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Abstract

We describe an updated calibration and diagnostic framework, Balrog, used to directly sample the selection and
photometric biases of the Dark Energy Survey (DES) Year 3 (Y3) data set. We systematically inject onto the
single-epoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy
models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the
original data to automatically inherit measurement systematics that are often too difficult to capture with generative
models. The resulting object catalog is a Monte Carlo sampling of the DES transfer function and is used as a
powerful diagnostic and calibration tool for a variety of DES Y3 science, particularly for the calibration of the
photometric redshifts of distant “source” galaxies and magnification biases of nearer “lens” galaxies. The recovered
Balrog injections are shown to closely match the photometric property distributions of the Y3 GOLD catalog,
particularly in color, and capture the number density fluctuations from observing conditions of the real data within
1% for a typical galaxy sample. We find that Y3 colors are extremely well calibrated, typically within ∼1–8 mmag,
but for a small subset of objects, we detect significant magnitude biases correlated with large overestimates of the
injected object size due to proximity effects and blending. We discuss approaches to extend the current
methodology to capture more aspects of the transfer function and reach full coverage of the survey footprint for
future analyses.

Unified Astronomy Thesaurus concepts: Cosmology (343); Sky surveys (1464); Dark energy (351); Astronomical
simulations (1857)

1. Introduction

Wide-field imaging surveys have revolutionized modern
astronomy. Some of the primary science goals of these projects
are to extract precise constraints on cosmological models and
galaxy evolution using measurements made from hundreds of
millions of galaxies for ongoing surveys such as the Dark
Energy Survey61 (DES; The Dark Energy Survey Collabora-
tion 2005), the Kilo Degree Survey62 (KiDS; de Jong et al.
2013), and the Hyper Suprime-Cam Survey63 (HSC; Aihara
et al. 2018), and even billions of sources for upcoming Stage
IV experiments such as Euclid (Amiaux et al. 2012) and the
Vera C. Rubin Observatory Legacy Survey of Space and Time
(LSST; Ivezić et al. 2019). For the largest surveys, the resulting
constraints have become so precise that percent-level spatial
variations in the survey’s depth can cause biases that dominate
over the statistical errors (see for instance Huterer et al. 2006;
Blake et al. 2010; Ross et al. 2012; Leistedt et al. 2016;
Weaverdyck & Huterer 2020). Small biases—as small as one
part in 104 in some cases—in the measurements of sizes,
shapes, and fluxes of sources can have a similarly important
impact on the science results (Massey et al. 2013).

The cumulative effect of the many selection effects and
measurement biases of an astronomical survey is captured by
its transfer function. This function maps how the photometric
properties of astronomical sources are distorted by real physical
processes such as interstellar extinction or by our imperfect
measurements at every step from detector calibration to object
catalog creation. As most cosmological measurements from
survey data are based on the same processed images and source
catalogs, this mapping is crucial for accurately estimating the
true cosmic signals imprinted on the sky such as the spatial
clustering of galaxies (see Blumenthal et al. 1984; Tegmark
et al. 2006; Elvin-Poole et al. 2018 for a few examples) and
weak lensing of galaxy light profiles by the intervening matter
field (similarly, see Brainerd et al. 1996; Mandelbaum 2018;
Troxel et al. 2018).
Unfortunately, many of these effects are in practice difficult

to characterize or even identify. For example, the object
catalogs derived from survey images are produced by a
complex process; calibration, detection, measurement, and
validation involve a number of nonlinear transformations,
thresholds applied to noisy quantities, and post facto cuts made
on the basis of human judgment. Despite significant efforts to
characterize some of these effects in the past (see Connolly
et al. 2010 and Chang et al. 2015 for the LSST and DES
pipelines respectively), this complexity makes each contrib-
ution to the transfer function extremely difficult to model—and
even small errors in the estimated survey completeness can
substantially bias measurements such as the amplitude of
galaxy clustering or important calibration efforts like the
photometric redshift inference of weak-lensing samples (Aihara

60 Corresponding author.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

61 https://www.darkenergysurvey.org/
62 http://kids.strw.leidenuniv.nl/
63 https://www.naoj.org/Projects/HSC/
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et al. 2011; Massey et al. 2013; Hildebrandt 2016; Fenech
Conti et al. 2017).

Simulating the survey data from scratch can accurately
capture some, but not all, of this complexity. Spatial variations
in the effective survey completeness depend not just on the
observing conditions but also on the ensemble properties of the
stars and galaxies being studied. Systematic errors in the sky
background estimation and biases in the measurements of
galaxy and stellar properties can couple to fluctuations in the
galaxy density field, leading to a completeness that depends on
the signal being measured. Finally, there is a wide variety of
nonastrophysical features that can affect the measurement
quality and completeness such as artificial satellite trails, pixel
saturation, or the diffraction spikes of bright stars. Not only are
these effects difficult to model or simulate at high fidelity, but
attempts to do so can introduce model-misspecification bias,
which can underestimate the true uncertainty in the down-
stream fitted photometric parameters (Lv & Liu 2010; Pujol
et al. 2020).

In contrast, injecting artificial sources directly into the real
images can naturally capture many of these effects. Synthetic
objects added to the real data automatically inherit the
background and noise in the images as well as the biases
arising from measurements in proximity to their real counter-
parts. Injecting realistic star and galaxy populations, convol-
ving their light profiles with an accurate model for the point-
spread function (PSF), and applying accurate models for effects
not directly probed (such as Galactic reddening and variable
atmospheric transparency) result in a population of simulated
sources that inherits the same completeness variations and
measurement biases as the real data. Mock catalogs made in
this way can be used to discover, diagnose, and derive
corrections for systematic errors and selection biases at high
precision.

Injection simulations of this kind have been used for limited
calibration studies of detection efficiency and photometric
calibration in the presence of realistic noise and crowded fields
since at least the mid-1980s (McClure et al. 1985; Smith et al.
1986; Stetson 1987), not long after the widespread adoption of
charge-coupled devices (CCDs) in astronomical imaging.
There is a rich history of mixing real and synthetic data to
estimate the detection efficiency of an apparatus in hybrid
Monte Carlo techniques commonly used in particle physics
measurements (Bunce 1980). In addition, there have been
recent examples to improve blinding procedures for rare events
such as embedding fake gravitational-wave signals (“hardware
injections”) into the Laser Interferometer Gravitational-wave
Observatory (LIGO; Abbott et al. 2009) data and similarly
“salting” the data taken by the Large Underground Xenon
(LUX; Akerib et al. 2013) experiment with artificial events to
test the robustness of their detection pipelines and guard against
confirmation bias (Akerib et al. 2017; Biwer et al. 2017
respectively).

However, generating full-scale mocks via injection is
computationally demanding for a modern wide-field (WF)
galaxy survey. The injection simulations described in Suchyta
et al. (2016) for the early releases of DES data did not attempt
to pass the injected galaxies through every part of the
measurement process, opting to inject only onto the coadd
images. The SynPipe package (Huang et al. 2018) has been
used to characterize measurement biases for the HSC pipeline
and includes single-epoch processing, but only on a small

fraction of the survey’s available imaging. The Obiwan tool,
currently developed to model completeness variations for the
Dark Energy Spectroscopic Instrument (DESI; Martini et al.
2018), also has incorporated single-epoch processing but
focuses only on the emission-line galaxies that are the primary
DESI targets and, so far, has only injected sources within 0.2
mag of their used selection cuts for increased efficiency (Kong
et al. 2020). Despite injection pipelines having shown great
promise, the extremely high computational cost (in addition to
the difficulty in distinguishing intrinsic methodological uncer-
tainties in their sampling of the transfer function from actual
measurement biases) has, until now, largely relegated them to
proof-of-concept measurements rather than being used to
directly calibrate the cosmological measurements from WF
surveys.
This paper describes the generation of the Balrog64

injection simulations for the first three years of DES data
(referred to as Y3), covering a randomly selected 20% of the
total Y3 footprint. Sources drawn from DECam (Flaugher et al.
2015) measurements of the DES Deep Fields (DF) (Hartley
et al. 2022) are self-consistently added to the single-epoch DES
images, which are then coadded and processed through the full
detection and measurement pipeline. This extensive simulation
and reduction effort allows us to characterize, in detail, the
selection and measurement biases of DES photometric and
morphological measurements as well as the variation of those
functions across the survey footprint. In addition, using an
input catalog with measurements from the same filters as the
data resolves many of the issues in capturing the same
photometric distributions as real DES objects seen in Suchyta
et al. (2016)—particularly for color. The resulting catalogs
generally follow completeness and measurement bias variations
in DES catalogs to high accuracy, with mean color biases of a
few millimagnitudes and number density fluctuations varying
with survey properties within 1% for a typical cosmology
sample.
As the measurement pipelines for the DES DF and WF data

are complex and quite technical, so too are parts of this paper.
However, we also motivate interesting science cases for the
presented response catalogs for both calibration and direct
measurement purposes including the photometric redshift
calibration of weak-lensing samples, magnification effects on
lens samples, and the impact of undetected sources on image
noise. For readers more interested in using Balrog for
potential science applications or as a general diagnostic tool,
this is discussed in detail in Sections 4 and 5.
This paper is organized as follows: In Section 2 we introduce

the significantly updated Balrog pipeline, which now
emulates more of the DES measurement stack and uses a
completely new injection framework for source embedding into
single-epoch images. Section 3 describes the injection samples
and methodological choices for the Y3 Balrog simulations,
including a new scheme for handling ambiguous matches. In
Section 4 we compare the recovered Balrog samples to the
fiducial Y3 object catalog (Y3 GOLD; see Sevilla-Noarbe et al.
2021 for details), as well as present the photometric response of
the main star and galaxy samples. We also examine the
performance of a typical Y3 GOLD star–galaxy separation
estimator and investigate a set of catastrophic photometric

64 Balrog is not an acronym. The software was born out of the original
authors delving “too greedily and too deep” (Tolkien 1954) into their data,
hence the name.
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modeling failures that enter science samples with dramatically
overestimated fluxes (sometimes by multiple orders of
magnitude). We then discuss novel applications of an injection
catalog in cosmological analyses in Section 5, including the
photometric redshift calibration of Y3 “source” galaxies and
the effect of magnification on “lens” galaxy samples—in
addition to a few unexpected discoveries such as noise from
undetected sources and issues with background subtraction.
Finally, we close in Section 6 with a discussion of our results,
methodological limitations, and future directions before con-
cluding remarks in Section 7.

2. The BALROG Pipeline

Balrog was introduced in Suchyta et al. (2016) as a
software package65 that injects synthetic astronomical source
profiles into existing DES coadd images to capture realistic
selection effects and measurement biases for the Science
Verification (SV) and Year 1 (Y1) analyses. However, as the
precision of the subsequent DES cosmological analyses has
increased, so too has the need for even more robust systematics
control and more precise characterization of the survey transfer
function. The main limitations of the original methodology
were that (1) injections into the coadd rather than single-epoch
images skip many important aspects of the measurement
pipeline whose effects we want to capture, and (2) the injected
objects were drawn from fitted templates to sources in the
space-based Cosmological Evolution Survey (COSMOS;
Scoville et al. 2007) rather than measurements consistent with
DECam filters—thus introducing discrepancies in the recov-
ered colors. While the latter is solved by using the new Y3 DF
catalog (Hartley et al. 2022), the former required significant

additional complexity in the simulation framework to consis-
tently inject objects across all exposures and bands.
To address this, we have developed a completely new

software framework that is described and validated in the
remainder of this section. An overview of the Y3 Balrog
process is shown in Figure 1, with simplified summaries of the
DF and Y3+Balrog measurement pipelines. Briefly, we use
the significantly deeper DECam measurements of sources in
the DES DF as a realistic ensemble of low-noise objects to
inject into the Y3 calibrated single-epoch images. We then
rerun the DES measurement pipeline on the injected images to
produce new object catalogs that contain the Balrog
injections. Finally, we match the resulting catalogs to truth
tables containing the injection positions to provide a mapping
of DF truth to WF measured properties.
All astronomical image injection pipelines such as Balrog

have two distinct elements: emulation of a survey’s measure-
ment pipeline and source injection into the processed images.
As our methodology for the former is intrinsically specific to
DES while the latter is a fairly generic problem, development
on the new Y3 Balrog was split into the two corresponding
pieces discussed in detail in Sections 2.1 and 2.2 below.

2.1. DESDM Pipeline Emulation

The DES survey data are processed through a set of pipelines
by the DES Data Management team (DESDM), which
performs basic astronomical image processing as well as
applying state-of-the-art galaxy fitting, PSF estimation, and
shear measurement codes. The standard processing steps
applied to the DES Y3 data are described in detail in
Morganson et al. (2018). Ideally, to ensure that identical codes
and versions were used at each stage of processing, one would
implement Balrog as part of the standard data reduction.

Figure 1. A high-level overview of how the Deep Fields (DF) and Y3 image processing pipelines interact to create the Balrog catalogs. The raw DECam exposures
are used as the basis for both tracts, with the much deeper DF data being represented by the larger image stacks. The null-weight images, weight maps, PSF models,
and zero-point solutions are computed from the raw exposures after calibrations are applied and are the starting point of the sampled transfer function. The DF
exposures are not dithered and thus single-CCD coadds are created in place of the much larger Y3 coadds. The fiducial DF catalog is created by fitting CModel profiles
to detections with Multi-Object Fitting (MOF), which simultaneously models the light profiles of detected neighbors. These fitted model profiles (after a few limited
cuts discussed in Section 3.4) are used as the Balrog injection catalog, which are added to the Y3 null-weight images directly. Afterwards, the injected null-weight
images are processed in a nearly identical way to the real images including coaddition, detection, and photometric measurements. Finally, we match the output object
catalog to truth tables containing the injected positions. As all sources are remeasured, there is some ambiguity in the matching; this is discussed further in Section 3.5.
See Hartley et al. (2021) and Morganson et al. (2018) for further DF and Y3 pipeline details, respectively.

65 https://github.com/emhuff/Balrog

4

The Astrophysical Journal Supplement Series, 258:15 (46pp), 2022 January Everett et al.

https://github.com/emhuff/Balrog


However, this was not an option for DES Y3 as the updated
Balrog methodology did not exist until after the Y3 data were
completely processed (this is now true for a future Year 6 (Y6)
Balrog analysis as well). Therefore, it was necessary to
replicate the DESDM processing pipeline stack as closely as
possible. While this usually amounted to calling the relevant
codes and scripts with identical configurations and software
stack components, sometimes minor changes were required due
to differences in computing environments or practical con-
siderations such as processing time. These differences will be
noted whenever relevant.

A modular design for the measurement pipeline66 was
chosen both for ease of testing and for the ability to do
nonstandard production runs (see Sections 5.2 and 5.3 for
examples). The individual Balrog processing stages for a
single DES coadd tile (44′× 44′) are as follows:

1. Database query and null weighting—Find all single-
epoch immasked (the DES designation for flattened, sky
subtracted, and masked) images in the griz bands that
overlap the given DES Y3 tile. Download all exposures,
PSFs, photometric and astrometric solutions from the
DESDM Y3 processing archive. A masking process
called “null weighting” is applied to these immasked
images, which set the weights of pixels with certain
flagged features (e.g., cosmic rays) to 0. These null-
weight images are the starting point of the later
injection step.

2. Base coaddition and detection—Remake the tile coadds
from the single-epoch exposures with no objects injected
using SWarp (Bertin et al. 2002) and the detection
catalogs with SExtractor (Bertin & Arnouts 1996).
Construct Multi-Epoch Data Structure (MEDS; Jarvis
et al. 2016) files with cutouts of the coadd and single-
epoch images used for additional photometric measure-
ment codes. This allows us to cross-check our measured
catalogs with Y3 GOLD to ensure that we recover the
same detections and base photometry, as well as easily
investigate proximity effects on the injections. Can be
skipped to save processing time if desired.

3. Injection—Consistently add input objects in all relevant
exposures and bands using the local PSF model in each
exposure with corrections to the flux from the image zero
points and local extinction, along with any other desired
modifications such as an applied shear or magnification.
This is discussed in detail in Section 2.2.

4. Coaddition and detection—Same as 2 but with the
injected null-weight images. The resulting photometric
catalogs contain existing real objects, injections, new
spurious detections, and blends between the two.

5. Single-Object Fitting (SOF)—Fit a composite bulge +
disk model that is the sum of an exponential and a de
Vaucouleurs profile (CModel) to every source, while
masking nearby sources.

6. Multiobject Fitting (MOF)—Fit sources with CModel,
but group nearby detections into friends-of-friends (FOF)
groups that have all of their properties fit iteratively to
account for proximity effects. Only available for some
Balrog runs due to its computational expense.

7. Metacalibration—Fit a simple Gaussian profile to
detections and then remeasure after applying four

artificial shears (Sheldon & Huff 2017). This is useful
for the creation of weak-lensing samples where correcting
for shear-dependent systematics is more important than
absolute flux calibration (Huff & Mandelbaum 2017).

8. Gaussian APerture (GAp) fluxes—Fit a robust, scale-
length-independent alternative to model-fitted photome-
try. Object flux is calculated within a Gaussian-weighted
aperture with an FWHM of 4″. Described further in
Section 3.5.

9. Bayesian Fourier Domain (BFD)—Estimate the shear of
sources without explicitly fitting a shape using the
methodology described in Bernstein & Armstrong
(2014). Available only for a few specialized runs.

10. Match and compute GOLD value adds—Match input
injections to output detections while accounting for
ambiguous matches (see Section 3.5). Merge truth and
measured table quantities. Compute Y3 GOLD value-
added quantities including flags, object classifiers, masks,
and magnitude corrections (though only the dereddening
component is used for Balrog magnitude corrections;
see Section 2.1.1).

The resulting photometric catalogs of measured Balrog
sources can then be used to measure the DES wide-field
response of various input quantities or used directly as randoms
with realistic selection effects (see Suchyta et al. 2016 and
Kong et al. 2020 for examples). In addition, an “injection
catalog” that contains information for all injected sources,
detected or not, for investigations into detection and complete-
ness properties is created. Emulation steps 3 through 10 can be
repeated for multiple injection realizations of a given tile to
obtain sufficient sampling for the needed science case.
However, as discussed in Section 3, for Y3 analyses, we opted
for a single realization with a relatively high injection density
due to the large computational cost of each realization.

2.1.1. Differences from the DESDM Pipeline

While Balrog strives to emulate the DESDM pipeline from
null-weight images to science catalogs at high fidelity, there are
some discrepancies due to practical limitations. The most
significant are:

1. Reuse of existing single-epoch images, PSF models,
photometric zero points, and WCS (astrometric solution):
The injected fluxes of sources from the input catalog are
modified only to account for an image’s photometric zero
point and the local extinction. Due to this, we do not
recalculate the photometric and astrometric calibrations
or PSF estimate for any exposures that have additional
objects added to them; the Y3 DESDM solution is carried
forward unchanged. This means that we cannot probe the
individual systematic error contributions of steps in the
DESDM pipeline before this stage, such as biases in the
PSF modeling or image detrending.

2. Incomplete SExtractor parameter list: We chose to
measure only a subset of the Y3 SExtractor
parameters that were anticipated to be important for
downstream analyses in order to save processing time. In
particular, we did not compute any model-fitted magni-
tudes including MAG_PSF, which is needed for the
weighted average (WAVG) quantities described in
Morganson et al. (2018). Ultimately, the overall time66 https://github.com/kuropat/DES_Balrog_pipeline
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saved was small, and we plan to save all SExtractor
quantities for future runs.

3. MOF is skipped for the cosmology sample: While MOF
photometry is available for the Y3 GOLD catalog, most
Y3 cosmological analyses use the variant SOF which
skips the multiobject deblending step in favor of masking
neighbors. This approach is significantly faster, fails less
often, and has a negligible impact on photometric
performance (E. Sheldon, private communication). As
MOF is not needed for Y3 cosmology calibration and
contributed roughly a quarter of all Balrog runtime (see
Table 2), we elected to skip this step for the main
samples.

4. Zero-point and chromatic corrections are not applied: The
Y3 photometric calibration introduces new chromatic
corrections that achieve subpercent uniformity in magni-
tude by accounting for differences in response arising
from varying observing conditions and differences in
object spectral energy distributions (SEDs) (see Sevilla-
Noarbe et al. 2021). However, the mean of all Y3 GOLD
chromatic corrections are between 0.1 and 0.4 milli-
magnitudes (mmag) for all but the g band (0.9 mmag). As
this is a subdominant effect that requires significant
computation to correct in each injection realization, we
do not account for these corrections before injecting into
images. In addition, the SED-independent “gray” correc-
tions that account for variations in sky transparency and
instrumentation issues like shutter timing errors were not
accounted for in the injection zero points. This was not
intentional and will be included in all future Balrog
runs. However, these corrections are also quite small,
with the mean Y3 GOLD gray zero-point correction
between −1 and 1 mmag for all bands. As we do not
modulate the truth fluxes with these corrections during
injection, it is not necessary to apply these corrections
after measurement either.

5. Partial GOLD Catalog Creation: Due to the staged
approach in the creation of Y3 GOLD with value-added
products being incorporated as they were being devel-
oped, the exact same procedure for compiling the
Balrog catalog could not be followed strictly as it

would have produced an unnecessary and severe over-
head in the production time. Scripts that approximately
replicate this process were provided by DESDM, though
they only reproduce the columns that were deemed to be
most relevant to Y3 key science goals. Slight modifica-
tions had to be made to quantities such as FLAGS_GOLD
and the object classifier EXTENDED_CLASS_SOF, where
the required MOF columns were not available; these
differences are mentioned when relevant throughout the
paper.

While not technically a difference in the pipeline emulation
itself, we note here that PSF models used for injections
(PSFEx; Bertin 2011) were found to be slightly too large in
Zuntz et al. (2018) for bright stars in Y1 due to the brighter-
fatter effect (see Antilogus et al. 2014). However, we still used
PSFEx for our injection PSFs as the new Y3 PIFF PSF model
described in Jarvis et al. (2021) was not yet implemented into
the GalSim configuration structure that was required for our
injection design, which is discussed below.

2.2. Injection Framework

As mentioned at the beginning of this section, incorporating
single-epoch injection into Balrog required a new software
design to handle the significant increase in simulation
complexity beyond what was done in Suchyta et al. (2016)
for the SV and Y1 analyses. Development on the injection
framework was partitioned into its own software package67 as
the injection step is fairly generic and of potential interest to
other analyses outside of DES Y3 projects, as well as upcoming
Stage IV dark energy experiments such as LSST. Briefly, our
injection framework maps high-level simulation choices into
individual object and image-level details consistent between all
single-epoch images for the simulation toolkit GalSim (Rowe
et al. 2015) to process. With this design, Balrog auto-
matically inherits much of the modularity, diverse run options,
and extensive validation of GalSim. A schematic overview of
the injection process is shown in Figure 2. The remainder of
this section will quickly summarize the most relevant aspects of

Figure 2. High-level overview of the injection processing for a single realization. Green boxes are inputs to the injection framework while red boxes are outputs. The
length of each loop is determined by the number of exposures and tiles considered in the full simulation. While the main runs used for Y3 cosmology calibration
modify only the position, orientation, and flux normalization of the truth inputs, there are many optional transformations that can be applied such as a constant shear or
magnification. The main output of our injection package is a multidocument configuration file with detailed injection specifications that is then executed by GalSim,
with each step being executed in the physically correct order. Additional realizations replicate all steps, other than the initial configuration parsing, and produce unique
outputs.

67 https://github.com/sweverett/Balrog-GalSim
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each step; we leave a more detailed description of the
implementation details as well as a description of the most
important user options for this new software package in
Appendix A.

2.2.1. Injection Configuration

The Balrog configuration serves as the foundation for the
final, much larger GalSim configuration file produced for each
tile by the injection pipeline that follows the GalSim
configuration conventions that are extensively documented.68

Global simulation parameters that apply to all injections are
defined here such as the input object type(s) (see
Appendix A.2), position sampling method, injection density,
and number of injection realizations. During injection proces-
sing, the requisite simulation details needed to inject the
sampled input objects consistently across the relevant survey
images are appended to this file to create a multidocument
GalSim configuration file with each document corresponding
to a single CCD exposure. An example configuration that was
used for the two main cosmology runs is given in
Appendix A.4.

2.2.2. Input Sample and Object Profiles

While any native GalSim input type can be used for the
simulations, most Balrog runs sample objects from an
existing catalog with parametric properties that describe the
flux and morphology of each source. The photometric
measurements of the DF catalog, as well as most measurements
in the Y3 DES WF science catalogs, are based on Gaussian
mixture model fits to various profiles by ngmix69 introduced
in Sheldon (2014) and most recently updated in Sevilla-Noarbe
et al. (2021). Each profile parameterization is converted to a
sum of GalSim Gaussian objects that represent the
Gaussian components used in the original fit. Balrog can
currently inject the following ngmix model types: a single
Gaussian (Gauss); a composite model (CModel; cm) first
introduced in SDSS,70 which is a linear combination of an
exponential disk and a central bulge described by a de
Vaucouleurs’ profile (de Vaucouleurs 1948); and a slightly
simpler CModel with fixed size ratio between the two
components (bdf, for Bulge-Disk with Fixed scale ratio). In
DES Y3, the DF measurements use bdf profiles while the WF
uses cm.

See Appendix A.2 for all provided custom input types,
including the option to inject the “postage stamp” image
cutouts of objects in MEDS files. While using the actual images
of DF sources rather than parametric fits to their profiles would
be a more accurate representation of the true distribution of
galaxy properties and morphologies, there are significant added
complexities due to adding artificial noise from stamps with
associated PSFs larger than the injection image and ensuring
stamp and mask fidelity of the full DF catalog; these issues are
discussed in detail in Section 6.

2.2.3. Updating Truth Properties and Optional Transformations

Measurements of the transfer function with Balrog require
truth tables that compile the properties of injected objects. For
injections that are based on real sources, some of these object
properties are modified to fit the needs of the simulation such as
the positions, orientations, and fluxes. The updated source
properties either replace their original columns in the output
truth catalogs or are appended as new columns. Object fluxes
are scaled to account for interstellar extinction and to match the
photometric zero point of each single-epoch injection image.
Additional transformations such as a constant shear or
magnification factor can be applied depending on the desired
science case (see Section 5.2 for an example using magnifica-
tion in Y3).
The position sampling of injections depends on the desired

science case; uniform sampling naturally allows for Balrog
objects to be used directly as randoms for galaxy clustering
calibration, but overlapping Balrog injections can artificially
inflate the inferred blending rate. Alternatively, a hexagonal
lattice is more appropriate for a perturbative sampling of the
transfer function at a given position, but this embeds an
unrealistic (though correctable) clustering signal at small
scales. The available options are described in Appendix A.3
and the tradeoffs are discussed in more detail in Section 3.4.

2.2.4. PSF Convolution

The PSF used for each object is determined by the local
single-epoch PSFEx solution at the injection position. Simpler
PSF models are also allowed for testing purposes but not
recommended for science runs.

2.2.5. Object Rendering and Injection

All of the previous simulation choices are ultimately
encoded in a detailed configuration file that is structured to
be read by GalSim. This design was chosen over the explicit
use of the software’s Python API as the configs facilitate easily
reproducible simulations and allow for runs that are identical
except for minor modifications such as an added constant
magnification factor. Each transformation from truth property
to pixel value is automatically handled by GalSim processing
in the physically correct order. After an object stamp is
rendered (including Poisson noise from the new source), its
pixels are summed with the initial image while ignoring any
part of the profile that may go off image. Rarely a profile will
require an extremely large grid for the fast Fourier transform
(FFT) during PSF convolution and exceed available memory.
To avoid this, we set a maximum grid length of 16,384 pix−1

(or ∼63,000 arcsec−1 for DES) per side and skip objects that
exceed this limit. While the injection framework was designed
with flexibility in mind for uses outside of the Y3 cosmology
science goals (and even DES itself), there are currently some
assumptions made about the structure of the input data to
emulate DES Y3 that we plan on generalizing in upcoming
releases.

2.3. Pipeline Validation

As Balrog is a nongenerative, or discriminative, model of
the transfer function, it is difficult to disentangle any intrinsic
errors in the input sample or survey pipeline emulation from
actual systematic effects we are trying to characterize—

68 https://github.com/GalSim-developers/GalSim/wiki/Config-
Documentation
69 https://github.com/esheldon/ngmix
70 https://www.sdss.org/dr12/algorithms/magnitudes/#cmodel
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particularly as Balrog was run independently of DESDM
processing for Y3. Therefore, a series of increasingly complex
test runs were completed in order to validate both the injection
and emulation steps and characterize the pipeline fidelity at a
detailed level. We initially ran Balrog with the injection step
turned off to confirm that we recovered identical detection and
photometry catalogs as Y3 GOLD when carefully accounting
for the same random seeds in the fitters that were used in
nominal Y3 processing. Once this was achieved, we verified
that the injected profiles of objects drawn onto blank images
matched single-object renderings made independently of the
pipeline.

We then ran a series of tests where we ignored the existing
survey image data during injection except for the estimated
residual local sky background that is automatically subtracted
from the exposures later in the pipeline. Objects were placed on
a sparse grid to limit proximity effects from other injections
with two types of noise depending on the run—either only
Poisson noise for the injections or Poisson in addition to low
levels of zero-mean Gaussian background sky noise. These
blank image runs became progressively more complex as we
added the features used in the main science runs described in
Section 3 and acted as a form of regression testing.

These tests are relevant for more than pipeline validation;
effects from methodological choices can also be identified and
quantified while working in a simplified environment. As an
example, the runs with only Poisson noise indicated that there
were two subgroups of objects with statistically significant
differences in magnitude response—one was well calibrated,
and the other with a mean offset of ∼7.5 mmag, too faint in
each of griz. This was ultimately discovered to be a result of
different priors used for the parameter that measures the
relative flux ratio between the de Vaucouleurs and exponential
component, fracdev, for the ngmix profile type used to fit
DF objects (bdf) and the one used to fit wide-field
measurements (cm). A series of plots that show the difference
in input versus measured fracdev and examples of its
downstream effect on the recovered magnitude and color
responses for this test is shown in Figure 3.

The impact of the different fracdev fits on the magnitude
response can be seen clearly in Figure 3(d), where the
difference in measured versus true i-band magnitude as a
function of injected magnitude is colored by the response in
fracdev for a single tile. As the difference in profile
definition between cm and bdf is largely due to fitting stability
and has little to do with the true distribution of galaxy
properties, this effectively puts a lower bound on the accuracy
of the mean magnitude response that we are able to measure
with Balrog when using the DF sample as inputs at around
3 mmag. Importantly, however, the effect is nearly identical in
each of the griz bands and has a negligible impact on the
recovery of colors, as seen in Figure 3(c). This example
highlights some of the difficulties in choosing a “truth”
definition for injections based on model fits and the importance
of carefully testing the impacts of model assumptions.

The final version of the blank image test was performed with
identical input and configuration to that used to produce the
fiducial Y3 catalogs across 200 tiles that contain over 2.3
million injections and 1.6 million detections. Zero-mean
Gaussian background noise was applied to the blank images
with variance set to the corresponding CCD SKYVAR value.
The resulting object responses allow us to characterize the

baseline performance of the photometric pipeline in ideal
(though overly simplistic) conditions, which in turn may
provide lower limits on the intrinsic uncertainty in our
sampling of the DES transfer function. The mean and median
difference in recovered versus injected magnitude for griz are
plotted in Figure 4. The vertical bars correspond to the mean of
the standard deviations of the griz magnitude responses in each
truth magnitude bin, centered at the mean magnitude response.
The medians are extremely well calibrated, with only

g< 18.5 and 22.5< z< 23 off by more than 5 mmag, or
0.45%, through the 23rd magnitude where selection effects
near the detection threshold become significant. The mean
responses are consistently biased toward larger recovered flux
on the bright end by ∼15 mmag due to the asymmetric
tendency of SOF to measure the sizes of bright, extended
objects to be too large in the presence of neighbors; this is a
real effect seen in the main data runs and is discussed in greater
detail in Section 4.3.1. Such biases are not seen in isolated SOF
measurements of similar objects (E. Sheldon, private commu-
nication) and appear in this test as it was inefficient to use a
grid size large enough to keep all other grid injections outside
the MEDS stamps of the largest injections. This effect also
keeps the magnitude error from decreasing as the intrinsic
brightness increases, as one would naively expect. While the
magnitude bias induced by the difference in the cm versus bdf
profile definition is present in this measurement, it is negligible
compared to proximity biases for extended sources and
selection effects present in the noisier images.
Importantly, there is no significant band dependence in the

median magnitude responses where the recovered sample is
complete, with a typical spread in median griz biases of
∼3 mmag for truth magnitudes ranging from 18.5 to 22 with no
characteristic shape or distribution systematics. While there is a
detectable band dependence in the mean magnitude responses,
it is nearly eliminated when binned in signal-to-noise ratio
(S/N) instead of magnitude to account for differences in sky
noise.

3. BALROG in DES Year 3

We describe here the injection samples, pipeline settings,
and matching choices used to create the Y3 Balrog data
products for the photometric performance characterization
described in Section 4 and downstream science calibrations
described in Section 5. For Y3, we ran Balrog several times
with different configurations for various validation and science
cases. These runs are tabulated in Table 1, which lists the
following quantities: the run name, the number of simulated
tiles, the total number of injected objects, the fraction of
detected objects, the mean number of times a given object is
injected across all tiles, the spacing between injections, and the
magnitude limit used for sampling. As detection in DES is
based on a composite riz detection coadd, we emulate the
detection magnitude by averaging the dereddened riz fluxes of
the injections.
The primary runs used for cosmological analyses are called

main and aux (auxiliary). The former samples the transfer
function across 1544 randomly chosen tiles (of the 10,338 Y3
tiles) to a detection magnitude limit of 25.4. This limit was
chosen to capture DF objects that had at least a 1% chance of
being detected as measured from a 200 tile test run. The latter,
aux, was a supplemental run at a shallower limiting magnitude
of 24.5 across 497 tiles to increase the fraction of recovered
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injections for analyses that needed a larger total sample. These
runs are combined for the fiducial Balrog catalogs y3-deep
and δ-stars, which are described in upcoming sections. The
distributions of the number of injection realizations per input
object for these runs are shown in Figure 5, and the spatial

distribution of these tiles is shown compared to the full DES
footprint in Figure 6. main-mag and aux-mag are identical
to the above runs except for a constant added magnification of
μ∼ 0.02 for a limited subset of tiles; these are described in
more detail in Section 5.2. The grid and noiseless-grid

Figure 3. A series of plots highlighting aspects of the noiseless blank image test described in Section 2.3. (a) The first panel shows the difference in input
bdf_fracdev vs. measured cm_fracdev for detected objects. The additional peak at 0.5 for bdf_fracdev is a result of the slightly different model definition;
for bdf, the relative size ratio between the bulge and disk components is forced to be 1. This constraint does not exist for cm and thus it has a different prior on the
parameter. (b) This panel shows the i-band magnitude response of these objects, where there are clearly two different populations. The first is well calibrated with the
majority of detections well within ±2.5 mmag of the truth. The second population is biased toward fainter measurements by ∼7.5 mmag on average. (c) The g − r
color response for these objects. The bias in recovered magnitude is nearly identical in griz and so does not translate to the recovered colors. The mean color response
for g − r, r − i, and i − z is 0.1, 0.3, and 0.2 mmag, respectively. (d) The final panel shows that the biased magnitude population is a result of injections with input
bdf_fracdev ∼ 0.5 scattering to 0 or 1 to match the expected cm_fracdev prior. As we do not believe this differential response to be of physical origin, it
contributes to a lower bound on the precision in which Balrog can calibrate Δmag—though importantly this does not contribute a bias to recovered colors.
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runs were used for the validation tests shown in Section 2.3.
The blank-sky and clusters runs were conducted
separately from the main cosmology runs in order to facilitate
two of the science cases discussed in Sections 5.3 and 5.5,
respectively.

The processing was done on a dedicated compute cluster at
Fermilab, “DEgrid,” consisting of 3000 cores with 6–8 GB
RAM per core available. The typical core and memory
provisioning along with wall-clock running times for each
stage of the pipeline is given in Table 2. MOF is not used for

the fiducial Y3 cosmology analyses and so is excluded for
main and aux—along with their corresponding magnification
runs. We include the estimated computational cost to show the
difficulty in scaling this methodology to full footprint coverage
and WF density; we discuss this more in Section 6. All output
measurement catalogs were archived including the MEDS
cutout images of detected objects; the injected single-epoch
images and resulting coadds were only saved for valida-
tion runs.
A few additional postprocessing steps were required to

match changes made to the Y3 object catalogs after the fiducial
GOLD catalog creation. These consisted of a correction to the
Metacalibration S/N column, redefining the size_ratio
quantity from mcal_T_r / psfrec_T to mcal_T_r /
mcal_Tpsf, and adding a shear weight to each of the

Figure 4. The mean (solid circle) and median (hollow diamond) difference in
measured vs. injected magnitude (〈Δmag〉) as a function of input magnitude
for the final blank image runs with zero-mean Gaussian background noise. The
vertical bars correspond to the mean of the standard deviations of griz
magnitude responses in each truth magnitude bin, centered at the mean
magnitude response. The vertical bars represent the average of the standard
deviations of griz magnitude responses in each bin of size 0.5 mag, centered at
the mean magnitude response. The overall calibration is excellent, with the
median response less than 5 mmag in all bins except for g < 18.5 and
22.5 < z < 23. We expect significant biases past magnitude 23 due to selection
effects near the detection threshold. However, the mean responses show some
bias—particularly on the bright end. As discussed in the text, this is due to an
asymmetric tendency for SOF to measure the fluxes of bright, extended
galaxies to be too large when neighbors are contained in the object’s MEDS
stamps. The errors in 〈Δmag〉 do not substantially decrease past input
magnitudes of 20 for the same reason. This is discussed in greater detail in
Section 4.3.1.

Figure 5. The number of injections per unique DF object for main in blue,
aux in green, and their combination y3-deep in red. The mean number of
injections per run is shown with dashed vertical lines and is stated along with
the maximum number of injection realizations. main is composed of 1544 tiles
vs. only 497 for aux but has a larger input catalog to sample due to the more
conservative composite riz detection magnitude of 25.4 vs. 24.5 for aux. The
resulting combination is no longer a Poisson distribution, but this can be
accounted for in downstream analyses by using the column injection_-
counts for building a weighting scheme; see Myles et al. (2021) for an
example. The typical Balrog object in y3-deep has just over 20 unique
injection realizations across the sampled footprint.

Table 1
A List of Y3 Balrog Runs and Associated Parameters

Run Name Tiles N Det Det-Frac 〈Injʼs〉 Mag Lim Spacing Notes

main 1544 7.4 M 0.369 16 25.4 20″ Deepest, main run used for Y3 cosmology
aux 497 3.9 M 0.600 9 24.5 20″ Shallower, auxiliary run used for Y3 cosmology
main-mag 155 0.8 M 0.463 2 25.4 20″ 2% magnification on main objects
aux-mag 497 3.9 M 0.607 9 24.5 20″ 2% magnification on aux objects
grid 200 1.6 M 0.702 3 24.5 20″ Inject onto blank images with noise (see Section 2.3)
noiseless-grid 196 2.6 M 0.997 4 24.5 20″ Same as grid, but without noise (see Section 2.3)
clusters 901 39.9 M 0.930 163 23.0 10″ Tiles containing rich galaxy clusters (see Section 5.5)
blank-sky 88 L L L L 20″ Injected zero-flux objects (see Section 5.3)

Note. Parameters include the number of tiles sampled, the number of total detections (N Det), the detection fraction (Det-Frac), the mean number of injections per
unique DF object (〈Injʼs〉), the composite riz detection magnitude limit, and injection lattice spacing.
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Metacalibration measurements for the photometric redshift
calibration detailed in Section 5.1.

3.1. Input Deep Field Catalog for y3-deep

The majority of Y3 Balrog analyses use injections drawn
from DECam measurements of objects in the DF described in
Hartley et al. (2022). In brief, this catalog of nearly 3 million
sources is assembled from hundreds of repeated exposures of
three DES supernova (SN) fields and the COSMOS field. The
corresponding deep single-CCD coadds have S/N of ~ 10
times their WF counterparts and thus provide a good sample of

low-noise sources to draw from for explorations of systematics
in the WF measurements. There are multiple versions of the DF
catalogs that provide tradeoffs in the average seeing quality
versus the maximum depth. In Y3 Balrog, we use
COADD_TRUTH as it strikes a balance between using
observations with 10 times the mean WF exposure time while
ensuring that the composite DF FWHM be no worse than the
median single-epoch FWHM in the WF for each of the
injection bands.
We emphasize that we are not injecting the actual images of

DF galaxies but instead take the MOF ngmix parameterized
model fit to each detection and generate an idealized galaxy
profile based on those model parameters (with added
Poissonian noise). The injection framework described in
Section 2 is capable of injecting the MEDS stamps directly,
which in principle would account for additional diversity in
galaxy morphologies and eliminate any model bias compared
to the true distribution of galaxy properties. However, this
requires extensive validation of the DF stamps before injection
and introduces additional complications due to image masks
and added noise for injections into CCDs with better seeing
than the DF composite image. We plan to revisit these issues
for Balrog in the Y6 methodology.
The DF catalog contains model fits that are very similar to

the WF CModel with two major differences: the two
components (bulge + disk) are fit simultaneously rather than
separately, and the ratio of the size of each component,
TdByTe, is fixed to be 1. While this was chosen for increased
fitting stability for the fainter DF sources, fixing the relative
bulge-disk size ratio reduces the total number of free
parameters in the model by one and significantly changes the
distribution in the relative flux fraction fracdev (recall
Section 2.3 for how this impacts the corresponding recovered

Figure 6. The spatial distribution of randomly sampled DES tiles used for Balrog injections. 1544 main and 497 aux tiles are shown in blue and red respectively. The outline
of the DES Y3 footprint is shown in black. Some tiles are slightly outside of the official footprint due to partial image coverage from DECam observations on the footprint edge.

Table 2
Approximate Balrog Stage Run Times and Memory Allocations per Tile

Stage Cores RAM Clocktime

Database Query 1 64 GB 2.0 hr
Base Coaddition/Detection/MEDS 4 64 GB 3.0 hr
Injection 16 64 GB 3.0 hr
Coaddition/Detection/MEDS 4 64 GB 5.0 hr
MOFa 32 256 GB 6.5 hr
SOF 16 64 GB 1.5 hr
Metacalibration 8 320 GB 2.5 hr
Match/Merge/Flag 2 512 GB 1 hr

Total/tile 16–32 64–512 GB 18–24.5 hr/tile

Note.
a As MOF is not used in the fiducial Y3 cosmology analysis, this step was only
run for preliminary tests due to the long clocktime. The two total reported
clocktimes are with MOF excluded or included in the pipeline emulation
respectively.
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CModel photometry in idealized conditions). Ultimately, any
photometry can be used for the injection truth as long as it is an
unbiased estimate of the real distribution of object properties.
The bdf profile will be used for all Y6 DES source fitting and
for Y6 Balrog—avoiding the small systematic difference in
magnitudes between cm and bdf.

3.1.1. DF Object Extinction

The DF catalog has detailed photometric corrections to the
fluxes including those for extinction as described in Hartley
et al. (2022). However, these corrections were not yet ready
when Balrog began the cosmology runs. Thus, in order to
accurately account for variations in DF extinction, as well as
extinction variations among tiles in the Y3 survey footprint, we
enacted the following procedure to deredden the DF input
objects and then reextinct them by an appropriate amount in the
injection WF tile: For the DF objects, we sample the Schlegel
et al. (1998) extinction maps at five points (center and corners)
in each input DF CCD (of size 9′× 18′) and record the average
of the five E(B− V ) values. We also record the five-point
average of E(B− V ) for the larger (size 44′× 44′) WF tiles.
During injection, we deredden each object by the DF recorded
value for its CCD of origin and apply the mean extinction value
for the WF injection tile. This chip and tile-level correction is
simple to implement and distorts the overall magnitude and
color distribution of the DF galaxy sample from the cosmic
average only slightly. However, we plan on implementing per-
object extinction corrections in the Y6 methodology. The
dereddening and extinction values used are preserved in the
injection truth tables for later flux and magnitude corrections to
enable consistent comparisons between true and measured
quantities.

3.2. Input Star Sample for δ-stars

While the majority (∼90%)71 of the injections are sources
(both stars and galaxies) from the DES DF, ∼10% of injections
are simulated stars. Other than characterizing the photometric
response of stars in DES with nearly no galaxy contamination
(see Section 4.2), the δ-stars sample is useful for quantifying
the baseline performance of the DESDM pipeline for the
simplest morphologies. This allows us to isolate the more
complex model fitting issues for the heterogeneous y3-deep
sample.

The morphologies are modeled as pure delta (δ) functions
convolved with the local PSFEx solution used during injection.
The magnitude and color distributions are based on the local
stellar population in each of the 10,338 tiles in the Y3 footprint.
For example, areas of the survey with a higher stellar density
near the galactic plane received more bright stars than areas
toward the south galactic pole in the center of the footprint. To
represent color distributions fainter than the WF limit of i∼ 24,
the color distribution near i∼ 24 was extended by two
magnitudes to i∼ 26 using models of the Galactic disk and
halo (Bienaymé et al. 2018). The simulated star catalog has
already been corrected for extinction, so no other preprocessing
is required. The measurement pipeline has no knowledge of the
difference in input star/galaxy classification and returns the
same CModel fits as y3-deep.

3.3. Object Classification and Differences in Measurement
Likelihood

While we expect y3-deep and δ-stars will be used for
calibration of DES galaxy and stellar systematics, respectively,
there are additional star injections in y3-deep as it draws from
all sources in the DF that pass quality cuts. Sources in the DF
catalog have been classified with a k-nearest neighbor
algorithm72 trained on a subset of objects that have near-
infrared (NIR) data from the UltraVISTA survey (McCracken
et al. 2012; Hartley et al. 2022). The classifier’s stellar sample
is not perfectly complete from magnitudes 18< i< 24 (an
average of 93%), but its mean weighted purity is greater than
98% over the same range. The requirement of successful
detection and measured photometry for all ugrizJHK bands
reduces the total number of objects with classification by
44.5%. The cut NearestNeighbor_class = 2 selects this
star sample while NearestNeighbor_class = 1 will
select the classified galaxies. The DF stars are not used in the
analysis of the Y3 stellar photometric performance in this paper
but are available if a larger sample is required for a given
science case. However, we do use these classifications when
estimating the galaxy contamination in Y3 stellar samples in
Section 4.4.
We note that there is a subtle difference in the measurement

likelihoods corresponding to each sample. The likelihood of the
δ-sample, dstar, assumes perfect classification knowledge and is
given by

( ∣ )
( ∣ ) ( )
q q
q q

= =
=
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where θmeas and θtrue are the measured and true objects’
photometric parameters and cmeas and ctrue are the corresp-
onding object classifications. Alternatively, the likelihood of
the DF star sample, star

DF , accounts for the uncertainty in the
truth classification:
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DF
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This becomes particularly relevant if one wants to combine
results from Sections 4.2 and 4.3 for modeling errors of the
composite sample. The needed conditional probabilities that
capture the stellar efficiency and galaxy contamination of y3-
deep can be derived from the results in Section 4.4.

3.4. Sample Selection and Injection Strategy

While in principle we would randomly sample from all
sources in the DF, there are some methodological and practical
considerations that led to the following conservative cuts:

flags = 0
AND mask_flags = 0
AND in_VHS_footprint
AND bdf_T < 100
AND bdf_flux / bdf_flux_err > −3
AND bdf_det_mag < {25.4, 24.5}

First, we eliminate any objects flagged with model fitting errors
or in manually masked regions. We also require injections be

71 Most tiles were run with a 9:1 ratio between input catalogs, but the first 152
tiles of main were run with an 8:2 ratio.

72 This classifier was added after the Balrog runs were completed, and so is
not included as one of the truth columns. It has to be matched to the relevant
Y3 DF catalogs.
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from regions with external observations in the near-infrared
(IR) as these IR bands are critical for the photometric redshift
calibration (Section 5.1). We restrict the characteristic size of
the injections (bdf_T) to be less than 100 arcsec2 (corresp-
onding to ∼10″) to reduce the rate of Balrog–Balrog
blends and proximity effects on the injection grid—though this
selection may result in slightly oversampling large, highly
elliptical galaxies. In addition, this choice may be in conflict
with other potential science cases such as measuring the
detection efficiency and photometric response of low-surface-
brightness (LSB) galaxies (Tanoglidis et al. 2020). Next, we
remove objects with flux to error ratios of less than −3 in any
band; this cut was needed after inspection of the DF catalog
showed that there was an excess of objects with extremely
negative flux values compared to WF measurements (though
ngmix fluxes are clipped below 10−3 when computing
magnitudes).

Finally, we apply a detection magnitude limit of 25.4 to limit
the time spent on injections that have almost no chance of
being detected while still using a source catalog that is ∼2 mag
deeper than WF. As described at the beginning of Section 3,
this limit was derived from the mean dereddened riz bdf_flux
of injections that had at least a 1% chance of being detected
during a 200 tile test of main. We do not consider the flux in g
in this calculation as it is not used in the detection image in
DESDM processing. The aux limit of 24.5 was chosen based
on requirements for the lens magnification measurement
detailed in J. Elvin-Poole et al. (2021, in preparation) (and
described further in Section 5.2). After making this selection,
the DF injection catalogs used in main and aux have just over
1.23 million and 746,000 objects, respectively.

The star catalog was sampled to its full depth of 27th
magnitude in g at a fraction of 10% of the total objects injected
into the aux and (most) main tiles. No additional cuts were
made. Because the relative contribution of Galactic stars to the
total object count peaks at about 21st magnitude in a standard
Y3 tile, these injections do not dominate the faint end of the
distribution.

Choosing the injection density per realization is a tradeoff
between increasing the statistical power of the catalogs,
reducing the rate of Balrog–Balrog blends, and reaching
the desired footprint coverage given available computational
resources. Ideally, we would measure the response of a single
source added to DES images for a high number of realizations.
As this is infeasible we instead add objects on a hexagonal
lattice with 20″ spacing using a MixedGrid (see
Appendix A.3) for a single realization, corresponding to a
density of ∼7.8 objects per arcmin2 (or about 40% of the total
Y3 density).

We can achieve a much higher injection density than that
used in Suchyta et al. (2016) as we do not randomly sample the
positions, which greatly reduces the self-blending rate of
injections. This is crucial as running a single Balrog tile
realization in Y3 takes ∼40 times longer than in SV and Y1
due to the increased complexity of the injection framework and
additional photometric measurements. While this does in
principle limit the ability to use Balrog injections as randoms
to measure clustering signals on scales at and below the grid
size, this is currently well below the scale cuts of order 10′ used
in the Y3 analysis. In addition, we note that Balrog can still
be used for studies of samples with intrinsic clustering by

subsampling the full catalog of grid injections to match the
desired clustering signal.
However, this relatively high density could have significant

implications for a nonlocal deblender like the one used in
MOF. In early testing, we found that this level of injection
density can sometimes lead to nearly all objects in a tile
becoming a single MOF FOF group. Such nonlocal effects are
less relevant for SOF except in cases where blends of other
nearby injections with large, real sources may change how the
masking of the blend is handled (or for extremely large
injections that would be captured in the MEDS cutout of other
injections, which is why we cut on the injection size). Dealing
with nonlocal contributions to the measurement likelihood may
be an important consideration for Y6, as the object detection
threshold is lower and proximity effects are more of a concern.

3.5. Blending and Ambiguous Matches

An important caveat in using an object injection pipeline like
Balrog is that there is often inherent ambiguity in the
matching of the new object catalogs to the injections.
Remeasurement on the injection images changes the number
of detections and catalog ID assignments in unpredictable
ways, and light profiles that were previously considered distinct
detections can be blended together into single objects. While
we will show that the fraction of ambiguous cases is relatively
small at our injection density in DES images (<1.5%) and can
in principle be removed for our photometric tests, this ignores
the increased shear noise and rms of the measured ellipticity
distribution for these objects, which may be a dominant
systematic for weak-lensing measurements in deeper surveys
like LSST (Dawson et al. 2015). In addition, highly nonlinear
detection and photometry algorithms can often respond in
unexpected ways to perturbations (particularly deblenders that
are intrinsically nonlocal), which can lead to additional
spurious detections and splitting of objects. As a rule: Any
matched catalog from an injection pipeline has made assump-
tions about ambiguous matches and blending! For these
reasons, we save the full remeasured photometry catalogs so
that different matching procedures can be applied depending on
the desired science case. This is distinct from the approach in
Suchyta et al. (2016), which ran remeasurement in SEx-
tractorʼs association mode near injection positions.
However, it is useful to have a standard catalog sample with

consistent matching for downstream cosmological analyses.
Unless otherwise specified, Y3 analyses using Balrog
catalogs use a catalog that applied the following matching
prescription: We define the antecedent of any blend as the
“brightest” of the individual objects that contributes to it by
some metric. Each blend thus comprises a noisy version of the
antecedent as well as the nondetection of all other contributors
to the blend. This approach gives a consistent and complete
assignment of detection, nondetection, and antecedent to all
objects of interest in the remeasured images and strikes the
desired balance of including photometric scatter by blend
contributors while excluding extreme outliers due to faint
injections near existing bright objects. In addition, in the
absence of measurement noise, this scheme sets a maximum for
the possible flux error of the antecedent in a two-object blend to
be |Δmag|∼ 0.75, a factor of 2. An overview of how this
scheme applies to the most common case of a two-object blend
is shown in Figure 7.
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The above prescription requires a brightness metric to
determine the antecedent. We use the average of the
dereddened Gaussian-weighted aperture (GAp) fluxes in each
of the DES detection bands (riz). GAp fluxes are conceptually
similar to the GAaP fluxes described in Kuijken (2008) but
instead measure the aperture flux for source profiles before
convolution with the PSF. These fluxes are computed
analytically from the MOF bdf fits to the DF injections and
the SOF CModel fits to Y3 GOLD objects using a Gaussian
weight function with FWHM of 4″. This allows us to use an
estimate derived from our best guess of the flux of the PSF-
deconvolved profile near the relevant object centroids while
discounting variations in measured flux due to morphological
differences—particularly those arising from significant flux
contributions from the wings of extended profiles. We use the
average of the detection band δ fluxes for δ-stars because an
equivalent GAp flux is not well defined. This difference only
becomes relevant for the brightest star injections, though in
these cases they are very likely to be the antecedent.

The matching procedure is implemented in two separate steps.
First, the injection positions are matched to the closest object in
the remeasured photometry catalogs within a search radius of

r1= 0 5. All objects that have a match are saved in the output
Balrog catalogs and undergo the aforementioned postproces-
sing steps. Afterwards, the output catalogs are matched against
the Y3 GOLD catalog to compare the relative brightness of any
existing detections within a second match radius r2 for a series of
radii from 0 5 to 2 0 in increments of 0 25. Over 96% of
candidate objects have no GOLD sources within the search
aperture and are unambiguously a Balrog injection. Candi-
dates that have an existing GOLD object within r2 with mean riz
GAp flux below their own are considered the antecedent and
given a match_flag_{r2}_asec = 1 to indicate the presence
of a nearby real source. Candidates that have a match within r2
but have a smaller mean GAp flux than the existing object are
assigned match_flag_{r2}_asec = 2 and are recommended
to be cut from science analyses. We encode this information as a
flag instead of cuts to the fiducial catalog to allow Balrog users
more flexibility in choosing how to handle blending and
ambiguous cases as needed. In this paper, we cut on
match_flag_1.5_asec< 2 as we found that only 0.1% and
0.5% of Y3 GOLD objects were separated at distances less than
1 5 at i magnitudes of 21 and 22.5 respectively (or about
1.3–1.8 times the median PSF size depending on the band).
We show in Figure 8 the difference between the recovered

and injected GAp magnitude, Δmaggap, for all recovered main
objects for three choices of ambiguous matching cuts. In the
left panel where no cut on ambiguous matches has been made,
there is a long, asymmetric tail for negative Δmaggap where the
recovered GAp flux is up to 10 mag brighter than the input.
While there can be extremely large magnitude responses to
model-fitted photometry in crowded fields or extreme imaging
conditions (see Section 4.3.3), we expect GAp magnitudes to
be less sensitive to these failure modes and most large
discrepancies to be due to ambiguous matches. This is indeed
the case: In the following panels where a match flag with r2 of
0 5 and 1 5 is used to create the sample, the worst GAp
response outliers have been removed, and the fraction of
detections where |Δmaggap|> 1 falls by 41% and 65%,
respectively. Some remaining scatter beyond |Δmaggap|=
0.75 is expected even for an optimal r2 due to ambient light in
dense fields, blends with extended sources, and image artifacts,
though the number of objects belowΔmaggap=−1 for the 1 5
cut falls by over an order of magnitude for each bin of unit size.

4. DES Y3 Photometric Performance

Here we present the photometric performance of the Y3
Balrog DF sample y3-deep along with the synthetic star
sample δ-stars. While there are many photometric catalogs and
science samples of interest for Y3, here we largely focus on the
SOF CModel photometry of a basic Y3 GOLD sample
(Sevilla-Noarbe et al. 2021) used as a starting point for more
restrictive samples. Unless otherwise specified, the cuts for this
sample are given by

FLAGS_FOREGROUND = 0
AND FLAGS_BADREGIONS < 2
AND FLAGS_FOOTPRINT = 1
AND FLAGS_GOLD_SOF_ONLY < 2
AND EXTENDED_CLASS_SOF > = 0
AND MATCH_FLAG_1.5_ASEC < 2,

along with any appropriate object classification cut, which will be
mentioned when relevant. Note that FLAGS_GOLD_SOF_ONLY
is used in place of the typical FLAGS_GOLD as we are unable to

Figure 7. An overview of how ambiguous matches can arise in the case of a
two-object blend. A black cross mark denotes the position of a Balrog
injection while a gold cross mark denotes the position of a Y3 GOLD
detection. A circled cross mark indicates a detection in the Balrog catalog
while the dashed circle indicates the region inside of the search radius r2. Case
(A) is by far the most common and is unambiguously a Balrog injection.
Case (B) has both the injection and the GOLD object detected within r2 but is
extremely rare; in this case, we select the closer detection. Cases (C) and (D)
are true blends where there is ambiguity in whether to classify it as a Balrog
object with properties blended by the GOLD source or as a GOLD object that
was blended by an injection. In this case, we assign the object with the larger
average riz GAp flux as the antecedent. Only Case (D) is removed from the
Balrog catalogs when applying a match_flag cut.
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compute the first bit flag without y3-deep MOF runs. While
∼3.5% of Y3 GOLD objects have FLAGS_GOLD = 1, no Y3
cosmology analyses currently use this flag bit due to the use of
SOF or Metacalibration photometry in favor of MOF. Additional
samples for a few interesting Balrog applications are discussed
in more detail in Section 5.

We begin by examining how representative the Balrog
catalog properties are compared to Y3 GOLD in Section 4.1,
including a detailed look at how the number density
fluctuations of both samples vary with respect to survey
property maps. We then show the magnitude and color
responses of δ-stars and y3-deep along with a discussion of
interesting photometric failure modes in Sections 4.2 and 4.3,
respectively. We then end by characterizing the performance of
the EXTENDED_CLASS_SOF star–galaxy separator, using the
extremely pure δ-stars sample whenever possible. As it is not
practical to plot the photometric responses of all quantities of
interest, one-dimensional Gaussian summary statistics for
many relevant parameters are provided in Appendix C.

4.1. Consistency with DES Data

Even without perfect emulation fidelity, we expect the
measured Balrog property distributions to closely resemble
DES catalogs if we are indeed sampling an adequately
representative transfer function and input sample. We will
broadly check this agreement at various steps along the
measurement path: object detection, photometric properties,
and correlations with survey systematics—along with how these
differences impact a typical clustering signal measurement. As
we are primarily interested in the consistency in the transfer
function of galaxies for cosmology, we use the y3-deep sample
throughout and mention any classification cuts when relevant.

4.1.1. Completeness

We begin with object detection. Of the nearly 26.5 million
galaxies injected in y3-deep, just over 41.9% were detected

during remeasurement after accounting for ambiguous matches.
However, as this catalog is the merger of two runs with
different magnitude limits, it is more accurate to say that 36.3%
and 59.4% of objects were recovered for main and aux,
respectively. The fraction of injections contained in the fiducial
sample drops to 14.4% and 44.2% after considering the basic
flag and mask cuts described above. To simplify the
comparison on the faint end, we use only main for the
following comparison as it is about a magnitude deeper.
The detection completeness of sources in griz for main

(points) compared to Y3 GOLD objects in the X3 SN field
(lines) is shown in Figure 9. The completeness is plotted as a
function of reference magnitude; the injection magnitudes for
Balrog and the DF measurements of objects in the X3 field
for Y3 GOLD. As we are comparing the mean completeness of
the Balrog sample across all main tiles to only a small
region for Y3 GOLD, to make a fair comparison we estimate
the uncertainty in the difference with 50 jackknife samples of
the main footprint. Note that the inferred completeness is only
robust until the forced magnitude limit cutoff of 25.4 indicated
by the dashed vertical line; beyond this point, the sampled
injection objects have inherited a selection bias that forces at
least one of the other detection bands to be significantly
brighter than the magnitude limit and thus is more likely to be
detected.
Overall the completeness measurements are quite similar,

with the only discrepancies greater than twice the estimated
error occurring for the brightest g-band magnitudes and the
faintest i and z bin. The Balrog g-band completeness dips on
the bright end despite the very high S/N as g is not included in
the composite detection magnitude image limit, and thus
objects bright in the g band but not in other bands are
sometimes not detected. This is not seen as significantly in the
Y3 GOLD sample, which suggests that the input DF sample
overrepresents these kinds of objects. It is more difficult to
determine possible discrepancies past the detection threshold in
each band without careful examination of both measurements,

Figure 8. The effectiveness of our ambiguous matching scheme, illustrated by the difference in measured vs. true i-band GAp magnitude (Δmaggap) as a function of
input GAp magnitude for three ambiguous matching choices. The overplotted contours contain 39.3%, 86.5%, and 98.9% of the data volume, corresponding to the
volume contained by the first three σʼs of a 2D Gaussian distribution respectively. The percentage of detections outside of the dashed region denoting |Δmaggap| < 1
for each choice is labeled in the bottom left of each panel. The left panel shows the Δmaggap response for y3-deep when no cut is made to handle ambiguous matches.
There is an extremely long outlier tail of injections measured to be significantly brighter than the injected flux both from ambiguous blends and real effects (see
Section 4.3.3, though GAp fluxes are much less sensitive to these failures). The outlier tail significantly decreases in size as more ambiguous blends are accounted for.
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though their residuals are only marginally beyond 1σ and could
simply be statistical fluctuations. While it is encouraging to see
similar detection properties between Balrog and the data, that
alone is not enough to ensure sufficient similarity for science
calibrations.

4.1.2. SOF Photometry

We can make similar comparisons of the measured
photometry. Figure 10 compares the recovered Balrog SOF
griz magnitudes, g− r and r− i colors, and a few morpholo-
gical parameters to Y3 GOLD after both samples have applied
basic cuts. The comparison is in absolute counts with Balrog
in blue and the mean of 100 GOLD bootstrap subsamples of
identical size to the y3-deep sample in black. The standard
deviation of the subsample counts in each bin is used to
estimate the uncertainty, and the percent errors of the binned
residuals are plotted below each distribution.

Qualitatively, the distributions are extremely similar in the
densest regions of parameter space for most quantities, with the
most obvious discrepancies occurring in the low-density tails of
the distributions. This is particularly noticeable for the
magnitudes and colors. The relative residuals confirm this:
While nearly all Balrog magnitude bins have fractional
distribution differences below 5% of the mean Y3 GOLD
sample from 18 to 24, the region of interest for most Y3
cosmological analyses, Balrog counts in magnitudes below
18 underestimate GOLD by 10%–50% by magnitude 16. The
colors are similar with the only discrepancy above 5% in the
densest regions occurring at 1.3< g− r< 1.5, values typical of
M-dwarf stars (Smolčić et al. 2004). A few other notable
discrepancies are that Balrog appears to underestimate the
number of objects with ellipticities cm_g_{1/2} ∼ 0 and
negative size parameter cm_T relative to the Y3 GOLD sample
—both of which are again values typical of stars.

We stress that these binned residuals are still a largely
qualitative check on the agreement between property distribu-
tions as they are very sensitive to sample selection. For
example, the relative error in cm_T, cm_g_1, and cm_g_2

near zero are all significantly smaller after applying the stellar
cut EXTENDED_CLASS_SOF> 1 which indicates that the y3-
deep sample does not capture the transfer properties of stars as
well as galaxies. Yet the shape of these residuals often indicates
important real differences. The change in residual sign near the
detection threshold in each band indicates potential small
differences in the effective depth of the samples, and the
overabundance of Balrog objects with cm_fracdev near
0.5 reflects the effect of parameter priors not matching the true
underlying distribution as discussed in Section 2.3.
In addition, residuals consistent with zero even under the

assumption of perfect emulation fidelity require a completely
representative input sample. There are many known reasons for
why our input sample fails this requirement, a few of which we
discuss here: (i) The DF sample underestimates cosmic
variance as it only uses objects from a tiny fraction of the
sky, which is particularly a problem for the stellar population as
its distribution varies across the sky much more strongly than
galaxies. (ii) The photometric pipeline used to make measure-
ments of DF objects is not identical to the one used in the WF
in order to deal with nondithered observations, an increased
blending rate, the large number of exposures per detection, and
instabilities in the detection of very faint sources in the
presence of diffuse emission (see Hartley et al. 2022). (iii) The
morphological model fits to the DF objects are subtly different
(bdf versus cm), which we have shown can introduce small
biases in other parameters such as the magnitude. (iv) CModel
is not an appropriate photometric model for all objects in the
sky. There are simple practical limitations that contribute to
these discrepancies as well, such as limiting the size and
magnitude distribution of objects to reduce Balrog–Balrog
blends and the computational time spent on injecting near
certain nondetections. We discuss these issues more in
Section 6.

4.1.3. Spatial Variation and Property Maps

While the overall similarities in the photometries are
encouraging, what is most critical is how well Balrog
reproduces the measurable signals used in cosmological
analyses as well as correlations with spatially varying image
conditions and survey properties. These systematic trends are
particularly important when measuring the galaxy clustering
signal where local observing conditions can imprint fluctua-
tions in number density that are not cosmological in origin such
as variations in seeing, depth, and sky brightness (Rodríguez-
Monroy et al. 2021). We now investigate the similarity of these
systematic trends in Balrog and Y3 GOLD for a highly
incomplete sample where the variation is more apparent, before
looking at their contribution to the clustering signal itself for a
cosmology-like sample in Section 4.1.4.
Figure 11 compares the number density of all y3-deep and

Y3 GOLD galaxies with basic cuts as a function of survey
property in overlapping HEALPix (Górski et al. 2005) pixels of
NSIDE = 2048, corresponding to an area of 2.95 arcmin2. The
survey properties are assigned from the Y3 HEALPix maps in
Sevilla-Noarbe et al. (2021) (based on the methodology in
Drlica-Wagner et al. 2018) that have been rescaled73 from an
Nside of 4096–2048 to smooth out irregularities in the pixel
occupation distribution due to the regular structure and lower
density of Balrog sources. The uncertainty in number density

Figure 9. The fraction of objects recovered by band and input injection
magnitude. Solid lines show completeness measurements comparing the wide
and deep samples on the SN-X3 field as described in Section 5.2 of Sevilla-
Noarbe et al. (2021). Points with error bars are the Balrog mean
completeness measurements for the full sampled main footprint. Errors are
the standard deviation of 50 jackknife samples of the sampled footprint,
rescaled as appropriate for the area of the SN-X3 field. The dashed vertical line
indicates the injection effective magnitude limit of 25.4.

73 The map rescaling is done by averaging all nonempty pixels.
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was estimated by resampling the pixels used in each sample of
equal size with a replacement for 100 bootstrap samples. The
distribution of the rescaled survey properties for the Y3 GOLD
sample is plotted in the background in green to highlight
typical property values.

With a few notable exceptions, the number density of the
two samples match closely in both amplitude and shape. It is
especially encouraging to see Balrog capturing the high-
frequency structure in the dependence of a few of the more
complex trends such as the local sky brightness (skybrite)
and airmass. The largest differences in recovered number
density occur for extremely rare values of a few properties such
as the quadrature sum of zero-point uncertainties (sig_zp)
and exposure time (exp_time) and are not particularly
concerning. However, there are still some more serious

unresolved discrepancies in amplitude—particularly in r-band
seeing and airmass. The same potential issues in input sample
representativeness and photometric assumptions discussed
previously apply to these measurements, but it is not
immediately clear why these issues would manifest in a
band-dependent fashion in seeing or why the largest dis-
crepancies occur for an indirect parameter of the images like
airmass. These differences may be indicative of features in the
transfer function not currently captured by Balrog such as
PSF modeling errors with unexpected chromatic effects or the
unapplied injection zero-point corrections. Such differences
warrant further investigations in preparation for an improved
Y6 Balrog methodology but do not themselves indicate
insufficient consistency for a clustering measurement. We
explore this further below.

Figure 10. Comparison of the y3-deep sample (in blue) vs. Y3 GOLD (in black) for measured griz magnitudes, g − r and r − i color, shape parameters cm_g_1 and
cm_g_2, size cm_T, flux component ratio cm_fracdev, size component ratio cm_TdByTe, and i-band S/N. Both samples have had the basic cuts applied as
described in Section 4. To compare the distributions, we resample Y3 GOLD with replacement to match the size of the y3-deep catalog 100 times and plot the mean
and standard deviation of these bootstrap samples in black. The percent error of the binned residuals are shown below each distribution, which has been zoomed in to
show the results of the most relevant regions. The region corresponding to ±5% has been shaded in gray. When quantities do not have hard boundaries, we include at
least the 2nd–97th percentiles of the values. The residuals are very sensitive to selection cuts. For example, the discrepancies at cm_T < 0 and |cm_g_{1/2}| ∼ 1 are
significantly smaller after cutting out suspected stars from the sample.
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4.1.4. Galaxy Clustering Systematics

Many of the core science cases of interest to cosmology
involve measurements of galaxy clustering. To be useful in

calibrations for this purpose, it is not enough that the number
counts of Balrog and Y3 GOLD galaxies follow the same
trends with image properties like those shown in Figure 11.

Figure 11. The trend in number density fluctuations N/〈N〉 as a function of various survey observing properties for the full (and highly incomplete) Balrog, in blue,
and Y3 GOLD, in black, samples after basic cuts for overlapping HEALPix pixels of NSIDE = 2048. The distribution of survey condition values for the rescaled Y3
GOLD map is displayed in the background in green to highlight typical values. The errors have been estimated by resampling the pixels used in each sample with
replacement for 100 realizations. The property maps are described in Table E.1 in Sevilla-Noarbe et al. (2021), but we briefly defined them here in order from the top:
the mean PSF size, the local sky brightness, the quadrature sum of the zero-point uncertainties, the variance of the sky brightness, the airmass, and the exposure time.
Balrog captures many of the nonlinear features in the trend lines, though there are some unexplained band-dependent discrepancies in some property maps.
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Where the systematic error is independent of the signal (as, for
example, variations in the airmass and the true galaxy density
on the sky are statistically independent of one another), the
resulting variations in survey depth enter, to leading order, as
additive systematic errors in the two-point statistics used for
cosmology.

Correcting for these observational systematics is critical for
unbiased cosmological inference from clustering, and the
ability to use Balrog as object randoms with realistic
measurement biases—if it sufficiently captures the clustering
fluctuations of the data—offers an ideal calibration method
without using the data vector directly which avoids possible
overfitting (see Choi et al. 2016; Suchyta et al. 2016; Garcia-
Fernandez et al. 2018). In addition, direct calibration with
Balrog would eliminate the need to identify all sufficiently
important survey property contributions at the desired precision
(and avoid biases from any unidentified systematics) while
potentially allowing for measurements on larger scales where
the true signal is very small and the corrections have to be
extremely accurate.

Here we estimate the approximate impact on the clustering
signal due to systematic differences between Balrog and Y3
GOLD for a sample broadly similar to the MAGLIM science
sample described in Porredon et al. (2021), where we cut both
the Y3 GOLD and Balrog samples to 17.5< i< 21.5 in
addition to the previous cuts. We make density maps based on
each property map across the full Y3 GOLD footprint by
interpolating the trends in Balrog and GOLD to fill in cells
where we do not have injection samples. These maps are
estimates of the MAGLIM galaxy number density fluctuations in
Y3 if they could be completely described by the survey
property in question.74

We then estimate the angular power spectra of both
interpolated maps for each survey property using the
pseudo-Cℓ estimation code PyMaster (Alonso et al. 2019).
These are then compared to the power spectra of the survey
property maps themselves along with a typical nonlinear galaxy
power spectrum at z= 0.7 computed with the CAMB (Lewis
et al. 2000) implementation of the nonlinear power spectrum
described in Mead et al. (2015). Finally, we compute the
differences in power from the interpolated Balrog and Y3
GOLD density maps as a fraction of the galaxy power spectrum
at each ℓ scale.

Results for the best (g-band PSF FWHM) and worst (i-band
sig_zp) performing map are shown in Figure 12. Angular
clustering systematics for the remaining survey properties,
generated in the same way, are shown in Appendix B. For
scales comparable to or smaller than the DECam focal plane
(approximately ℓ> 200), the difference between Y3 GOLD and
Balrog is in all cases less than 1% of the typical amplitude of
the angular clustering of galaxies (plotted in black). For some
quantities, such as the g-band PSF (shown in the top panel in
Figure 12), the differences are several orders of magnitude
smaller.

While the differences are small in absolute terms, or as
compared to a realistic cosmological signal, the relative
deviation between the simulated and real catalogs is in some
cases quite large. It is difficult to disentangle the relative
contribution to these differences from insufficient sampling
across survey property values, issues in the input sample, or

missing features in the sampled transfer function (such as the
zero-point corrections discussed in Section 2.1.1). We discuss
these issues further in Section 6. However, that the absolute
additive contributions are well below 1% at most relevant
scales for even a single realization of a 20% sampling of the
footprint gives us confidence that injection simulations like
Balrog will be crucial for systematics calibration of
clustering measurements in Y6 and the next generation of
galaxy surveys with even more ambitious precision goals.
Whether Balrog is sufficiently similar to Y3 data

ultimately depends on the science case and desired measure-
ment precision. In addition, the magnitude of discrepancies can
depend strongly on the choice of sample cuts—particularly for
those effects related to star–galaxy separation and magnitude
limits. However, we find that Balrog captures a significant
amount of the variation in number density as a function of
observing conditions even for extremely incomplete samples
and systematics control of well under 1% for the clustering
measurement of a typical cosmology sample. For an additional
example of how to estimate the contribution of the intrinsic
uncertainty in the Balrog methodology to the Y3 photometric
redshift calibration error budget, see Myles et al. (2021).

4.2. Photometric Performance of δ-stars

As discussed in Section 3.2, the injections in δ-stars consist
of pure delta functions convolved with the local PSFEx
solution. The extremely high purity of this star sample with
realistic transfer properties is unique to injection pipelines such
as Balrog where we have truth information about the
underlying object classification in addition to its photometry
—which is not always the case for galaxy samples (discussed
further in Section 4.3). This eliminates the need for a traditional
star–galaxy separation metric like EXTENDED_CLASS_SOF
and (nearly) removes any bias resulting from misclassified
objects, though we still cut on EXTENDED_CLASS_SOF<= 1
to match what is done to create stellar samples in Y3 GOLD.
The only contaminants in the main star sample come from
ambiguous matches, which is why we still cut on

<_ _ . _ 2match flag 1 5 asec . This eliminated 1.9% of
detections for this sample. Here we focus on the photometric
performance and leave the discussion on stellar completeness
and galaxy contamination in Section 4.4. We remind the reader
that this sample probes a subtly different measurement
likelihood than that of y3-deep as we have knowledge of the
underlying object classification, as described in Section 3.3.
While the underlying morphology of stellar profiles is not

well described by a Sérsic model, we still use the SOF CModel
fits for the stellar sample as there was a systematic calibration
offset in the PSF model photometry used in Y3 measurements
on the data. This has been corrected for Y6 processing but
leaves us without a reliable PSF photometry for our response
measurements. However, ultimately this has only a small
impact on the recovered photometry for sources smaller than
the PSF as these objects are fit with a cm_T size near 0—
effectively eliminating the Sérsic components.

4.2.1. SOF CModel Magnitudes

The difference in recovered CModel magnitude compared to
input magnitude Δmagδ as a function of input magnitude for
griz is shown in Figure 13. Density contours are plotted on top
of the scatter with percentiles equivalent to the first three74 Where only regions with Balrog samples are used for the estimate.

19

The Astrophysical Journal Supplement Series, 258:15 (46pp), 2022 January Everett et al.



sigmas of a 2D Gaussian distribution, corresponding to 39.3%,
86.5%, and 98.9% of the total data volume. The mean response
bias 〈Δmagδ〉, median response D

~
dmag , and scatter s

dmag in
truth magnitude bins of size 0.25 mag are overplotted in black
bars. These summary statistics provide estimates for the
statistical precision and accuracy of the SOF magnitudes,
though we stress that the underlying distributions are not
Gaussian. These are compared to the mean reported SOF error
in the bin indicated by the solid white curve, which does not
attempt to account for systematic effects.

The overall calibration of CModel for the stellar sample is
quite good, with 〈Δmagδ〉 and D

~
dmag ranging from 1 to

10 mmag (or 0.1%–0.9%) across all bands up to an input
magnitude of 20 and between 2 and 15 mmag (0.2%–1.4%) for
20<Δmagδ< 22 except for the final two z-band bins.
〈Δmagδ〉 stays under 1.5% for each band in all bins where
the number of objects are increasing (input magnitudes of 23.5,
22.5, 22, and 22 respectively) except for the final z-band bin,
which is ∼1.7%. The responses are a bit higher than the quoted
3 mmag uniformity of Y3 GOLD stars when compared
to the Gaia star catalog (Gaia Collaboration et al. 2018;

Sevilla-Noarbe et al. 2021), though the Y3 GOLD uniformity
was measured only with respect to Gaia’s G band, which we
find to have the best photometric performance (differences of
0.5–6 mmag) over the quoted magnitude range. The Y3 GOLD
measurement used a restricted 0.5< g− i< 1.5 color range as
well, which eliminates the worst outliers that we still consider
here. In addition, the larger discrepancies found here could be
the result of the CModel model-misspecification bias discussed
previously.
The response bias and scatter increase significantly after

these points due to competing systematic effects as the sample
becomes progressively more incomplete, with the mean
responses rising to ∼1.5%–3% as they approach the detection
threshold in each band. Small sample sizes and strong selection
effects lead to 〈Δmagδ〉 andD

~
dmag biases of ∼4% for g and r

by the 24th magnitude, while the biases of the much shallower i
and z rise significantly to over 10%. At the median coadd
magnitude limits quoted in Table 2 of Sevilla-Noarbe et al.
(2021) of 24.3, 23.0, 22.6, and 22.2 (corresponding to a S/N of
10), the mean griz biases are measured to be 3.0%, 4.1%, 2.5%,
and 2.2% respectively. The complete set of values for all

Figure 12. Examples of the survey property maps with the smallest (top row) and largest (bottom row) estimated additive systematic impact on the clustering signal
from differences in number density between Balrog and Y3 GOLD. The left panels show the angular power spectrum of the noted survey property (in green) and the
corresponding power spectra of the number densities of the Balrog (in blue) and Y3 GOLD (in gold) MAGLIM-like galaxies across the Y3 footprint using the
interpolated trends described in Sections 4.1.3 and 4.1.4. The reference galaxy power spectrum in black is CAMBʼs implementation of the nonlinear matter power
spectrum described in Mead et al. (2015), meant to represent a typical cosmological signal at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show
the difference in power between Y3 GOLD and Balrog as a fraction of the fiducial cosmological power spectrum shown on the left. We draw a red dashed line
indicating the 1% systematic error threshold as reference. Even in the worst case, we find that Balrog is able to capture the clustering amplitude due to variations in
survey properties to better than 1% for ℓ > 50 (corresponding to θ > ∼ 3.5) deg. Equivalent plots for many other survey property maps in all griz bands are shown in
Appendix B.
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binned summary statistics are included in Table C1. While the
underlying measurement likelihood of these objects is non-
Gaussian, the morphological simplicity of stars results in these
summary statistics qualitatively capturing the response features
well when complete. We will return to this point in Section 4.3,
where the situation is significantly more complicated.

There is evidence of a small band dependence in both the
accuracy and precision of the magnitude response. This is most
evident when comparing the g band, where Δmagδ is never
above 5 mmag (0.5%) too faint below an input magnitude of
23.25, to the z-band Δmagδ, which is exclusively above
5 mmag too faint over the same interval. Unlike the blank
image tests in Section 2.3, theD

~
dmag values for each band in a

bin have a distinct, monotonically increasing shape with the
spread between the bands consistently 5–10 mmag brighter

than injection magnitudes of 21. However, this effect is much
less pronounced when binned by the measured S/N in each
band where the detection significance and local sky back-
ground are taken into account. Binned in this way, D

~
dmag is

nearly identical for the i and z bands for S/N greater than 20
while g and r are consistently offset by at least 5 and 2 mmag
respectively. As this band-dependent response in D

~
dmag was

not present in the blank image tests, it may suggest issues in the
real image calibration such as the estimation of sky back-
ground, which we discuss more in Sections 4.3 and 5.3.

4.2.2. SOF CModel Colors

Of primary interest is the accuracy of the recovered colors
due to their importance for photometric calibration, star
−galaxy separation, photometric redshift estimation, and the

Figure 13. The distribution of differences in the recovered griz SOF CModel magnitude vs. the injected δ-magnitude (Δmagδ) as a function of input magnitude for the
δ-stars sample. The density is overplotted where the contour lines correspond to the percentiles of the first three sigmas of a 2D Gaussian, containing 39.2%, 86.5%,
and 98.9% of the data volume, respectively. The mean (solid), median (dotted), and standard deviation of the magnitude responses in bins of size 0.25 mag are shown
in the overlaid black bars. These are compared to the reported SOF CModel errors by the solid white lines, which do not attempt to account for systematic effects. The
marginal distributions of Δmagδ are included to highlight the small relative volume of the outlier tails.
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study of the Milky Way structure. We plot the difference in the
measured SOF CModel g− r, r− i, and i− z color versus the
input δ-color with respect to the input color in Figure 14. The
contours and summary statistics are computed in the same way
as the magnitudes, though with a bin size of 100 mmag for
g− r and r− i and 50 mmag for i− z. The color calibration for
this sample is excellent. For the three colors examined here, the
median color difference D

~
dc is never greater than 5 mmag

(0.5%) from the injected color of −0.25 to 1.25 and is most
commonly less than 3 mmag (0.3%). Beyond 1.25, D

~
dc grows

to a maximum of 25 mmag (2.3%) too blue for g− r while for
r− i it never exceeds an absolute difference of over 3 mmag.
The mean responses vary significantly due to extremely long
scatter tails in both directions from the magnitude difference
and are less reliable estimators of the overall performance in
this case. However, they tend to be within a factor of 2 of the
medians except for g− r, which increases in absolute size
dramatically after 0.75 due to the long tail as can be seen in the
figure. The full set of summary statistics is shown in Table C1.
Notably we do not find evidence of a systematic chromatic
response in CModel color.

Next we compare the color–color diagrams for g− r versus
r− i and r− i versus i− z for the input and recovered samples
in Figure 15. As expected, the recovered injected colors have
broader distributions due to the inherited WF noise as well as
moderately large magnitude scatters near the detection thresh-
old. However, the broadening is concentrated outside of the 1σ
contours where the agreement is extremely similar.

4.3. Photometric Performance of y3-deep

Unlike the synthetic star sample, y3-deep objects are
sampled from fits to real sources contained in the DES DF.
Thus, not only are the properties of these injections far more
diverse, but we do not have perfect knowledge of their true
classification. However, we anticipate that most uses of this
Balrog sample will be to calibrate galaxy samples used in
cosmology analyses. In these cases, we do not care about the
true classification as we want to capture the same contamina-
tion fraction as the data. For this reason we apply the cut
EXTENDED_CLASS_SOF> 1 and leave questions of star

contamination to Section 4.4. Removing ambiguous matches
with the cut match_flag_1.5_asec< 2 decreased the
sample by just under 1.5%.
There are numerous photometries and parameters whose

response can be explored with this sample. We restrict
ourselves largely to SOF CModel colors, magnitudes, and
sizes here for brevity but find similar results for Metacalibra-
tion. As with δ-stars, we include summary statistics of the
tabular results in Appendix C.

4.3.1. SOF CModel Magnitudes

We compare the difference in the recovered SOF CModel
magnitude the versus true DF magnitude ΔmagDF as a function
of input magnitude for griz bands in Figure 16. As with δ-stars,
we characterize the photometric performance of y3-deep
measured galaxies with the summary statistics 〈ΔmagDF〉,
D
~

magDF, and smagDF
in bins of truth magnitude overplotted in

black bars. Unsurprisingly, the overall scatter in magnitude
response for this sample is significantly larger than that for the
pure stellar injections due to the rich variety of injected
morphologies and issues with the blending of extended sources.
The measured smagDF

ʼs reflect this by being an average of over 4
times larger than the corresponding s

dmag distribution over the
same magnitude range, with the ratio reaching as high as 9 for
very bright objects. We then expect the mean response bias
〈ΔmagDF〉 to be larger as well, but their behavior is more
interesting than the stellar sample. On the bright end below
19th magnitude, the 50th–99th percentiles of objects are
detected within 30 mmag (or 2.7%) of truth but there is a clear
asymmetric preference for the recovered flux to be too large for
the remaining objects. This result is driven by a sizable fraction
of bright, extended injections that are commonly blended with
existing Y3 GOLD galaxies and are subsequently measured to
have far too large of a size. The measured fluxes of these
objects vary significantly depending on local conditions and
create visible vertical lines in the response scatter due to their
many injection realizations and the relatively small population
of objects with true magnitude less than 19. Image cutouts for a
set of these objects along with the 50th and 95th percentiles of
their measured CModel flux profiles are shown in Figure 17, in

Figure 14. The distribution of differences in the measured SOF CModel g − r, r − i, and i − z color vs. the injected δ-color (Δcδ) as a function of input color for the
δ-stars sample. The density is overplotted where the contour lines correspond to the percentiles of the first three sigmas of a 2D Gaussian, containing 39.2%, 86.5%,
and 98.9% of the data volume, respectively. The mean (solid), median (dotted), and standard deviation of the magnitude responses in bins of size 100 mmag
magnitude for g − r and r − i and 50 mmag for i − z are shown in the overlaid black bars.
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addition to a more compact, typical injection at the same input
magnitude that does not suffer from proximity effects or
blending. These examples of large magnitude responses
correlated with measured size errors are the first hint of a
systematic issue with SOF fits in crowded fields that we
investigate in more detail in Section 4.3.3.

As in the δ-stars sample, we detect a relatively small but
clear band dependence in the mean and median responses. For
all input magnitude bins brighter than 23 where the sample is
nearly complete, there is a monotonic increase in the mean and
median response in griz with an absolute spread of ∼16 mmag,
or about 1.4% difference between g and z. This effect was
hinted at in the response of the pure stellar sample but is far
more evident here. This chromatic response is diluted but not
eliminated when binning in measured S/N rather than input
magnitude, withD

~
magDF no longer strictly monotonic and with

a typical spread of 4–5 mmag for riz bands but 10–20 mmag
when including the g band for S/N greater than 20.

We believe this chromatic effect is due to a systematic
overestimation of the true sky background level in DES (and
thus Balrog-injected) images. The SExtractor sky mode
estimator is somewhat susceptible to the presence of neighbor-
ing objects in its sky annulus, especially in moderately to
highly crowded fields. A mode estimate for the background
appropriately allows for the fact that there will be background
sources, detections, and undetected sources, which are
particularly important in the presence of many sources
(Stetson 1987). As precise mode estimation was once
computationally impractical, traditional codes such as SEx-
tractor have in practice used a Pearson-style mode
estimator Modeest= 2.5 ·Median− 1.5 ·Mean for background

estimation. This can result in a slight bias in overestimating the
background, which becomes larger as the field becomes more
crowded and in the neighborhood of bright stars with extended
wings (E. Bertin 2021, private communication). This sky
overestimation results in too faint a measurement of a galaxy’s
true magnitude, and the effect is stronger when there is more
sky noise per-object signal.
The fact that the sky is more crowded as one moves from

bluer (g, r) to redder (i, z) bands could lead to the chromatic
effect described above. That the scale of this effect is lessened
by binning objects of similar S/N across bands together
supports this conclusion. Note that these offsets are computed
with dereddened magnitudes, which has the effect of enhancing
the chromatic offset in the g band compared to the redder
bands. Additionally, Eckert et al. (2020) analyzed the noise
properties of DES images and found that there was a slight
positive bias induced in the sky-noise level due to faint
unresolved sources in the field of essentially all images (see
Section 5.3 for more details). The sign of this effect, while
smaller, has the same trend and was found to only be
significant for the riz bands. We plan to investigate this further
for the Y6 Balrog analysis and potentially propose additional
magnitude corrections to account for this effect.

4.3.2. SOF CModel Colors

Next, we investigate the color response of y3-deep objects in
Figure 18, where we plot the difference in the measured SOF
CModel g− r, r− i, and i− z colors versus the injected DF
colors ΔcDF against the input colors. The density contours and
overplotted summary statistics are defined in the same way as
the previous plots. While the color response scatter is

Figure 15. The g − r vs. r − i and r − i vs. i − z color–color distributions for the input colors in blue and measured colors in black. The density contour lines
correspond to the percentiles of the first two sigmas of a 2D Gaussian, containing 39.2% and 86.5% of the total data volume respectively. The marginal distributions
are included for comparison.
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significantly larger than in δ-stars, the overall calibration is still
excellent and with less extreme outlier tails than in the
individual magnitude responses. The behavior of the summary
statistics is slightly more complex, but we find that the median
color response D

~
cDF is typically ∼3 mmag (0.3%) too faint

from −0.25 to 0 and ∼1–11 mmag too bright between 0 and
1.0 for all three colors. The responses are much noisier outside
of these regions due to much smaller sample sizes. D

~
cDF tends

to be ∼15–25 mmag (1.4%–2.2%) too faint below 0.25 and
15–25 mmag too bright beyond 1.0 for all colors (though a bit
worse for r− i, reaching 12% too bright near 1.5) while
〈ΔcDF〉 differences are about three times as large asD

~
cDF in the

same direction depending on the color and bin. As with the
stellar injections, individual 〈ΔcDF〉 and D

~
cDF bin values can

vary significantly due to long scatter tails, and we find no
evidence of a systematic chromatic response in CModel color.
The full-color response is summarized in Table C4.

4.3.3. Catastrophic Model Fitting

While Figure 16 shows that the vast majority of magnitude
responses are well calibrated and are typically much less than
ΔmagDF of 0.5, it ignores the very long tail of upscattered
outliers that are far larger than the measured photometric errors
would predict. The responses of these outliers from blends and
catastrophic photometry failures can be over an order of
magnitude larger than those previously discussed as shown for
the i band in Figure 19, where the contours from Figure 16 are
overlaid in white.

Figure 16. The distribution of differences in recovered the griz SOF CModel magnitude vs. the injected DF magnitude (ΔmagDF) as a function of input magnitude for
the y3-deep sample. The density is overplotted where the contour lines correspond to the percentiles of the first three sigmas of a 2D Gaussian, containing 39.2%,
86.5%, and 98.9% of the data volume, respectively. The mean (solid), median (dotted), and standard deviation of the magnitude responses in bins of size 0.25 mag are
shown in the overlaid black bars. These are compared to the reported SOF CModel errors by the solid white lines, which do not attempt to account for systematic
effects. The marginal distributions of Δmagδ are included to highlight the small relative volume of the outlier tails.
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Here, the true complexity of even a small slice of the transfer
function is revealed: The many competing effects are often in
opposition, with biases in the opposite direction of long,
asymmetric tails that vary as a function of truth magnitude in a
complex way. Simple Gaussian summary statistics like

〈ΔmagDF〉 and smagDF
are not able to appropriately capture

the magnitude of these features and we argue that the Balrog
samples themselves (or at least higher fidelity forms of data
compression) should be used for most cosmological analyses
that need accurate photometric error modeling. Examples of

Figure 17. A few examples of injections that contribute to the long scatter tail in the magnitude response of bright y3-deep objects, due to the blending of extended DF
injections discussed in Section 4.3.1. Each injection had a true g-band magnitude between 17 and 19, and we include the tile name and magnitude response Δm at the
top of each panel. The red lines correspond to the 50th and 95th percentile flux contours of the measured profile. The extended profiles of these injections cause the
MEDS image cutout size (based on the fitted SExtractor FLUX_RADIUS value) to be relatively large, which increases the probability of including real neighbors
in the MEDS stamp. This in turn can cause SOF to significantly overestimate the cm_T size, which leads to a much larger Δm than one would naively expect for
objects with these bright magnitudes. This is discussed further in Section 4.3.3. The final panel shows a typical bright but compact object that is very well calibrated
for comparison. Note the presence of a nearby source in the bottom that could have potentially caused the same failure mode if the box size had been slightly larger.
The stretch in each panel runs from −3σsky to +10σsky.

Figure 18. The distribution of differences in the measured SOF CModel g − r, r − i, and i − z color vs. the injected DF color (ΔcDF) as a function of input color for
the y3-deep sample. The density is overplotted where the contour lines correspond to the percentiles of the first three sigmas of a 2D Gaussian, containing 39.2%,
86.5%, and 98.9% of the data volume, respectively. The mean (solid), median (dotted), and standard deviation of the magnitude responses in bins of size 100 mmag
magnitude for g − r and r − i and 50 mmag for i − z are shown in the overlaid black bars.
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how the full richness of the transfer function can be used in
photometric redshift calibration and the magnification of lens
samples are given in Sections 5.1 and 5.2 respectively.

However, it is reasonable to be skeptical of the magnitude
responses of ΔmagDF∼ 2–8 (a factor of 6–1600 in flux!) by
supposedly well-calibrated photometry pipelines. To demon-
strate what is causing these extremely large differences in
recovered flux, we show in Figure 20 a set of injections of the
same DF object with an r-band magnitude of 21.42 in eight
different WF tiles where the red lines correspond to the 50th
and 95th percentile flux contours. In most cases, the true
magnitude is recovered within the reported errors of a few
percent. However, in four instances there is at least one nearby
object contained in the MEDS cutout image that interferes with
SOF’s ability to provide a reliable fit due to either an excess of
masked pixels in the cutout or residual light unassociated with
the injection. The result is a fitted characteristic size cm_T,
which is much greater than its actual size. For this particular
injection, the true size of the object (after deconvolution with
the PSF) corresponds to a scale length of 0 77. Yet in the four
cases with nearby sources the fitted size of the object is at least
1″, resulting in a flux measurement that is significantly greater
than that of the input true flux. In the worst case for tile
DES0346–5248, the target object is by chance injected near a

very bright pair of merging galaxies and is fitted with a scale
length of over 17″ resulting in flux 2.32 mag brighter than the
input DF value.
These photometric measurement failures correlated with

errors in measured cm_T can be even more dramatic. In
Figure 21 we show eight examples of catastrophic fitting
failures due to crowded fields, nearby bright stars, and
unflagged image artifacts. These rare but real environments
lead to Balrog magnitude responses from 5 to even 7 mag
brighter than the injected truth. We emphasize that all of these
objects pass the basic Y3 GOLD science catalog quality cuts
described at the beginning of Section 4.
While the exact causal relationship between complex local

environments and extreme magnitude errors requires further
analysis, preliminary investigations suggest the following: In
crowded fields or areas with unusual image features or artifacts,
the SExtractor FLUX_RADIUS (which defines a circle that
contains half of the total corresponding FLUX_AUTO value)
can get artificially inflated in size as compared to what it would
return for an object in an isolated environment. As a source’s
MEDS cutout image size is rounded up to the next integer
multiple of 16, this leads to a MEDS stamp that is significantly
larger than what is needed to fit the relevant flux profile in
question. This leaves large areas of the stamp with masked

Figure 19. The distribution of differences in the recovered i-band SOF CModel magnitude vs. the injected DF magnitude (ΔmagDF) as a function of input magnitude.
The inset corresponds to the i-band panel in Figure 16 where the density contours still contain 39.2%, 86.5%, and 98.9% of the data volume, respectively. While most
of the density is captured in the inset, it misses many of the rich features of the full magnitude response—particularly the long outlier tail of injections measured to
have magnitudes up to 10 greater than truth. We explore some of the causes of this in Section 4.3.3.
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pixels when fit with SOF as the algorithm masks rather than
models the light of other detected sources within the cutout.
The resulting CModel fits then preferentially overestimate
cm_T for this subpopulation, which can greatly increase the
inferred flux for a given surface brightness measurement,
though we defer investigations into the exact details of the scale
and frequency of this effect for a future analysis.

Even without a complete understanding of the underlying
cause, the correlation between ΔmagDF and ΔT is evident as
can be seen in Figure 22. Here we have plotted the full i-band
magnitude response of y3-deep but colored individual
responses by the absolute difference in measured cm_T versus
input bdf_T. The vast majority of injections with truth i
magnitude below 23 with very smallΔmagDF responses have T
differences much less than 1, which are colored blue. Bright
objects with responses substantially below the zero line have
moderately large errors in recovered T as we discussed in
Section 4.3.1, while fainter injections with enormous magni-
tude errors have correspondingly large errors in T—reaching as
high as the parameter prior limit of 106 arcsec2 (or scale length
of∼ 103 arcsec). The situation is more complicated near and
past the detection threshold, about 23rd magnitude in the i
band, where additional systematic effects become important.

Model fitting photometry codes are complex, nonlinear, and
sometimes nonlocal algorithms that can have unexpected
consequences—particularly for low-S/N measurements,
crowded fields, or when image artifacts are not appropriately
weighted or masked. The journey from pixels to catalogs can at

times be chaotic, and our modeling of photometric uncertainties
should reflect this.

4.3.4. Scatter from Ambiguous Matches

Despite the efforts described in Section 3.5 there will always
be some ambiguity in the matching to injected sources that can
introduce large, nonphysical scatter. To check this, we visually
inspected hundreds of the MEDS stamps of Balrog objects
whose absolute magnitude response was greater than 2—and in
particular, the set of objects with large ΔmagDF whose size
errors were small. There were a few isolated instances of
ambiguous matches where a faint injection landed in the very
center of an extremely bright Y3 star whose GAp flux
measurement failed. These can easily be accounted for by
adapting our ambiguous matching algorithm to reject Balrog
injections near objects with flagged GAp fluxes, but this was
not discovered in time to update the catalogs used in
downstream measurements. However, this issue has a negli-
gible impact as we estimate only a few hundred instances in the
total y3-deep sample.

4.4. Star–Galaxy Separation

We use the δ injections of δ-stars to estimate the stellar
efficiency (or true-positive rate) in blue and the classified DF
sources in y3-deep for the contamination rate (or false
discovery rate) in red for the Balrog star sample as a
function of injection magnitude in Figure 23(a). The solid,
dashed, and dotted lines represent the fraction of objects

Figure 20. The MEDS image cutouts for a few injection realizations of the same DF object with true r magnitude of 21.42 in eight distinct WF tiles (bal_id of
10034605248852). The red contours give the 50% and 95% enclosed light apertures for the injected object as modeled in each tile. The difference between the
measured and injected magnitude Δm is listed next to each tile name, with the cutouts ordered by the magnitude response. The box sizes are in 0 263 pixels. Not all
cutouts are the same size, as the box size expands based on the initial SExtractor FLUX_RADIUS measurement. The true scale length of the object (after PSF
deconvolution) is 0 77. The fitted profile for the object on tile DES0149–4123 is 1 0 and while that on tile DES0346–5248 is an unrealistic 17″, leading to an
overestimate of the object flux corresponding to an error of 2.32 mag. The stretch in each panel runs from −3σsky to +10σsky.
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classified as less than or equal to an EXTENDED_CLASS_SOF
value of 0, 1, or 2 respectively. While y3-deep is required to
estimate the contamination rate in order to have a realistic
relative ratio between star and galaxy counts, we use the δ-stars
sample to compute the efficiency as its truth classifications are
nearly noiseless and the measurement does not need any external
information about galaxy contaminants. We find that the stars
are correctly classified (EXTENDED_CLASS_SOF< = 1) over
95% of the time below an i-band magnitude of 21.75 and 80% of
the time below magnitude 22.75 before dipping to 70%
efficiency near the detection threshold at i∼ 23. The stellar
efficiency quickly drops to below 50% beyond the 23rd
magnitude. The efficiency of high-confidence stars (EXTEN-
DED_CLASS_SOF==0) follows a similar trend but reaches the
previously quoted values about 0.5 mag earlier. Alternatively,
the rate of DF galaxies misclassified as stars stays below 10%
until 22nd magnitude where there is a sharp increase until the
detection limit, where at low S/N it is extremely difficult to
differentiate between classifications. However, we again note
that the stellar efficiency measurement is less noisy due to the
higher degree of confidence in accurate classification compared
to the DF sample.
We make equivalent measurements for the galaxy efficiency

and contamination in Figure 23(b) where the solid, dashed, and
dotted lines now correspond to the fraction of objects classified
as greater than or equal to EXTENDED_CLASS_SOF values of
1, 2, and 3. Here we must use sources in y3-deep exclusively as
the ratio between stars in the δ-sample and galaxies in the DF
sample is not realistic as required by a contamination estimate.

Figure 21. The MEDS image cutouts for eight Balrog objects with extremely large differences between the measured and injected magnitude Δm. The red lines
correspond to the 50th and 95th percentile flux contours of the measured profile. These injections happened to be placed in regions of rapidly varying sky brightness,
in the spiral arm of a large spiral galaxy, in a rich cluster, near a stellar diffraction spike, in between two extended galaxies, or simply in crowded fields. In all cases, the
fitted size is far too large for the source, which in turn leads to an overestimate of the object’s flux. This process is discussed in detail in Section 4.3.3. The stretch in
each panel runs from −3σsky to + 10σsky.

Figure 22. The full i-band magnitude response ΔmagDF for y3-deep shown in
Figure 19 but now colored by the logarithmic absolute error in recovered size
parameter cm_T vs. input size bdf_T. The response scatter is largely
correlated by error in recovered size; injections with small ΔmagDF values
typically have small errors in recovered T as well (in blue), while nearly all of
the extreme magnitude outliers have correspondingly large size errors. The
correlation is less strong past the detection threshold at i ∼ 23 where other
systematic effects increase in importance.

28

The Astrophysical Journal Supplement Series, 258:15 (46pp), 2022 January Everett et al.



The efficiency is slightly lower than the stars on the bright
end due to impurities in the DF knn classifier but is quite
close to 100% below the 22nd magnitude. The efficiency
of high-confidence galaxies (EXTENDED_CLASS_SOF==3)
decreases sharply near the detection limit, but over 85% of DF
galaxies with assigned classifications are correctly identified
(EXTENDED_CLASS_SOF>= 2) down to the 24th magnitude
in the i band. The contamination rate of stars into the galaxy
sample is consistently ∼2% until the 22nd magnitude where it
rises slightly to 4% at a magnitude of 23. This low level of
contamination is largely due to the relatively small number of
stars compared to galaxies at these magnitudes and is consistent
with the findings quoted in Sevilla-Noarbe et al. (2021). A table
of the Balrog classification (or “confusion”) matrix as a
function of input magnitude is provided in Table C5.

5. Applications to DES Y3 Projects

Below we present some of the most important applications
of the Y3 Balrog catalogs, particularly those that are relevant
for the DES Y3 cosmology analysis. To our knowledge, this is
the first time an object injection pipeline has been used for any
of the following measurements or played such a critical role in
the calibration of a galaxy survey’s cosmological constraints.

5.1. Photometric Redshift Calibration

Chief among the applications of our results is facilitating a
novel inference method for the photometric redshift calibration
of weak-lensing samples. As shown in Buchs et al. (2019), we
can extract information from the DES Y3 DF to break
degeneracies in the riz75 color–redshift relation if we have
accurate estimates of the corresponding WF properties of the
DF sources. In this inference method, Balrog plays the
essential role of determining the likelihood of a given deep,
many-band color to be observed at a given region of noisier
color–magnitude space in DES measurements at Y3 depth.
This allows us to rigorously separate the contributions from
measurement noise to the true color–redshift relation when

estimating the ensemble photometric redshift distribution of the
lensing source sample. In practice, this inference method is
facilitated by the use of two Self-Organizing Maps (SOMs),
which classify the galaxies in the deep and wide samples into
discrete classes, called cells, of color and color–magnitude
space. The redshift distribution of a given Y3 source is then
given by

( ∣ ˆ ˆ ) ( ∣ ) ( ∣ ˆ ˆ ) ( ˆ∣ ˆ ) ( )åq q q=p z c s p z c p c c s p c s, , , , , , 3
c

Balrog

where z is redshift, c is a deep SOM cell, ĉ is a wide SOM cell,
ŝ is the sample selection function, and θ is any additional
conditions such as position on the sky. The middle factor

( ∣ ˆ ˆ )qp c c s, ,Balrog , a narrow slice of the full Balrog transfer
function, expresses the likelihood of a deep color to be
observed at a certain region of wide color–magnitude space.
This transfer function serves to correctly weight the well-
constrained redshift distribution p(z|c) of each deep SOM cell
according to the probability of detecting those galaxies. As the
SOM cells ĉ are determined by Metacalibration magnitude and
color, the Balrog samples are key to generating a distribution
of observed Metacalibration magnitudes for each injected DF
galaxy.
In addition to breaking degeneracies in the color–redshift

relation, Balrog, by virtue of enabling this scheme, facilitates
avoiding otherwise prohibitive selection biases resulting from
the use of spectroscopic redshifts for weak-lensing redshift
calibrations (see, e.g., Gruen & Brimioulle 2017) because it
uses the spectroscopic redshifts only of galaxies for which eight
bands of DES DF photometry provide relatively well
constrained p(z).
In the first application of this inference scheme to data,

Myles et al. (2021) found that the intrinsic uncertainty in
Balrogʼs estimation of the transfer function is a negligible
contributor to the overall error budget with an uncertainty on
the mean redshift in each tomographic bin of s < -10z

3. This is
a significant accomplishment as Balrog was able to decrease
the systematic bias in the photometric redshift estimates
without contributing a novel source of intrinsic systematic
uncertainty in its sampling of the transfer function, which was

Figure 23. The efficiency (in blue) and contamination (in red) of the Balrog stellar sample (a) and galaxy sample (b). We use the δ injections of δ-stars as our
population of true stars for (a) as it is a nearly pure sample, with only ambiguous matches as potential contaminates. We use the DF injections classified as galaxies
from the DF k-nearest neighbor (knn) classifier described in Section 3.3 as our true galaxy sample, which has intrinsic uncertainty as detailed in Hartley et al. (2021).
For (b), we cannot use the δ injections as the contamination measurement requires a realistic ratio of galaxy and stars sources in the sample so we instead use the
classified DF stars. Each line corresponds to the fraction of objects above or below the noted EXTENDED_CLASS_SOF threshold value. We do not expect the galaxy
efficiency to be 100% even at magnitudes where complete due to small impurities DF knn classifier.

75 Only the riz Metacalibration fluxes are used when defining the
tomographic bins.
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not obviously the case a priori. The use of Balrog in
photometric calibration can be further leveraged in future
analyses by incorporating positional-dependent selection effects
θ in the used measurement likelihood ( ∣ ˆ ˆ )qp c c s, ,Balrog . For
further details on this method, we refer the reader to Myles et al.
(2021).

5.2. Magnification Bias on Clustering Samples

The magnification of galaxy light profiles induced by
gravitational lensing changes both the number of detected
sources on the sky as well as their measured properties, such as
size. This effect biases measurements of large-scale structure
and should be taken into account in the modeling of galaxy
clustering and galaxy–galaxy lensing correlation functions
(Unruh et al. 2020).

We can express the observed galaxy density fluctuation field
dg

obs for a particular redshift bin as

( )d d d= + , 4g g g
obs int mag

where dg
int is the intrinsic number density fluctuation field and

dg
mag is the contribution due to magnification. In the weak-
lensing regime where the magnitude of the convergence κ and
the shear γ are much less than 1, we can approximate the local
magnification μ in terms of the convergence only as
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Under this approximation, the magnification contribution to the
number density is proportional to the local convergence

( )d k= C , 6g
mag

where C encodes the slope of the intrinsic flux distribution of
the sample (Garcia-Fernandez et al. 2018), as well as any
selection effects.

Magnification impacts the observed galaxy density field
through two competing effects: a geometric suppression factor

Carea resulting from the increased sky area for a fixed set of
detections, and a boost in the detection efficiency of faint
sources which increases the local number density captured by
Csample:

[ ] · ( )d d dk» + +C C . 7g g
obs int

sample area

In addition, magnification may change the measured properties
of sources that would be detected without this effect—such as
their size or even color as the blending rate is increased—which
may alter their selection into clustering samples or their
assigned tomographic redshift bin.
While a simple argument in J. Elvin-Poole et al. (2021, in

preparation) shows Carea to be −2, the contribution by Csample

for even a simple linear response to δκ depends on the change
in the observed number density nobs for a given δκ compared to
the intrinsic number density nint as a function of measured
object fluxes F:

· ( ) ( )
( )

( )dk
k dk k
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n F n F

n F

; ;
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which is extremely difficult to model as nobs implicitly depend
on complex detection and measurement systematics.
To aid in this effort, supplemental runs to main and aux

(designated as main-mag and aux-mag, respectively) were
created where the same input objects were injected with
identical simulation configurations except for an additional
GalSim magnify call that was applied to all objects
uniformly. Each object was given a lensing magnification
corresponding to δκ= 0.01, effectively increasing the flux and
area of objects by about 2%. A given galaxy sample selection
can be applied to both the magnified (κ= δκ) and unmagnified
(κ= 0) runs and Equation (8) can be used to estimate the
magnification bias Csample. This estimate will include not only
the impact of magnification on galaxy fluxes but any selection
bias (e.g., on size) introduced by the altered images on the
downstream fitted photometry.
Figure 24 shows the Csample estimates from Balrog for

samples with a constant i-band flux limit and a simple galaxy
section criteria of

=_ _
_ _ _ & .

EXTENDED CLASS SOF 3
AND FLAGS GOLD SOF ONLY 126

The same process is also applied to the real data where
magnification is applied only to the galaxy fluxes. For this very
simple selection, the Balrog estimates are consistent with the
data flux-only estimates, indicating any contribution from size
selection or other systematics is small.
In J. Elvin-Poole et al. (2021, in preparation) this Balrog

methodology is applied to the lens samples used in the DES Y3
analysis including more complex color cuts and tomographic
redshift binning. In this analysis, the MAGLIM lens sample
(Porredon et al. 2021), which has a redshift-dependent
magnitude limit and tomographic binning, is found to have a
Csample from approximately 2–5 from low to high redshift. The
redMaGiC lens sample (Rozo et al. 2016), which is a luminous
red galaxy (LRG) selection, has Csample from values consistent
with 0 to approximately 4 at high redshift. The Balrog
estimates of Csample are systematically lower than the flux-only
estimates due to the additional selection effects captured by the
full Balrog transfer function. See J. Elvin-Poole et al. (2021,
in preparation) for additional details.

Figure 24. The magnification bias from the boosted detection efficiency Csample

estimated on samples with a uniform i-band flux magnitude limit. The Balrog
estimates in blue use the magnified Balrog runs with a 2% magnification
applied to every input object. The data estimate applies the same artificial
magnification to the galaxy magnitudes in the data and reapplies the selection.
The Balrog estimates of Csample are consistent with the flux-only estimates
for this very simple selection, indicating that the contributions from additional
selection effects are small. However, the Balrog Csample estimates are
systematically lower than the simple data estimate for the real Y3 samples used
in J. Elvin-Poole et al. (2021, in preparation), where the selections are
significantly more complicated.
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5.3. Noise from Undetected Sources

It is important to accurately characterize image noise to get
unbiased estimates of an object’s photometric properties and
image moments. While Poisson noise is dominant for
calibrated images, there are other less-studied contributions to
the image noise including undetected sources (US). Using the
Bayesian Fourier Domain (BFD) method described in Bern-
stein & Armstrong (2014) on Balrog detections across 48
tiles, the variance of measured galaxy moments was found to
be up to 30% in excess of Poisson predictions in Eckert et al.
(2020). Furthermore, an oversubtraction of the background was
detected in the riz bands leading to a bias in the zeroth moment
flux estimator as shown in Figure 25. The blue points show the
mean μ of the Gaussian fit to the pull distribution of BDF flux
moments for each tile as a function of object density where a
clear correlation can be seen, particularly for the redder bands.
The green points are the same measurements after making a
local estimate of the background in each postage stamp.

In order to determine if the excess noise was due to US, a
slight variant on the Balrog injection procedure was followed
in which we injected zero-flux objects into 39 tiles at random
positions and then made cutout postage stamps of these random
patches of sky. The cross-power spectra of distinct exposures
of the “dark” injections in griz were then computed, which
would yield zero signal if the noise is Poisson or read noise. A
clear detection of US noise is made in each band. This
empirical approach allows computed BFD moments to
calibrate the moment covariance matrix on the survey images
rather than relying on simulations of unknown fidelity and
naturally includes the contribution by US as a source of noise
within the Bayesian calculation. See Eckert et al. (2020) for
further details.

5.4. Accurate Joint Redshift–Stellar Mass Probability
Distributions with Random Forests

In Mucesh et al. (2020), Balrog is used together with the
random forest machine-learning algorithm to produce well-
calibrated joint redshift–stellar mass probability distributions at
a fraction of the speed of traditional template-fitting methods.
This was made possible because Balrog produces an ideal
training sample: it captures both the realistic noise properties of
DES WF measurements as well as the redshift and mass
information of the DF injections from the COSMOS2015
catalog (Laigle et al. 2016).

5.5. Photometric Response near Galaxy Clusters

Clusters of galaxies—especially rich, crowded clusters—are
known to present additional obstacles in the accurate detection
and characterization of both cluster members and nearby,
unassociated sources. These galaxies often have higher
detection incompleteness and significant photometric biases
because of the increased rate of proximity effects. Detected
sources in or near galaxy clusters in the sky can be further
biased because of blending with member galaxies or contam-
ination from intracluster light (Zhang et al. 2019). To aid in
studies of these difficult measurement biases and selection
effects, a high-density Balrog run was performed targeting
areas near rich galaxy clusters.

A sample of 900 tiles, each containing a galaxy cluster with
optical richness λ> 35 (see Rykoff et al. 2016 for a description
of richness and the DES cluster catalog), was injected with a

similar DF galaxy sample as used in y3-deep at a lattice
separation of 10″, resulting in four times the injection density
of the main cosmology runs. This higher injection density was
needed to properly sample the effects of clusters on the transfer
function as a function of radius from a cluster center given the
number of tiles used.76 Additionally, we used a more restrictive
riz detection magnitude of 23 to increase the fraction of
detected objects for this analysis.
The magnitude responses of the injected galaxies were

measured as well as their distances to the center of the nearby
clusters. The sample was further subdivided by the host
cluster’s richness, the measured object size cm_T, and the
magnitude of the cluster’s brightest cluster galaxy (BCG) to see
how these parameters affect the magnitude bias of the inserted
objects. Preliminary results of this analysis for clusters in the
redshift range from 0.2 to 0.3 are shown in Figure 26 and will
be followed up in A. Masegian et al. (2021, in preparation),
including a careful study of the detection efficiency as a
function of various parameters including radial distance.
Unsurprisingly, the magnitude responses become more nega-
tively biased closer to cluster centers where the complex
environments make accurate photometric measurements diffi-
cult and faint sources are upscattered by the abundant residual
light.
We find a similar correlation between an object’s measured

size and magnitude response as seen in Section 4.3.3. The
proximity effects that cause asymmetric overestimates of cm_T
are amplified in the very crowded cluster environments, a trend
that grows even stronger closer to the cluster centers.
Correlation between magnitude bias and the other examined
parameters, cluster richness and the BCG magnitude, is weaker
but still present—particularly for richness. All correlations
appear to bias the recovered magnitudes in the same direction.
The scale of these effects increases as the injections approach
cluster centers. Taken together, the proximity to cluster centers,
cluster richness, and BCG brightness artificially increase the
number of observed objects near clusters above a fixed
brightness threshold which, in turn, can collectively bias
cluster measurements from a corresponding increase in cluster

Figure 25. Reproduced from Eckert et al. (2020), Figure 3. The Gaussian mean
offset μ in the BFD flux moment pull distribution as a function of object
density for the 48 used Balrog tiles in blue. The green points show the mean
offset for the tiles after a local sky subtraction that mitigates the flux bias.
While the g band is relatively unaffected, the redder riz bands show statistically
significant sky oversubtraction that is correlated with object density.

76 While this increases the probability of unwanted proximity effects from
other Balrog injections, we estimate that the chances of two neighboring
injections with bdf_T > 10 (or ∼3 3) in this run to be less than 0.25%.
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member galaxies. We plan on accounting for these correlations
in future DES cluster analyses.

6. Current Methodological Limitations and Future
Directions

While this latest iteration of Balrog has made great
advances in its ability to precisely quantify difficult measure-
ment systematics, there remain many challenges to overcome if
we are to reach the level of precision required by upcoming
Stage IV surveys like LSST where the increased depth, pipeline
complexity, and blending rate will otherwise limit the
constraining power on cosmological parameters. Some of these
challenges, such as properly accounting for per-object chro-
matic corrections at injection time or pushing the injection step
further upstream in the measurement pipeline to account for
more systematic effects in the image calibration, are largely

technical barriers that can be addressed with more development
time. Our ambiguous matching scheme can be improved by
incorporating pixel-level information on the overlap between
injected and real sources similar to the blending parameter
introduced in Huang et al. (2018). In addition, many of the
complexities and additional development time needed for
careful emulation of a survey’s measurement pipeline can be
nearly eliminated by having injection pipelines placed directly
in the software stack of the fiducial data processing runs. While
this was not possible in DES, this approach is now taken in
HSC with SynPipe and planned for LSST. However, there
are more fundamental barriers to leveraging injection pipelines
to their full potential.
A primary challenge is increasing the representativeness of

the input catalog. Using the DECam observations of sources in
the DES DF as the basis for the input object photometry

Figure 26. The difference in measured CModel z-band magnitude vs. the injected DF magnitude ΔmagDF as a function of input magnitude for the high-density
clusters run in a redshift range of 0.2–0.3. The three columns present the ΔmagDF responses binned by their radial distances to nearby cluster centers as specified
at the top of the columns. The median response biases across the range of the injected magnitude are displayed as solid red lines, with the first and second smagDF
contours indicated by the dashed lines above and below. As the injections approach the center of a cluster, the median bias becomes increasingly negative, indicating
that the objects are measured to be progressively brighter than injected truth the closer they are to the bright central galaxy (BCG). In the three rows we color the
magnitude responses as a function of (a) measured object size cm_T, (b) cluster richness, λ, and (c) the magnitude of the cluster’s BCG. The measured object size
appears to have the strongest influence over magnitude bias among the three quantities, though richer clusters also show larger ΔmagDF responses. We use cm_T+1
for the color scale as the ngmix T sizes are allowed to be slightly negative. This preliminary analysis will be followed up in more detail in A. Masegian et al. (2021, in
preparation).
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rectified many of the input sample issues described in Suchyta
et al. (2016)—particularly the discrepancy in recovered
Balrog colors as compared to Y1 GOLD that arose from
interpolating the SED of COSMOS galaxies to match DECam
filters. However, Figure 10 shows that we have further work to
do. While it is difficult to disentangle intrinsic errors in the
emulation of the DESDM pipeline from the input sample
representativeness, there are some clear avenues for improve-
ment. The conceptually simplest is to sample a wider
population of deep objects across more deep patches of sky
in order to incorporate greater cosmic variance in the injection
sample. However, these deep observations are very expensive,
which limits the practicality of this approach. It may be
possible to combine with external deep data sets, though this
comes at the expense of a return to SED interpolations to match
DECam filters. In addition, more detailed studies of the difficult
PSF modeling in the DF may yield a stellar population more
similar to the WF measurements and resolve some of the
largest discrepancies between Balrog and Y3 GOLD for
bright, PSF-like objects.

Another possibility is that the discrepancies between the
recovered WF sample and Y3 GOLD are driven, at least in
part, by the inability of the CModel profiles to accurately
capture the full diversity of galaxy morphologies. True galaxy
profiles have many complex features such as spiral arms, star
knots, and long asymmetric disruptions from mergers that we
are not currently capturing with our DF injections. The most
direct solution to this problem is to inject the MEDS image
cutouts of the DF sources. We have already built the basic
infrastructure to do so with Balrog, as described in
Section 2.2.2, but there are new issues to consider. The image
cutouts can include artifacts, excessive masking, truncated
profiles of nearby objects, or even be blended with other
sources. This may be rectified in the future by using machine-
learning methods such as nonnegative matrix factorization or
generative adversarial networks to handle the required pixel-
level deblending of sources in the stamps (see Melchior et al.
2018 and Reiman & Göhre 2019 for examples, respectively).

However, using the image cutouts directly would introduce
undesired noise when injecting into single-epoch exposures
that had better seeing conditions than the composite PSF of the
single-chip DF coadd and remains an unresolved issue. In
addition, precisely defining the “truth” properties of the stamps
is less straightforward than for model fit injections. This will
likely be handled by making accurate measurements of each
relevant WF photometry type on the stamps, which would
eliminate inheriting nonphysical parameter biases from small
profile definition differences such as the resulting magnitude
bias from differences in fracdev prior shown in Figure 3.

The most difficult challenge to overcome is the high
computational cost of the injection pipelines. The new single-
epoch processing and additional photometric measurements in
Y3 Balrog have increased the total mean CPU time per
recovered injection to ∼80 s, about 12 times greater than in
Suchyta et al. (2016). This large increase in runtime is only at
Y3 depth, corresponding to ∼4–6 epochs per injection and
made it infeasible to directly calibrate many of the other key
aspects of the Y3 cosmological analysis for which Balrog
would otherwise be the ideal measurement tool. For example,
to achieve the equivalent statistical precision on how the
blending of galaxies at different redshifts affects the multi-
plicative shear bias as measured in MacCrann et al. (2022), we

estimate that we would have to run the equivalent of over a
dozen y3-deep samples to sufficiently capture how an identical
injection population responds to an input shear signal that
varies with redshift. In addition, the original goal of using
Balrog to directly calibrate the spatially dependent measure-
ment biases and completeness inhomogeneities in the galaxy
clustering measurement as outlined in Suchyta et al. (2016)
would require many more injections than sources for the
estimation of the angular correlation function—a daunting
prospect in light of the ∼40% Y3 density achieved in this
analysis. The situation will become significantly worse for
much deeper surveys like LSST, where we can expect hundreds
of exposures for each object.
Perhaps even more consequential than the low number

density realistically achievable, the high cost of running
Balrog led to only a single injection realization across just
20% of the total footprint area. This limited the calibrations
from Balrog in Y3 to either be based on mean measurements,
such as those described in Section 5, or required a reduction in
the considered footprint such as the clustering measurement
presented in Section 4.1.4. While even the relatively low
sampling of y3-deep was sufficient to capture systematics
variations in the clustering amplitude to better than 1% for a
MAGLIM-like sample in the overlap area, reaching this
threshold (or beyond) for highly incomplete samples or for
accurate calibrations of large-scale fluctuations may require
orders of magnitude more injections. Despite an expected
significant increase in the total tiles sampled for Y6, achieving
the many realizations of full footprint coverage required for the
most ambitious Balrog measurements, such as providing
realistic random properties for clustering and shear two-point
measurements, will likely remain impractical without a
dramatic increase in computational investment.
One promising solution that we plan to explore is the use of

the Balrog samples as a training set for an emulator that
predicts additional realizations conditional on the survey
property maps. A somewhat similar approach is taken in
Johnston et al. (2020), where they mitigate galaxy clustering
systematics by producing “organized” random catalogs with
fluctuations in number density imprinted from an SOM
approach that trained on maps of the variations in KiDS
observing properties. Using an injection catalog like Balrog
directly as a training sample for this approach would leverage
our very-high-fidelity measurements of the survey transfer
function to include unknown systematics not fully captured by
the identified survey properties. While still more computation-
ally expensive than a machine-learning-only approach, this will
allow us to build an efficient way of creating accurate random
samples tuned for the desired measurement without increasing
the total survey pipeline computational cost by more than a
factor of 2. We plan to use the presented Balrog catalogs to
gauge the accuracy and feasibility of this approach in an
upcoming analysis.

7. Summary and Conclusion

We have presented here the suite of DES Y3 Balrog
simulations and resulting object catalogs used in downstream
Y3 analyses. Like its Y1 predecessor, this current iteration of
Balrog directly samples the DES transfer function by
injecting an ensemble of realistic sources into real survey
images to make precise measurements of the inherited
systematic biases in the photometric response. However, the
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updated methodology (and entirely new coding framework) for
Y3 Balrog makes significant strides beyond Suchyta et al.
(2016) in replicating many of the more complex features of the
DESDM pipeline, including the coaddition of single-epoch
images and multiepoch photometric measurements from SOF
and Metacalibration in order to probe more aspects of the true
measurement likelihood. In addition, we used a more realistic
input sample based on the DES DF source catalog with
observations using DECam filters that eliminated the need for
template fitting to COSMOS galaxies and incorporated more
cosmic variance in object properties. We also implemented a
novel ambiguous matching scheme to capture many of the
impacts of source blending while largely eliminating the
contributions from undesired dropouts that happened to land on
top of existing bright sources.

This effort culminated in tens of millions of Monte Carlo
samples of the DES transfer function at high fidelity across
20% of the full DES footprint to Y3 depth, capturing
systematic biases from more variations in observing conditions
than any previous Balrog analysis. The improved methodol-
ogy resulted in the injected objects matching Y3 GOLD
photometric properties and capturing clustering systematics
correlated with survey property maps to better than 1%
accuracy for a typical cosmology sample on relevant scales.
Additionally, we find that Balrog captures the clustering
amplitudes of these systematics within a few percent for even
highly incomplete samples—an encouraging first step for
future analyses that wish to leverage more of our hard-earned
(and often expensive) photons.

We quantified the photometric responses of Balrog
injections through the Y3 DESDM measurement pipeline,
particularly for magnitudes, colors, and morphology. We find
that the magnitudes of most injections are well calibrated until
selection effects near the detection threshold become signifi-
cant, although we have found a clear asymmetric bias for
objects in crowded fields or near image artifacts to have
moderately to severely overestimated sizes which correlate
with large negative magnitude biases. These biases are fairly
common for bright, extended objects and can become
extremely large (up to ΔmagDF∼ 8) at fainter magnitudes,
though they constitute a much larger relative fraction of objects
on the bright end. We demonstrated that these catastrophic
photometry failures are real effects and often pass science cuts.
We plan on exploring the causal relationship of this
photometric failure mode further in a future analysis. While
these magnitude response biases can cause significant dis-
crepancies from more naive error estimates, fortunately, their
effect appears to have little impact on the recovered colors
where we find typical median response biases of ∼1–3 mmag
for stars and ∼5–10 mmag for galaxies in the densest regions of
parameter space—an effective median color calibration offset
of less than 1%.

Finally, we discussed a few of the most important
applications of the presented Balrog catalogs to the Y3
cosmology analysis and other DES science measurements. In
particular, we provided a realistic measurement likelihood in
the calibration of photometric redshifts to reduce systematic
biases in one of the highest sources of uncertainty in the
cosmological measurement without contributing any additional
uncertainty to the overall error budget. Unexpected findings
such as the noise contributions from undetected sources in DES
images and sky oversubtraction in the riz bands described in

Eckert et al. (2020), in addition to the moderate band
dependence in magnitude response and discovery of a new
class of catastrophic photometry failures correlated with
measured size, are indicative of the diagnostic power of object
injection pipelines like Balrog in modern galaxy surveys.
We believe that this paper only scratches the surface in

cosmological calibration potential and the identification of new
systematics with injection pipelines such as Balrog. In
particular, the combination of direct Monte Carlo sampling of
the transfer function with an emulator to boost the total
statistical power has the potential to facilitate many of the most
difficult measurements in modern galaxy surveys. It is clear
that we have yet to dig too deep.
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Appendix A
Injection Software

Here we describe a few of the most relevant configuration
options when running the new injection framework, as well as
templates for custom injection classes defined by the user for
more advanced interfacing; see the code repository77 for more
details on running the simulations.

A.1. Injection Configuration

Configuration settings specific to a typical Balrog run have
been wrapped into custom GalSim image and stamp types,
both called Balrog:

1. image: Balrog—This image type is required for a full
Balrog run. It parses all novel configuration entries and
defines how to add GalSim objects to an existing image
with consistent noise properties. It also allows the
Balrog framework to be run on blank images for
testing.

2. stamp: Balrog—An optional stamp type that allows
GalSim to skip objects whose fast Fourier transform
(FFT) grid sizes are extremely large and can occasionally
cause memory errors when using photometric model fits
to DES DF objects.

We also provide a much simpler image class called AddOn,
which adds any simulated images onto an initial image
without the full Balrog machinery. Some configuration
details can also be set on the command-line call to

balrog_injection.py for ease of use as long as they
do not conflict with any settings in the configuration file.

A.2. Input Sample and Object Profiles

In principle any native GalSim input and object type can be
used for injection. However, the object sampling, truth property
updating, and truth catalog generation steps require knowledge
about the underlying structure of the input data (e.g.,
parametric models versus image cutouts). We handle this
ambiguity through the use of BalInput and BalObject
parent classes that define the necessary implementation details
to connect GalSim to Balrog. These classes can be used to
register any needed injection types to Balrog including
custom GalSim classes. Subclasses provided for injection
types used in DES Y3 runs are described below:

1. ngmixGalaxy: Described in Section 2.2.2. A sum of
GalSim Gaussian objects that represent a Gaussian
mixture model fit to a source by the measurement
software ngmix. Balrog can currently inject the
following ngmix profile model types: a single Gaussian
(Gauss), a composite model (cm) that combines an
exponential disk with a de Vaucouleurs’ profile, and a
modified CModel with a fixed size ratio between the two
components (bdf)). As ngmix allows for objects with
the negative size before convolution with a PSF, these
negative values are clipped to a small nonzero value
(T= 10−6, corresponding to a size scale of∼ 10−3

arcsec) to avoid rendering failures.
2. DESStar: A synthetic star sample with realistic density

and property distributions across the DES footprint was
created to a depth of 27 mag in g. These objects are
treated as delta functions convolved with the local PSF.
These magnitudes are referenced as δ-mag in later figures.
Further details about this star catalog are described in
Section 3.2.

3. MEDSGalaxy: Single-epoch image cutouts of detected
DES objects are stored in MEDS files for each band.
These image cutouts can be used directly for injection
after deconvolving with the original PSF solution and
reconvolving with the local injection PSF.

Balrog can inject multiple object types in the same run by
setting the gal field in the configuration as a List type; this is
identical to GalSim configuration behavior. The relative
fraction of each injection type is then set in the pos_sam-
pling field described below.

A.3. Updating Truth Properties and Optional Transformations

Most Balrog runs sample objects from an existing catalog.
Some of the object properties are modified to fit the needs of
the simulation such as the positions, orientations, and fluxes.
Updates to positions and orientations are automatically applied
to the output truth catalogs while flux corrections due to local
extinction and zero-point offsets are not, though we save the
applied extinction factor. Different behaviors for these
quantities as well as any additional changes can be defined
when creating the relevant BalObject subclass.
Position sampling is determined by the configuration

parameter pos_sampling and can be set to Uniform for
spherical random sampling or one of the following grid choices
that are regularly spaced in image space: RectGrid for a77 https://github.com/sweverett/Balrog-GalSim
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rectangular lattice, HexGrid for a hexagonal lattice, and
MixedGrid for one of the previous grid choices that mixes
multiple injection object types on the same grid with a set
relative abundance inj_frac. The user has control over the
grid spacing as well as whether to apply random translations
and/or rotations of the grid for each tile in addition to
random rotations of the object profiles themselves with
rotate_objs.

In addition to flux scaling to match the zero point of each
image, an additional extinction factor can be applied with the
configuration option extinct_objs. If set, extinction factors
in griz for each tile are loaded and applied to object fluxes.
Incorporating more sophisticated per-object, SED-dependent
extinction implementations based on the maps provided in
Schlegel et al. (1998) is planned for a future code release but
are currently applied at the tile level. Any of the native
GalSim noise models can be added to the injection stamps
with the Poisson component ignoring the existing image pixel
values as long as the Balrog (or AddOn) image type is used.
Optional transformations such as a constant shear or magni-
fication factor that are uniform across a tile can be added in the
injection configuration with the same syntax as a typical
GalSim configuration, while per-object effects need to be
implemented into the relevant BalObject subclass.

A.4. Configuration Example

Here we show the high-level configuration settings used for
main and aux, where capitalized quantities in {} refer to local
file paths:

modules:
—galsim.des,
—injector,
—ngmix_catalog,
—des_star_catalog

input:
des_star_catalog:
base_dir: INPUT_DIR
data_version: y3v02
model_type: Model_16.5-26.5

ngmix_catalog:
catalog_type: bdf
de_redden: True
dir: INPUT_DIR
file_name: INPUT_FILENAME
t_max: 100

gal:
type: List
items:
- # Inject CModel fit to DF sources
type: ngmixGalaxy
- # Inject synthetic stars
type: desStar

psf:
type: DES_PSFEx

stamp:
draw_method: no_pixel
gsparams:
maximum_fft_size: 16384
type: Balrog

(Continued)

image:
bands: griz
extinct_objs: True
rotate_objs: True
n_realizations: 1
noise: {} # Turn on Poisson noise
nproc: 16
pos_sampling:
des_star_catalog:
type: MixedGrid
inj_frac: 0.1
ngmix_catalog
type: MixedGrid
grid_spacing: 20
grid_type: HexGrid
inj_frac: 0.9
offset: Random
rotate: Random
random_seed: SEED
run_name: main/aux
type: Balrog
version: y3v02
wcs:
type: Fits
xsize: 2048
ysize: 4096

Appendix B
Angular Clustering Systematics

Section 4.1.4 introduced a method for translating the
differences between the Balrog and Y3 GOLD catalogs into
a predicted systematic error in the angular clustering of
galaxies. We first choose a sample selection that is applied to
both catalogs. We then measure the dependence of galaxy
count fluctuations in both selected Balrog and Y3 GOLD
samples on several measured image quality indicators, as in
Figure 11. Finally, for each data quality indicator, we
interpolate the density fluctuation trends to the full survey
area and estimate the angular clustering that these trends imply.
As small systematic variations in the survey depth enter, to
leading order, as additive power in the measured clustering
signal, a comparison of the power we measure in these
interpolated maps offers a direct estimate of the importance of
any deviation between our injection catalogs and the real data.
Here we show the same maps as Figure 12 for six measured

survey properties in all bands, for the 17.5< i< 21.5 sample
selection meant to emulate the Y3 MAGLIM sample. The
investigated survey properties correspond to the mean airmass
(Figure B1), mean exposure time (Figure B2), mean PSF
FWHM (Figure B3), mean error on the grey zero point
correction (SIGMA_MAG_ZERO, Figure B4), mean sky bright-
ness (Figure B5), and variance of the sky background
(Figure B6) of all exposures within a given HEALPix pixel.
With the exception of a negligible spike in power in a few of
the SIGMA_MAG_ZERO maps, the measured systematic errors
are less than 1% of the fiducial galaxy clustering signal
(calculated as described in Figure 11) on scales below
approximately 1° (ℓ> 180).
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Figure B1. Power spectra of the mean airmass and associated interpolated Balrog and Y3 GOLD galaxy count variations, as in Figure 12. The left panels show the
angular power spectrum of the noted survey property (in green) and the corresponding power spectra of the number densities of the Balrog (in blue) and Y3 GOLD
(in gold) MAGLIM-like galaxies across the Y3 footprint using the interpolated trends described in Sections 4.1.3 and 4.1.4. The reference CAMB nonlinear matter power
spectrum in black is at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show the difference in power between Y3 GOLD and Balrog as a fraction of
the fiducial cosmological power spectrum shown on the left.
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Figure B2. Power spectra of the mean exposure time and associated interpolated Balrog and Y3 GOLD galaxy count variations, as in Figure 12. The left panels
show the angular power spectrum of the noted survey property (in green) and the corresponding power spectra of the number densities of the Balrog (in blue) and
Y3 GOLD (in gold) MAGLIM-like galaxies across the Y3 footprint using the interpolated trends described in Sections 4.1.3 and 4.1.4. The reference CAMB nonlinear
matter power spectrum in black is at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show the difference in power between Y3 GOLD and Balrog
as a fraction of the fiducial cosmological power spectrum shown on the left.
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Figure B3. Power spectra of the mean PSF FWHM and associated interpolated Balrog and Y3 GOLD galaxy count variations, as in Figure 12. The left panels show
the angular power spectrum of the noted survey property (in green) and the corresponding power spectra of the number densities of the Balrog (in blue) and Y3
GOLD (in gold) MAGLIM-like galaxies across the Y3 footprint using the interpolated trends described in Sections 4.1.3 and 4.1.4. The reference CAMB nonlinear
matter power spectrum in black is at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show the difference in power between Y3 GOLD and Balrog
as a fraction of the fiducial cosmological power spectrum shown on the left.
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Figure B4. Power spectra of the mean error on the gray zero-point correction and associated interpolated Balrog and Y3 GOLD galaxy count variations, as in
Figure 12. The left panels show the angular power spectrum of the noted survey property (in green) and the corresponding power spectra of the number densities of the
Balrog (in blue) and Y3 GOLD (in gold) MAGLIM-like galaxies across the Y3 footprint using the interpolated trends described in Sections 4.1.3 and 4.1.4. The
reference CAMB nonlinear matter power spectrum in black is at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show the difference in power between
Y3 GOLD and Balrog as a fraction of the fiducial cosmological power spectrum shown on the left.
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Figure B5. Power spectra of the mean sky brightness and associated interpolated Balrog and Y3 GOLD galaxy count variations, as in Figure 12. The left panels
show the angular power spectrum of the noted survey property (in green) and the corresponding power spectra of the number densities of the Balrog (in blue) and
Y3 GOLD (in gold) MAGLIM-like galaxies across the Y3 footprint using the interpolated trends described in Sections 4.1.3 and 4.1.4. The reference CAMB nonlinear
matter power spectrum in black is at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show the difference in power between Y3 GOLD and Balrog
as a fraction of the fiducial cosmological power spectrum shown on the left.
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Figure B6. Power spectra of the variance from the sky background and associated interpolated Balrog and Y3 GOLD galaxy count variations, as in Figure 12. The
left panels show the angular power spectrum of the noted survey property (in green) and the corresponding power spectra of the number densities of the Balrog (in
blue) and Y3 GOLD (in gold) MAGLIM-like galaxies across the Y3 footprint using the interpolated trends described in Sections 4.1.3 and 4.1.4. The reference CAMB
nonlinear matter power spectrum in black is at z = 0.7 with a linear galaxy bias parameter of 1. The right panels show the difference in power between Y3 GOLD and
Balrog as a fraction of the fiducial cosmological power spectrum shown on the left.
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Appendix C
Tabular Results

Here we present the tabular results of many of the plots
shown in Section 4. The mean (〈Δ〉), median (D

~
), and standard

deviation (σ) of the Balrog griz magnitude responses binned

in injection magnitude for the δ-stars and y3-deep samples are
shown in Tables C1 and C2, respectively. The equivalent
quantities for the color responses are shown in Tables C3 and
C4. Measurements of the Balrog classification, or “confu-
sion,” matrix described in Section 4.4 are shown in Table C5.

Table C1
The Mean (〈Δ〉), Median (D

~
), and Standard Deviation (σ) of the Balrog griz Magnitude Responses Binned in Injection Magnitude for the δ-stars Sample

True Mag 〈Δg〉 D
~

g σg 〈Δr〉 D
~

r σr 〈Δi〉 D
~

i σi 〈Δz〉 D
~

z σz
(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

17.00 0.001 0.000 0.004 0.002 0.003 0.005 0.003 0.004 0.010 0.005 0.006 0.006
17.25 0.001 0.003 0.013 0.002 0.003 0.009 0.004 0.005 0.008 0.006 0.006 0.006
17.50 0.001 0.002 0.005 0.002 0.004 0.026 0.005 0.006 0.009 0.006 0.007 0.012
17.75 0.001 0.002 0.006 0.003 0.004 0.007 0.005 0.006 0.006 0.006 0.007 0.011
18.00 0.002 0.003 0.015 0.004 0.005 0.006 0.006 0.006 0.011 0.007 0.007 0.008
18.25 0.003 0.003 0.006 0.005 0.005 0.008 0.006 0.007 0.013 0.006 0.007 0.011
18.50 0.004 0.004 0.006 0.005 0.006 0.008 0.006 0.007 0.009 0.007 0.008 0.014
18.75 0.004 0.004 0.014 0.005 0.006 0.010 0.006 0.007 0.008 0.007 0.008 0.017
19.00 0.004 0.004 0.008 0.005 0.006 0.014 0.005 0.007 0.022 0.007 0.008 0.017
19.25 0.004 0.005 0.008 0.004 0.006 0.017 0.006 0.007 0.013 0.007 0.009 0.021
19.50 0.004 0.005 0.008 0.004 0.006 0.021 0.005 0.007 0.026 0.007 0.009 0.026
19.75 0.004 0.005 0.015 0.004 0.006 0.023 0.006 0.008 0.022 0.007 0.010 0.023
20.00 0.003 0.005 0.015 0.004 0.006 0.029 0.006 0.008 0.028 0.008 0.010 0.034
20.25 0.003 0.005 0.029 0.004 0.007 0.024 0.006 0.009 0.019 0.009 0.011 0.025
20.50 0.003 0.005 0.031 0.004 0.007 0.030 0.007 0.010 0.028 0.009 0.012 0.037
20.75 0.003 0.005 0.033 0.005 0.008 0.028 0.007 0.010 0.038 0.010 0.013 0.041
21.00 0.003 0.005 0.032 0.005 0.008 0.030 0.008 0.011 0.033 0.012 0.014 0.043
21.25 0.003 0.006 0.029 0.005 0.009 0.027 0.009 0.012 0.033 0.013 0.015 0.052
21.50 0.003 0.006 0.030 0.006 0.010 0.031 0.011 0.014 0.042 0.016 0.017 0.059
21.75 0.002 0.006 0.033 0.006 0.010 0.037 0.012 0.015 0.048 0.018 0.019 0.072
22.00 0.002 0.006 0.047 0.007 0.011 0.042 0.014 0.016 0.053 0.022 0.021 0.085
22.25 0.002 0.006 0.044 0.009 0.013 0.049 0.017 0.018 0.065 0.026 0.024 0.107
22.50 0.002 0.006 0.055 0.011 0.014 0.064 0.020 0.020 0.076 0.031 0.026 0.126
22.75 0.003 0.006 0.065 0.014 0.016 0.070 0.023 0.022 0.108 0.038 0.028 0.159
23.00 0.004 0.008 0.083 0.017 0.019 0.083 0.028 0.025 0.107 0.047 0.033 0.218
23.25 0.006 0.009 0.093 0.022 0.022 0.098 0.031 0.025 0.131 0.062 0.035 0.304
23.50 0.010 0.012 0.124 0.027 0.024 0.116 0.033 0.024 0.162 0.084 0.031 0.521
23.75 0.015 0.014 0.147 0.034 0.029 0.154 0.031 0.018 0.200 0.140 0.037 0.876
24.00 0.021 0.016 0.174 0.045 0.034 0.208 0.017 −0.007 0.315 0.297 0.036 1.571
24.25 0.033 0.021 0.245 0.052 0.035 0.226 0.002 −0.041 0.463 0.456 −0.014 2.170

Note. The quoted magnitudes correspond to the left bin edge. Simple Gaussian statistics do not fully capture the complexity of the responses—see Figure 13.
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Table C2
The Mean (〈Δ〉), Median (D

~
), and Standard Deviation (σ) of the Balrog griz Magnitude Responses Binned in Injection Magnitude for the y3-deep Sample

True Mag 〈Δg〉 D
~

g σg 〈Δr〉 D
~

r σr 〈Δi〉 D
~

i σi 〈Δz〉 D
~

z σz
(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

18.00 −0.066 −0.039 0.081 −0.055 −0.035 0.081 −0.048 −0.029 0.087 −0.043 −0.024 0.076
18.25 −0.063 −0.042 0.101 −0.052 −0.033 0.084 −0.042 −0.024 0.069 −0.039 −0.020 0.076
18.50 −0.059 −0.036 0.077 −0.046 −0.028 0.079 −0.039 −0.019 0.079 −0.040 −0.020 0.083
18.75 −0.055 −0.036 0.078 −0.039 −0.020 0.076 −0.039 −0.020 0.077 −0.034 −0.014 0.083
19.00 −0.055 −0.033 0.083 −0.041 −0.021 0.077 −0.035 −0.015 0.086 −0.031 −0.010 0.090
19.25 −0.044 −0.023 0.084 −0.036 −0.018 0.079 −0.031 −0.011 0.085 −0.026 −0.006 0.101
19.50 −0.040 −0.022 0.078 −0.033 −0.013 0.087 −0.027 −0.006 0.096 −0.022 −0.002 0.105
19.75 −0.040 −0.020 0.085 −0.030 −0.009 0.088 −0.025 −0.003 0.109 −0.019 0.002 0.115
20.00 −0.035 −0.015 0.078 −0.026 −0.006 0.105 −0.022 0.000 0.110 −0.016 0.005 0.125
20.25 −0.035 −0.015 0.098 −0.024 −0.003 0.105 −0.020 0.003 0.119 −0.012 0.009 0.134
20.50 −0.032 −0.012 0.090 −0.023 0.000 0.109 −0.016 0.006 0.126 −0.008 0.013 0.153
20.75 −0.030 −0.009 0.110 −0.020 0.002 0.122 −0.013 0.009 0.145 −0.003 0.017 0.161
21.00 −0.027 −0.006 0.107 −0.018 0.005 0.133 −0.010 0.013 0.155 0.001 0.021 0.174
21.25 −0.026 −0.005 0.116 −0.016 0.008 0.148 −0.007 0.017 0.163 0.003 0.025 0.194
21.50 −0.023 −0.002 0.127 −0.014 0.010 0.157 −0.005 0.020 0.176 0.006 0.028 0.211
21.75 −0.022 0.000 0.147 −0.012 0.014 0.171 −0.002 0.023 0.189 0.008 0.031 0.228
22.00 −0.020 0.002 0.154 −0.010 0.017 0.181 −0.001 0.026 0.203 0.011 0.034 0.254
22.25 −0.019 0.005 0.171 −0.009 0.020 0.192 0.001 0.030 0.222 0.015 0.036 0.291
22.50 −0.017 0.007 0.187 −0.007 0.024 0.212 0.003 0.033 0.248 0.020 0.039 0.339
22.75 −0.017 0.010 0.200 −0.005 0.028 0.231 0.005 0.036 0.279 0.022 0.037 0.403
23.00 −0.014 0.013 0.220 −0.004 0.031 0.259 0.004 0.036 0.314 0.024 0.030 0.496
23.25 −0.012 0.017 0.247 −0.004 0.034 0.293 −0.002 0.031 0.355 0.028 0.014 0.663
23.50 −0.011 0.020 0.279 −0.008 0.033 0.329 −0.023 0.013 0.391 0.037 −0.013 0.916
23.75 −0.009 0.022 0.323 −0.023 0.021 0.369 −0.064 −0.026 0.442 0.069 −0.053 1.312
24.00 −0.009 0.020 0.383 −0.055 −0.007 0.413 −0.132 −0.091 0.528 0.142 −0.115 1.874
24.25 −0.012 0.014 0.463 −0.108 −0.057 0.492 −0.233 −0.194 0.713 0.232 −0.217 2.463

Note. The quoted magnitudes correspond to the left bin edge. Simple Gaussian statistics do not fully capture the complexity of the responses—see Figure 16.

Table C3
The Mean (〈Δ〉), Median (D

~
), and Standard Deviation (σ) of the Balrog g − r, r − i, and i − z Color Responses Binned in Injection Color for the δ-stars Sample

True Color 〈g − r〉 -~g r σg−r 〈r − i〉 -
~
r i σr−i 〈i − z〉 -

~
i z σi−z

(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

-0.2 −0.006 −0.003 0.082 −0.006 −0.003 0.111 0.000 −0.003 0.156
-0.1 −0.004 −0.002 0.098 −0.007 −0.003 0.102 −0.002 −0.002 0.114
0.0 −0.003 −0.002 0.092 −0.004 −0.002 0.074 −0.002 −0.001 0.091
0.1 −0.004 −0.003 0.09 −0.004 −0.002 0.078 −0.002 −0.001 0.11
0.2 −0.002 −0.002 0.074 −0.003 −0.002 0.09 −0.002 −0.001 0.111
0.3 −0.001 −0.002 0.077 −0.002 −0.002 0.097 −0.002 −0.001 0.101
0.4 −0.001 −0.001 0.085 −0.001 −0.002 0.096 −0.002 −0.001 0.092
0.5 0.000 −0.001 0.09 0.000 −0.001 0.094 −0.001 −0.001 0.087
0.6 0.000 −0.001 0.103 0.001 −0.001 0.091 0.000 −0.001 0.083
0.7 −0.001 −0.001 0.109 0.001 −0.001 0.088 0.001 −0.001 0.078
0.8 −0.002 −0.001 0.113 0.002 −0.001 0.092 0.001 0.000 0.075
0.9 −0.003 −0.001 0.126 0.002 −0.001 0.097 0.001 0.000 0.081
1.0 −0.006 −0.001 0.131 0.002 −0.001 0.101 0.004 0.001 0.084
1.1 −0.010 −0.002 0.142 0.003 −0.001 0.106 0.003 0.001 0.078
1.2 −0.017 −0.003 0.154 0.002 −0.001 0.112 0.020 0.001 0.073
1.3 −0.021 −0.003 0.155 0.002 0.000 0.116 −0.024 0.000 0.177
1.4 −0.027 −0.004 0.17 0.000 0.001 0.123 0.006 −0.003 0.119
1.5 −0.044 −0.01 0.208 0.000 0.000 0.129 −0.008 −0.008 0.007
1.6 −0.061 −0.017 0.24 0.000 0.000 0.137 L L L
1.7 −0.076 −0.026 0.265 −0.004 −0.001 0.138 L L L

Note. The quoted colors correspond to the left bin edge. Simple Gaussian statistics do not fully capture the complexity of the responses—see Figure 14.
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Table C4
The Mean (〈Δ〉), Median (D

~
), and Standard Deviation (σ) of the Balrog g − r, r − i, and i − z Color Responses Binned in Injection Color for the y3-deep Sample

True Color 〈g − r〉 -~g r σg−r 〈r − i〉 -
~
r i σr−i 〈i − z〉 -

~
i z σi−z

(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

-0.2 0.081 0.053 0.211 0.079 0.043 0.216 0.092 0.047 0.239
-0.1 0.047 0.030 0.192 0.053 0.032 0.201 0.062 0.030 0.213
0.0 0.026 0.016 0.182 0.028 0.013 0.182 0.030 0.009 0.177
0.1 0.012 0.006 0.179 0.011 0.002 0.155 0.019 0.004 0.163
0.2 0.002 −0.002 0.178 0.004 0.000 0.140 0.011 0.001 0.145
0.3 −0.009 −0.006 0.169 0.001 −0.001 0.140 0.007 0.000 0.134
0.4 −0.015 −0.008 0.161 −0.003 −0.001 0.139 0.004 0.000 0.141
0.5 −0.019 −0.009 0.158 −0.007 −0.003 0.140 0.001 −0.001 0.160
0.6 −0.024 −0.010 0.157 −0.012 −0.005 0.146 −0.004 −0.003 0.161
0.7 −0.028 −0.011 0.158 −0.015 −0.007 0.147 −0.009 −0.005 0.159
0.8 −0.031 −0.011 0.159 −0.018 −0.007 0.146 −0.012 −0.007 0.161
0.9 −0.036 −0.011 0.162 −0.022 −0.008 0.152 −0.016 −0.009 0.171
1.0 −0.041 −0.011 0.167 −0.026 −0.010 0.161 −0.019 −0.011 0.176
1.1 −0.046 −0.011 0.173 −0.029 −0.012 0.170 −0.031 −0.016 0.193
1.2 −0.051 −0.010 0.184 −0.035 −0.013 0.178 −0.053 −0.024 0.210
1.3 −0.059 −0.011 0.194 −0.071 −0.030 0.221 −0.049 −0.024 0.215
1.4 −0.069 −0.013 0.210 −0.149 −0.091 0.276 −0.054 −0.018 0.223
1.5 −0.074 −0.015 0.222 −0.171 −0.105 0.288 −0.076 −0.028 0.236
1.6 −0.070 −0.016 0.224 −0.183 −0.112 0.300 −0.075 −0.015 0.220
1.7 −0.066 −0.016 0.224 −0.206 −0.126 0.314 −0.050 −0.007 0.240
1.8 −0.096 −0.028 0.265 −0.206 −0.127 0.334 −0.063 −0.017 0.255
1.9 −0.193 −0.092 0.358 −0.221 −0.112 0.363 −0.061 −0.003 0.220

Note. The quoted colors correspond to the left bin edge. Simple Gaussian statistics do not fully capture the complexity of the responses—see Figure 18.

Table C5
Elements of the Classification (or Confusion) Matrix for Balrog Sources
Binned by Injection Magnitude when Normalized by Percent, where the

Measured Classification is Determined by EXTENDED_CLASS_SOF < = 1 for
Stars and EXTENDED_CLASS_SOF > 1 for Galaxies

True Mag Star->Star Gal->Star Star->Gal Gal->Gal
(TP; %) (FP; %) (FN; %) (TN; %)

18.50 99.6 1.6 0.4 98.4
18.75 99.6 2.9 0.4 97.1
19.00 99.4 2.9 0.6 97.1
19.25 99.3 2.6 0.7 97.4
19.50 99.2 2.8 0.8 97.2
19.75 99.1 2.3 0.9 97.7
20.00 98.7 1.9 1.3 98.1
20.25 98.6 1.8 1.4 98.2
20.50 98.2 1.8 1.8 98.2
20.75 97.8 1.9 2.2 98.1
21.00 97.3 1.8 2.7 98.2
21.25 96.7 1.7 3.3 98.3
21.50 95.9 2.2 4.1 97.8
21.75 95.1 2.0 4.9 98.0
22.00 93.4 2.3 6.6 97.7
22.25 90.8 3.2 9.2 96.8
22.50 86.4 4.1 13.6 95.9
22.75 79.5 5.2 20.5 94.8
23.00 70.3 6.7 29.7 93.3
23.25 58.2 8.3 41.8 91.7
23.50 46.4 10.1 53.6 89.9
23.75 37.5 12.4 62.5 87.6
24.00 30.9 14.5 69.1 85.5
24.25 25.9 15.0 74.1 85.0

Note. The second through fifth columns correspond to the true-positive (TP),
false-positive (FP), false-negative (FN), and true-negative (TN) rates of
Balrog stars, respectively. The very pure δ-stars sample is used to compute
the TP and FN rates, while the noisier classifications of the DF y3-deep
injections are used for the rest. The quoted magnitudes correspond to the left
bin edge. See Figure 23.
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