:

Ŝ =



e1 ... ep ep+1 f1 ... fp v r s s′ g u m

t1 1 0... . . . 0 0
tp 0 1
tU 0 −1 0 0 0 0 0
tV 0 0 0 0 0 0 −1 0 0
tW 0 0 0 0 0 −1 0
tZ 0 0 0 0 0 0 1


,
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Ĥ =



e1 e2 ... ep ep+1 f1 f2 ... fp v r s s′ g u m

w1 1 −1 1
... . . . . . . 0 . . . 0 0... 0 . . . . . . 0 . . .
wp 1 −1 1
wU −1 1 1 0 0 0 0
wV 0 1 0 0 0 −1 1 0 0
wW 1 −1 0 0 0 1 0
wZ 0 0 1 0 0 0 0
w′1 −1 1
... −1 . . . 0 0... . . . . . .
w′p 0 −1 1
w′U 0 0 1 0 −1 0 0
w′V 1 0 0 0 0 0 −1 0
w′W −1 1 0 0 0 0 0 0
w′Z 0 0 1 −1 0 0 0



,

D̂ =



t1 ... tp tU tV tW tZ

w1
...
wp

wU 0
wV

wW

wZ

w′1 1
... . . . 0
w′p

w′U
. . .

w′V

w′W 0 . . .
w′Z 1



.

Let us define S the submatrix of Ŝ without the m-column, H the submatrix of Ĥ without
the m-column and the wV -row, RV this very wV -row of Ĥ, D the submatrix of D̂ without
the wV -row, x the subvector of x̂ without the variable m and w the subvector of ŵ without
the variable wV . Finally let us denote f̂t,wV

(x) := e2iπ(̂tTS−wV RV )x. We remark that H is
invertible (whereas Ĥ was not) and det(H) = −1. Hence, by using multi-dimensional Fourier
transform and the integral definition of the Dirac delta function, we compute:
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KYn

(
t̂
)

=
∫

x̂∈RY 2
n

dx̂
∫

ŵ∈R2(p+4)
dŵ e2iπt̂T Ŝx̂e−2iπŵT Ĥx̂e−2iπŵT D̂t̂

=
∫
m∈R

dm

∫
wV ∈R

dwV

∫
x∈R2p+7

dx
∫

w∈R2p+7
dw e2iπtZme−2iπwV RV xe2iπt̂TSxe−2iπwTHxe−2iπwTDt̂

=
∫
m∈R

dm e2iπtZm
∫
wV ∈R

dwV

∫
w∈R2p+7

dw e−2iπwTDt̂
∫

x∈R2p+7
dx f̂t,wV

(x)e−2iπwTHx

= δ(−tZ)
∫
wV ∈R

dwV

∫
w∈R2p+7

dw e−2iπwTDt̂ F
(
f̂t,wV

)
(HTw)

= δ(−tZ)
∫
wV ∈R

dwV
1

| det(H)|F
(
F
(
f̂t,wV

))
(H−1Dt̂)

= δ(−tZ)
∫
wV ∈R

dwV f̂t,wV
(−H−1Dt̂)

= δ(−tZ)
∫
wV ∈R

dwV e2iπ(̂tTS−wV RV )(−H−1Dt̂)

= δ(−tZ)e2iπt̂T (−SH−1D)̂t
∫
wV ∈R

dwV e−2iπwV (−RVH−1Dt̂)

= δ(−tZ)e2iπt̂T (−SH−1D)̂tδ(−RVH−1Dt̂).

We can now compute H−1 =



w1 w2 ... wp−1 wp wU wW wZ w′1 w′2 ... w′p−1 w′p w′U w′V w′W w′Z

e1 0 · · · 0 1 1 −1 −1 −1 · · · −1 0 1 0 0
e2 −1 0 2 2 −2 −1 −2 · · · −2 0 2 0 0

...
−1 −1 . . . ... . . . ...
... . . . 0 0

...
...

...
...

... 1− p 1− p
...

...
...

...
ep −1 0 1− p −p
ep+1 −1 · · · −1 p + 1 p + 1 −p− 1 −1 −2 · · · 1− p −p 0 p + 1 0 0
f1 1 1 −1 0 −1 · · · −1 0 1 0 0

f2 0 0 . . . ...... 0
...

...
...

... . . . −1 −1
...

...
...

...
fp−1 0 0 −1
fp 1 1 −1 0 · · · 0 0 1 0 0
v −1 · · · −1 p + 1 p + 1 −p− 1 −1 −2 · · · −p 0 p + 1 1 0
r −1 · · · −1 p + 2 p + 1 −p− 2 −1 −2 · · · −p 0 p + 1 1 0
s 0 0 1 0 0 0 0
s′ 0 0 0 1 0 0 0 0 −1
g 0 0 1 −1 0 0 0
u 1 1 −1 0 0 0 0



,
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and thus compute that −RVH−1Dt̂ = tU − tV − tZ and

−SH−1D =



t1 t2 ··· tp−1 tp tU tV tW tZ

t1 1 1 · · · 1 1 0 −1 0 0
t2 1 2 · · · 2 2 0 −2 0 0
...

...
... . . . ...

...
...

...
...

...
tp−1 1 2 · · · p− 1 p− 1 0 −(p− 1) 0 0
tp 1 2 · · · p− 1 p 0 −p 0 0
tU −1 −2 · · · −(p− 1) −p 0 p+ 1 1 0
tV 0 0 · · · 0 0 −1 0 0 0
tW 0 0 · · · 0 0 0 0 0 0
tZ 0 0 · · · 0 0 0 0 0 0


.

Since t̂T (−SH−1D)t̂ = tTQnt+(tV −tU )(t1 + . . .+ptp−ptU ), where t = (t1, . . . , tp, tU , tW )
and Qn is defined in Theorem 5.2, we conclude that the kinematical kernel can be written as

KYn(t̂) = e2iπ(tTQnt+(tV −tU )(t1+···+ptp−ptU ))δ(tZ)δ(tU − tV − tZ).

We now compute the dynamical content. We denote α = (a1, b1, c1, . . . , aW , bW , cW , aZ , bZ , cZ)
a general vector in SYn . Let ~ > 0. The dynamical content D~,Yn(t̂, α) is equal to:

e
1√
~
Ĉ(α)T t̂ Φb

(
tU + i

2π
√
~
(π − aU )

)
Φb
(
tV + i

2π
√
~
(π − aV )

)
Φb
(
tW + i

2π
√
~
(π − aW )

)
Φb
(
t1 − i

2π
√
~
(π − a1)

)
· · ·Φb

(
tp − i

2π
√
~
(π − ap)

)
Φb
(
tZ − i

2π
√
~
(π − aZ)

) ,
where Ĉ(α) = (c1, . . . , cp, cU , cV , cW , cZ)T .

Let us come back to the computation of the partition function of the Teichmüller TQFT.
By definition,

Z~(Yn, α) =
∫

t̂∈RY 3
n

dt̂KYn(t̂)D~,Yn(t̂, α).

We begin by integrating over the variables tV and tZ , which consists in removing the two
Dirac delta functions δ(tZ) and δ(tU − tV − tZ) in the kinematical kernel and replacing tZ by
0 and tV by tU in the other terms. Therefore, we have

Φb

(
π − aZ
2πi
√
~

)
Z~(Yn, α) =

∫
t∈Rp+2

dte2iπtTQnte
1√
~

(c1t1+···+cptp+(cU+cV )tU+cW tW )Π(t, α, ~),

where t = (t1, . . . , tp, tU , tW ) and

Π(t, α, ~) :=
Φb
(
tU + i

2π
√
~
(π − aU )

)
Φb
(
tU + i

2π
√
~
(π − aV )

)
Φb
(
tW + i

2π
√
~
(π − aW )

)
Φb
(
t1 − i

2π
√
~
(π − a1)

)
· · ·Φb

(
tp − i

2π
√
~
(π − ap)

) .

Step 2. Applying the dominated convergence theorem for α→ τ .
For the rest of the proof, let

τ = (aτ1 , bτ1 , cτ1 , . . . , aτZ , bτZ , cτZ) ∈ SYn\Z ×SZ

be such that ωj(τ) = 2π for all j ∈ {0, 1, . . . , p− 1, p}, ω̂j(τ) = 2π for all j ∈ {s, d, p+ 1} and
ω̂−→
Kn

(τ) = aτZ = 0.
Let δ > 0 such that there exists a neighborhood U of τ in SYn\Z ×SZ such that for each

α ∈ U ∩SYn the 3p+ 9 first coordinates a1, . . . , cW of α live in (δ, π − δ).
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Then for all α ∈ U ∩SYn , for any j ∈ {1, . . . , p, U, V,W}, and for any t ∈ R, we have∣∣∣∣∣e 1√
~
cjtΦb

(
t± i

2π
√
~

(bj + cj)
)±1

∣∣∣∣∣ 6Mδ,~ e
− 1√

~
δ|t|
.

Indeed, this is immediate for t 6 0 by Lemma 6.2 and the fact that cj > δ. For t > 0, one
has to use that bj > δ but also Proposition 2.6 (1) and (2) to remark that :∣∣∣∣Φb

(
t+ i

2π
√
~

(bj + cj)
)∣∣∣∣ =

∣∣∣∣Φb

(
−t+ i

2π
√
~

(bj + cj)
)∣∣∣∣
∣∣∣∣∣∣eiπ

(
i

2π
√
~

(bj+cj)
)2∣∣∣∣∣∣ 6Mδ,~e

− 1√
~

(bj+cj)t.

Consequently, we have a domination of the previous integrand uniformly over U∩SYn , i.e.∣∣∣∣e2iπyTQnye
1√
~

(c1t1+···+cptp+(cU+cV )tU+cW tW )Π(t, α, ~)
∣∣∣∣ 6 (Mδ,~)p+3 e

− 1√
~
δ(|t1|+...|tp|+2|tU |+|tW |)

for all α ∈ U ∩SYn and for all t ∈ Rp+2.
Since the right hand side of this inequality is integrable over Rp+2, we can then apply the

dominated convergence theorem to conclude that Φb
(
π−aZ
2πi
√
~

)
Z~(Yn, α) tends to∫

t∈Rp+2
dte2iπtTQnte

1√
~

(cτ1 t1+···+cτptp+(cτU+cτV )tU+cτW tW )Π(t, τ, ~)

as α ∈ SYn , α→ τ (recall that cτj denotes the cj coordinate of τ).
Step 3. Retrieving the value JXn(~, 0) in α = τ .
Let us now prove that∫

t∈Rp+2
dte2iπtTQnte

1√
~

(cτ1 t1+···+cτptp+(cτU+cτV )tU+cτW tW )Π(t, τ, ~) = JXn(~, 0).

We first do the following change of variables:
• y′k = tk − i

2π
√
~
(π − aτk) for 1 6 k 6 p,

• y′l = tl + i
2π
√
~
(π − aτl ) for l ∈ {U,W},

and we denote y′ =
(
y′1, . . . , y

′
p, y
′
U , y

′
W

)T
. Note that the term Φb

(
tU + i

2π
√
~
(π − aτV )

)
will

become Φb
(
y′U + i

2π
√
~
(aτU − aτV )

)
= Φb (y′U ) , since aτU−aτV = (ω̂s(τ)−2π)+(ω̂d(τ)−2π) = 0.

We also denote

Y ′~,τ :=
p∏

k=1

(
R− i

2π
√
~

(π − aτk)
)
×

∏
l=U,W

(
R + i

2π
√
~

(π − aτl )
)
,

the subset of Cp+2 on which the variables in y′ reside.
By a similar computation as in the proof of Theorem 5.2, we obtain∫

t∈Rp+2
dte2iπtTQnte

1√
~

(cτ1 t1+···+cτptp+(cτU+cτV )tU+cτW tW )Π(t, τ, ~)

?=
∫

y′∈Y ′~,τ

dy′e2iπy′TQny′+ 1√
~
W (τ)Ty′Φb (y′U ) Φb (y′U ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

) ,

where for any α ∈ SYn\Z , W (α) is defined as

W (α) := 2QnΓ(α) + C(α) + (0, . . . , 0, cV , 0)T ,
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following the definitions of Γ(α) and C(α) in the proof of Theorem 5.2.
Hence, from the value of JXn(~, 0), it remains only to prove that W (τ) = Wn.
Let us denote Λ : (u1, . . . , up, uU , uV , uW ) 7→ (u1, . . . , up, uU , uW ) the process of forgetting

the second-to-last coordinate. then obviously C(α) = Λ(C̃(α)). Recall from Lemma 5.6 that
W̃ (α) = 2Q̃nΓ̃(α) + C̃(α) depends almost only on edge weights of the angles in Xn.

Thus, a direct calculation shows that for any α ∈ SYn\Z , we have

W (α) = Λ(W̃ (α)) +


0
...
0

cV − 4(π − aU ) + 3(π − aV )− (π − aW )
aU − aV

 .

Now, if we specify α = τ , then the weights ωXn,j(α) appearing in Λ(W̃ (α)) will all be equal
to 2π, since ωs(τ) = ω̂s(τ)− ω̂−→

Kn
(τ) = 2π and

ωp+1(τ) = ω̂d(τ) + ω̂p+1(τ)− 2
(
π − ω̂−→

Kn
(τ)
)

= 2π.

Hence

W (τ) = Wn +


0
...
0

π − 1
2λXn(τ) + cτV − 4(π − aτU ) + 3(π − aτV )− (π − aτW )

aτU − aτV

 .

Recall that aτU − aτV = 0, and remark finally that

π − 1
2λXn(τ) + cτV − 4(π − aτU ) + 3(π − aτV )− (π − aτW )

= 3aτU − 2aτV + aτW + bτW − π
= 2(aτU − aτV ) + (aτU − cτW )
= −(ω̂d(τ)− 2π)− ω̂−→

Kn
(τ) = 0.

Hence W (τ) = Wn and the theorem is proven. �

7. Proving the volume conjecture (odd case)

We now arrive to the final and most technical part of this paper, that is to say the proof of
the volume conjecture using detailed analytical methods. We advise the reader to be familiar
with the proofs and notations of Section 5 before reading this section. Having read section 6
is not as essential, but can nevertheless help understanding some arguments in the following
first three subsections. The main result is as follows:

Theorem 7.1. Let n be an odd integer greater or equal to 3. Let JXn and JXn be the functions
defined in Theorem 5.2 and Corollary 5.7. Then we have:

lim
~→0+

2π~ log |JXn(~, 0)| = lim
~→0+

2π~ log |JXn(~, 0)| = −Vol(S3\Kn).
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In other words, the Teichmüller TQFT volume conjecture of Andersen-Kashaev is proved for
the infinite family of odd twist knots.

The proof of Theorem 7.1 will be split into several lemmas. The general idea is to translate
the expressions in Theorem 7.1 into asymptotics of the form of Theorem 2.17, and check that
the assumptions of Theorem 2.17 are satisfied one by one, i.e. that we are allowed to apply
the saddle point method. Technical analytical lemmas are required for the asymptotics and
error bounds, notably due to the fact that we work with unbounded integration contours.

More precisely, here is an overview of Section 7:

• Sections 7.1, 7.2 and 7.3: For the “classical” potential S, we check the prerequisites
for the saddle point method, notably that <(S) attains a maximum of −Vol(S3 \Kn)
at the complete angle structure (from Lemma 7.2 to Lemma 7.8). This part refers to
Thurston’s gluing equations and the properties of the classical dilogarithm.
• Section 7.4: We apply the saddle point method to the classical potential S on a com-
pact integration contour (Proposition 7.9) and we then deduce asymptotics when the
contour is unbounded (Lemma 7.10 and Proposition 7.11). This part is where the
analytical arguments start.
• Section 7.5: We compare the classical and quantum dilogarithms Li2 and Φb in the as-
ymptotic b→ 0+ (Lemmas 7.12, 7.13, 7.14) and deduce asymptotics for the quantum
potential Sb (Proposition 7.15). This part, and Lemma 7.13 in particular, contains the
heart of the proof, and needs several new analytical arguments to establish uniform
bounds on an unbounded integration contour.
• Section 7.6: In order to get back to the functions JXn and JXn of Theorem 7.1, we
compare the two previous potentials with a second quantum potential S′b related to
JXn (Remark 7.16) and we deduce the corresponding asymptotics for S′b (Lemma 7.17
and Proposition 7.18). This part uses similar analytical arguments as the previous
one, and is needed because of the particular construction of the Teichmüller TQFT
partition function and the subtle difference between 1

b2 and 1
~ .

• Section 7.7: We conclude with the (now short) proof of Theorem 7.1 and we offer
comments on how our techniques could be re-used for further works.

Let us finish this introduction by establishing some notations. For the remainder of this
section, n will be an odd integer greater or equal to 3 and p = n−3

2 .
Let us now recall and define some notations:

• We denote the following product of open “horizontal bands" in C, and

U :=
p∏

k=1
(R + i(−π, 0))×

∏
l=U,W

(R + i(0, π)) ,

an open subset of Cp+2.
• For any angle structure α = (a1, . . . , cW ) ∈ AXn , we denote

Yα :=
p∏

k=1
(R− i(π − ak))×

∏
l=U,W

(R + i(π − al)) ,

an affine real plane of real dimension p+ 2 in Cp+2, contained in the band U .
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• For the complete angle structure α0 = (a0
1, . . . , c

0
W ) ∈ AXn (which exists because of

Theorem 4.1), we denote
Y 0 := Yα0 .

• We define the potential function S : U → C, an holomorphic function on p+2 complex
variables, by:

S(y) = iyTQny + yTWn + iLi2 (−ey1) + · · ·+ iLi2 (−eyp)− 2iLi2 (−eyU )− iLi2 (−eyW ) ,
where Qn and Wn are like in Theorem 5.2.

7.1. Properties of the potential function S on the open band U . The following lemma
will be very useful to prove the invertibility of the holomorphic hessian of the potential S.

Lemma 7.2. Let m > 1 an integer, and S1, S2 ∈Mm(R) such that S1 is symmetric positive
definite and S2 is symmetric. Then the complex symmetric matrix S1 + iS2 is invertible.

Proof. Let v ∈ Cm such that (S1 + iS2)v = 0. Let us prove that v = 0.
Since S1 and S2 are real symmetric, we have vTS1v, v

TS2v ∈ R.
Now, since (S1 + iS2)v = 0, then

0 = vT (S1 + iS2)v = vTS1v + ivTS2v,

thus, by taking the real part, we get 0 = vTS1v, which implies v = 0 since S1 is positive
definite. �

We can now prove that the holomorphic hessian is non-degenerate at each point.

Lemma 7.3. For every y ∈ U , the holomorphic hessian of S is given by:

Hess(S)(y) =
(

∂2S

∂yj∂yk

)
j,k∈{1,...,p,U,W}

(y) = 2iQn+i



−1
1+e−y1 0 0 0

. . . ...
...

0 −1
1+e−yp 0 0

0 · · · 0 2
1+e−yU 0

0 · · · 0 0 1
1+e−yW


.

Furthermore, Hess(S)(y) has non-zero determinant for every y ∈ U .

Proof. The first part follows from the double differentiation of S and the fact that
∂Li2(−ey)

∂y
= −Log(1 + ey)

for y ∈ R± i(0, π) (note that y ∈ R± i(0, π) implies −ey ∈ C \ R).
Let us prove the second part. Let y ∈ U . Then =(Hess(S)(y)) is a symmetric matrix (as

the sum of Qn and a diagonal matrix), and

<(Hess(S)(y)) =



−=
(
−1

1+e−y1

)
0 0 0

. . . ...
...

0 −=
(
−1

1+e−yp

)
0 0

0 · · · 0 −=
(

2
1+e−yU

)
0

0 · · · 0 0 −=
(

1
1+e−yW

)
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is diagonal with negative coefficients (because =(y1), . . . ,=(yp) ∈ (−π, 0) and =(yU ),=(yW ) ∈
(0, π)). Hence it follows from Lemma 7.2 that Hess(S)(y) is invertible for every y ∈ U . �

The following lemma establishes an equivalence between critical points of the potential S
and complex shape structures that solve the balancing and completeness equations.

Lemma 7.4. Let us consider the diffeomorphism

ψ :=

 ∏
T∈{T1,...,Tp,U,W}

ψT

 : (R + iR>0)p+2 → U ,

where ψT was defined in Section 2.4. Then ψ induces a bijective mapping between
{y ∈ U ;∇S(y) = 0} and{

z = (z1, . . . , zp, zU , zW ) ∈ (R + iR>0)p+2|EXn,0(z) ∧ . . . ∧ EXn,p−1(z) ∧ E co
Xn,p+1(z) ∧ E co

Xn,s(z)
}
,

where the equations EXn,0(z), . . . ,EXn,p−1(z),E co
Xn,p+1(z),E co

Xn,s
(z) were defined at the end of

Section 4.
In particular, S admits only one critical point y0 on U , corresponding to the complete

hyperbolic structure z0 on the geometric ideal triangulation Xn (adding z0
V equal to z0

U ).

Proof. First we compute, for every y ∈ U ,

∇S(y) =


∂1S(y)

...
∂pS(y)
∂US(y)
∂WS(y)

 = 2iQny + Wn + i


−Log(1 + ey1)

...
−Log(1 + eyp)
2Log(1 + eyU )
Log(1 + eyW )

 .

Then, we define a lower triangular matrix A =



y1 y2 y3 ··· yp yU yW

y1 1
y2 −2 1 0
y3 1 −2 1
... . . . . . . . . .
yp 1 −2 1 0 0
yU 1 1 0
yW 0 0 0 1


∈

GLp+2(Z), and we compute

A · ∇S(y) =



2i(y1 + · · ·+ yp − yU )− 2πp− iLog(1 + ey1)
−2iy1 + 2π + 2iLog(1 + ey1)− iLog(1 + ey2)

2π − iLog(1 + ey1) + 2iLog(1 + ey2)− 2iy2 − iLog(1 + ey3)
...

2π − iLog(1 + eyk−1) + 2iLog(1 + eyk)− 2iyk − iLog(1 + eyk+1)
...

2π − iLog(1 + eyp−2) + 2iLog(1 + eyp−1)− 2iyp−1 − iLog(1 + eyp)
π − iLog(1 + eyp) + 2iLog(1 + eyU ) + iyW

π + iyU + iLog(1 + eyW )


.
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For 1 6 k 6 p, by denoting yk = ψTk(zk), we have

Log(zk) = yk + iπ, Log(z′k) = −Log(1 + eyk), Log(z′′k) = Log(1 + e−yk),

and for l = U,W , by denoting yl = ψTl(zl), we have

Log(zl) = −yl + iπ, Log(z′l) = −Log(1 + e−yl), Log(z′′l ) = Log(1 + eyl).

Hence we compute, for all z ∈ (R + iR>0)p+2,

A · (∇S)(ψ(z)) = i



Log(z′1) + 2Log(z1) + · · ·+ 2Log(zp) + 2Log(zU )− 2iπ
2Log(z′′1 ) + Log(z′2)− 2iπ

Log(z′1) + 2Log(z′′2 ) + Log(z′3)− 2iπ
...

Log(z′k−1) + 2Log(z′′k) + Log(z′k+1)− 2iπ
...

Log(z′p−2) + 2Log(z′′p−1) + Log(z′p)− 2iπ
Log(z′p) + 2Log(z′′U )− Log(zW )

Log(z′′W )− Log(zU )


.

This last vector is zero if and only if one has

EXn,0(z) ∧ . . . ∧ EXn,p−1(z) ∧ E co
Xn,p+1(z) ∧ E co

Xn,s(z).

Since A is invertible, we thus have

z ∈ (R + iR>0)p+2 and EXn,0(z) ∧ . . . ∧ EXn,p−1(z) ∧ E co
Xn,p+1(z) ∧ E co

Xn,s(z)

m

ψ(z) ∈ U and (∇S)(ψ(z)) = 0.

�

Let us now consider the multi-contour

Y 0 = Yα0 =
p∏

k=1

(
R− i(π − a0

k)
)
×

∏
l=U,W

(
R + i(π − a0

l )
)
,

where α0 ∈ AXn is the complete hyperbolic angle structure corresponding to the complete
hyperbolic complex shape structure z0. Notice that y0 ∈ Y 0 ⊂ U .

We will parametrise y ∈ Y 0 as

y =

 y1
...
yW

 =

 x1 + id0
1

...
xW + id0

W

 = x + id0,

where d0
k = −(π − a0

k) < 0 for k = 1, . . . , p and d0
l = π − a0

l > 0 for l = U,W . For the
scrupulous readers, this means that d0 is a new notation for Γ(α0), where Γ(α) was defined
in Section 5. Notice that Y 0 = Rp+2 + id0 ⊂ Cp+2 is an R-affine subspace of Cp+2.
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7.2. Concavity of <S on each contour Yα. Now we focus on the behaviour of the real
part <S of the classical potential, on each horizontal contour Yα.

Lemma 7.5. For any α ∈ AXn, the function <S : Yα → R is strictly concave on Yα.

Proof. Let α ∈ AXn . Since <S : Yα → R is twice continuously differentiable (as a function on
p+ 2 real variables), we only need to check that its (real) hessian matrix (<S|Yα)′′ is negative
definite on every point x + id ∈ Yα.

Now, since this real hessian is equal to the real part of the holomorphic hessian of S, it
follows from Lemma 7.3 that for all x ∈ Rp+2, this real hessian is:

(<S|Yα)′′ (x + id) = <(Hess(S)(x + id))

=



−=
(

−1
1+e−x1−id1

)
0 0 0

. . . ...
...

0 −=
(

−1
1+e−xp−idp

)
0 0

0 · · · 0 −=
(

2
1+e−xU−idU

)
0

0 · · · 0 0 −=
(

1
1+e−xW−idW

)


,

which is diagonal with negative coefficients, since d1, . . . , dp ∈ (−π, 0) and dU , dW ∈ (0, π).
In particular (<S|Yα)′′ is negative definite everywhere, thus <S|Yα is strictly concave. �

7.3. Properties of <S on the complete contour Y 0. On the complete contour Y 0, the
function <S is not only strictly concave but also admits a strict global maximum, at the
complete structure y0.

Lemma 7.6. The function <S : Y 0 → R admits a strict global maximum on y0 ∈ Y 0.

Proof. Since the holomorphic gradient of S : U → C vanishes on y0 by Lemma 7.4, the (real)
gradient of <S|Y 0 (which is the real part of the holomorphic gradient of S) then vanishes as
well on y0, thus y0 is a critical point of <S|Y 0 .

Besides, <S|Y 0 is strictly concave by Lemma 7.5, thus y0 is a global maximum of <S|Y 0 .
�

Before computing the value <S(y0), we establish a useful formula for the potential S:

Lemma 7.7. The function S : U → C can be re-written

S(y) = iLi2 (−ey1) + · · ·+ iLi2 (−eyp) + 2iLi2
(
−e−yU

)
+ iLi2

(
−e−yW

)
+ iyTQny + iy2

U + i
y2
W

2 + yTWn + i
π2

2 .

Proof. We first recall the well-known formula for the dilogarithm (see Proposition 2.3 (1)):

∀z ∈ C \ [1,+∞), Li2
(1
z

)
= −Li2(z)− π2

6 −
1
2Log(−z)2.

We then apply this formula for z = −eyl for l ∈ {U,W} to conclude the proof. �

We can now use this formula to prove that the hyperbolic volume appears at the complete
structure y0, in the following lemma.
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Lemma 7.8. We have
<(S)(y0) = −Vol(S3 \Kn).

Proof. From Lemma 7.7, for all y ∈ U we have

S(y) = iLi2 (−ey1) + · · ·+ iLi2 (−eyp) + 2iLi2
(
−e−yU

)
+ iLi2

(
−e−yW

)
+ iyTQny + iy2

U + i
y2
W

2 + yTWn + i
π2

2 ,

thus

<(S)(y) = −= (Li2 (−ey1))− · · · − = (Li2 (−eyp))− 2=
(
Li2

(
−e−yU

))
−=

(
Li2

(
−e−yW

))
−=

(
yTQny + y2

U + y2
W

2

)
+ <

(
yTWn

)
.

Recall that for z ∈ R+ iR>0, the ideal hyperbolic tetrahedron of complex shape z has hyper-
bolic volume D(z) = =(Li2(z)) + arg(1 − z) log |z| (where D is the Bloch-Wigner function).
Note that for z = zk = −eyk (with 1 6 k 6 p), we have arg(1 − z) log |z| = −ckxk and for
z = zl = −e−yl (with l ∈ {U,W}), we have arg(1− z) log |z| = blxl. Thus we have for y ∈ U :

<(S)(y) = −D(z1)− · · · −D(zp)− 2D(zU )−D(zW )− c1x1 − · · · − cpxp + 2bUxU + bWxW

− 2xTQnd− 2dUxU − dWxW + xTWn.

Recall that z0 is the complex shape structure corresponding to the complete hyperbolic struc-
ture on the ideal triangulation Xn where z0

U is the complex shape of both tetrahedra U and
V (because of the completeness equation zU = zV ). Thus

−Vol(S3 \Kn) = −D(z0
1)− · · · −D(z0

p)−D(z0
U )−D(z0

V )−D(z0
W )

= −D(z0
1)− · · · −D(z0

p)− 2D(z0
U )−D(z0

W ).

Hence we only need to prove that (x0)T ·T = 0, where

T :=


−c0

1
...
−c0

p

2b0U
b0W

+ Wn − 2Qnd0 +


0
...
0
−2d0

U
−d0

W

 .

Since d0
l = π − a0

l = b0l + c0
l for l = U,W , we have T = −


c0

1
...
c0
p

2c0
U

c0
W

+ Wn − 2Qnd0.

It then follows from the definitions of W ,Wn, Γ̃, C̃,d0 and their connections established in
Sections 5 and 6 that T = 0. More precisely, define for instance

τ0 := α0 ⊕ (0, 0, π) ∈ SYn\Z ×SZ ,
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which satisfies the assumptions on τ in Theorem 6.1 (as can be checked by computing the
weights listed at the beginning of Section 6). Then recall from the end of the proof of Theorem
6.1 and the fact that (a0

U , b
0
U , c

0
U ) = (a0

V , b
0
V , c

0
V ) that

Wn = W (τ0) := 2QnΓ(τ0) + C(τ0) + (0, . . . , 0, cτ0
V , 0)T = 2Qnd0 + (c0

1, . . . , c
0
p, 2c0

U , c
0
W )T ,

and thus T = 0. The readers having skipped Section 6 can instead use the identity W̃ (α) =
2Q̃nΓ̃(α) + C̃(α) at the end of Section 5 to arrive at the same conclusion. �

7.4. Asymptotics of integrals on Y 0. For the remainder of the section, let r0 > 0 and
γ = {y ∈ Y 0 | ‖ y− y0 ‖ 6 r0} a p+ 2-dimensional ball inside Y 0 containing y0. We start
with asymptotics of an integral on this compact contour γ.

Proposition 7.9. There exists a constant ρ ∈ C∗ such that, as λ→∞,∫
γ
dy eλS(y) = ρλ−

p+2
2 exp

(
λS(y0)

)
(1 + oλ→∞ (1)) .

In particular,
1
λ

log
∣∣∣∣∫
γ
dy eλS(y)

∣∣∣∣ −→λ→∞ <S(y0) = −Vol(S3 \Kn).

Proof. We apply the saddle point method as in Theorem 2.17, with m = p+2, γm = γ, z = y,
z0 = y0, D = U , f = 1 and S as defined in the beginning of this section. Let us check the
technical requirements:

• y0 is an interior point of γ by construction.
• maxγ <S is attained only at y0 by Lemma 7.6.
• ∇S(y0) = 0 by Lemma 7.4.
• det Hess(S)(y0) 6= 0 by Lemma 7.3.

Thus the first statement follows from Theorem 2.17, with ρ := (2π)
p+2

2√
det Hess(S)(y0)

∈ C∗.

The second statement then follows from immediate computation and Lemma 7.8. �

Now we compute an upper bound on the remainder term, i.e. the integral on Y 0 \ γ the
whole unbounded contour minus the compact ball.

Lemma 7.10. There exists constants A,B > 0 such that for all λ > A,∣∣∣∣∣
∫

Y 0\γ
dy eλS(y)

∣∣∣∣∣ 6 BeλM ,
where M := max∂γ <S.

Proof. First we apply a change of variables to p+ 2-dimensional spherical coordinates

y ∈ Y 0 \ γ ⇐⇒ r−→e ∈ (r0,∞)× Sp+1,

which yields: ∫
Y 0\γ

dy eλS(y) =
∫
Sp+1

dvolSp+1

∫ ∞
r0

rp+1eλS(r−→e )dr

for all λ > 0.
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Consequently, we have for all λ > 0:∣∣∣∣∣
∫

Y 0\γ
dy eλS(y)

∣∣∣∣∣ 6 vol(Sp+1) sup
−→e ∈Sp+1

∫ ∞
r0

rp+1eλ<(S)(r−→e )dr.

Let us fix −→e ∈ Sp+1 and denote f = f−→e := (r 7→ <(S)(r−→e )) the restriction of <(S) on the
ray (r0,∞)−→e . Let λ > 0. Let us find an upper bound on

∫∞
r0
rp+1eλf(r)dr.

Since <(S) is strictly concave by Lemma 7.5 and f is its restriction on a convex set, f is
strictly concave as well on (r0,+∞) (and even on [0,+∞)). Now let us consider the slope

function N : [r0,+∞) → R defined by N(r) := f(r)− f(r0)
r − r0

for r > r0 and N(r0) := f ′(r0).

The function N is C1 and satisfies N ′(r) = f ′(r)−N(r)
r−r0

for r > r0. Now, since f is strictly
concave, we have f ′(r) < N(r) for any r ∈ (r0,∞), thus N is decreasing on this same interval.
Hence∫ ∞

r0
rp+1eλf(r)dr = eλf(r0)

∫ ∞
r0

rp+1eλN(r)(r−r0)dr 6 eλf(r0)
∫ ∞
r0

rp+1eλN(r0)(r−r0)dr.

Note that N(r0) = f ′(r0) < 0 by Lemmas 7.5 and 7.6. Using integration by parts, we can
prove by induction that∫ ∞

r0
rp+1eλN(r0)(r−r0)dr = 1

(λN(r0))p+2

p+1∑
k=0

(−1)p+1−k (p+ 1)!
k! (λN(r0))krk0 .

Moreover, N(r0) = f ′(r0) = 〈(∇<(S))(r0
−→e );−→e 〉, and since S is holomorphic, we conclude

that (−→e 7→ N(r0) = f ′−→e (r0)) is a continous map from Sp+1 to R<0. Hence there exist
m1,m2 > 0 such that 0 < m1 6 |N(r0)| 6 m2 for all vectors −→e ∈ Sp+1.

We thus conclude that for all λ > 1
m1r0

, we have the (somewhat unoptimal) upper bound:∫ ∞
r0

rp+1eλf(r)dr 6 eλf(r0) 1
(λN(r0))p+2

p+1∑
k=0

(−1)p+1−k (p+ 1)!
k! (λN(r0))krk0

6 eλf(r0)

∣∣∣∣∣∣ 1
(λN(r0))p+2

p+1∑
k=0

(−1)p+1−k (p+ 1)!
k! (λN(r0))krk0

∣∣∣∣∣∣
6 eλf(r0) 1

|λN(r0)|p+2

p+1∑
k=0

(p+ 1)! |λN(r0)r0|k

6 eλf(r0) (p+ 2)! |λN(r0)r0|p+2

|λN(r0)|p+2 = (p+ 2)! rp+2
0 eλf(r0).

Now, since
∫∞
r0
rp+1eλf−→e (r)dr 6 Ceλf−→e (r0) for all λ > 1

m1r0
, for all −→e ∈ Sp+1 and with the

constant C > 0 independent of λ and −→e , we can finally conclude that:∣∣∣∣∣
∫

Y 0\γ
dy eλS(y)

∣∣∣∣∣ 6 vol(Sp+1) sup
−→e ∈Sp+1

∫ ∞
r0

rp+1eλ<(S)(r−→e )dr 6 Cvol(Sp+1)eλM

for all λ > 1
m1r0

, where M = max∂γ <S. This concludes the proof, by putting A := 1
m1r0

and
B := Cvol(Sp+1). �
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Finally we obtain the asymptotics for the integral on the whole contour Y 0:

Proposition 7.11. For the same constant ρ ∈ C∗ as in Proposition 7.9, we have, as λ→∞,∫
Y 0

dy eλS(y) = ρλ−
p+2

2 exp
(
λS(y0)

)
(1 + oλ→∞ (1)) .

In particular,
1
λ

log
∣∣∣∣∫

Y 0
dy eλS(y)

∣∣∣∣ −→λ→∞ <S(y0) = −Vol(S3 \Kn).

Proof. As for Proposition 7.9, the second statement imediately follows from the first one. Let
us prove the first statement.

From Lemma 7.10, for all λ > A, we have
∣∣∣∫Y 0\γ dy eλS(y)

∣∣∣ 6 BeλM . Then, since M <

<(S)(y0) by Lemmas 7.5 and 7.6, we have∫
Y 0\γ

dy eλS(y) = oλ→∞
(
λ−

p+2
2 exp

(
λS(y0)

))
.

The first statement then follows from Proposition 7.9 and the equality∫
Y 0

dy eλS(y) =
∫
γ
dy eλS(y) +

∫
Y 0\γ

dy eλS(y).

�

7.5. Extending the asymptotics to the quantum dilogarithm. Let us now introduce
some new notations:

• We let R denote any positive number in (0, π), for example π/2. Its exact value will
not be relevant.
• We denote I+

R := (R,∞), I−R := (−∞,−R), ΛR the closed upper half circle of radius
R in the complex plane, and ΩR := I−R ∪ ΛR ∪ I+

R . Remark that we can replace the
contour R + i0+ with ΩR in the definition of Φb, by the Cauchy theorem.
• For δ > 0, we define the product of closed “horizontal bands" in C

Uδ :=
p∏

k=1
(R + i[−π + δ,−δ])×

∏
l=U,W

(R + i[δ, π − δ])

a closed subset of U .
• For b > 0, we define a new potential function Sb : U → C, an holomorphic function
on p+ 2 complex variables, by:

Sb(y) = iyTQny + yTWn + 2πb2 Log
(

Φb
( yU

2πb
)2 Φb

( yW
2πb
)

Φb
( y1

2πb
)
· · ·Φb

( yp
2πb
) ,)

where Qn and Wn are like in Theorem 5.2.
The following lemma establishes a “parity property” for the difference between classical

and quantum dilogarithms on the horizontal band R + i(0, π).

Lemma 7.12. For all b ∈ (0, 1) and all y ∈ R + i(0, π),

<
(

Log
(

Φb

( −y
2πb

))
−
( −i

2πb2 Li2(−e−y)
))

= <
(

Log
(

Φb

(
y

2πb

))
−
( −i

2πb2 Li2(−ey)
))

.
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Proof. Let b ∈ (0, 1) and y ∈ R + i(0, π).
From the fact that Li2 is real-analytic and Proposition 2.3 (1) applied to z = −ey, we have

exp
( −i

2πb2 Li2(−e−y)
)

= exp
(

i

2πb2 Li2(−e−y)
)

= exp
(

i

2πb2

(
−Li2(−ey)− π2

6 −
y2

2

))

= exp
( −i

2πb2 Li2(−ey)
)

exp
(−iπ

12b2

)
exp

(
−iy2

4πb2

)
.

Moreover, from Proposition 2.6 (1) and (2), we have

Φb

( −y
2πb

)
= 1

Φb
(
−y
2πb

) = Φb

(
y

2πb

)
exp

(
−i π12(b2 + b−2)

)
exp

(
iπ

(
y

2πb

)2
)
.

Therefore

Log
(

Φb

( −y
2πb

))
−
( −i

2πb2 Li2(−e−y)
)

= Log
(

Φb

(
y

2πb

))
−
( −i

2πb2 Li2(−ey)
)
− iπ

12b2,

and the statement follows. �

As a consequence, we can bound uniformly the difference between classical and quantum
dilogarithms on compact horizontal bands above the horizontal axis.

Lemma 7.13. For all δ > 0, there exists a constant Bδ > 0 such that for all b ∈ (0, 1) and
all y ∈ R + i[δ, π − δ],∣∣∣∣<(Log

(
Φb

(
y

2πb

))
−
( −i

2πb2 Li2(−ey)
))∣∣∣∣ 6 Bδb2.

Moreover, Bδ is of the form Bδ = C/δ + C ′ with C,C ′ > 0.

The proof of Lemma 7.13 is quite lengthy, but contains relatively classical calculus argu-
ments. The key points are the fact that =(y) is uniformly upper bounded by a quantity
strictly smaller than π, and that we can restrict ourselves to y ∈ (−∞, 0] + i[δ, π− δ] (thanks
to Lemma 7.12) which implies that <(y) is uniformly upper bounded by 0. The necessity
of this last remark stems from the fact that the state variable y must be integrated on an
contour with unbounded real part in the definition of the Teichmüller TQFT, whereas the
contour is usually bounded when studying the volume conjecture for the colored Jones poly-
nomials. Compare with [1, Lemma 3]. The parity trick of Lemma 7.12 and its application to
an unbounded contour are the main technical novelties compared with the methods of [1].

Proof. Let δ > 0. In the following proof, y = x + id will denote a generic element in
(−∞, 0] + i[δ, π − δ], with x ∈ (−∞, 0], d ∈ [δ, π − δ]. We remark that we only need to prove
the statement for y ∈ (−∞, 0] + i[δ, π − δ], thanks to Lemma 7.12.
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We first compute, for any b ∈ (0, 1) and y ∈ R + i[δ, π − δ]:

Log Φb

(
y

2πb

)
=
∫
w∈ΩRb

exp
(
−iywπb

)
dw

4w sinh(bw) sinh(b−1w)

=
∫
v∈ΩR

exp
(
−iyvπ

)
dv

4v sinh(b2v) sinh(v)

= 1
b2

∫
v∈ΩR

exp
(
−iyvπ

)
4v2 sinh(v)

(vb2)
sinh(vb2)dv,

where the first equality comes from the definition of Φb (choosing the integration contour
ΩRb), the second one comes from the change of variables v = w

b and the last one is a simple
re-writing.

Next, we remark that there exists a constant σR > 0 such that |( v
sinh(v))′′| ≤ σR for

all v ∈ R ∪ DR, where DR is the upper half disk of radius R. Indeed, note first that
sinh is nonzero everywhere on R ∪ DR. Then a quick computation yields

(
v

sinh(v)

)′′
=

v(1 + cosh(v)2)− 2 sinh(v) cosh(v)
sinh(v)3 , which is well-defined and continous on R∪D, has a limit

of −1/3 at v = 0 and has a zero limit in v ∈ R, v → ±∞. The boundedness on R ∪ DR

follows.
Now, it follows from Taylor’s theorem that for every b ∈ (0, 1) and every v ∈ ΩR,

(vb2)
sinh(vb2) = 1 + (vb2)2ε(vb2),

where ε(vb2) :=
∫ 1

0 (1 − t)
(

z
sinh(z)

)′′
(vb2t) dt. It then follows from the previous paragraph

that |ε(vb2)| 6 σR for every b ∈ (0, 1) and every v ∈ ΩR.
Recall from Proposition 2.3 (2) that for all b ∈ (0, 1) and all y ∈ R + i[δ, π − δ],

1
b2

∫
v∈ΩR

exp
(
−iyvπ

)
4v2 sinh(v)dv = −i

2πb2 Li2(−ey).

Therefore we can write for all b ∈ (0, 1) and all y ∈ R + i[δ, π − δ]:

Log
(

Φb

(
y

2πb

))
−
( −i

2πb2 Li2(−ey)
)

= 1
b2

∫
v∈ΩR

exp
(
−iyvπ

)
4v2 sinh(v)

(
(vb2)

sinh(vb2) − 1
)
dv

= 1
b2

∫
v∈ΩR

exp
(
−iyvπ

)
4v2 sinh(v)(vb2)2ε(vb2)dv

= b2
∫
v∈ΩR

ε(vb2)
exp

(
−iyvπ

)
4 sinh(v) dv.

Now it suffices to prove that the quantity

<
(∫

v∈ΩR
ε(vb2)

exp
(
−iyvπ

)
4 sinh(v) dv

)
is uniformly bounded on y ∈ (−∞, 0] + i[δ, π − δ], b ∈ (0, 1). We will split this integral into
three parts and prove that each part is uniformly bounded in this way.
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Firstly, on the contour I+
R , we have for all b ∈ (0, 1) and all y ∈ R + i[δ, π − δ]:

∣∣∣∣∣<
(∫

v∈I+
R

ε(vb2)
exp

(
−iyvπ

)
4 sinh(v) dv

)∣∣∣∣∣ 6
∣∣∣∣∣
∫
v∈I+

R

ε(vb2)
exp

(
−iyvπ

)
4 sinh(v) dv

∣∣∣∣∣
6
∫ ∞
R
|ε(vb2)|

∣∣exp
(
−iyvπ

)∣∣
4 sinh(v) dv

6
σR
4

∫ ∞
R

exp
(
=(y)v
π

)
sinh(v) dv

6
σR
4

∫ ∞
R

exp
(

(π−δ)v
π

)
1−e−2R

2 ev
dv

= πσRe
− δR

π

2δ(1− e−2R) ,

where in the last inequality we used the fact that 1−e−2R

2 ev 6 sinh(v) for all v > R.
Secondly, on the contour I−R , we have similarly for all b ∈ (0, 1) and all y ∈ R + i[δ, π − δ]:

∣∣∣∣∣<
(∫

v∈I−R
ε(vb2)

exp
(
−iyvπ

)
4 sinh(v) dv

)∣∣∣∣∣ 6
∣∣∣∣∣
∫
v∈I−R

ε(vb2)
exp

(
−iyvπ

)
4 sinh(v) dv

∣∣∣∣∣
6
∫ −R
−∞
|ε(vb2)|

∣∣exp
(
−iyvπ

)∣∣
4| sinh(v)| dv

=
∫ ∞
R
|ε(−vb2)|

∣∣exp
(
iyvπ
)∣∣

4 sinh(v) dv

6
σR
4

∫ ∞
R

exp
(
−=(y)v

π

)
sinh(v) dv

6
σR
4

∫ ∞
R

1
1−e−2R

2 ev
dv

= σRe
−R

2(1− e−2R) = σR
4 sinh(R) .

Finally, to obtain the bound on the contour ΛR, we will need the assumption that y ∈
(−∞, 0] + i[δ, π − δ], since the upper bound will depend on <(y). Moreover, we will use
the fact that since | sinh | is a continous nonzero function on the contour ΛR, it is lower
bounded by a constant sR > 0 on this countour. We then obtain, for all b ∈ (0, 1) and all
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y ∈ (−∞, 0] + i[δ, π − δ]:∣∣∣∣∣<
(∫

v∈ΛR
ε(vb2)

exp
(
−iyvπ

)
4 sinh(v) dv

)∣∣∣∣∣ 6
∣∣∣∣∣
∫
v∈ΛR

ε(vb2)
exp

(
−iyvπ

)
4 sinh(v) dv

∣∣∣∣∣
6
∫
v∈ΛR

|ε(vb2)|
∣∣exp

(
−iyvπ

)∣∣
4| sinh(v)| dv

6
σR
4sR

∫
v∈ΛR

exp
(
<
(
−iyv

π

))
dv

= σR
4sR

∫
v∈ΛR

exp
(<(y)=(v) + =(y)<(v)

π

)
dv

6
σR
4sR

(πR) exp
(0 + (π − δ)R

π

)
6
σRπRe

R

4sR
,

where the fourth inequality is due to the fact that <(y) 6 0, =(v) > 0, 0 < =(y) 6 π− δ and
<(v) 6 R.

The lemma follows, by taking for example the constant

Bδ := πσRe
− δR

π

2δ(1− e−2R) + σR
4 sinh(R) + σRπRe

R

4sR
.

�

The following lemma is simply a variant of Lemma 7.13 for compact horizontal bands with
negative imaginary part.

Lemma 7.14. For all δ > 0, there exists a constant Bδ > 0 (the same as in Lemma 7.13)
such that for all b ∈ (0, 1) and all y ∈ R− i[δ, π − δ],∣∣∣∣<(Log

(
Φb

(
y

2πb

))
−
( −i

2πb2 Li2(−ey)
))∣∣∣∣ 6 Bδb2.

Proof. The result follows immediately from the fact that Li2(·) = Li2(·), Proposition 2.6 (2)
and Lemma 7.13. �

The following Proposition 7.15 will not actually be used in the proof of Theorem 7.1, but
fits naturally in the current discussion.

Proposition 7.15. For some constant ρ′ ∈ C∗, we have, as b→ 0+,∫
Y 0

dye
1

2πb2 Sb(y) =
∫

Y 0
dy e

iyTQny+yTWn
2πb2

Φb
( yU

2πb
)2 Φb

( yW
2πb
)

Φb
( y1

2πb
)
· · ·Φb

( yp
2πb
)

= e
1

2πb2 S(y0)
(
ρ′bp+2 (1 + ob→0+ (1)) + Ob→0+(1)

)
.

In particular,

2πb2 log
∣∣∣∣∫

Y 0
dy e

1
2πb2 Sb(y)

∣∣∣∣ −→b→0+
<S(y0) = −Vol(S3 \Kn).

Proof. The second statement follows from the first one from the fact that the behaviour of(
ρ′bp+2 (1 + ob→0+ (1)) + Ob→0+(1)

)
is polynomial in b as b→ 0+.
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To prove the first statement, we will split the integral on Y 0 into two parts, one on the
compact contour γ from before and the other on the unbounded contour Y 0 \ γ.

First we notice that there exists a δ > 0 such that for all y = (y1, . . . , yp, yU , yW ) in Y 0,
=(y1), . . .=(yp) ∈ [−(π− δ),−δ] and =(yU ),=(yW ) ∈ [δ, π− δ]. From Lemmas 7.13 and 7.14,
if we denote (η1, . . . , ηp, ηU , ηW ) := (−1, . . . ,−1, 2, 1), it then follows that:∣∣∣∣<( 1

2πb2Sb(y)− 1
2πb2S(y)

)∣∣∣∣ =

∣∣∣∣∣∣<
 W∑
j=1

ηj

(
Log

(
Φb

(
yj

2πb

))
−
( −i

2πb2 Li2(−eyj )
))∣∣∣∣∣∣

6
W∑
j=1
|ηj |

∣∣∣∣<((Log
(

Φb

(
yj

2πb

))
−
( −i

2πb2 Li2(−eyj )
)))∣∣∣∣

6 (p+ 3)Bδb2.

Let us now focus on the compact contour γ and prove that∫
γ
dy e

1
2πb2 Sb(y) = e

1
2πb2 S(y0)

(
ρ′bp+2 (1 + ob→0+ (1)) + Ob→0+(1)

)
.

From Proposition 7.9, by identifying λ = 1
2πb2 and ρ′ := ρ(2π)

p+2
2 it suffices to prove that∫

γ
dy e

1
2πb2 S(y)

(
e

1
2πb2 (Sb(y)−S(y)) − 1

)
= e

1
2πb2 S(y0)Ob→0+(1).

This last equality follows from the upper bound (p + 3)Bδb2 of the previous paragraph, the
compactness of γ, and Lemma 7.6.

Finally, let us prove that on the unbounded contour, we have∫
Y 0\γ

dy e
1

2πb2 Sb(y) = e
1

2πb2 S(y0)Ob→0+(1).

Let A,B be the constants from Lemma 7.10. From the proof of Lemma 7.10, we have that
for all b < (2πA)−1/2: ∫

Y 0\γ
dy e

1
2πb2<(S)(y) 6 Be

1
2πb2M .

Moreover, for all b ∈ (0, 1) and y ∈ Y 0 \ γ, we have e
1

2πb2<(Sb(y)−S(y)) 6 e(p+3)Bδb2
.

Let us denote υ := <(S)(y0)−M
2 . Thus, for all b > 0 smaller than both (2πA)−1/2 and(

υ

2π(p+ 3)Bδ

)1/4
, we have:∣∣∣∣∣

∫
Y 0\γ

dy e
1

2πb2 Sb(y)
∣∣∣∣∣ =

∣∣∣∣∣
∫

Y 0\γ
dy e

1
2πb2 S(y)e

1
2πb2 (Sb(y)−S(y))

∣∣∣∣∣
6
∫

Y 0\γ
dy e

1
2πb2<(S)(y)e

1
2πb2<(Sb(y)−S(y))

6 Be
1

2πb2Me(p+3)Bδb2
6 Be

1
2πb2 (M+υ)

= e
1

2πb2 S(y0)Ob→0+(1),

which concludes the proof. �
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7.6. Going from b to ~. Recall that for every b > 0, we associate a corresponding parameter
~ := b2(1 + b2)−2 > 0.

For b > 0, we define a new potential function S′b : U → C, a holomorphic function on p+ 2
complex variables, by:

S′b(y) = iyTQny + yTWn + 2π~ Log

 Φb
(

yU
2π
√
~

)2
Φb
(

yW
2π
√
~

)
Φb
(

y1
2π
√
~

)
· · ·Φb

(
yp

2π
√
~

) ,


where Qn and Wn are like in Theorem 5.2.

Remark 7.16. Notice that

|JXn(~, 0)| =
∣∣∣∣∣
( 1

2π
√
~

)p+3 ∫
Y 0

dy e
1

2π~S
′
b(y)

∣∣∣∣∣ .
Indeed, this follows from taking τ = τ0 in Theorem 6.1, where τ0 is defined at the end of the
proof of Lemma 7.8.

The following Lemma 7.17 will play a similar role as Lemmas 7.13 and 7.14, but its proof
is fortunately shorter.

Lemma 7.17. For all δ ∈ (0, π2 ), there exists constants cδ, Cδ > 0 such that for all b ∈ (0, cδ)
and all y ∈ R + i ([−(π − δ),−δ] ∪ [δ, π − δ]), we have:∣∣∣∣<(( −i2πb2 Li2

(
−ey(1+b2)

))
−
( −i

2πb2 (1 + b2)2Li2(−ey)
))∣∣∣∣ 6 Cδ.

Proof. Let δ ∈ (0, π2 ). Let us define cδ :=
√

δ

2(π − δ) , so that (π − δ)(1 + c2
δ) = π − δ/2.

We consider the function
(x, d, u, b) 7→

∣∣∣Log
(
1 + e(x+id)(1+ub2)

)∣∣∣ ,
which is continous and well-defined on [−1, 0]× [δ, π − δ]× [0, 1]× [0, cδ]; indeed, since

d(1 + ub2) 6 (π − δ)(1 + c2
δ) = π − δ/2 < π,

the exponential will then never be −1. Let us denote Lδ > 0 the maximum of this function.
Let us define

∆(b, y) := =
(
Li2

(
−ey(1+b2)

)
− (1 + b2)2Li2(−ey)

)
for all b ∈ (0, 1) and all y ∈ R + i ([−(π − δ),−δ] ∪ [δ, π − δ]).

We first remark a parity property like in Lemma 7.12. Indeed, it similarly follows from
Proposition 2.3 (1) that ∆(b, y) = −∆(b,−y) = −∆(b, y) = ∆(b,−y) for all b ∈ (0, 1) and
all y ∈ R + i ([−(π − δ),−δ] ∪ [δ, π − δ]). Thus we can consider that y ∈ R60 + i[δ, π − δ] in
the remainder of the proof.

It then follows from Taylor’s theorem that for all b ∈ (0, 1) and all y ∈ R60 + i[δ, π − δ],

∆(b, y) = =
(
−
(∫ 1

0
Log

(
1 + ey(1+ub2)

)
(−yb2)du

)
− (2b2 + b4)Li2(−ey)

)
= −b2=

(
y

(∫ 1

0
Log

(
1 + ey(1+ub2)

)
du

)
+ (2 + b2)Li2(−ey)

)
.
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We will bound
∣∣∣∣∆(b, y)
−b2

∣∣∣∣ separately for <(y) ∈ [−1, 0] and then for <(y) ∈ (−∞,−1).

Firstly, we have for all y ∈ [−1, 0] + i[δ, π − δ] and all b ∈ (0, cδ):∣∣∣∣∆(b, y)
−b2

∣∣∣∣ 6 |y|(∫ 1

0

∣∣∣Log
(
1 + ey(1+ub2)

)∣∣∣ du)+ (2 + b2)|Li2(−ey)|

6
√

1 + (π − δ)2Lδ + 3L′δ,

where L′δ is the maximum of (x, d) 7→ |Li2(−ey)| on (−∞, 0]× [δ, π − δ].
Secondly, let y = x+ id ∈ (−∞,−1] + i[δ, π − δ] and b ∈ (0, cδ). For all u ∈ [0, 1], we have∣∣∣ey(1+ub2)

∣∣∣ < 1, therefore (from the triangle inequality on the Taylor expansion):

∣∣∣Log
(
1 + ey(1+ub2)

)∣∣∣ 6 − log
(
1−

∣∣∣ey(1+ub2)
∣∣∣) = log

(
1 + ex(1+ub2)

1− ex(1+ub2)

)
6

e2x

1− e2x ,

hence ∣∣∣∣∆(b, y)
−b2

∣∣∣∣ 6 |y|(∫ 1

0

∣∣∣Log
(
1 + ey(1+ub2)

)∣∣∣ du)+ (2 + b2)|Li2(−ey)|

6
√
x2 + (π − δ)2 e2x

1− e2x + 3L′δ

6 Eδ + 3L′δ,

where Eδ is the maximum of the function x ∈ (−∞,−1] 7→
√
x2 + (π − δ)2 e2x

1− e2x .

We now conclude the proof by defining Cδ := 1
2π max{

√
1 + (π − δ)2Lδ+3L′δ, Eδ+3L′δ}. �

We can now state and prove the final piece of the proof of Theorem 7.1.

Proposition 7.18. For the constant ρ′ ∈ C∗ defined in Proposition 7.15, we have, as ~→ 0+,

∫
Y 0

dye
1

2π~S
′
b(y) =

∫
Y 0

dy e
iyTQny+yTWn

2π~
Φb
(

yU
2π
√
~

)2
Φb
(

yW
2π
√
~

)
Φb
(

y1
2π
√
~

)
· · ·Φb

(
yp

2π
√
~

)
= e

1
2π~S(y0)

(
ρ′~

p+2
2 (1 + o~→0+ (1)) + O~→0+(1)

)
.

In particular,

(2π~) log
∣∣∣∣∫

Y 0
dy e

1
2π~S

′
b(y)

∣∣∣∣ −→~→0+
<S(y0) = −Vol(S3 \Kn).

Proof. The proof will be similar to the one of Proposition 7.15 (notably, the second statement
follows from the first one in the exact same way), but will need also Lemma 7.17 to bound
an extra term. Let us prove the first statement.

Let δ > 0 such that the absolute value of the imaginary parts of the coordinates of any
y ∈ Y 0 lie in [δ, π − δ]. Let us again denote (η1, . . . , ηp, ηU , ηW ) := (−1, . . . ,−1, 2, 1). Then
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for all y ∈ Y 0 and all b ∈ (0, cδ), it follows from Lemmas 7.13, 7.14 and 7.17 that

∣∣∣∣<( 1
2π~S

′
b(y)− 1

2π~S(y)
)∣∣∣∣ =

∣∣∣∣∣∣<
 W∑
j=1

ηj

(
Log

(
Φb

(
yj

2π
√
~

))
−
( −i

2π~Li2(−eyj )
))∣∣∣∣∣∣

6
W∑
j=1
|ηj |

∣∣∣∣∣<
((

Log
(

Φb

(
yj(1 + b2)

2πb

))
−
( −i

2πb2 Li2(−eyj(1+b2))
)))∣∣∣∣∣

+
W∑
j=1
|ηj |

∣∣∣∣<(( −i2πb2 Li2(−eyj(1+b2))
)
−
( −i

2πb2 (1 + b2)2Li2(−eyj )
))∣∣∣∣

6 (p+ 3)
(
B δ

2
b2 + Cδ

)
6 (p+ 3)

(
B δ

2
+ Cδ

)
.

The remainder of the proof is now the same as for Proposition 7.15, by identifying λ = 1
2π~

and taking ~ small enough so that the associated b satisfies

0 < b < min

cδ, (2πA)−1/2,

(
υ

2π(p+ 3)(Bδ/2 + Cδ)

)1/2
 .

�

7.7. Conclusion and comments.

Proof of Theorem 7.1. The second equality follows from Remark 7.16 and Proposition 7.18,
and the first equality follows from the identity

JXn(~, x) = 2π
√
~ JXn(~, (2π

√
~)x).

�

Some comments are in order.

• The various upper bounds we constructed were far from optimal, since we were mostly
interested to prove that the exponential decrease rate yielded the hyperbolic volume.
Anyone interested in computing a more detailed asymptotic expansion of JXn(~, 0)
(looking for the complex volume, the Reidemeister torsions or potential deeper terms
such as the n-loop invariants of [17]) would probably need to develop the estimations
of Lemmas 7.10, 7.13 and 7.17 at higher order and with sharper precision, as well as
carefully study the coefficients appearing in Theorem 2.17.
• In this theory, the integration variables yj in JXn(~, 0) lie in an unbounded part of C,
contrary to what happens for Kashaev’s invariant or the colored Jones polynomials.
This is why uniform bounds such as the ones of Lemmas 7.10, 7.13 and 7.17 were
new but absolutely necessary technical difficulties to overcome to obtain the desired
asymptotics. Since these results do not depend of the knot, triangulation or potential
function S (assuming it has the same general form as in here), we hope that they
can be of use to further studies of asymptotics of quantum invariants such as the
Teichmüller TQFT.
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8. The case of even twist knots

When the twist knot Kn has an even number of crossings, we can prove the same results
as for the odd twist knots, which are:

• the construction of convenient H-triangulations and ideal triangulations (Section 8.1),
• the geometricity of the ideal triangulations (Section 8.2),
• the computation of the partition functions of the Teichmüller TQFT (Section 8.3),
• the volume conjecture as a consequence of geometricity (Section 8.4).

We tried to provide details of only the parts of proofs that differ from the case of odd twist
knots. As the reader will see, most of these differences lie in explicit values and not in general
processes of proof. As such, we expect that the techniques developed in the previous sections
and adapted in this one can be generalised to several other families of knots in 3-manifolds.

8.1. Construction of triangulations. In the rest of this section we consider a twist knot
Kn with n even, n > 4 (the case n = 2 will be treated in Remark 8.1). We proceed as in
Section 3, and build an H-triangulation of (S3,Kn) from a diagram of Kn. The first step is
described in Figure 17. Note that D is once again an (n+ 1)-gon, and E is an (n+ 2)-gon.

. . .

D

m

r

sE

Figure 17. Building an H-triangulation from a diagram of Kn

From Figure 17 we go to Figure 18 and Figure 19 exactly as in Section 3.
Then we add a new edge (with simple full arrow) and cut D into u and D′ (see Figure

20 (a)), and then we apply the bigon trick p times, where p := n−2
2 . We finally obtain the

polyhedron in Figure 20 (b).
We now chop off the quadrilateral made up of the two adjacent faces G (which are (p+ 2)-

gons) and we add a new edge (double full arrow) and two new faces ep+1, fp. We triangulate
the previous quadrilateral as in Figure 12 and we finally obtain a decomposition of S3 in
three polyhedra glued to one another, as described in Figure 21. Note that if p = 1, then
G = e1 = ep = f0 = fp−1 and there is no tower.
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(a) (b)

. . .
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Figure 18. Boundaries of B+ and B−

(a) (b)

. . .

D

m

s
r

D

ms
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r s
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m
r

s

D

Figure 19. A cellular decomposition of (S3,Kn) as a polyhedron glued to itself

We can then decompose the polyhedra in Figure 21 into ordered tetrahedra and obtain the
H-triangulation of Figure 22. Along the way, in order to harmonize the notation with the
small cases (p = 0, 1), we did the following arrow replacements:

• full black simple arrow by simple arrow with circled 0,
• full black double arrow by simple arrow with circled p+ 1,
• double arrow by simple arrow with circled p,
• full white arrow by double full white arrow.
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(a) (b)

u

u

...

m

r s

D′

m
r

s

D′

u

u

...

m

r s

G

m
r

s

G

Figure 20. A cellular decomposition of (S3,Kn) before and after the bigon trick

u

u

m

r s

fp

m
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s

ep+1

p− 1

fp−1
ep

ep+1

fp

...

e1

e1
e2

e2

ep−1

ep−1

ep fp−1

1

1

2

2

p− 2

p− 2

p− 1

p− 1

Figure 21. A flip move and a tower of tetrahedra

Moreover, we cut the previous polyehdron into p+ 4 tetrahedra, introducing new triangular
faces v (behind ep+1, r, u), g (behind fp, s, u), s′ (completingm,m, s), and f1, . . . , fp−1 at each
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of the p − 1 floors of the tower of Figure 21. We add the convention f0 = e1 to account for
the case p = 0.
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f1 e1
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0

0

0

2

1

1

. . . . . .
0
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fk fk−1

Tk
(2 6 k 6 p− 1)

0

0
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k + 1 k
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p
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s

g

u fp

V
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p

0

p

0

1
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u

v

ep+1 r

W

p + 1

0
p

0

1

23

m

m

s s′

Z

p

p

Figure 22. An H-triangulation for (S3,Kn), n even, n > 4, with p = n−2
2

In the H-triangulation of Figure 22 there are
• 1 common vertex,
• p+5 = n+8

2 edges (simple arrow −→es , double white triangle arrow −→ed , blue simple arrow
−→
Kn, and the simple arrows −→e0 , . . . ,

−−→ep+1 indexed by 0, . . . p+ 1 in circles)
• 2p+ 8 = n+ 6 faces (e1, . . . , ep+1, f1, . . . , fp, g,m, r, s, s

′, u, v),
• p+ 4 = n+6

2 tetrahedra (T1, . . . , Tp, U, V,W,Z) .
Finally, by collapsing the tetrahedron Z (like in the previous section) we obtain the ideal

triangulation of S3 \Kn described in Figure 23. We identified the face s′ with s and the white
triangle arrow with the arrow circled by p.

In Figure 23 there are
• 1 common vertex,
• p + 3 = n+4

2 edges (simple arrow −→es and the simple arrows −→e0 , . . . ,
−−→ep+1 indexed by

0, . . . p+ 1 in circles),
• 2p+ 6 = n+ 4 faces (e1, . . . , ep+1, f1, . . . , fp, g, r, s, u, v),
• p+ 3 = n+4

2 tetrahedra (T1, . . . , Tp, U, V,W ).

Remark 8.1. When n = 2, i.e. p = 0 here, the triangulations of Figures 22 and 23 are still
correct (with the convention f0 = e1), one just needs to stop the previous reasoning at Figure
20 (b) and collapse the bigon G into a segment.
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Figure 23. An ideal triangulation for S3 \Kn, n even, n > 4, with p = n−2
2

In this case, the ideal triangulationX2 of the figure-eight knot complement S3\K2 described
in Figure 23 has three tetrahedra, although it is well-known that this knot complement has
Matveev complexity 2. The ideal triangulations of Figures 2 and 23 are actually related by a
Pachner 3− 2 move.

8.2. Gluing equations and proving geometricity. As in Section 4.3, we constructed in
Figure 24 a triangulation of the boundary torus ∂ν(Kn) from the datum in Figure 23. Here
for the positive tetrahedra T1, . . . , Tp we only indicated the brown a angles for readability
(the b and c follow clockwise). We also drew a meridian curve mXn in violet and dashed, a
longitude curve lXn in green and dashed, and a preferred longitude curve (i)∪ . . .∪(vi) in red
(one can check it is indeed a preferred longitude in Figure 25).

Let us now list the angular and complex weight functions associated to edges of Xn. For
α = (a1, b1, c1, . . . , ap, bp, cp, aU , bU , cU , aV , bV , cV , aW , bW , cW ) ∈ SXn a shape structure on
Xn, we compute the weights of each edge:

• ωs(α) := ωXn,α(−→es) = 2aU + bV + cV + aW + bW
• ω0(α) := ωXn,α(−→e0) = 2a1 + c1 + 2a2 + . . .+ 2ap + aV + cW
• ω1(α) := ωXn,α(−→e1) = 2b1 + c2

• ωk(α) := ωXn,α(−→ek) = ck−1 + 2bk + ck+1 (for 2 6 k 6 p− 1)

• ωp(α) := ωXn,α(−→ep) = cp−1 + 2bp + bU + 2cU + aV + bV + aW + cW
• ωp+1(α) := ωXn,α(−−→ep+1) = cp + bU + cV + bW

For a complex shape structure z̃ = (z1, . . . , zp, zU , zV , zW ) ∈ (R + iR>0)p+3, its complex
weight functions are:
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Figure 24. Triangulation of the boundary torus for the truncation of Xn,
n even, with angles (brown), meridian curve mXn (violet, dashed), longitude
curve lXn (green, dashed) and preferred longitude curve (i)∪ . . .∪(vi) (red).
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Figure 25. A preferred longitude (i) ∪ . . .∪ (vi) (in red) for the even twist
knot Kn, seen in S3 \Kn (left) and on the truncated tetrahedron U (right).

• ωC
s (z̃) := ωC

Xn,α
(−→es) = 2Log(zU ) + Log(z′V ) + Log(z′′V ) + Log(zW ) + Log(z′W )

• ωC
0 (z̃) := ωC

Xn,α
(−→e0) = 2Log(z1) + Log(z′1) + 2Log(z2) + · · · + 2Log(zp) + Log(zV ) +

Log(z′′W )
• ωC

1 (z̃) := ωC
Xn,α

(−→e1) = 2Log(z′′1 ) + Log(z′2)

• ωC
k (z̃) := ωC

Xn,α
(−→ek) = Log(z′k−1) + 2Log(z′′k) + Log(z′k+1) (for 2 6 k 6 p− 1)

• ωC
p (z̃) := ωC

Xn,α
(−→ep) = Log(z′p−1) + 2Log(z′′p ) + 2Log(z′U ) + Log(z′′U ) + Log(zV ) +

Log(z′V ) + Log(zW ) + Log(z′′W )
• ωC

p+1(z̃) := ωC
Xn,α

(−−→ep+1) = Log(z′p) + Log(z′′U ) + Log(z′′V ) + Log(z′W )
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To the meridian curve mXn and the longitude curve lXn are associated angular holonomies
mXn(α) := aV − aU , lXn(α) := 2(aW − bV ),

and one possible complex completeness equation is once again (from the meridian curve):
Log(zU )− Log(zV ) = 0.

Furthermore, one can again see in Figure 24 that in the homology group of the boundary
torus, we have the relation

(i) ∪ . . . ∪ (vi) = lXn + 2mXn .

Using properties of shape structures, we see that the balancing conditions are equivalent
to the following p+ 2 equations:

• Es(α) : 2aU + bV + cV + aW + bW = 2π
• E1(α) : 2b1 + c2 = 2π

• Ek(α) : ck−1 + 2bk + ck+1 = 2π (for 2 6 k 6 p− 1)

• Ep(α) : cp−1 + 2bp + bU + 2cU + aV + bV + aW + cW = 2π
• Ep+1(α) : cp + bU + cV + bW = 2π

The missing (p+ 3)-rd equation, stating that the angles around the vertices of degree 2p+ 3
in Figure 24 add up to 2π, is redundant: summed with all of the above, it becomes simply
that the sum of all angles is (p+ 3)π.

Theorem 8.2. Xn is geometric for n ≥ 2 even.

Proof. We begin by treating the case of n ≥ 6, i.e. p ≥ 2. First we show that the space of
positive angle structures is nonempty. For small enough ε > 0, the valuesajbj

cj

 :=

 ε
π − ε(j2 + 1)

εj2

 for 1 ≤ j ≤ p− 1,

apbp
cp

 :=

3π/4− ε(p2 + 2p− 1)/2
π/4− ε(p2 − 2p+ 1)/2

εp2

 ,
aUbU
cU

 =

aVcV
bV

 =

cWbW
aW

 :=

 π/4 + εp2/2
2π/3− εp2/3
π/12− εp2/6


give a positive solution to Es, E1, . . . , Ep+1.

Next, we claim that among the volume maximizers, there is one such that U, V,W have
identical angles modulo the permutation used in the formula above. Let Fj denote the con-
straint aj + bj + cj = π. The angles of U, V,W appear only in equations Es, Ep, Ep+1. These
can be rewritten

Ep+1 cp + (bU + cV + bW ) = 2π
3Ep + 2Es − (3FU + 2FV + 2FW ) 3cp−1 + 6bp + (aU + aV + cW ) + 3(cU + bV + aW ) = 3π

Es − (FV + FW ) 2aU = aV + cW .

The involution (aV , bV , cV )↔ (cW , aW , bW ) preserves these equations, so by concavity of the
volume function, there is a maximizer such that (aV , bV , cV ) = (cW , aW , bW ). The last of the
3 equations above then gives aU = aV = cW . The order-3 substitution of variables

(aU , bU , cU )→ (aV , cV , bV )→ (cW , bW , aW )→ (aU , bU , cU )
then clearly leaves the other two equations unchanged, so by concavity we may average out
and find a maximizer such that (aU , bU , cU ) = (aV , cV , bV ) = (cW , bW , aW ), as desired.
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These identifications make Es redundant. Moreover, dropping the angles of V and W as
variables, we may now rewrite the system of constraints as

• E1 : 2b1 + c2 = 2π
• Ek : ck−1 + 2bk + ck+1 = 2π (for 2 6 k 6 p− 1)
• E′p : cp−1 + 2bp + aU + 3cU = π (not 2π!)
• E′p+1 : cp + 3bU = 2π

Recall from Lemma 4.3 that at a volume maximizer, if ajbjcj = 0 then aj , bj , cj are 0, 0, π up
to order.

Lemma 8.3. At a volume maximizer, if akbkck = 0 then k = p and (ap, bp, cp) = (0, 0, π).

Proof. First, E′p+1 gives bU = (2π−cp)/3 ∈ [π/3, 2π/3] so the tetrahedron U is nondegenerate.
• Let us show by induction on 1 ≤ k ≤ p−1 that bk > 0. By E1 we have b1 = π−c2/2 ≥ π/2,
giving the case k = 1. For the induction step, suppose 2 ≤ k ≤ p − 1 and bk−1 > 0. Then
ck−1 < π, which by Ek implies that bk > 0.
• Let us now show by descending induction on p−1 ≥ k ≥ 1 that bk < π. For the initialisation,
suppose (ap−1, bp−1, cp−1) = (0, π, 0) and aim for a contradiction. Recall that p ≥ 2: by Ep−1
we have cp = 0, hence bU = 2π/3 by E′p+1. But cp = 0 also implies bp ∈ {0, π}, hence
bp = 0 by E′p. Together with cp−1 = 0, by E′p this yields aU + 3cU = π. But we showed that
bU = 2π/3, hence (aU , bU , cU ) = (0, 2π/3, π/3), a forbidden configuration. This contradiction
shows bp−1 < π.

For the (downward) induction step, suppose p − 2 ≥ k ≥ 1 and bk+1 < π. Actually
0 < bk+1 < π (previous bullet-point), hence 0 < ck+1: by Ek, this implies bk < π.
• It only remains to rule out cp = 0. Note that the non-negative sequence (0, c1, . . . , cp) is
convex, because Ek can be rewritten ck−1 − 2ck + ck+1 = 2ak ≥ 0 (agreeing that “c0” stands
for 0). But we showed 0 < bp−1 < π: hence, cp−1 > 0 which entails cp ≥ p

p−1cp−1 > 0. �

We can now prove that the volume maximizer has only positive angles. By the above
lemma, if not, then we may assume (ap, bp, cp) = (0, 0, π) and that all other tetrahedra are
nondegenerate. We will exhibit a smooth path of deformations of the angles, along which
the derivative of the volume is positive. (As a function of the angles, the volume of an ideal
tetrahedron is not smooth near the point (0, 0, π), but it has a well-defined derivative in the
direction of any segment.)

Using Ep−1, E
′
p, E

′
p+1, it is straigthforward to check that the angles satisfyap−1 ap aU

bp−1 bp bU
cp−1 cp cU

 =

(π + cp−2 − 2cp−1)/2 0 (π + cp−1)/2
(π − cp−2)/2 0 π/3

cp−1 π π/6− cp−1/2

 . (2)

For small t > 0, the t-deformation given by (atk, btk, ctk) = (ak, bk, ck) for 1 ≤ k ≤ p− 2 andatp−1 atp atU
btp−1 btp btU
ctp−1 ctp ctU

 =

ap−1 0 aU
bp−1 0 bU
cp−1 π cU

+ t

−1 2 −1
1 0 2/3
0 −2 1/3
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is still an angle structure, i.e. satisfies E1, . . . , Ep−1, E
′
p, E

′
p+1. By definition of the volume

functional V (Section 2.3), we have for this deformation

exp
(−∂V

∂t

)∣∣∣∣
t=0

= sin(bp−1)
sin(ap−1)

sin2(bU ) sin(cU )
sin3(aU )

. (3)

Each factor sin(θ) appears to the power ∂θ/∂t, but tripled for θ = aU , bU , cU because there
are 3 isometric copies of the tetrahedron U . The p-th tetrahedron stays flat, hence does not
contribute volume. The formula for cU in (2) gives 0 ≤ cp−1 ≤ π/3. We proved in the lemma
above that (0, c1, . . . , cp) is convex, hence (2) also yields ap−1 ∈ [π/6, π/2]. Therefore,

sin(bp−1)
sin(ap−1) ≤

1
sin(π/6) = 2.

On the other hand, still using (2),

sin2(bU ) sin(cU )
sin3(aU )

= 3
4

sin(π/6− cp−1/2)
sin3(π/2 + cp−1/2)

≤ 3
4

sin(π/6)
sin3(π/2)

= 3
8

by an easy monotonicity argument for cp−1 ranging over [0, π/3]. In conclusion, (3) is bounded
above by 2 · 3/8 < 1, hence (∂V /∂t)t=0+ > 0 as desired.

Thus, the volume maximizer is interior to the space of angle structures. By Theorem 2.2,
this implies Theorem 8.2 for p ≥ 2. It only remains to discuss p = 0, 1.
• For p = 1 we find the initial gluing equations

Es : 2aU + bV + cV + aW + bW = 2π
E1 : 2b1 + bU + 2cU + aV + bV + aW + cW = 2π
E2 : c1 + bU + cV + bW = 2π

(only the term “cp−1” has disappeared from E1). Symmetry between U, V,W can be argued
as in the p ≥ 2 case, reducing the above to

E′1 : 2b1 + aU + 3cU = π
E′2 : c1 + 3bU = 2π.

The tetrahedron U is not flat, as bU = (2π − c1)/3 ∈ [π/3, 2π/3]. If c1 = 0 then b1 ∈ {0, π}
must be 0 by E′1, hence (aU , bU , cU ) = (0, 2π/3, π/3) which is prohibited. If c1 = π thena1 aU

b1 bU
c1 cU

 =

0 π/2
0 π/3
π π/6

 can be perturbed by adding t

 2 −1
0 2/3
−2 1/3


(where 0 < t� 1) to produce a path of angle structures, yielding as before

exp
(−∂V

∂t

)∣∣∣∣
t=0

= sin2(bU ) sin(cU )
sin3(aU )

= 3
8 < 1.

• For p = 0 it is straightforward to check that (aU , bU , cU ) = (aV , cV , bV ) = (cW , bW , aW ) =
(π/6, 2π/3, π/6) yields the complete hyperbolic metric (this is actually the result of a 2→ 3
Pachner move on the standard triangulation of the figure eight knot complement into two
regular ideal tetrahedra). Theorem 8.2 is proved. �
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8.3. Computation of the partition functions. The following theorem is the version of
Theorem 5.2 for even n. Note that here µXn(α) = −mXn(α) and once again λXn(α) =
lXn(α) + 2mXn(α) corresponds to a preferred longitude.

Theorem 8.4. Let n be a positive even integer and p = n−2
2 . Consider the ideal triangulation

Xn of S3 \Kn described in Figure 23. Then for all angle structures α = (a1, . . . , cW ) ∈ AXn

and all ~ > 0, we have:

Z~(Xn, α) ?=
∫
R+i

µXn
(α)

2π
√
~

JXn(~, x)e
1

2
√
~
xλXn (α)

dx,

with
• the degree one angle polynomial µXn : α 7→ aU − aV ,
• the degree one angle polynomial λXn : α 7→ 2(aV − aU + aW − bV ),
• the map

JXn : (~, x) 7→
∫

Y ′
dy′ e2iπy′TQny′e2iπx(x−y′U−y

′
W )e

1√
~

(y′TWn−πx) Φb (x− y′U ) Φb (y′W )
Φb (y′1) · · ·Φb

(
y′p

)
Φb (y′U )

,

where

Y ′ = Y ′~,α =

 ∏
k=1,...,p,U

(
R− i

2π
√
~

(π − ak)
)× (R + i

2π
√
~

(π − aW )
)
,

y′ =


y′1
...
y′p
y′U
y′W

 , Wn =



−2pπ
...

−2π
(
kp− k(k−1)

2

)
...

−p(p+ 1)π
−(p2 + p+ 3)π

π


and Qn =



1 1 · · · 1 1 0
1 2 · · · 2 2 0
...

... . . . ...
...

...
1 2 · · · p p 0
1 2 · · · p p+ 1 −1

2
0 0 · · · 0 −1

2 0


.

Proof. Since the computations are very similar to those of the proof of Theorem 5.2 we will
not give all the details. Let n ≥ 2 be an even integer and set p = n−2

2 . As before, we denote
t̃ = (t1, . . . , tp−1, tp, tU , tV , tW )T ∈ RX3 the vector whose coordinates are associated to the
tetrahedra, and x = (e1, . . . , ep, ep+1, f1, . . . , fp, v, r, s, g, u)T ∈ RX2 the face variables vector.

Like in Lemma 5.5, we compute KXn

(
t̃
)

= 1
| det(Ae)|e

2iπt̃T (−ReA−1
e B)̃t, where B is like in

the proof of Lemma 5.5, but Re, Ae (e standing for even) are given by

Re =



e1 ... ep ep+1 f1 ... fp v r s g u

t1 1 0... . . . 0 0
tp 0 1
tU 0 1 0 0 0
tV 0 0 0 0 −1 0 0
tW 0 0 0 0 −1


,
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Ae =



e1 e2 ... ep ep+1 f1 f2 ... fp v r s g u

w1 1 −1 1
... . . . . . . 0 . . . 0 0... 0 . . . . . . 0 . . .
wp 1 −1 1
wU 0 −1 1 1 0 0
wV 0 1 0 0 1 −1 0
wW 0 −1 1 0 0 1
w′1 −1 1
... −1 . . . 0 0... . . . . . .
w′p 0 −1 1
w′U 0 0 0 0 1 −1 0
w′V 0 1 0 0 0 0 −1
w′W −1 0 0 1 0 0 0



.

Careful computation yields that det(Ae) = −1 and that A−1
e is equal to

A−1
e =



w1 w2 ... wp−1 wp wU wV wW w′1 w′2 ... w′p−1 w′p w′U w′V w′W

e1 0 · · · 0 0 1 0 −1 −1 · · · −1 −1 0 0
e2 −1 0 0 2 0 −1 −2 · · · −2 −2 0 0

...
−1 −1 . . . ... . . . ...
... . . . 0 0

...
...

...
...

... 1− p 1− p
...

...
...

ep −1 0 1− p −p
ep+1 −1 · · · −1 0 p + 1 0 −1 −2 · · · 1− p −p −p− 1 0 0
f1 0 1 0 0 −1 · · · −1 −1 0 0

f2 1 0 0 . . . ...
−1

... 0
...

...
...

... . . . −1 −1
...

...
...

fp−1 0 0 −1
fp 0 1 0 0 · · · 0 −1 0 0
v −1 · · · −1 0 p + 2 −1 −1 −2 · · · −p −p− 2 −1 1
r −1 · · · −1 0 p + 1 0 −1 −2 · · · −p −p− 1 0 1
s 1 1 −1 −1 −1 0
g 0 1 1 −1 0 −2 −1 0
u 0 1 0 −1 −1 0



.
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Hence KXn(t̃) = exp
(
2iπt̃T Q̃nt̃

)
, where

Q̃n := (−ReA−1
e B) + (−ReA−1

e B)T

2 =



t1 t2 ··· tp−1 tp tU tV tW

t1 1 1 · · · 1 1 1 0 0
t2 1 2 · · · 2 2 2 0 0
...

...
... . . . ...

...
...

...
...

tp−1 1 2 · · · p− 1 p− 1 p− 1 0 0
tp 1 2 · · · p− 1 p p 0 0
tU 1 2 · · · p− 1 p p+ 1 −1/2 −1
tV 0 0 · · · 0 0 −1/2 −1 −1/2
tW 0 0 · · · 0 0 −1 −1/2 0


.

Now, like in Lemma 5.6, if we denote C̃(α) = (c1, . . . , cW )T , and Γ̃(α) := (a1 − π, . . . , ap −
π, aU − π, π − aV , π − aW )T , then (indexing entries by k ∈ {1, . . . , p + 3}) we can compute:
2Q̃nΓ̃(α) + C̃(α) =



k=1
...

... k(ωs(α)− 2(p+ 2)π) +
∑k
j=1 jωk−j(α)

k=p
...

ωs(α)− ωp+1(α) +
(
p(ωs(α)− 2(p+ 2)π) +

∑p
j=1 jωp−j(α)

)
− 4π + 1

2λXn(α)
1
2λXn(α)− π
3π − ωs(α)


,

where λXn(α) = 2(−aU + aV − bV + aW ). Notably we have for all angle structures α ∈ AXn :

2Q̃nΓ̃(α) + C̃(α) =



k=1
...

... −2π
(
kp− k(k − 1)

2

)
k=p

...
−(p2 + p+ 4)π + 1

2λXn(α)
1
2λXn(α)− π

π


.

The above computations are fairly quick consequences of the similarities between the matrices
Q̃n and the weights ωj(α) whether n is odd or even.

Denote again α = (a1, b1, c1, . . . , aW , bW , cW ) a general vector of dihedral angles in AXn .
Let ~ > 0. Since the tetrahedron TU is of positive sign here, the dynamical content D~,Xn(t̃, α)
thus becomes

e
1√
~
C̃(α)T t̃ Φb

(
tV + i

2π
√
~
(π − aV )

)
Φb
(
tW + i

2π
√
~
(π − aW )

)
Φb
(
t1 − i

2π
√
~
(π − a1)

)
· · ·Φb

(
tp − i

2π
√
~
(π − ap)

)
Φb
(
tU − i

2π
√
~
(π − aU )

) .
According to tetrahedra signs, we do the following change of variables:
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• y′k = tk − i
2π
√
~
(π − ak) for k ∈ {1, . . . , p, U},

• y′l = tl + i
2π
√
~
(π − al) for l ∈ {V,W},

and we define ỹ′ :=
(
y′1, . . . , y

′
p, y
′
U , y

′
V , y

′
W

)T
. We also denote

Y ′~,α :=
∏

k=1,...,p,U

(
R− i

2π
√
~

(π − ak)
)
×

∏
l=V,W

(
R + i

2π
√
~

(π − al)
)
.

After computations similar to the ones in the proof of Theorem 5.2, we obtain:

Z~(Xn, α) ?=
∫

ỹ′∈Ỹ ′~,α

dỹ′e2iπỹ′T Q̃nỹ′+ 1√
~

(
2Q̃nΓ̃(α)+C̃(α)

)T
ỹ′ Φb (y′V ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

)
Φb (y′U )

,

We define a new variable x := y′U + y′V living in the set

Y 0
~,α = R + i

2π
√
~

(aU − aV ),

and we also define y′ (respectively Y ′~,α) exactly like ỹ′ (respectively Ỹ ′~,α) but with the
second-to-last coordinate (corresponding to yV ) taken out. We also define

Wn =



Wn,1
...

Wn,k
...

Wn,p

Wn,U

Wn,W


:=



−2pπ
...

−2π
(
kp− k(k−1)

2

)
...

−p(p+ 1)π
−(p2 + p+ 3)π

π


and Qn =



1 1 · · · 1 1 0
1 2 · · · 2 2 0
...

... . . . ...
...

...
1 2 · · · p p 0
1 2 · · · p p+ 1 −1

2
0 0 · · · 0 −1

2 0


.

This time, Qn is obtained from Q̃n by replacing the two rows corresponding to yU and yV with
their difference (row of yU minus row of yV ), and by replacing the two columns corresponding
to yU and yV with their difference. We now use the substitution y′V = x−y′U and we compute

2iπỹ′T Q̃nỹ′ = 2iπ
(
(y′TQny′ − (p+ 1)y′U

2 + y′Uy
′
W ) + (p+ 1)y′U

2 − y′Uy′V − 2y′Uy′W − y′V
2 − y′V y′W

)
= 2iπ

(
y′TQny′ + xy′U − xy′W − x2

)
,

and 1√
~

(
2Q̃nΓ̃(α) + C̃(α)

)T
ỹ′ = 1√

~

(
W T
n y′ + x(1

2λXn(α)− π)
)
, thus

Z~(Xn, α) ?=
∫

ỹ′∈Ỹ ′~,α

dỹ′e2iπỹ′T Q̃nỹ′+ 1√
~

(
2Q̃nΓ̃(α)+C̃(α)

)T
ỹ′ Φb (y′V ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

)
Φb (y′U )

?=
∫
dxdy′e2iπ(y′TQny′+x(y′U−y

′
W−x))+ 1√

~(W T
n y′+x( 1

2λXn (α)−π)) Φb (x− y′U ) Φb (y′W )
Φb (y′1) · · ·Φb

(
y′p

)
Φb (y′U )

,

where the variables (y′, x) in the last integral lie in Y ′~,α × Y 0
~,α. The theorem follows. �

We now state the counterpart of Corollary 5.7, which is proven in exactly the same way.
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Corollary 8.5. Let n be a positive even integer, p = n−2
2 and Xn the ideal triangulation of

S3 \Kn from Figure 23. Then for all angle structures α ∈ AXn and all ~ > 0, we have:

Z~(Xn, α) ?=
∫
R+iµXn (α)

JXn(~, x)e
1

4π~ xλXn (α)dx,

with the map

JXn : (~, x) 7→
( 1

2π
√
~

)p+3 ∫
Yα
dy e

iyTQny+ix(yU−yW−x)+yTWn−πx
2π~

Φb
(

x−yU
2π
√
~

)
Φb
(

yW
2π
√
~

)
Φb
(

y1
2π
√
~

)
· · ·Φb

(
yp

2π
√
~

)
Φb
(

yU
2π
√
~

) ,
where µXn , λXn ,Wn, Qn are the same as in Theorem 8.4, and

Yα =

 ∏
k=1,...,p,U

(R− i(π − ak))

× (R + i(π − aW )) .

Proof. Exactly similar to the proof of Corollary 5.7. �

We finally come to H-triangulations for even twists knots. Again, before stating Theorem
8.6, we compute the weights on each edge of the H-triangulation Yn given in Figure 22 (for
n > 3 even).

We use exactly the same notations as the odd case. We denoted −→e0 , . . . ,
−−→ep+1,

−→es ,−→ed ,
−→
Kn ∈

(Yn)1 the p + 5 edges in Yn respectively represented in Figure 22 by arrows with circled 0,
. . . , circled p+ 1, simple arrow, double arrow and blue simple arrow.

For α = (a1, b1, c1, . . . , ap, bp, cp, aU , bU , cU , aV , bV , cV , aW , bW , cW , aZ , bZ , cZ) ∈ SYn a shape
structure on Yn, the weights of each edge are given by:

• ω̂s(α) := ωYn,α(−→es) = 2aU + bV + cV + aW + bW + aZ
• ω̂d(α) := ωYn,α(−→ed) = bU + cU + cW + bZ + cZ
• ω0(α) := ωYn,α(−→e0) = 2a1 + c1 + 2a2 + . . .+ 2ap + aV + cW
• ω1(α) := ωYn,α(−→e1) = 2b1 + c2

• ωk(α) := ωYn,α(−→ek) = ck−1 + 2bk + ck+1 (for 2 6 k 6 p− 1)

• ω̂p(α) := ωYn,α(−→ep) = cp−1 + 2bp + cU + aV + bV + aW + bZ + cZ
• ωp+1(α) := ωYn,α(−−→ep+1) = cp + bU + cV + bW

• ω̂−→
Kn

(α) := ωYn,α(−→Kn) = aZ

We can now compute the partition function for the H-triangulations Yn (n even), and
prove the following theorem. As for the odd case, we will denote SYn\Z the space of shape
structures on every tetrahedron of Yn except for Z.

Theorem 8.6. Let n be a positive even integer and p = n−2
2 . Consider the one-vertex H-

triangulation Yn of the pair (S3,Kn) described in Figure 22. Then for every ~ > 0 and for
every τ ∈ SYn\Z×SZ such that ωYn,τ vanishes on −→Kn and is equal to 2π on every other edge,
one has

lim
α→ τ
α ∈ SYn

Φb

π − ωYn,α
(−→
Kn

)
2πi
√
~

Z~(Yn, α) ?= JXn(~, 0),

where JXn is defined in Theorem 8.4.
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Proof. Let n be an even integer and p = n−2
2 . The proof is similar to the odd case and will be

separated in three steps: computing the partition function Z~(Yn, α), applying the dominated
convergence theorem in α→ τ and finally retrieving the value JXn(~, 0) in α = τ .

Step 1. Computing the partition function Z~(Yn, α).
Like in the proof of Theorem 8.4 we start by computing the kinematical kernel. We denote

t̂ = (t1, . . . , tp, tU , tV , tW , tZ) ∈ RY 3
n and x̂ = (e1, . . . , ep, ep+1, f1, . . . , fp, v, r, s, s

′, g, u,m) ∈ RY 2
n .

Like in the proof of Theorem 6.1, using Figure 22, we compute

KYn

(
t̂
)

=
∫

x̂∈RY 2
n

dx̂
∫

ŵ∈R2(p+4)
dŵ e2iπt̂T Ŝex̂e−2iπŵT Ĥex̂e−2iπŵT D̂t̂,

where D̂ is like in proof of Theorem 6.1, whereas the matrices Ŝe and Ĥe are given by:

Ŝe =



e1 ... ep ep+1 f1 ... fp v r s s′ g u m

t1 1 0... . . . 0 0
tp 0 1
tU 0 1 0 0 0 0 0
tV 0 0 0 0 −1 0 0 0 0
tW 0 0 0 0 0 −1 0
tZ 0 0 0 0 0 0 1


,

Ĥe =



e1 e2 ... ep ep+1 f1 f2 ... fp v r s s′ g u m

w1 1 −1 1
... . . . . . . 0 . . . 0 0... 0 . . . . . . 0 . . .
wp 1 −1 1
wU 0 −1 1 0 1 0 0 0
wV 0 1 0 0 1 0 −1 0 0
wW 0 −1 1 0 0 0 1 0
wZ 0 0 0 1 0 0 0 0
w′1 −1 1
... −1 . . . 0 0... . . . . . .
w′p 0 −1 1
w′U 0 0 0 0 0 1 −1 0 0
w′V 0 1 0 0 0 0 0 −1 0
w′W −1 0 0 1 0 0 0 0 0
w′Z 0 0 0 0 1 −1 0 0 0



.

Like in the odd case, let us define Se the submatrix of Ŝe without the m-column, He the
submatrix of Ĥe without the m-column and the wV -row, Re,V this very wV -row of Ĥe, D the
submatrix of D̂ without the wV -row, x the subvector of x̂ without the variable m and w the
subvector of ŵ without the variable wV . We remark that He is invertible and det(He) = −1.
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Hence, by using multi-dimensional Fourier transform and the integral definition of the Dirac
delta function like in the odd case, we compute

KYn

(
t̂
)

= δ(−tZ)e2iπt̂T (−SeH−1
e D)̂tδ(−Re,VH−1

e Dt̂).

We can now compute H−1
e =



w1 w2 ... wp−1 wp wU wW wZ w′1 w′2 ... w′p−1 w′p w′U w′V w′W w′Z

e1 0 · · · 0 −1 1 1 −1 −1 · · · −1 0 1 0 −1
e2 −1 0 −2 2 2 −1 −2 · · · −2 0 2 0 −2

...
−1 −1 . . . ... . . . ...
... . . . 0 0

...
...

...
...

... 1− p 1− p
...

...
...

...
ep −1 0 1− p −p
ep+1 −1 · · · −1 −p− 1 p + 1 p + 1 −1 −2 · · · 1− p −p 0 p + 1 0 −p− 1

f1 −1 1 1 0 −1 · · · −1 0 1 0 −1

f2 0 0 . . . ...... 0
...

...
...

... . . . −1 −1
...

...
...

...
fp−1 0 0 −1
fp −1 1 1 0 · · · 0 0 1 0 −1
v −1 · · · −1 −p− 2 p + 1 p + 2 −1 −2 · · · −p 0 p + 1 1 −p− 2

r −1 · · · −1 −p− 1 p + 1 p + 1 −1 −2 · · · −p 0 p + 1 1 −p− 1

s 0 0 1 0 0 0 0
s′ 0 0 0 1 0 0 0 0 −1
g 0 0 1 −1 0 0 −1
u −1 1 1 0 0 0 −1



,

and thus find that −Re,VH−1
e Dt̂ = −tU − tV and

−SeH−1
e D =



t1 t2 ··· tp−1 tp tU tV tW tZ

t1 1 1 · · · 1 1 0 −1 0 1
t2 1 2 · · · 2 2 0 −2 0 2
...

...
... . . . ...

...
...

...
...

...
tp−1 1 2 · · · p− 1 p− 1 0 −(p− 1) 0 p− 1
tp 1 2 · · · p− 1 p 0 −p 0 p
tU 1 2 · · · p− 1 p 0 −(p+ 1) −1 p+ 1
tV 0 0 · · · 0 0 0 0 0 0
tW 0 0 · · · 0 0 0 0 0 −1
tZ 0 0 · · · 0 0 0 0 0 0


.

Since

t̂T (−SeH−1
e D)t̂ = tTQnt+(−tU−tV )(t1+. . .+ptp+(p+1)tU )+tZ(t1+. . .+ptp+(p+1)tU−tW ),

where t = (t1, . . . , tp, tU , tW ) and Qn is defined in Theorem 8.4, we conclude that the kine-
matical kernel can be written as

KYn(t̂) = e2iπ(tTQnt−tW tZ+(tZ−tU−tV )(t1+···+ptp+(p+1)tU ))δ(tZ)δ(−tU − tV ).
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We now compute the dynamical content. We denote α = (a1, b1, c1, . . . , aW , bW , cW , aZ , bZ , cZ)
a general vector in SYn . Let ~ > 0. The dynamical content D~,Yn(t̂, α) is equal to:

e
1√
~
Ĉ(α)T t̂ Φb

(
tV + i

2π
√
~
(π − aV )

)
Φb
(
tW + i

2π
√
~
(π − aW )

)
∏p
k=1 Φb

(
tk − i

2π
√
~
(π − ak)

)
Φb
(
tU + i

2π
√
~
(π − aU )

)
Φb
(
tZ − i

2π
√
~
(π − aZ)

) ,
where Ĉ(α) = (c1, . . . , cp, cU , cV , cW , cZ)T .

Let us come back to the computation of the partition function of the Teichmüller TQFT.
We begin by integrating over the variables tV and tZ , which consists in removing the two
Dirac delta functions δ(−tZ) and δ(−tU − tV ) in the kinematical kernel and replacing tZ by
0 and tV by −tU in the other terms. Therefore, we have

Φb

(
π − aZ
2πi
√
~

)
Z~(Yn, α) ?=

∫
t∈Rp+2

dt e2iπtTQnte
1√
~

(c1t1+···+cptp+(cU−cV )tU+cW tW )Π(t, α, ~),

where t = (t1, . . . , tp, tU , tW ) and

Π(t, α, ~) :=
Φb
(
−tU + i

2π
√
~
(π − aV )

)
Φb
(
tW + i

2π
√
~
(π − aW )

)
Φb
(
t1 − i

2π
√
~
(π − a1)

)
· · ·Φb

(
tp − i

2π
√
~
(π − ap)

)
Φb
(
tU − i

2π
√
~
(π − aU )

) .
Step 2. Applying the dominated convergence theorem for α→ τ .
This step is exactly as in the proof of Theorem 6.1. As for the odd case, for the rest of the

proof, set
τ = (aτ1 , bτ1 , cτ1 , . . . , aτZ , bτZ , cτZ) ∈ SYn\Z ×SZ

be such that ωj(τ) = 2π for all j ∈ {0, 1, . . . , p− 1, p+ 1}, ω̂j(τ) = 2π for all j ∈ {s, d, p} and
ω̂−→
Kn

(τ) = aτZ = 0.
Step 3. Retrieving the value JXn(~, 0) in α = τ .
Similarly as in the odd case, we do the following change of variables:
• y′k = tk − i

2π
√
~
(π − ak) for k ∈ {1, . . . , p, U},

• y′W = tW + i
2π
√
~
(π − aW ),

and we denote y′ =
(
y′1, . . . , y

′
p, y
′
U , y

′
W

)T
. Again aτU − aτV = (ω̂s(τ)− 2π) + (ω̂d(τ)− 2π) = 0.

We also denote

Ỹ ′~,τ :=
∏

k=1,...,p,U

(
R− i

2π
√
~

(π − aτk)
)
×
(
R + i

2π
√
~

(π − aτW )
)
,

the subset of Cp+2 on which the variables in y′ reside.
By a similar computation as in the proof of Theorem 8.4, we obtain∫

t∈Rp+2
dte2iπtTQnte

1√
~

(cτ1 t1+···+cτptp+(cτU−c
τ
V )tU+cτW tW )Π(t, τ, ~)

?=
∫

y′∈Y ′~,τ

dy′e2iπy′TQny′+ 1√
~
W (τ)Ty′ Φb (−y′U ) Φb (y′W )

Φb (y′1) · · ·Φb
(
y′p

)
Φb (y′U )

,

where for any α ∈ SYn\Z , W (α) is defined as

W (α) := 2QnΓ(α) + C(α) + (0, . . . , 0,−cV , 0)T ,
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with Γ(α) = (a1 − π, . . . , ap − π, aU − π, π − aW )T and C(α) = (c1, . . . , cp, cU , cW ). Hence,
from the value of JXn(~, 0), it remains only to prove that W (τ) = Wn.

Let us denote Λ : (u1, . . . , up, uU , uV , uW ) 7→ (u1, . . . , up, uU , uW ) the process of forgetting
the second-to-last coordinate. then obviously C(α) = Λ(C̃(α)). Recall from the proof of
Theorem 8.4 that W̃ (α) = 2Q̃nΓ̃(α) + C̃(α) depends almost only on edge weights of the
angles in Xn.

Thus, a direct calculation shows that for any α ∈ SYn\Z , we have

W (α) = Λ(W̃ (α)) +


0
...
0

−cV + (π − aV ) + (π − aW )
aU − aV

 .

Now, if we specify α = τ , then the weights ωXn,j(α) appearing in Λ(W̃ (α)) all become 2π,
since ωs(τ) = ω̂s(τ)− ω̂−→

Kn
(τ) = 2π and ωp(τ) = ω̂d(τ) + ω̂p(τ)− 2

(
π − ω̂−→

Kn
(τ)
)

= 2π. Hence

W (τ) = Wn +


0
...
0

1
2λXn(τ)− π − cτV + (π − aτV ) + (π − aτW )

aτU − aτV

 .

Finally, since 1
2λXn(τ) = aτV − aτU + aτW − bτV and aτU − aτV = 0, we conclude that W (τ) = Wn

and the theorem is proven. �

8.4. Geometricity implies the volume conjecture. In this section we will prove the
following theorem, which can be compared with Theorem 7.1.

Theorem 8.7. Let n be a positive even integer, and JXn , JXn the functions defined in The-
orem 8.4 and Corollary 8.5. If the ideal triangulation Xn is geometric, then

lim
~→0+

2π~ log |JXn(~, 0)| = lim
~→0+

2π~ log |JXn(~, 0)| = −Vol(S3\Kn).

The following Corollary 8.8 is an immediate consequence of Theorem 8.7 and Theorem 8.2.

Corollary 8.8. The Teichmüller TQFT volume conjecture of Andersen-Kashaev is proven
for the even twist knots.

Proof of Theorem 8.7. To prove Theorem 8.7, we will follow exactly the same general path
as in Section 7. For the sake of brevity, we will thus only state the modifications that are due
to the fact that n is even instead of odd. For the remainder of the section, let n be a positive
even integer such that Xn is geometric. Let us first list the changes in notations:

• The open “multi-band” is now U :=
(∏

k=1,...,p,U (R + i(−π, 0))
)
× (R + i(0, π)) , and

the closed one Uδ (for δ > 0) is Uδ :=
∏
k=1,...,p,U (R + i[−π + δ,−δ])×(R + i[δ, π − δ]) .

• As said in Corollary 8.5, Yα :=
(∏

k=1,...,p,U (R− i(π − ak))
)
× (R + i(π − aW )) .
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• The potential function S : U → C is now S := y 7→

iyTQny + yTWn + iLi2 (−ey1) + · · ·+ iLi2 (−eyp) + iLi2 (−eyU )− iLi2
(
−e−yU

)
− iLi2 (−eyW ) .

The expressions of its quantum deformations Sb and S′b (for b > 0) should be obvious.
• The vector η, first appearing in Proposition 7.15, is now η := (−1, . . . ,−1,−2, 1).

We will state and prove several facts, which are variants of statements in Section 7.
Before all, let us remark that the non-degeneracy of the holomorphic hessian of S (Lemma

7.3) and the strict concavity of <(S) (Lemma 7.5) are obtained immediately by arguments
and computations similar with the ones in Section 7.

However, relating the vanishing of ∇S to Thurston’s gluing equations (Lemma 7.4) needs
a little more detail:
Fact 1. The diffeomorphism ψ induces a bijective mapping between {y ∈ U ;∇S(y) = 0} and
{z ∈ (R + iR>0)p+2; E co

Xn
(z)}.

The system E co
Xn

(z) of equations (satisfied by the complete hyperbolic structure) is:

• EXn,0(z) : Log(z′1) + 2Log(z1) + · · ·+ 2Log(zp) + 2Log(zU ) = 2iπ
• EXn,1(z) : 2Log(z′′1 ) + Log(z′2) = 2iπ

• EXn,k(z) : Log(z′k−1) + 2Log(z′′k) + Log(z′k+1) = 2iπ (for 2 6 k 6 p− 1)

• E co
Xn,p+1(z) : Log(z′p) + 2Log(z′′U ) + Log(zW ) = 2iπ

• E co
Xn,s

(z) : Log(z′′W )− Log(zU ) = 0

To prove Fact 1, let us first compute, for y ∈ U :

∇S(y) = 2iQny + Wn + i


−Log(1 + ey1)

...
−Log(1 + eyp)

−Log(1 + eyU )− Log(1 + e−yU )
Log(1 + eyW )

 .
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Then, we define the matrix A =



y1 y2 y3 ··· yp yU yW

y1 1
y2 −2 1 0
y3 1 −2 1
... . . . . . . . . .
yp 1 −2 1 0 0
yU −1 1 1
yW 0 0 0 1


∈ GLp+2(Z),

and we compute A · ∇S(y) =

2i(y1 + · · ·+ yp − yU )− 2πp− iLog(1 + ey1)
−2iy1 + 2π + 2iLog(1 + ey1)− iLog(1 + ey2)

−2iy2 + 2π − iLog(1 + ey1) + 2iLog(1 + ey2)− iLog(1 + ey3)
...

−2iyk + 2π − iLog(1 + eyk−1) + 2iLog(1 + eyk)− iLog(1 + eyk+1)
...

−2iyp−1 + 2π − iLog(1 + eyp−2) + 2iLog(1 + eyp−1)− iLog(1 + eyp)
iyU − iyW − 2π − iLog(1 + eyp)− iLog(1 + eyU )− iLog(1 + e−yU ) + iLog(1 + eyW )

−iyU + iπ + iLog(1 + eyW )


.

Hence we compute, for all z ∈ (R + iR>0)p+2,

A · (∇S)(ψ(z)) = i



Log(z′1) + 2Log(z1) + · · ·+ 2Log(zp) + 2Log(zU )− 2iπ
2Log(z′′1 ) + Log(z′2)− 2iπ

Log(z′1) + 2Log(z′′2 ) + Log(z′3)− 2iπ
...

Log(z′k−1) + 2Log(z′′k) + Log(z′k+1)− 2iπ
...

Log(z′p−2) + 2Log(z′′p−1) + Log(z′p)− 2iπ
−Log(z′p)− 2Log(z′′U )− Log(z′W ) + 2iπ

Log(z′′W )− Log(zU )


,

which is zero if and only if the system E co
Xn

(z) is satisfied. Fact 1 then follows from the
invertibility of A.

The second fact, a variant of Lemma 7.7, is proven similarly, using Proposition 2.3:
Fact 2. The function S : U → C can be re-written

S(y) = iLi2 (−ey1) + · · ·+ iLi2 (−eyp) + 2iLi2 (−eyU ) + iLi2
(
−e−yW

)
+ iyTQny + i

y2
U

2 + i
y2
W

2 + yTWn + i
π2

3 .

Consequently, the fact that <(S)(y0) = −Vol(S3\Kn) is proven like in the proof of Lemma
7.8, using the particular form of S stated in Fact 2, and the fact that at the complete angle
structure, −ey0

U = z0
U = z0

V = −e−y0
V is the complex shape of both tetrahedra U and V .

The rest of the statements in Section 7 (Lemma 7.6 and Proposition 7.9 to Proposition
7.18) are proven in exactly the same way, using the new notations defined at the beginning
of this proof.
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Notably, we obtain the following asymptotic behaviour for JXn(~, 0):

JXn(~, 0) =
( 1

2π
√
~

)p+3
e

1
2π~S(y0)

(
ρ′~

p+2
2 (1 + o~→0+ (1)) + O~→0+(1)

)
.

�
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