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The coupling between particle-particle and particle-fluid interactions is examined by
studying the sedimentation of clouds of spheres in a model cellular flow at a small but
finite Reynolds number. The model flow consists of counter-rotating vortices and is aimed
at capturing key features of the vortical effects on particles. The dynamics of clouds
settling in this vortical flow is investigated through a comparison between experiments
and point-particle simulations.
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1. Introduction

In many natural phenomena or industrial applications, heavy particles are transported
in complex flows. The flow structures may happen to promote the stirring and dispersion
of the particles. A representative example in geophysics is the cloud or plume of ash
particles coming from a pyroclastic volcanic eruption that is thrown into the atmosphere
and which can spread over extremely large distance depending on wind speed and
direction. But the opposite can also take place and the flow configuration may contribute
to the focussing and accumulation of particles within specific regions of the flow. A typical
example in the natural environment is the observed patchiness of plankton concentration
caused by wind-induced Langmuir cells occurring at the surface of lakes and oceans.
The objective of this paper is to explore how a collection (i.e. a cloud) of heavy particles
evolves under gravity in a complex flow. The key question is whether the cloud maintains
a cohesive entity or disintegrates and spreads. Most of the flow structures occurring in
the environmental examples mentioned above contain coherent whirls. The present work
considers a simple vortical flow, specifically a cellular flow consisting of counter-rotating
vortices, and addresses the interaction of these controlled vortices with the settling cloud.
The focus here is on flow regimes where inertia is small but can become finite.

A significant body of studies has been dedicated to the dynamics of settling clouds
in quiescent fluids (see e.g. Noh & Fernando 1993; Nitsche & Batchelor 1997; Machu
et al. 2001; Bosse et al. 2005; Metzger et al. 2007; Subramanian & Koch 2008; Pignatel
et al. 2011). Different regimes have been identified depending on the magnitude of the
particle and cloud Reynolds numbers (Subramanian & Koch 2008). We define the particle
Reynolds number as Rea = ρfUSa/µ, where US = 2(ρp−ρf )a2g/9µ is the Stokes velocity
of an individual particle of radius a and density ρp settling in a fluid of viscosity µ
and density ρf under the gravity acceleration g, and the cloud Reynolds number as
Rec = ρfUcRc/µ, where Uc ≈ N0US6a/5Rc is the Stokes velocity of a spherical cloud of
radius Rc containing N0 particles settling in the same quiescent fluid. When both Rea
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and Rec � 1, the settling of the cloud lies in the Stokes regime. While falling under
gravity, the cloud is seen to undergo an internal toroidal circulation similar to what is
found for a spherical drop of heavy fluid settling in an otherwise lighter fluid (Hadamard
1911; Rybczyński 1911). However, this cloud becomes unstable even in the complete
absence of inertia and without the need to perturb its initial shape. It first remains
roughly spherical with a leakage of particles in a vertical tail and then evolves into a
torus which breaks up into two droplets in a repeating cascade. When inertia is finite,
two macro- and a micro-scale inertial regimes are subsequently observed. When inertia is
increased, the falling cloud transitions first to a regime dominated by macro-scale inertia
when the cloud Reynolds number becomes of order one, i.e. Rec ∼ 1. The subsequent
transition toward the micro-scale inertial regime occurs when the individual particle
wakes are interacting within the cloud boundaries, i.e. when the inertial length is of the
order of the cloud size, e.g. ` = a/Rea ∼ Rc. In both inertial regimes, the cloud deforms
into a flat torus that eventually destabilises and breaks up into a number of secondary
droplets but particle leakage is much weaker if not null. While this evolution resembles
that observed in the Stokes regime, the physical mechanisms involved are qualitatively
different. Whereas the inertial cloud evolution is strongly determined by the importance
of wake-mediated interactions, the key feature of the Stokes cloud is the chaotic motion
of the particles which leads to escapes from the cloud internal circulation and to particle
leakage. Simulations using point-particle approaches, which contain the minimal physics
of the multibody particle interactions, capture these dynamics (Nitsche & Batchelor 1997;
Bosse et al. 2005; Metzger et al. 2007; Pignatel et al. 2011).

If the particle cloud settles now in a flowing fluid instead of a quiescent fluid, there
are interactions not only between the particles but also between the particles and the
local spatial structures of the flow (e.g. large vortices). The literature on sedimentation
of heavy particles in non-uniform flows, and specially in random or turbulent flows, has
shown the important effect of these vortical structures on the local particle transport
and concentration, in particular through a phenomenon known as preferential sweeping
where particle paths accumulate at the periphery of the vortical structures (see e.g. Wang
& Maxey 1993; Aliseda et al. 2002; Toschi & Bodenschatz 2009; Balachandar & Eaton
2010). Preferential sweeping is generally considered responsible for the turbulence to
increase the settling velocity of inertial particles but other mechanisms, such as vortex
trapping and loitering or nonlinear drag effects, have also been proposed for, on the
contrary, reducing the settling velocity (see e.g. Nielsen 1993; Mei 1994; Good et al.
2014; Akutina et al. 2020). These features can be also seen using a model cellular flow
of counter-rotating vortices. At low particle Reynolds number, individual particles settle
at their Stokes velocity simply augmented by the local fluid velocity (Stommel 1949).
Their trajectories can be classified according to the magnitude of the ratio of the Stokes
velocity, US , to the vortex velocity, U0, i.e. the parameter W = US/U0. When W > 1,
the trajectories are essentially straight vertical line as the particles settle through the
vortex array without being mostly influenced by it. For W ≈ 1, the particles are affected
by the local flow and the trajectories can exhibit zigzagging motions depending on their
position of release within the vortex array. For smaller values of W , the particles can
be suspended in the flow. When inertia is increased, the dynamics of single individual
particles has been described by the Boussinesq-Basset-Oseen equation (Gatignol 1983;
Maxey & Riley 1983). The major influence of inertia on the motion is that the particles
cannot be resuspended in the flow and are seen to settle out even when they are trapped
momentarily into a vortex (Maxey 1987). This effect has been observed in experiments
using a cellular flow field created by electroconvection (Bergougnoux et al. 2014). The
experiments show that, for small values of the Stokes number, St (defined as the ratio



3

of the particle response time to the characteristic time of the flow), added mass and
history forces are inconsequential and that the dominant forces are buoyancy and drag
provided that the Stokes drag is replaced by a nonlinear drag depending of the particle
Reynolds number. Collective effects between the particles may also affect this settling
but they do not have been thoroughly addressed. The role of particle clusters and their
association with settling velocity enhancement has been pointed in Stokes sedimenting
flows (Guazzelli & Hinch 2011) but also more recently in the turbulent regime (Huck
et al. 2018).

The objective of the present work is to tackle the interplay between the multibody
particle interactions and the interaction between the particles and the spatial structures
of the flow. This coupling is examined for a cloud settling in a cellular flow field which
is a simple model flow capturing key features of vortical effects on the particles. In
the experiments described in § 2, electroconvection is used to generate a two-dimensional
array of controlled vortices and clouds of particles are released and tracked in this vortical
flow. The observed cloud dynamics is compared in § 4 against point-particle simulations
described in § 3. Conclusion are drawn in § 5.

2. Experiments

The experimental apparatus consists of a cell made of Plexiglas (of 50 cm height, 38 cm
width, and 4 cm depth) filled with an aqueous mixture of citric acid (a certain amount
of UCON R© oil can be added to increase the fluid viscosity), as depicted in figure 1. The
vortical flow is created by electromagnetic convection. The magnetic field is produced by
a checkerboard of permanent square magnets (2× 2 cm2) placed against the back wall of
the cell. An electrical current is generated between two carbon electrodes placed on the
opposite small sides of the cell. The coupling between the magnetic field and the uniform
electric current gives rise to an electromagnetic force in the fluid. This induces a flow of
counter-rotating vortices having the same size as the magnets and an intensity controlled
by the magnetic field of the permanent magnets, the intensity of the electric current, and
the viscosity of the fluid. Further details can be found in Bergougnoux et al. (2014) and
Lopez & Guazzelli (2017).

The flow generated by electroconvection is characterised by particle image velocimetry
(PIV). For this purpose, the fluid is seeded by tracer particles (hollow spheres with
diameter ≈ 15 µm and density ≈ 1.4 g.cm−3 from Dantec Measurement Technology)
and is illuminated by a green laser sheet which can be positioned in the vertical or
horizontal planes. A camera is focused on the illuminated particles which scatter the
light and records two images separated in time by typically 1/7 to 1/15 s. These images
are processed to find the velocity-vector map of the flow field using the Matlab PIV
software DPIVsoft (Meunier & Leweke 2003). The resulting three-dimensional flow field
possesses a quasi two-dimensional periodic structure of counter-rotating vortices of size
L = 2 cm (i.e. with a spatial wavenumber k = 2π/2L) in the vertical plane having an
intensity which reaches a maximum at x ≈ 5 mm away from the back wall and then
decays rapidly. This cellular flow is close to a Taylor-Green cellular flow when the flow
Reynolds number is small, i.e. for Rek = U0k

−1/(µ/ρf ) < 1, see figure 2 (a). For larger
values of Rek, the spatial structure can be slightly distorted and three-dimensional, see
figure 2 (b). It eventually becomes unstable for Rek > 15.

Clouds are prepared by mixing a weighted amount of spherical particles with the
same fluid as that filling the cell, see tables 1 and 2 describing the characteristics of the
different fluids and particles which have been used. This suspension mixture is dropped
from the top of the cell using a custom-made syringe positioned at x ≈ 5 mm, i.e. at
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Figure 1. Experimental apparatus. The transparent cell is filled with an aqueous mixture of
citric acid (UCON R© oil can be added to increase the viscosity). The magnetic field is generated
by a checkerboard of magnets placed behind the back wall of the cell. The electric current is
created by two electrodes placed on the opposite small sides of the cell. The flow generated by
this set-up is a periodic flow of counter-rotating vortices that is depicted in figure 2. Clouds are
dropped from the top of the cell using a custom made syringe and settle through the cellular
flow. Their trajectories are imaged by a set of synchronised cameras located below and in front
of the cell.

Batch a (µm) ρp (g cm−3)

A 70 ± 6 1.049 ± 0.003
B 115 ± 14 1.049 ± 0.003
C 175 ± 20 1.189 ± 0.001

Table 1. Particle characteristics: mean sphere radius a (the error bar corresponds to the
standard deviation) and density ρp. Batches A and B are made of polystyrene particles while
batch C consists of polymethyl methacrylate (PMMA) particles.

the maximum plateau location of the vortex intensity. The injected cloud settles first
in the quiescent fluid and then, as electroconvection is activated, through the vortical
flows. A set of synchronised cameras located below and in front of the cell tracks the
cloud both in the vertical and horizontal plane. Standard digital imaging treatments
(first the ‘threshold’ function and then the ‘particle-analyse’ function of ImageJ) yield
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Figure 2. Vortical flow: velocity-vector map of the flow field in the vertical plane (zy) for
different horizontal positions (x) and in the horizontal plane (xy) for different vertical positions
(z) in cases (a) A1a (Rek = 0.7) and (b) C2b (Rek = 13.6).

Fluid Mixture µ (cP) ρf (g cm−3)

1 83% water + 10% UCON R© oil + 7% citric acid 10.0 ± 0.1 1.042 ± 0.001
2 64% water + 36% citric acid 3.3 ± 0.2 1.173 ± 0.001

Table 2. Fluid characteristics: viscosity µ and density ρf .

the time-evolution of the position of the centre of mass of the cloud, X, Y , and Z, and
of some other quantities such as its projected surface in the horizontal plane, Σ. The
detection of the cloud dynamics is undertaken until the cloud begins to break, i. e. when
the cloud starts to bend to break into pieces. The time-evolutions of the clouds have
been examined for different combinations of particles and fluid mixtures listed in table 3
which also indicates different dimensionless parameters (P = ka, W , Rea, Rek, Rec,
N0, `/Rc, Q = kRc). Note that for each combination, two different current intensities
have been selected (200 mA and 600 mA, labelled a and b respectively), leading to two
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Experiments A1a A1b B1a B1b C2a C2b

P = ka 0.01 0.01 0.02 0.02 0.03 0.03
W 0.007 0.002 0.018 0.005 0.108 0.054
Rea 10−4 10−4 2 10−4 2 10−4 2 10−2 2 10−2

Rek 0.7 2.9 0.7 2.9 6.8 13.6
Rec 0.4 − 1.2 0.5 − 0.8 0.7 − 1.3 0.6 − 1.5 8 − 17 8 − 14
N0 4000 − 20000 7000 − 12000 2300 − 4500 2200 − 5300 350 − 700 300 − 600
`/Rc 500 − 900 675 − 900 170 − 240 170 − 250 2 − 4 2 − 4

Q = kRc 0.2 − 0.4 0.2 − 0.3 0.3 − 0.4 0.3 − 0.4 0.4 − 0.6 0.4 − 0.6

Table 3. Dimensionless numbers for the different combinations of particles (labelled A,B, and
C), fluids (labelled 1 and 2) and current intensities (labelled a and b) used in the experiments.

Figure 3. Typical three-dimensional trajectories of centres of mass of clouds. The colour coding
(colour online) corresponds to the distance to the back wall, and the trajectories projected in
the horizontal plane are shown at the bottom. The trajectories which do not possess a large
x-extension are selected.

different values of vortex velocities, U0. Note also that the cloud size is always smaller
(by a factor ten) than the size of the vortices. For each experimental condition listed in
table 3, typically 4-5 experimental runs have been performed but only trajectories which
are not too close to the walls and do not have a large x-extension are retained. Typical
three-dimensional trajectories of centres of mass of clouds are depicted in figure 3.

3. Numerical modelling

We consider N0 spherical particles initially randomly distributed in a sphere of radius
Rc (or alternatively in a prolate spheroid of same volume to mimic the initial shape of the
cloud obtained in the experiments) settling under gravity in a vortical flow field uvortex

characterised by a spatial wavenumber k and a vortex intensity U0. We adopt the simplest
model containing the minimum physics to describe the problem at low Reynolds number
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(a) (b)

Figure 4. Typical (a) experimental and (b) numerical chronophotographies of a cloud for
case A1b. The time between successive photos is kept constant (2 s in the experiments and a
corresponding interval in the simulation) in order to indicate the difference in velocities along the
trajectory. The flow field measured by PIV is indicated by red arrows. The complete dynamics
for the experimental case and for the Stokeslet simulation are shown in supplementary movie 1.

in which particles are represented by identical point forces. Within this approximation,
the velocity, ṙαi , of a particle α located at a position rαi is its own Stokes velocity US
incremented by the local fluid velocity at rαi (Stommel 1949) and the sum of the velocity
disturbances (only represented by its far-field portion, i.e. the Stokeslet) coming from

the other particles β located at a position rβi (see e.g. Metzger et al. 2007). Using k−1

as the length scale and U0 as the velocity scale, the dimensionless equations of motion
(with dimensionless quantities denoted with a hat) are written as

ˆ̇r
α

i = ûvortexi (r̂αi ) +W δi3 +
3

4
PW

∑
β 6=α

[
δi3
r̂αβ

+
r̂αβi r̂αβ3
(r̂αβ)3

]
, (3.1)

where rαβi = rαi − rβi and rαβ = |rαi − rβi |. We have used the dimensionless parameters
P = ka and W = US/U0.

To test the effect of a vertical wall on the cloud dynamics, we have followed Blake
(1971) and implemented a mirror image system of the point forces enabling to satisfy the
no-slip condition on the wall boundary. The typical evolution with or without the wall
is essentially identical as pointed by My lyk et al. (2011) for a cloud falling in a quiescent
fluid. We have verified that, for a distance to the wall larger than a few cloud radii as
achieved in the experiments, the effect happens to be insignificant.

When inertia becomes finite, equation (3.1) is no longer valid. However, if the Stokes
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Figure 5. Same as figure 4 but for case B1b. The complete dynamics for the experimental case
and for the Stokeslet simulation are shown in supplementary movie 2.

number (i.e. the ratio of the particle response time, ∝ ρpa
2/µ, to the flow time scale,

∝ 1/kU0, St ∝ a2ρpkU0/µ) is still small (St ≈ 2 10−3 for case C2a and ≈ 4 10−3 for
case C2b), the assumption of linearity can be maintained but instead of a Stokes drag
a nonlinear drag may be used, e.g. a Schiller-Naumann drag (Bergougnoux et al. 2014).
As a first estimate, the far-field Stokes interactions can also be replaced by the steady
far-field Oseen interactions (i.e. the Oseenlet) in equation (3.1) to encompass the inertial
wake interactions between particles (Subramanian & Koch 2008; Pignatel et al. 2011).
This is however a crude approximation as assuming steady Oseen wake interactions is far
from being justified (see e.g. Lovalenti & Brady 1993). The new dimensionless equation
of motion then reads

ˆ̇r
α

i = ûvortexi (r̂αi ) +W δi3 +
3

4
PW

∑
β 6=α

{
r̂αβi

(r̂αβ)2

[
2ˆ̀

r̂αβ
(1− Ê)− Ê

]
+

Ê

r̂αβ
δi3

}
, (3.2)

where the inertial screening length is ` = a/Rep and E = exp
[
−(1 +

rαβ
3

r ) r
αβ

2`

]
.

Knowing the initial positions of the N0 particles at time t = 0, the sets of equations
(3.1) or (3.2) represent a close system of 3N0 coupled ordinary differential equations which
can be numerically integrated for a cellular flow uvortex inferred from interpolating the
three-dimensional PIV measurements of the flow field described in § 2. The integration
has been performed using an explicit Runge-Kutta method of order (4)5 (the ‘dopri5’
integrator of the ‘ode’ solver in Python). To optimise and run the Python code with a
large number of point-particles, we use the Numba package to translate the mobility-
matrix function written in Python into a fast native machine code. The numerical
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(a) (b)

Figure 6. Same as figure 4 but for case C2b. The numerical simulation uses an Oseenlet (instead
of Stokeslet) approximation. The complete dynamics for the experimental case and for the
Oseenlet simulation are shown in supplementary movie 3.

trajectory of each particles of the initial spherical cloud can then be obtained and
analysed. The generated images of the clouds can also be treated in a similar manner as
in the experiments to give the trajectory and shape of the numerical clouds for a close
comparison examination.

4. Results and comparison

In the following, we present the experimental results of the time-evolution of the
cloud and compare them to the numerical predictions obtained using the point-particle
approaches introduced in § 3. This latter numerical modelling also enables access to some
dynamical features which are not amenable in the experiments. We investigate the Stokes
regime but also the effect of increasing finite inertia. Before embarking in these analyses,
it is important to consider the various dimensionless parameters involved in the problem.
For Stokes clouds settling in a quiescent fluid, the only relevant parameter is the initial
number of particles, N0. For Stokes clouds settling in a vortical flow of intensity U0

and size k−1, two additional dimensionless numbers come into play, the velocity ratio
W = US/U0 and the size ratio P = ka or alternatively Q = kRc. When inertia is
increased, it is important to consider additionally the cloud Reynolds number, Rec, and
the particle Reynolds number, Rea, or alternatively the dimensionless inertial length k` or
`/Rc. It is important to mention that the Stokes number, St ∝ a2ρpkU0/µ (≈ 2− 4 10−3

for the most inertial cases C2a and C2b), and size ratio, P = ka (≈ 0.01 − 0.03), of
the individual particles are always kept small in the present study. Of course, the Stokes
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Figure 7. Typical experimental (◦) and numerical (solid lines) trajectories in the Stokes case
B1a: time evolution of the (a) vertical, Z, and (b) horizontal, Y , coordinates of the cloud
centre of mass, (c) its vertical velocity, Uz, and (d) the cloud projected surface in the horizontal
plane normalised by its initial value, Σ/Σ0. In graph (a), the black triangle indicates the slope
Uc = N0US6a/5Rc and the inset shows the initial positions of the cloud within experimental
accuracy ∆ (with k∆ = 7 10−2). The horizontal dotted lines correspond (i) to the initial location
kY = 0 in graph (b), (ii) to the value Uc/U0 in graph (c), and (iii) to the initial projected surface
Σ/Σ0 = 1.

number of the cloud itself is larger, typically (Rc/a)2 larger, leading to values ≈ 1 for
the most inertial cases C2a and C2b. The cloud radius is always smaller than the spatial
wavelength of the vortical structure (Q = kRc ≈ 0.2 − 0.6) because of the small x-
extension wherein the cloud can be dropped and for which the vortex intensity can be
kept constant away from the back wall (see figure 2).

4.1. General evolution of the clouds

The typical evolution of a cloud settling in the vortical flow in the Stokes regime (case
A1b) is shown in the chronophotography of figure 4 (a). The cloud is seen to settle along
the downstream flow of the successive vortices and to display zigzagging motions due to
the modulations caused by the periodic cellular flow. It does not maintain a spherical
shape as it is slightly stretched in the elongational region of the flow, in particular close
to the stagnation points surrounding the purely rotational regions at the centres of the
vortices. A significant leakage of particles is observed at its rear and the released particles
move with the vortical flow and thus can be trapped into the vortices as the ratio of
their Stokes velocity to the flow velocity, W (= 0.0017), and their Reynolds number,
Rea(= 10−4), are both very small. No break-up is observed as the travel distance of
the cloud is not long enough for this phenomenon to happen. The cloud falls across 12
vortices (≈ 100 times its radius) and it would necessitate for the cloud to fall at least 500
times its radius for break-up to occur in the Stokes regime (Metzger et al. 2007). Similar
qualitative evolution is found between the point-particle simulation using the Stokeslet
approximation and the experiment in this regime as evidenced by comparing figure 4 (a)
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and (b). However, the experiments show a mostly rounded shape of the cloud while the
simulations give more like a mushroom shape. This discrepancy is observed for case A1b
having a cloud with a large number of particles (see table 3) and may be due to excluded-
volume effects not accounted for in the point-particle simulations. The behaviour of the
cloud for case B1b is displayed in figure 5 and presents similar features as for case A1b
since inertia is still very small. The cloud deformation by the flow structure is however
stronger. This is even more significant when inertia becomes finite for case C2b shown in
figure 6. The cloud is highly deformed and eventually widens in the upward elongational
portion of the flow and breaks into multiple pieces. Point-particle simulations using an
Oseenlet (instead of Stokeslet) approximation can capture this phenomenon.

4.2. Cloud trajectory

A more quantitative comparison between experiments and simulations can be obtained
by examining the time evolution of the vertical, Z, and horizontal, Y , coordinates of the
cloud centre of mass, its vertical velocity, Uz, and the cloud projected surface in the
horizontal plane normalised by its initial value, Σ/Σ0.

In a typical Stokes case (B1a) depicted in figure 7, Z(t) is approximatively a straight
line while Y (t) exhibits oscillations due to the modulation induced by the vortical flow.
The mean settling velocity of the cloud is similar to that observed when falling in a
quiescent fluid, Uc ≈ N0US6a/5Rc, as shown in figure 7 (a). Its vertical velocity Uz(t)
and the normalised projected surface Σ(t)/Σ0 experience periodic oscillations. The cloud
slows down (accelerates, respectively) while simultaneously expanding (shrinking, respec-
tively) when it falls through the successive upward (downward, respectively) elongational
portions of the flow. Numerical simulations using the Stokeslet approximation are also
presented in figure 7 for N0 = 2500 corresponding to the experimental value. The different
curves correspond to simulations having different initial positions for the cloud centre of
mass which are chosen within the experimental accuracy of the cloud initial location.



12

Figure 9. Snapshots of the settling numerical cloud for cases (a) B1a (N0 = 2500) and (b)
C2b (N0 = 500). The original flow field measured by PIV is indicated by black arrows while the
perturbed flow field is represented by blue streamlines. The corresponding movies are available
in the supplementary material (movie 4 for the Stokeslet simulation and movie 5 for the Oseenlet
simulation).
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More precisely, the initial position is shifted along the vertical or horizontal directions
by the experimental error ∆ on the initial location, as indicated in the legend of graph
(a). The set of obtained curves encloses the experimental data, and in particular, the
amplitude and phase of the oscillations are captured in graphs (b), (c), and (d) of figure 7.
Dispersion and phase shift between the different curves are seen to increase slightly with
time because of the sensitivity to the local velocity field, in particular at the stagnation
saddle points, as observed previously for individual particles (Bergougnoux et al. 2014).

In the finite-inertia case (C2b), the trajectories can be followed only over a distance of
≈ 4− 5 vortices since break-ups (indicated by the ? symbols) quickly occur, as shown in
figure 8 for a typical example. The vertical position Z(t) again follows approximately a
straight trajectory with a slope ≈ Uc while the horizontal position Y (t) presents oscilla-
tions. The normalised projected surface Σ(t)/Σ0 experiences similar periodic oscillations.
Conversely, the vertical velocity Uz(t) shows oscillations but with a doubled period
compared to those of Y (t). This is a sign of the successive slowdowns and accelerations
during the fall of the cloud through a vortical structure. This period doubling was not
distinctly seen in the Stokes case of figure 7 (c). Numerical simulations using the Oseenlet
approximation (with N0 = 500 to match the experimental condition) capture these
behaviours. Some discrepancy is observed for Σ(t)/Σ0. It may be due to experimental
error in the determination of Σ coming from difficulties to discriminate between the
particles within or without the cloud (this is enhanced after some settling distance when
the tail behind the cloud due to particle leakage becomes important).

Comparison between behaviours in the viscous and inertial cases is shown in figure 9
where snapshots of the numerical clouds are shown during settling for cases (a) B1a
(N0 = 2500) and (b) C2b (N0 = 500). The perturbed streamlines are represented together
with the original PIV flow fields. The vortices are pushed apart when the cloud is falling in
a downward portion of the flow between the two vortices while they are pulled closer when
the cloud sweeps around the vortical structure when there is an upward flow between the
two vortices. The oscillations between the expansions and contractions of the cloud when
settling in the successive upward and downward, respectively, portions of the flow are
clearly seen. This phenomenon seems to be enhanced in the Oseenlet simulation wherein
the upward elongational flow favours the cloud expansion.

4.3. Particle leakage from the cloud

Since the evaluation of particle leakage from the cloud is difficult to achieve in the
experiments, we have chosen to rely on numerical simulations. To identify the particles lo-
cated inside the cloud, a connected-component-labeling algorithm has been used to detect
connected regions in the binary digital images and to identify blob regions, in particular
the cloud entity. First, we construct a boolean matrix containing the coordinates of the
particles with an element resolution corresponding to the interparticle distance. Second,
we use the connected-component-labeling algorithm (function measure.label in Python
skimage library) which identifies blobs of adjacent elements and labels the different blobs.
Then, the cloud entity is determined as the blob having the highest coordinates along z;
the other blobs of particles are considered as leaking from the cloud. Figure 10 shows the
percentage (N0−N)/N0 of particles that have leaked away from the cloud as a function
of time. The data correspond to averages over 10 numerical simulations having different
initial particle distributions using the Stokelet (cases A1a and B1b) and the Oseenlet
(case C2b) models.

Figures 10 (a) and (b) compare leakage obtained when the cloud is settling in (a)
quiescent fluids and (b) vortical flows. They clearly evidence that the leakage is intensified
by the vortical flows. Strikingly, while leakage is small when Oseenlet clouds settle in
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Figure 10. Percentage (N0 − N)/N0 of particles that have leaked away from the cloud as a
function of dimensionless time tUc/Rc: in (a) quiescent fluids and (b) vortical flows for cases
A1a, B1b, and C2b; in vortical flows for different N0 for cases (c) B1b and (d) C2b; in vortical
flows for two different Rek for cases (e) B1b and (f) C2b. The insets of graph (c) and (d) show

the same leakage N0 −N but normalised by N
1/3
0 instead of N0.

quiescent fluids (Pignatel et al. 2011), it is amplified by a factor of ≈ 90 when these
clouds fall in vortical flows. Figures 10 (c) and (d) show that the rate of leakage decreases
as the initial number N0 is increased in both the (c) viscous (B1b) and (d) inertial (C2b)

cases for cloud settling in vortical flows. Normalising the leakage N0−N by N
1/3
0 instead

of N0 produces a collapse of the data onto a master curve at long time and for sufficiently
large N0, as previously seen for clouds falling in quiescent fluids (Metzger et al. 2007). For

tUc/Rc > 10, (N0 −N)/N
1/3
0 approximately scales as (tUc/Rc)

2/3 in the viscous case as
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Experiments Oseenlet Simulation Oseenlet Simulation

N0 = 300 − 600 N0 = 500 N0 = 1000

in quiescent fluid 115 ± 28 63 ± 5 62 ± 3
C2a 29 ± 6 16 ± 3 –
C2b 26 ± 5 21 ± 3 –

Table 4. Dimensionless break-up times, tbUc/Rc, in the quiescent and vortical cases (C2a and
C2b). The error bars correspond to the standard deviations between the different experimental
or numerical runs.

obtained for Stokes clouds settling in quiescent fluids (Metzger et al. 2007). This contrasts
with the scaling as tUc/Rc which seems to be obtained in the inertial case. This again
evidences the strong increase of leakage by the vortical flow when inertia becomes finite.
Figures 10 (e) and (f) show that increasing the Reynolds number of the flow intensifies
the leakage, in both viscous (for N0 = 2500) and inertial (for N0 = 500) cases. It is worth
noticing that the percentage of leakage presents oscillations induced by the modulation
of the cellular flows in graphs (b), (c), (d) (e), and (f). This is likely to be linked to the
modulation of the size of the cloud when falling through the vortical structure as shown
in figure 9. The cloud seems to loose particles when it is shrinking, i.e. when falling in a
downward elongational portion of the flow, see figure 9(b) at t/(kU0)−1 = 3.8.

4.4. Break-up of the cloud

As mentioned previously in § 4.1, break-up events have been only observed in the
finite-inertia case and thus are only analysed in that regime. The key quantity is the
time required to reach the break-up, tb, which characterises the lifetime of the cloud.
This time can be inferred as the time for which the cloud starts to bend to break into
pieces. Table 4 gives the dimensionless break-up time, tbUc/Rc, for clouds of particles C
settling in fluid 2 both in the quiescent case and in the vortical cases (C2a and C2b).
The experimental data correspond to averages over typically 10 runs and the error bars
to the standard deviations over the different runs. Clearly, break-up times are shorter
when clouds are settling into vortical flows. Numerical simulations using the Oseenlet
approximation have been performed for similar inertial length, `/Rc ≈ 2− 3, and initial
size of the cloud, Q = kRc ≈ 0.5, and for N0 = 500 (and also 1000 in the quiescent
case). The numerical data correspond to averages over 5-10 runs having differing initial
distributions but also having different initial positions for the centre of mass as done in
figures 7 and 8 of § 4.2. The trend is similar to that observed in experiments although
the numerical values are somehow smaller than those found experimentally. This latter
discrepancy may be due to the fact that the present numerical model is not accounting
for unsteady or excluded-volume effects.

A physical picture of the mechanism leading to break-up can be obtained from
a visualisation of the flow field in the cloud reference frame for a typical Oseenlet
simulation in case C2b, see figure 11. As mentioned before in discussing figure 9, the
cloud successively expands and contracts when falling in the consecutive upward and
downward, respectively, elongational portions of the flow. When inertia is finite, the
oscillation between the expansion and contraction phases is no longer reversible and the
cloud expansion becomes stronger. When the cloud reaches an upward elongational region
of the flow wherein there is a slow-down of the velocity, break-up then happens as the
widened cloud winds around the vortical structure, see the graphs at t/(kU0)−1 = 7.8,
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Figure 11. Flow field computed at successive times in the vertical plane in the cloud reference
frame for a typical Oseenlet simulation in case C2b. High (low) velocity is indicated in white
(dark). The corresponding movie 6 is available in the supplementary material.

8.3, and 8.8. The remaining pieces of the cloud spread in the flow structures and can
undergo the same break-up process, see the graph at t/(kU0)−1 = 10.1.

5. Concluding remarks

We have performed experimental investigations as well as numerical simulations to
examine the dynamics of clouds of particles settling in model cellular flows consisting of
counter-rotating vortices where inertia is small but can be increased to become finite.



17

Figure 12. Snapshots of numerical clouds (using the Oseenlet approximation) corresponding
to case C2a (P = 0.03, W = 0.108, `/Rc = 2) settling in Taylor-Green vortices at five different
times t̂ = t/(kU0)−1 = 0, 8, 16, 24, 32 (each time t̂ corresponds to a different colour) with (a)
Q = 0.5 and N0 = 500, (c) Q = 2 and N0 = 500, and (e) Q = 2 and N0 = 2000. Conditions in
(b), (d), (f) are the same as in (a), (c), (e), respectively, but hydrodynamic interactions between
particles have been switched off. The corresponding movie 7 is available in the supplementary
material.

The clouds tend to settle along the downstream flow regions of the vortical structures and
to present zigzagging motions. They do not maintain their initial spherical shape as they
successively expand or shrink when settling through the successive upward or downward
elongational portions of the flow. Increasing inertia enhances the cloud deformation. A
significant leakage of particles is observed at the rear of the clouds. It is greatly amplified
by the vortical flows by comparison with clouds settling in quiescent fluids. It is also
intensified when inertia is increased and becomes finite. The vortical structures also
induce a faster break-up of the clouds into multiple shatters in the finite inertia case.
Point-particle simulations, which contain the minimal physics to describe the coupling
between particle-particle and particle-flow interactions, capture well the cloud dynamics.

A key feature that is highlighted in the present work is the importance of the collective
effects between the particles in maintaining the cloud as a single entity before break-
up occurs owing to stretching in the vortical flow. This can be further investigated in
figure 12 by going beyond the experimental constraint of having an initial cloud smaller
than the vortex size, i. e. by investigating a cloud with Q > 1. When the size of the initial
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cloud is larger than that of the vortices, the cloud can break into pieces which can be
further stretched by the elongational regions of the flow. This is shown by comparing
figures 12 (a) and (c) having the same N0 = 500 but with Q = 0.5 and 2, respectively.
Increasing the number of particles increases the cohesion of the cloud which is eventually
stretched into elongated pieces by the vortical structure as seen in figure 12 (e) having
the same Q = 2 as figure 12 (c) but a different N0 = 2000. The cloud in figure 12 (e)
falls at a faster pace than that in figure 12 (c) since the cloud velocity is Uc ∼ N0. As a
comparison, we also show simulations in figures 12 (b), (d), (f) corresponding to the same
initial cloud as in figures 12 (a), (c) and (e), respectively, but wherein the hydrodynamic
interactions have been switched off. The difference between the simulations with and
without collective effects (i. e. with and without two-way coupling) is striking. Without
hydrodynamic interactions, the individual particles settle much slowly as they sweep
around the vortices since W = 0.108 < 1 and a significant amount of them remains
trapped inside the vortex circulations since the Reynolds number based on the individual
particle size is Rea � 1.

Another interesting output of the present study is the identification of a mechanism
of expansion and contraction of the cloud leading to a final disintegration into multiple
stretched pieces induced by the elongational portions of the vortical flow when inertia is
increased (see figures 11 and 12). This last effect may be related to particle segregation in
turbulent flow which has been seen to evolve into a network of filamentous shapes similar
to caustic patterns (see e. g. Reeks 2014). The generation of such inhomogeneities in the
context of particles sinking in oceanic flows has been attributed to stretching mechanisms
due to the flow (Drótos et al. 2019). More work is certainly needed to assess whether
stretching by the elongational part of the flow structure is a generic and robust process
that is seen in more complex flow than the model vortical flow studied in the present
work.
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Rybczyński, W 1911 Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen
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