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ABSTRACT

Neutron stars are likely surrounded by gas, debris, and asteroid belts. Kozai-Lidov perturbations, induced by a distant, but gravita-
tionally bound companion, can trigger the infall of such orbiting bodies onto a central compact object. These effects could lead to
the emission of fast radio bursts (FRBs), for example by asteroid-induced magnetic wake fields in the wind of the compact object. A
few percent of binary neutron star systems in the Universe, such as neutron star-main sequence star, neutron star-white dwarf, double
neutron star, and neutron star-black hole systems, can account for the observed non-repeating FRB rates. More remarkably, we find
that wide and close companion orbits lead to non-repeating and repeating sources, respectively, and they allow for one to compute a
ratio between repeating and non-repeating sources of a few percent, which is in close agreement with the observations. Three major
predictions can be made from our scenario, which can be tested in the coming years: (1) most repeaters should stop repeating after a
period between 10 years to a few decades, as their asteroid belts become depleted; (2) some non-repeaters could occasionally repeat,
if we hit the short period tail of the FRB period distribution; and (3) series of sub-Jansky level short radio bursts could be observed as
electromagnetic counterparts of the mergers of binary neutron star systems.

Key words. stars: neutron – binaries: general – radiation: dynamics – radiation mechanisms: non-thermal – turbulence –
submillimeter: general

1. Introduction

The origin of fast radio bursts (FRBs), these brief, coherent, and
numerous radio pulses, has not been identified yet. Today, radio-
astronomy surveys from all over the world have detected more
than 700 FRBs, among which 137 have been officially reported
(Petroff et al. 2016).

The large inferred dispersion measures (DM) point towards
these being mostly at cosmological distances. The extragalactic
origin is further confirmed by the isotropic distribution of FRBs
over the sky. So far, FRBs have been detected with fluences rang-
ing from sub-Jansky up to more than 400 Jy, with steep energy
spectra (James 2019). Consequently, the isotropic energy equiv-
alent of an FRB is more than ten billion times higher than galac-
tic pulsar emissions, with, in addition, spectra that are radically
different from most of the known radio sources.

A fraction of FRBs appear to repeat, that is with multi-
ple bursts spaced over a few seconds to months, observed at
the same location. This implies that FRBs could belong to two
distinct populations: repeaters and non-repeaters. Among the
hundred of events published so far, about 22 appear to repeat,
mostly with no apparent periodicity, even though one has been
reported to be periodic (CHIME/FRB Collaboration 2020a). A
large fraction of the repeating FRBs have been discovered by
CHIME, operating at around 400 MHz (CHIME/FRB Collabo-
ration 2019a,b; Scholz 2019; Andersen et al. 2019; Fonseca et al.
2020). The absence of real differences in their spectra, however,
suggests that the two populations may originate from the same
sources.

The event rate, extrapolated from current observations that
are necessarily limited in the observation time and field of view,
suggests that FRBs occurs at an extraordinarily high rate of thou-
sands per day, implying that the objects at the origin of these
emissions must be numerous in the Universe (Petroff et al. 2019).

From a theoretical perspective, no consensual emission
mechanism has been found, nor is there an accepted explana-
tion for the two observed populations of repeaters and non-
repeaters. A vast number of emission models exist, from exotic
alien signals to cosmic strings, and they can be found in Platts
et al. (2019). The recent detection of two intense radio bursts,
coincident with X-ray bursts and localized at the position
of SGR1935+2154, points towards the magnetar hypothesis
as a source of FRBs (Mereghetti et al. 2020; CHIME/FRB Col-
laboration 2020b). This might, however, apply to a subset of the
population only, since the equivalent luminosity of the radio
bursts from SGR1935+2154 seems to be 40 times dimmer than
the dimmest FRB.

Although the number of FRB detections is growing fast, the
observational constraints remain limited. The key observables
at this stage, besides the energy budget and time variability, are
the rates of bursts and of repeating events. These numbers are
challenging to reconcile with the existing source models in the
literature.

In this paper, we propose a global scenario which could
explain the rates of both repeating and non-repeating events with
a population of neutron stars in binary systems. Several studies
have shown that the infall of bodies onto a compact object should
lead to observable electromagnetic signals. In particular, via the
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Alfvén wing emission mechanism presented in Mottez & Zarka
(2014), this emission could be the source of FRBs. Other authors
have proposed that FRBs result from the impact of asteroids and
comets on central compact objects (Geng & Huang 2015; Dai
2016; Smallwood et al. 2019). Interestingly, the above models
could naturally lead to repeating signals, as long as small bod-
ies, such as asteroids, pass by the star at a rate corresponding to
the observations. Furthermore, it provides a natural explanation
to the dichotomy between repeater and non-repeater FRBs.

Such scenarios require however both a large number of pro-
genitors, and an efficient infall mechanism into the neutron-star
Roche lobe. The Kozai-Lidov gravitational effects applied to the
numerous binary neutron star systems naturally provide such a
framework.

In the following, we study the effect of the Kozai-Lidov
mechanism on a triple system consisting of a central neutron
star, a binary companion, and sizeable bodies orbiting nearby,
such as an asteroid belt around the neutron star. Bodies perturbed
by gravitational effects leave their orbits and fall onto the cen-
tral object (Naoz 2016). For instance in the Solar System, the
Kozai-Lidov mechanism is responsible for the Kirkwood gap
in the asteroid belt, under the influence of Jupiter (Delgrande
& Soanes 1943). Furthermore many astrophysical systems have
been found to be consistent with the implication of Kozai-Lidov
perturbations: such as the formation of hot Jupiters systems via
the planet-planet interactions (Naoz et al. 2011), the formation of
close compact binaries via mass loss channels induced by secular
effects (Shappee & Thompson 2013; Michaely & Perets 2014),
and the pollution of white dwarf atmospheres due to the infall of
asteroid and comet-like materials (Stephan et al. 2017).

The first discovery of earth-mass exoplanets was indeed
around a millisecond pulsar (Wolszczan & Frail 1992). The
existence of asteroid belts around millisecond pulsars has been
invoked to explain various timing variations and other observa-
tional features (Cordes & Shannon 2008; Shannon et al. 2013;
Brook 2014; Yu & Huang 2016; Mottez et al. 2013a).

This study is strongly related to the one presented in
Mottez et al. (2020), where the authors discuss the possible
FRB emission from the interaction between an asteroid belt
and a pulsar. This is why we often refer to their work regard-
ing the radio emission mechanism. However, our work focuses
on the orbital dynamic of the asteroids inside the belt. In this
perspective, we first present the FRB emission model and the
parameter sets required for the signal to be observed. We then
compute the Kozai-Lidov time-scales for our binary system
(Sect. 3) and discuss the implications in terms of FRB rates, tak-
ing into account the binary population rates (Sect. 4). We sim-
ulate the Kozai-Lidov effect on a mock solar-like asteroid belt
in Sect. 5. Finally, we discuss the broader applications of this
calculation in Sect. 6.

2. FRB emission from asteroids orbiting a pulsar

Asteroid belts close to neutron stars have been previously pro-
posed to explain observational timing and radio features (Cordes
& Shannon 2008; Shannon et al. 2013; Brook 2014; Yu & Huang
2016; Mottez et al. 2013a,b). No asteroid belt has yet been
observed at distances larger than 1 AU, but this is likely due to
observational bias. Asteroid belts could be the remains of plane-
tary objects destroyed by the supernova that led to the formation
of the neutron star, or result from the supernova fallback itself
(Menou et al. 2001; Shannon et al. 2008). The aggregation of
the debris to form a planet depends mostly on external condi-
tions (Morbidelli & Raymond 2016). In particular, the presence

of Jupiter prevents the formation of planets in the Solar aster-
oid belt. The perturbations produced by an outer black hole at
&few AU with a mass of 10 M� would be several orders of mag-
nitude more intense than the influence of Jupiter on the Solar
system belt. Therefore it is likely that no planet would form
inside this asteroid belt.

Mottez & Zarka (2014) presented the extension of the Alfvén
wing theory (see e.g., Saur et al. 2004) to relativistic winds
induced by a pulsar and interacting with a companion body (e.g.,
planet, comet, asteroid, etc.). The emission mechanism can be
summarized in three steps: first the relativistic and magnetized
wind enters in direct contact with the orbiting body, creating a
magnetic coupling. This direct contact induces a current sheet
called an Alfvén wing, extending from the body far into space.
Finally, the interaction of the outflow plasma crossing the Alfvén
wing results in radio emission through coherent mechanisms
such as the cyclotron maser instability.

For an asteroid of radius Rast orbiting at distance aast from a
pulsar located at distance D from the observer, the average flux
density of radio waves inside the cone of emission of opening
angle 1/γ, with γ the Lorentz factor of the wind, reads (Mottez
& Zarka 2014; Mottez & Heyvaerts 2020; Mottez et al. 2020):

〈S 〉 = 4.3 Jy
εw

10−2 Acone

×

(
γ

3 × 106

)2 ( Rast

100 km

)2 ( aast

10−2 AU

)−2

×

( R?

106 cm

)6 ( B?
1013 G

)6 ( P?

0.1 s

)−4

×

(
D

100 Mpc

)−2 (
∆ f

1 GHz

)−1

, (1)

here ∆ f is the spectral bandwidth of the emission, εw the wind
power conversion efficiency, and R?, P?, B? the pulsar radius,
rotation period and dipole magnetic field strength. Acone =
4π/ΩA ≥ 1 is an anisotropy factor, with ΩA the solid angle in
which the radio-waves are emitted in the source frame. For an
isotropic emission, Acone = 1 and if, the instability triggering the
radio emissions is the cyclotron maser instability, Acone ∼ 100
(Mottez et al. 2020).

One should note that, in Mottez & Heyvaerts (2020) a revised
version of the Alfvén wing mechanism is presented, where the
magnetic flux Ψ of the wind is evaluated where the field lines are
wind-like and not estimated at the surface of the neutron star as
previously done in Mottez & Zarka (2014). Although the physics
of the process remains identical to the previous version of the
study, the intensity of the radio emission is scaled down. In the
present study, we use the revised version of the mechanism.

It is interesting to note that in this radio emission mecha-
nism model, magnetar-like objects with a strong magnetic field
could power FRB emission of hundreds of Janskies as observed
in the ASKAP survey. Such phenomena are also suggested by
the recently observed double radio bursts from the magnetar
SGR1935+2154 (CHIME/FRB Collaboration 2020b), also coin-
cident with X-ray bursts (Mereghetti et al. 2020).

In light of this emission equation, we discuss below the
parameters required for the pulsar and the asteroids in order to
produce an observable FRB.

2.1. Pulsar parameters

Neutron stars are frequently formed in binary star systems, but
the subsequent evolution of these systems leads to diverse final
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configurations, depending on the pre-supernova mass, the asym-
metry of the explosion, a possible impulsive ‘kick’ velocity
impinged on the neutron star at birth, etc.: a parameter-space
explored with sophisticated numerical simulations (e.g., Lorimer
2008; Toonen et al. 2014 and references therein).

We focus here on neutron star-white dwarf (NSWD), neu-
tron star-main sequence star (NSMS), neutron star-neutron star
(DNS) and neutron star-black hole (NSBH) binaries, which are
found to be common outcomes of the evolution of binary sys-
tems containing neutron stars (Portegies Zwart & Verbunt 1996;
Nelemans et al. 2001).

In a majority of NSBH systems, the neutron star is born with
normal pulsar characteristics (e.g., non-recycled pulsars with
large magnetic fields and mild spin periods). Various evolution-
ary studies show indeed that it is difficult to form recycled pul-
sars in these systems and their low inferred rates are compatible
with their non-detection in radio so far (Sipior et al. 2004; Pfahl
et al. 2005; Shao & Li 2018; Kruckow et al. 2018).

The case that, in the majority of NSWD systems, the white
dwarf is formed first has also been studied numerically (Toonen
et al. 2018) and supported observationally (e.g., Portegies Zwart
& Yungelson 1999; Kaspi et al. 2000; Manchester et al. 2000)
Hence these systems contain normal (non-recycled) neutron stars
in eccentric orbits.

Finally, observations confirm the natural scenario in which
double neutron star systems contain at least one normal pulsar
(Tauris et al. 2017), which serve in our framework as the central
object.

The evolutionary path of NSMS suggests that main sequence
stars should be companions to normal radio pulsars, and their
(scarce) observations support this scenario (Lorimer 2008 and
references therein).

Two neutron star systems containing a planet companion
have been observed (e.g., Lorimer 2008 and references therein).
Data and studies on these objects are scarce, hence we mostly
concentrate on the binaries mentioned above in this paper.
However, we also discuss the possible contribution from these
planetary systems. The two planets have been detected around
millisecond pulsars, but it is impossible as yet to infer popula-
tion characteristics, and normal pulsars are more numerous than
millisecond pulsars and statistically likely to host planets.

For all these binary systems, it appears to be justified to
assume that the neutron star presents the characteristics of a nor-
mal pulsar. We note however that the systems in close orbit, with
companion semi-major axis ac � 1 AU are usually associated
with recycled pulsars.

In our model, the FRB emission happens in the first .104 yr
of the birth of the pulsar, and for close binaries, even within the
first 10 yr (see Sect. 4). The relevant pulsar parameters are hence
those at birth. It is commonly accepted that the dipole magnetic
field strength of the pulsar experiences little decay, with an aver-
age initial value of 1012.65 G (Faucher-Giguère & Kaspi 2006).
Recent simulations show that the initial spin period could be
as low as 20 ms (Johnston & Karastergiou 2017) and typically
below P? < 150 ms (Gullón et al. 2014).

The numerical values of Eq. (1) demonstrates that such fidu-
cial normal pulsar parameters suffice to produce observable radio
emission at the Jansky level, provided that the asteroid presents
specific characteristics, which we detail in the next Section.

We notice also that recycled pulsars, that have low magnetic
fields of B . 109 G and P ∼ few ms, are not powerful enough to
produce FRB emissions at the Jansky level, except for extremely
large asteroids.

2.2. Asteroid size

The radio emission crucially depends on the radius Rast and
orbital distance aast of the asteroid. One can infer from Eq. (1)
that large asteroids with radius Rast & 3 km are favored to power
observable FRBs. From simple fragmentation arguments, it can
be shown that the asteroid size distribution roughly follows a
power-law (MPC-SAO-IAU 2019)

Nast ∼ 100 (Rast/100 km)−2 . (2)

Larger, less numerous asteroids could produce intense bursts,
at a lower rate. Conversely, mJy emission, detectable with cur-
rent instruments, could be produced by smaller (3−10 km), more
numerous asteroids.

2.3. Asteroid belt distance

Equation (1) shows that short distances from the central neutron
star are required for the body to be immersed in strong magnetic
fields. Although mJy emission can be produced at a distance
amJy ∼ 0.1 AU from the neutron star, shorter orbital distances
are required to power more intense bursts.

The shortest possible distance corresponds to the Roche
limit. The Roche limit for an asteroid falling onto a neutron star
is computed to be

dRoche
NS = 2Rast

(
MNS

Mast

)1/3

∼ 9.2 × 10−3 AU
(

2 g cm−2

ρast

)1/3 (
MNS

1.4 M�

)1/3

(3)

with Rast the asteroid radius, Mast its mass, ρast its density, and
MNS the central compact object mass.

Asteroids could penetrate deeper than the Roche lobe if the
so-called plunge factor is taken into account (Ali-Haïmoud et al.
2016), allowing for shorter aast to be reached at maximum eccen-
tricities. This would enable smaller (Rast ∼ 3−10 km) – more
numerous (Nast ∼ 104−5) – asteroids to emit Jansky-level bursts.

We note that even at these close distances, small objects
like asteroids are in general not evaporated via induction heat-
ing by the winds of the central neutron star (Kotera et al. 2016).
Their size is indeed shorter than the typical wind electromagnetic
wavelength, in the framework of the Mie theory. The effects of
non-sphericity, as is the case for asteroids, are .30% on light
absorption coefficients (Mishchenko et al. 1999).

The required short orbital distances imply that, unless most
asteroid belts are already created in this emission zone delim-
ited by dRoche and amJy, the process of Mottez & Zarka (2014)
and Mottez et al. (2020) can only work if asteroids actually fall
close enough to the central object. We propose here that this can
happen via the Kozai-Lidov effect. We set our fiducial asteroid
belt distance to aast = 1 AU in the following.

We note that observations of pulsars show that there might
be asteroid belts at ∼R� (Cordes & Shannon 2008; Mottez et al.
2013a,b): these do not need to undergo infall in order to produce
FRBs, as they are already deep into the strong wind region to
produce strong Alfvén wing emissions. The signals from such
belts could present some periodicity due to the regular orbits as
observed for FRB180916, which presents a ∼16.35 days peri-
odicity (CHIME/FRB Collaboration 2020a). Indeed for favor-
able configurations, the alignment between the asteroid periodi-
cal motion and the observer’s line-of-sight could result in a peri-
odical observation of bursts. However, turbulence effects in these
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inner wind regions along the observer’s line of sight may play
a role in modifying such periodicities, an effect that we do not
address here. We note also that Jones (2008) shows that infrared
emission limits the inner radius of an asteroid belt to a factor that
is two or three times larger than ∼R�.

Finally, regarding the orbital modifications of the asteroids
due to the supernova phase, two cases can be distinguished:
close systems where most probably the asteroid belt or debris
belt forms after the supernova phases, in that case the system is
already relaxed in some way. For wide systems the large distance
of the companion should not affect small bodies highly bound to
the central neutron star, except for secular effects.

2.4. Reconciling the emission beaming with the observed
FRB rate

FRB emission would be observed when the radio beam of the
Alfvén wings crosses the observer’s line of sight. This proba-
bility is diminished by the narrow emission beam (of opening
angle 1/γ ∼ 10−6−10−5) produced by the Alfvén wave mecha-
nism of Mottez & Zarka (2014), but compensated by the large
number of orbits achieved by the asteroids before reaching the
Roche limit. The time-scale for the asteroid eccentricity to shift
from amJy ∼ 0.1 AU to the Roche Limit in the emission zone
(due to Kozai-Lidov effects) would be a fraction of the Kozai-
Lidov timescale, which is a secular effect, hence happening on
times much larger than the orbital time period of the asteroids.
Therefore the number of Keplerian orbits performed in the emis-
sion zone before reaching the Roche limit is large. A rough
estimate of the number of orbits achieved by the asteroid in
the emission zone can be obtain by comparing the Kozai-Lidov
timescale to the orbital periods of the asteroid at the beginning of
the emission zone and at the end (the Roche limit). Considering
Keplerian orbits, the orbital period can be derived from Kepler’s

third law Past =

√
a2

astGMNS/4π, where Past is the orbital period
of the asteroid, aast its semi-major axis, G the universal con-
stant of gravitation and MNS the mass of the orbited pulsar.
For an asteroid position at the beginning of the emission zone
aast,mJy ∼ 0.1 AU, and orbiting a pulsar of mass MNS ∼ 1.4 M�,
this period is about Past,mJy ∼ 6 × 103 days, while at the end
of the emission zone (Roche limit) it is much shorter, about
Past,Roche ∼ 5.5 h. Therefore the comparison of tKL the Kozai-
Lidov timescale, given by Eq. (12) (see Sect. 3), considering
an outer body of mass 10 M� with a semi-major axis of 10 AU,
with the orbital periods of the asteroid gives the number of orbits
achieved N ∼ tKL/Past ∼ 105−107. The large number of orbits
can thus compensate for the strong beaming and lead to more
than one emission burst per asteroid, as we assume in the rest of
our discussion. Other asteroids can also enter the emission zone,
leading to repetitions of bursts.

In addition, turbulence effects, wind fluctuations and asteroid
proper motions will also randomly affect the beam position and
orientation. From Mottez et al. (2020) the authors, derive a con-
servative value of the emission source velocity, due to the wind
intrinsic oscillations, of about vs ∼ 0.01c � vwind, equivalent to
an angular velocity of about ω̇ ∼ 10−4 rad s−1. Consequently, the
emission beam wanders over an area proportional to the time of
observation tobs and the Keplerian orbital period of the asteroid

nast =

√
GMNS/a3

ast ∼ 1.6 days(MNS/1.4 M�)(aast/10−2 U.A.),
assuming the orbital motion is in the same plane as the observer
line of sight for simplification. This area can be described
with an opening angle αw = nasttobs ∼ 10−1 rad (MNS/1.4 M�)

(aast/10−2 U.A.)(tobs/1 h) � αbeam ∼ γ−1 and defines the prob-
able detection region. During the observation time tobs, multiple
bursts can be observed if the beam crosses the observer’s line of
sight several times. Another consequence of the beam wandering
motion is the burst duration, which result from the sweep time
of the beam across the observer’s line of sight, given by

τburst =
αbeam

nast + ω̇
,

∼ 7 ms
(

γ

3 × 106

) ( MNS

1.4 M�

) ( a∗
10−2U.A.

)3/2
. (4)

Finally, the number of bursts observed and their durations
depend on the position of the asteroids when the emission is pro-
duced, but also on the pulsar characteristics, which make possi-
ble configurations as diverse as the observed FRB burst durations
and repetitions.

Our final picture corresponds to an emission zone filled with
asteroids whose Alfven wings randomly cross the observer’s line
of sight during the large number of orbits achieved to reach
the Roche limit, where the asteroid disruption occurs. During
the disruption, complex tidal-induced fragmentation could hap-
pen, especially for large asteroids, leading to a multitude of sub-
emission components over short time-scales. Such events could
explain the observations of FRB 121102, from which ∼90 bursts
were detected during a five hour period (half falling within
30 min, Zhang 2018).

3. Kozai-Lidov mechanisms

In the framework of asteroids orbiting a central pulsar and sur-
rounded by an outer massive body (see Fig. 1 for a sketch), we
expect modifications of the orbits to occur through the exchanges
of orbital momentum between the two two-body systems: (1)
pulsar-asteroid (the inner binary), and (2) (pulsar-asteroid)-outer
body (the outer binary). These exchanges can translate into an
increase of the eccentricity of the inner binary and therefore lead
to configurations where the two bodies of the inner binary move
very close to one another, when reaching the periapsis of their
orbits, leading in some cases to a crossing of the Roche limit.

As can be seen in Fig. 1, the subscripts 1, 2, 3 refer to the
central object, the outer body and the “massless” body orbiting
the central object respectively. We specify the notations in some
numerical estimates and in the next sections by denoting these
objects with the subscripts NS, c, ast, corresponding to the cen-
tral neutron star, its binary companion and the orbiting asteroids.

3.1. Secular perturbations in three-body systems

The motion of the outer body, also referred to as the perturb-
ing body, induces gravitational perturbations which happen on
secular timescales, that is on timescales much longer than the
typical orbital timescales. In the specific case of a hierarchi-
cal three body system, where the semi-major axis of the inner
binary is much smaller than the semi-major axis of the outer
binary a1/a2 � 1, this system is stable. Furthermore in the test
particle approximation, where one of the bodies is considered
“mass-less” (m → 0), only the motion of this “mass-less” body
is affected by the secular dynamics. For large mass ratios within
the inner binary, the inner binary orbit can flip from a pro-grade
motion to a retro-grade motion by rolling over its semi-major
axis. During one of these flips, the orbit passes trough an incli-
nation of 90◦ which leads to a large eccentricity excitation.
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Fig. 1. Framework for the Kozai-Lidov perturbation calculations in our binary neutron star+ asteroid triple system. The neutron star is surrounded
by the asteroid belt, and the binary companion orbits at a larger distance. All objects are represented by their distance to the neutron star (for
instance aast and ac) and their inclination (for instance iast and ic) with respect to the invariant plane.
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Fig. 2. Evolution of the octupolar efficiency parameter ε (Eq. (8)) as a function of the asteroid belt semi-major axis aast and the companion semi-
major axis ac (left), and the companion eccentricity ec and ratio of asteroid belt semi-major axis aast and companion semi-major axis ac (right).
The solid black lines delimit the regions where the octupolar regime of the three-body dynamic is expected to be dominant ε = 0.1 and ε = 10−3,
and where a transition from octupolar regime to quadrupolar regime is expected to take place ε = 10−4.

The three-body dynamics is usually decomposed into the
dynamics of two two-body systems, plus a perturbation effect
between these two-body systems. In terms of Hamiltonian, one
can write

H = G
m0m1

2a1
+ G

(m0 + m1)m2

2a2
+Hpert, (5)

where H is the total Hamiltonian of the three-body system, G
is the gravitational constant, m refers to the mass, a to the semi-
major axis, and the subscripts 1, 2, 3 to one the body or one of
the two two-body systems (1 or 2). Finally, Hpert represent the
perturbation term between the two two-body systems and can be
decomposed over Legendre polynomials

Hpert =
G
a2

∞∑
j=2

(
a1

a2

) j

M j

(
r1

a1

) j (a2

r2

) j+1

P j[cos (Φ)]. (6)

With r1 and r2 the distances between the two bodies of the
inner binary and outer binary respectively, P j Legendre poly-
nomials, Φ angle between r1 and r2, and M j = m0m1m2

[m j−1
0 − (−m1) j−1]/(m0 + m1) j a mass term.
It is possible to rewrite this series only for the two main

terms

Hpert ≈ Hquad + εHoct, (7)

where Hquad and Hoct represent the quadrupolar and octupolar
orders of the perturbation and ε is given by

ε =
a1

a2

e2

1 − e2
2

. (8)

Depending on the configuration of the three-body system,
the value of ε indicates which order dominates the dynamic
(either quadrupolar or octupolar). Furthermore stable systems
are expected for values of epsilon ε ∼ 0.1 or if the eccentric-
ity is null a1/a2 ∼ 0.1. Figure 2 shows the evolution of the
ε parameter depending on the inner binary (pulsar-asteroid in
our case) configuration and the outer binary (perturbing body)
configuration. The shadowed region represent the configurations
where the outer body is closer than the inner binary (between the
pulsar and the asteroid in our case), which is not possible. The
domain where the octupolar is fully dominant is delimited by the
two solid black lines. One can see that this region corresponds to
configurations where the outer body has an eccentric orbit and is
not too far from the inner binary.

When the outer body has a circular orbit, the dynamics is
led by the quadrupolar term and results in the so-called clas-
sical Kozai-Lidov mechanism. In this mechanism, periodical
exchanges of orbital momentum between the two two-body sys-
tems lead to a reduction of the inclination of the inner binary
at a cost of an increase in eccentricity. These oscillations stem
from the fact that in the test particle approximation (where one
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of the bodies of the inner binary has a mass close to zero),
the z-component of the total orbital momentum, defined by the
invariant plane, is conserved and can be rewritten as a function
of the inclination and the eccentricity

Lz = Constant =

√
1 − e2

1 cos itot, (9)

where Lz is the z-component of the total orbital momentum of
the three-body system, e2 is the eccentricity of the inner binary
and itot is the total inclination of the system within the invariant
plane. By conservation principles, it is straightforward to extract
the maximal eccentricity reachable as a function of the initial
inclination, assuming a total transfer of the inclination during
the Kozai-Lidov effect. Therefore one can obtain

e1,max,KL =
√

1 − (5/3) cos2 itot. (10)

From the same argument, it is possible to derive the minimal ini-
tial inclination required to trigger classical Kozai-Lidov effects,
which is 40◦ < iinit,tot < 140◦.

In the case where the outer body has a non zero eccentricity
(e2 , 0), the octupolar term of the perturbation become non-
negligible. In particular in the regime where 10−3 . ε . 0.1,
the octupolar term is dominant. In this regime, the Kozai-Lidov
effects are called the eccentric Kozai-Lidov mechanism (EKM),
where the classical Kozai-Lidov oscillations of the quadrupolar
regime are modulated by a rotation of the orbits of the inner
binary around its semi-major axis. This rotation leads to an
increase of the inclination of upto i1 = 90◦ beyond which the
orbit flips from a pro-grade motion to a retro-grade motion. Dur-
ing the whole process, classical Kozai-Lidov oscillations con-
tinuously occur with intensity peaking when the orbit reaches a
90◦ inclination, triggering extreme eccentricities e1,max,EKL → 1.
The criteria for orbits to flip has been derived by Li et al.
(2014)

ε >
8
5

1 − e2
1

7 − e1(4 + 3e2
1) cos (Ω1 + ω1)

, (11)

where Ω1 and ω1 are the longitude of the ascending node and
the argument of the periapsis of the inner binary respectively.
Numerical results are consistent with this criteria (Li et al. 2014),
and show once again how the ε parameter can be used to discrim-
inate between the different dynamical regimes of the three-body
system.

The EKM is characterized by longer timescales than the clas-
sical Kozai-Lidov effect, since it can be seen as the superposi-
tion of several classical Kozai-Lidov oscillations, but it leads to
extremely high eccentricities. The intensity of the oscillations in
the EKM depends on the value of ε and so on the dynamical
regime of the three-body system. The EKM has been found to
be possible for at least two distinct regimes: (i) Low eccentricity-
High inclination, and (ii) High eccentricity-Low inclination. The
first regime corresponds to the classical criteria on the initial
inclination to trigger Kozai-Lidov oscillations (40◦ < iinit,tot <
140◦), and more interestingly, the second regime corresponds to
orbital configurations where the system can be almost coplanar
but still trigger EKM thanks to the high eccentricity of the inner
binary.

In the specific framework of Kozai-Lidov effects, the three-
body dynamics can be described with three main regimes: the
quadrupolar regime when the outer body has a circular trajectory,
featured by classical Kozai-Lidov oscillations; the octupolar
regime when 10−3 . ε . 0.1, enabling a richer dynamics with

Eccentric Kozai-Lidov mechanisms and orbital flips; and finally,
a combination of the previous two regimes where ε . 10−3,
which depends on the specific configuration of the three-body
system and is difficult to analyze in a general framework. In
this study we consider the octupolar regime down to ε = 10−4,
where in fact a transition towards the quadrupolar regime oper-
ates. This choice is made for illustrative purposes, in order to
map a larger parameter space (matching astrophysical objects)
without falling into too much purely dynamical considerations.
However in Appendix C, we provide a study focused on the
quadrupolar regime, showing that the conclusions drawn from
the octupolar regime also hold in this regime.

3.2. Kozai-Lidov timescales

As described before, the dynamics of each regime, quadrupo-
lar or octupolar, is different and so are their characteristic
timescales.

Interestingly in the quadrupolar regime (and the test par-
ticle approximation), the dynamics is fully integrable, mean-
ing that the Hamiltonian equations of motion can be solved.
In this perspective, Antognini (2015) derive the exact classical
Kozai-Lidov period and study its behavior across the parameter
space of the three-body dynamics. In particular, it is shown that
this exact period only varies within a factor of a few from the
standard (and well-known) Kozai-Lidov timescale formula. It is
worth noting that this is only true in general conditions, away
from the boundary between the libration and rotation regime,
where non-secular effects are expected, as well as away from
orbital resonances. This timescale is given by

tKL ∼
16
15

a3
2

a3/2
1

(1 − e2
2)3/2 1

√
G

√
m0 + m1

m2
. (12)

In the octupolar regime, however, the dynamics is no longer
integrable, as previous quantities are no longer integrals of
motion, therefore the Hamiltonian equations of motion cannot
any more be solved. Antognini (2015) shows that the exact
period for the EKM can also be derived and this exact period
can be well approximated with a Kozai-Lidov timescale in the
EKM regime. This new time scale is given by

tEKL ∼
128
√

10
15π
√
ε

tKL,i=90◦ (13)

∼ 4.8 yr ε−1/2
( aast

0.5 AU

)−3/2 ( ac

AU

)3

×

(
Mc

1 M�

)−1 (
MNS

1.4 M�

)1/2

, (14)

where tKL,i=90◦ represents the classical Kozai-Lidov timescale
and we suppose that inclinations up to 90◦ can be reached thanks
to the orbital flip mechanisms described earlier in Sect. 3.1. Fur-
thermore the time-scale of Eq. (13) describes a full EKM cycle,
with two flips: from pro-grade to retro-grade and back again.

The numerical values given in Eq. (14) correspond to a
mildly close NSMS, NSWD or DNS case, with ac the semi-
major axis of the orbiting companion and Mc its mass. The esti-
mate assumes a null eccentricity ec = 0.

Figure 3 presents the EKM time-scales for various three-
body system configurations. Again, the shadowed region delim-
its the forbidden configurations. Generically, the time-scale
increases with the inner binary orbital width and with the
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Fig. 3. Evolution of the EKM timescale (given by Eq. (13)) for various configurations of three-body systems, as a function of the semi-major
axis, for a companion eccentricity ec = 0.1 (left), and outer binary eccentricity and semi-major axis, for an asteroid belt located at aast = 1 AU
(right), for a low mass companion Mc = 1 M� corresponding to DNS, NSMS and NSWD systems (top), and a high mass companion Mc = 10 M�
corresponding to NSMS and NSBH systems (bottom). The shadowed region on the left panels represents the forbidden configurations where the
outer binary is closer than the inner binary. On the right panels, these forbidden configuration lies on the left-hand side of the vertical dashed line.
The gray boxes on the right panels represent the parameters spaces where the different systems considered here are expected to lie. The solid lines
show the limit where the timescale is shorter than one year (leading to transient events). On the left panels, the gray thin horizontal dashed lines
and the arrows indicate the parameter-space in which the different systems would lie (Table 1).

distance of the outer binary, as expected from gravitational
considerations: the farther the outer body, the lighter the grav-
itational perturbation on the inner binary, and similarly with the
width of the inner binary.

3.3. Kozai-Lidov relative time delays

In the specific case where the inner binary is in fact made
of several small objects such as an asteroid belt or a comet
cloud, orbiting a more massive central body, an additional inter-
esting quantity is the relative time delay of the Kozai-Lidov
time-scales between close-by objects. The relative time delays
between two small objects seperated by a distance ∆a1 is given
in the quadrupolar regime by

∆tKL =
8
5

a3
2

a5/2
1

∆a1(1 − e2
2)3/2 1

√
G

√
m0 + m1

m2
,

=
3
2

tKL
∆a1

a1
(15)

and in the octupolar regime by

∆tEKL =
256
√

10
15π

tKL,i=90◦
√
ε

∆a1

a1
. (16)

Two objects separated by a distance ∆a1 orbiting a central more
massive object and perturbed by an outer body, undergo Eccen-
tric Kozai-Lidov effects with a time-scale difference given by
Eqs. (15) and (16) depending on the dynamical regime.

Equation (16) can be also rewritten in a more compact way

∆tEKL = 2tEKL
∆a1

a1
. (17)

This formula provides a more straightforward description of the
relative time delay of the EKM.

Assuming that the initial distribution of aast in the aster-
oid belt follows a Normal distribution with mean 〈aast〉 and
width σa = εast〈aast〉, the mean distance between two consecu-
tively falling asteroids can be estimated statistically as 〈∆aast〉 ≈

σa/Nast,KL, with Nast,KL the number of asteroids undergoing
Kozai-Lidov effects. In the octupolar regime, when the outer
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Fig. 4. Same as Fig. 3, but for the relative Kozai-Lidov time delay (given by Eq. (16)). The solid lines represent the limits where the relative delay
equals 1 day (for sources producing day-repeaters) and the dashed line is the limit where the relative delay equals 10 years (observational time
beyond which sources cannot be observed as repeaters).

body has a non circular orbit, most asteroids undergo Kozai-
Lidov effects and reach high eccentricities. Hence one can write
Nast,KL ∼ εeff Nast, with Nast the total number of asteroids in the
belt and εeff & 0.2 (see Sect. 5.3). The fraction of asteroids meet-
ing the Kozai-Lidov criterion in the quadrupolar regime is cal-
culated in Appendix C.2. One can then express the mean relative
Eccentric Kozai-Lidov time delay as

〈∆tEKL〉 ∼ 2.7 days ε−1/2εeff

[Nast

100

]−1 εast

0.15

(
〈aast〉

0.5 AU

)−3/2

×

( ac

AU

)3
(

Mc

10 M�

)−1 (
MNS

1.4 M�

)1/2

, (18)

where the numerical estimates are presented again for a mildly
close NSMS or NSWD or DNS case.

Figure 4 describes the evolution of the relative time delays
across the parameter space allowed for the three-body system.
The time delay trend follows the EKM timescales as depicted in
Fig. 3.

4. FRB rates for close and wide NS binaries

In this section, we apply the formalism derived in the previous
Sections to populations of neutron star binaries and derive cor-
responding FRB rates.

4.1. Neutron star binary system population characteristics

A neutron star is formed among a binary stellar system when
the initially more massive star undergoes a supernova explosion.
The companion can be a main sequence star, have already trans-
formed into a white dwarf, or become a neutron star or a black
hole following a second supernova explosion (Portegies Zwart
& Verbunt 1996; Lorimer 2008). However, in most scenarios,
the explosion or the kick experienced by the neutron star at birth
disrupts the binary system (Hansen & Phinney 1997; Lu & Naoz
2019).

The majority of stellar binaries are initially wide (Kroupa
2008; Kroupa & Petr-Gotzens 2011), with orbital separation
ac & few AU, and each object evolves mostly as single
stars (Postnov & Yungelson 2014). Supernova kicks drastically
reduce the rate of these wide binaries by disrupting them. Orbits
with higher eccentricity are more likely to survive these kicks.

Numerical binary population synthesis indicate that systems
containing main sequence stars could be of order νNSMS ∼

5.8× 10−5 yr−1 (Portegies Zwart & Verbunt 1996) in the Galaxy.
These authors also show that wide NSMS systems represent
about (6.7/65)% ∼ 0.1% of the total neutron star population
(hence ∼1.7 × 10−5 yr−1). The severe population cut by a factor
of 65 compared to a produced number of wide binaries is due to
the supernova kicks.
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Observations concur, pointing to mildly close systems with
ac ∼ 1−few AU, with mild to high eccentricities ec ∼ 0.6−0.9
(e.g., PSR1259-63 and its 10 M�-mass Be-star companion,
Johnston et al. 1992, J1740-3052 and its B-type star companion
of mass Mc ∼ 11 M�, Madsen et al. 2012; Hobbs et al. 2004,
PSR J1638-4715 and its 4.5 M�-mass companion, Lyne et al.
2005, PSR J0045-7319 and its 4 M�-mass companion, Kaspi
et al. 1994).

NSWD systems are naturally more numerous, as white
dwarfs are common outcomes of main sequence stars, with sim-
ulated rates ∼4 times higher than for NSMS (Nelemans et al.
2001). Due to their formation channels, NSWD are frequently
found in very close circular systems, in which case the neutron
star is a recycled pulsar. The orbital semi-major axis distribu-
tion of NSWD binaries should however follow the same trend as
NSMS systems, with 1/3 of wide binaries with high eccentrici-
ties.

For DNS, Nelemans et al. (2001) estimate a total Galactic
population rate of νDNS,all ∼ 5.7 × 10−5 yr−1, which includes
binaries with recycled pulsars which are particularly close.
Portegies Zwart & Van den Heuvel (1999) calculated numeri-
cally that wide systems with neutron stars that evolved mostly
independently constitute again about a third of the total DNS
population, with a rate of νDNS,wide ∼ 5.7 × 10−5 yr−1 (see also
Kruckow et al. 2018).

For NSBH, the birth rate is estimated to 0.6−13 Myr−1

in the Galactic disk (Shao & Li 2018; Dominik et al. 2013;
Lamberts et al. 2018). Recent simulations show that about 10%
of the binary population could be wide binaries (Belczyński &
Bulik 1999; Kruckow et al. 2018).

The orbits of close binary neutron star systems that have
low-mass companions, such as low-mass white dwarfs (Mc .
0.7 M�) tend to be circular: ec ∼ 10−5−10−2. Close systems
with high-mass companions, such as neutron stars, some white
dwarfs and main sequence stars (Mc . 0.7 M�) have more eccen-
tric orbits ec ∼ 10−2−0.9 (e.g., Lorimer 2008; Hobbs et al.
2004). NSBH systems have a wide range of eccentricities, that
essentially span the full physically allowed range Kruckow et al.
(2018). Wide systems have highly eccentric orbits.

We consider for our systems, masses of MNS = 1.4 M�
(since this is the minimal mass required to produce a NS) for
the central neutron star. The companion masses span over Mc =

0.01−10 M� for white dwarfs to black holes. For illustration, we
use Mc = 10 M�, a typical value in NSBH (Kruckow et al. 2018)
and NSMS systems. Estimates can easily be scaled for larger
black hole masses, which would lead to higher asteroid infall
rates.

Table 1 summarizes the typical parameter ranges discussed
above for our binary populations.

We mentioned in Sect. 2.1 that systems with planet com-
panions have also been observed (Lorimer 2008), but the rates
and characteristics of these systems are not yet clear. A planet
was detected in the triple Pulsar System PSR B1620-26, with
a wide inferred semi-major axis of ac ∼ 23 AU and moder-
ate orbital eccentricity (Sigurdsson et al. 2003). Three plane-
tary bodies were found orbiting at ∼AU distances around pulsar
B1257+12 Wolszczan & Frail (1992). In both systems, the pul-
sar is recycled. More formation studies and observational data
would be needed to derive population characteristics for neutron
star-planet systems. We focus here on the other binaries men-
tioned above, that are more documented.

4.2. The octupolar regime dominates over most of the binary
parameter space

Figure 2 shows the values of the octupolar efficiency term ε,
depending on the companion orbital elements. Each type of com-
panion (white dwarf, black hole or neutron star) covers a differ-
ent region of the allowed parameter space.

Interestingly, one can see that most systems will be found in
the region where ε = 0.1−10−4, dominated by octupolar dynam-
ics. Therefore, we concentrate in the following on the octupolar
regime and derive our main estimates within these dynamics (the
full derivation for the quadrupolar regime can be found in the
Appendix C). For systems approaching ε = 10−4 (NSWD sys-
tems in particular), the quadrupolar dynamics will start to dom-
inate. However, our results should be equally valid in this case.
As we demonstrate in the Appendix C, the quadrupolar regime
leads to a less efficient Kozai-Lidov mechanism, and hence to
lower FRB rates per source. This is nevertheless compensated
by a higher source population rate for NSWD (see Table 1).

We notice that the time-scales of the octupolar regime
and quadrupolar regime (see Eq. (16)) only differ by a factor
128
√

10/(15π
√
ε) ∼ 8.6 ε−1/2. Therefore in principle, systems in

the octupolar regime should be characterized with longer time-
scales than in the quadrupolar regime. From Fig. 3, we can see
that for almost all systems, the absolute time-scale of Eccentric
Kozai-Lidov oscillations is longer than one year, except for very
close or highly eccentric systems. Regarding the relative time
delays of Eccentric Kozai-Lidov oscillations, Fig. 4 shows typi-
cal time-scales below one day up to times longer than the age of
the Universe.

As illustrated in Figs. 3 and 4, the EKM can occur over a
large range of time-cales. This flexibility makes this process a
good candidate to explain the diversity of observed FRB rates.

4.3. Contributions of wide and close populations to FRBs
and FRB repeaters

It appears from Eq. (16) and Figs. 3–4 that the main parameter
governing the infall rate via Kozai-Lidov effect is the orbital sep-
aration between the neutron star and the black hole ac. The dis-
tance at which the neutron star binary companion can be located
spans several orders of magnitude, from ac ∼ few 10−3 AU to
100 AU. From the previous Section, systems can be split into
three populations: wide systems with ac & 10 AU, mildly close
systems with ac ∼ 0.3 − few AU, and close systems with
ac . 0.3 AU.

The close systems are often associated to recycled pulsars,
which are not magnetized enough to produce FRB emission
at the Jansky level, except for extremely large asteroids (see
Sect. 2.1 and Eq. (1)).

The time-scale over which the Kozai-Lidov effects can take
place, hence the lifetime of the system as an FRB source, is
highly dependent on ac (Eq. (13)). While wide binaries have
tEKL � 10 yr (or tKL � 10 yr in quadrupolar regime) and can
be viewed as long-lived FRB sources, close and mildly close
binaries have tEKL < few 10s of yr and should be considered as
short-lived FRB transients. For close binaries with ac � 1 AU,
tEKL � 1 yr, leading to a “single-shot” transient, that will not be
observed as repeating over a long time-scale. Some mildly close
binaries can live thousands of years, as can be seen in Fig. 3 for
some NSBH systems.

Close, mildly close and wide binaries are expected to be
observed as different types of FRB sources for our model.
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Table 1. Population characteristics (binary system Galactic birth rate ν̇c and companion mass Mc) and orbital element distributions (eccentricity ec
and semi-major axis ac) for neutron stars in binary systems: neutron star-white dwarf (NSWD), double neutron star (DNS), and neutron star-black
hole (NSBH).

Systems ν̇c [10−5 yr−1] Mc [M�] ec ac [AU] ṅFRB [103 Gpc−3 yr−1] References

NSWD 24 0.01−1 10−5−10−2 10−3−few 10s 1.3 (rep.)
96 (nrep.)

Nelemans et al. (2001),
Kroupa & Petr-Gotzens
(2011) Lorimer (2008),
Hobbs et al. (2004)

NSMS 5.8 (all)
1.7 (wide)

few −10 0.6−0.9 0.3−few 10s 1.2 (rep.)
23 (nrep.)

Portegies Zwart &
Verbunt (1996), Lyne
et al. (2005) Kaspi et al.
(1994), Hobbs et al.
(2004)

DNS 5.7 (all)
2 (wide)

∼1.4 10−2−0.9 5 × 10−3−0.3
(close)
few−few 10s
(wide)

0.38 (rep.)
27 (nrep.)

Nelemans et al. (2001),
Hobbs et al. (2004),
Portegies Zwart & Van
den Heuvel (1999),
Tauris et al. (2017),
Kruckow et al. (2018)

NSBH 0.06−1.3 ∼5−100 Any (close)
∼1 (wide)

0.1−few
(close)
few−few 10s
(wide)

0.2 (rep.)
1.3 (nrep.)

Kruckow et al. (2018),
Kroupa (2008),
Belczyński & Bulik
(1999)

Notes. The FRB rate densities ṅFRB are estimated using Eqs. (20)–(21), see Sect. 4.3.

Indeed, for wide systems with ac & few AU, ∆tKL & 10 yr, lead-
ing to non-repeating sources. For close and mildly close binaries
with ac . few AU, ∆tKL . 10 yr, sources could be observed
as repeating, with various emission frequencies. Close systems
with ac � 1 AU will produce emissions with periods shorter
than a day. As previously discussed, these systems are however
likely to be too faint to produce the observed FRB signals.

As the gravitational-wave merger time-scale is

tGW ∼ 6 × 1014 yr [(MNS + Mc)/10 M�]−3

× (ac/10 AU)4(1 − e2
c)7/2, (19)

the survival of both mildly close and wide binary systems over
the age of the Universe is mostly guaranteed for a circular orbit
(ec = 0). For large eccentricity, the merger can however happen
on a shorter time-scale, down to ∼104 years (Peters 1964). In any
case, these time-scales are longer than tEKL and do not need to
be considered here.

Therefore, in this scenario, mildly close binaries would
produce day and month-repeaters and wide binaries non-
repeaters. It is interesting to notice that in the current analysis
(CHIME/FRB Collaboration 2019b; Fonseca et al. 2020), day to
few day periods seem to be favored among repeaters. This could
be consistent with the dichotomy between the signatures from
mildly close and wide binaries.

This dichotomy is reflected in the calculation of the FRB
rates from these two categories.

Mildly close binaries can be day/month-repeater FRBs dur-
ing tKL < 10 yr. Their FRB rate density is hence directly linked to
their birth rates as documented in Table 1. We calculate roughly
the total density rates ṅc for each population using the Galac-
tic birth rates estimated in the literature and assuming a local
density of galaxies of ngal = 0.02 Mpc−3: ṅc = ν̇cngal. The rate
density of day-repeater FRB sources then reads

ṅFRB,rep ∼ 200 Gpc−3 yr−1 εrepεmild−close ṅc

0.2 Mpc−3 Myr−1 , (20)

where εrep < 1 is a source efficiency factor, and εmild−close the
fraction of mildly close systems among a population.

For wide binaries, the rate density of FRBs expected to be
sourced by infalling asteroids can be estimated by convolving
the mean infall rate 1/〈∆tKL〉, the typical lifespan of the asteroid
belt in its primordial configuration, tEKL (or tKL), and the rate
density of wide binary systems εwidenc, with εwide the fraction
of wide systems among a population. It yields a rate density of
apparently non-repeating FRB events of

ṅFRB,nrep ∼
tEKL

〈∆tEKL〉
εnrep εwide ṅc

=
1
2

Nast ε
−1
astεeffεnrep εwide ṅc

∼ 4 × 103 Gpc−3 yr−1 Nast

100

×
εeff

0.2

(
εast

0.15

)−1 εwide

0.3
εnrep ṅc

0.2 Mpc−3 Myr−1 , (21)

with εwide = 0.3 (Portegies Zwart & Verbunt 1996; Portegies
Zwart & Van den Heuvel 1999; Kruckow et al. 2018), εeff ∼

0.2 the Kozai-Lidov efficiency factor discussed in Sect. 5.3, and
εnrep < 1 a similar source efficiency factor as in Eq. (20).

These calculations assume that these binaries undergo a flat
source emissivity evolution, out to redshift z ∼ 1 (Postnov &
Yungelson 2014). For a star-formation type evolution, the num-
ber of sources would increase by a factor of ∼2.

In Table 1, we estimated the FRB rate densities produced by
various binary populations, for mildly close and wide systems,
leading to repeating (rep.) and apparently non-repeating (nrep.)
sources respectively. For DNS and NSWD, we have assumed
that a fraction εmild-close = 1/3 of the whole population was in
mildly close orbit. For NSMS and NSBH, we assumed that the
majority of the population was in mildly close orbit εmild-close =
1. For NSWD, we assumed that εwide = 1/3, and used the rates
provided in the literature for wide NSMS and DNS rates. For

A122, page 10 of 20



V. Decoene et al.: Fast radio burst repeaters produced via Kozai-Lidov feeding of neutron stars in binary systems

NSBH, we assumed εwide = 0.1. These fractions are discussed in
Sect. 4.1.

The rate densities estimated from Eq. (21) can be directly
compared to the cosmological FRB rate densities inferred from
observations, of order ṅFRB,obs ∼ 2× 103 Gpc−3 yr−1 Petroff et al.
(2019). Except for NSBH, for which the entire population would
not suffice to produce the observed FRB rate densities, we notice
that ṅFRB,obs � ṅFRB,nrep. The inferred source efficiency can thus
be of order εnrep . 10% (NSWD: 2.0%, NSMS: 8.7%, DNS:
7.4%). This number leaves room for binary systems which do
not fulfill the criteria to undergo Kozai-Lidov mechanisms, such
as systems without asteroid belts, orbital inclinations, etc.

More than 700 FRBs have been observed as of today,
(although only 137 have been published), among which
22 have been identified as repeaters (Andersen et al. 2019;
Fonseca et al. 2020), yielding a possible ratio of ∼3%. Interest-
ingly, this number match quite well the ratios estimated for our
systems: ṅFRB,rep/ṅFRB,nrep ∼ 5.3% εrep/εnon-rep for NSMS (for
NSMS: 1.4% and for DNS: 1.4%). For a same population, one
can assume that εrep = εnon-rep. However, the formation of aster-
oid belts might differ for close and wide systems.

It is possible that all the neutron-star binaries mentioned
above contribute to the FRB rates. If one assumes that their
efficiencies εnrep and εrep are equal, the total rate density of
apparently non-repeating FRBs would be of ṅFRB,nrep,all ∼ 15 ×
104εnrep Gpc−3 yr−1, with a source efficiency that can be as
low as εnrep = 1.4%. The repeater rate density would be of
ṅFRB,nrep,all ∼ 3.1 × 103εnrep Gpc−3 yr−1, which implies a repeater
to non-repeater ratio of ∼2%, compatible with the observed
ratios. The scenario is surprisingly comfortable and consistent
with the current observations.

5. Simulating numerically asteroid infall rates

In this section, we simulate numerically the FRB rates of close
and wide binary systems with an asteroid belt undergoing Kozai-
Lidov effects. We model a primordial asteroid belt (without any
gaps such as the Kirkwood gaps of the Solar system), in analogy
with the Solar asteroid belt.

5.1. Synthetic asteroid belt

We model the distribution of the orbital parameters of the cur-
rent Solar belt using the data from the IAU Minor Planet Cen-
ter (MPC-SAO-IAU 2019). A total number of 792041 asteroids
of the Solar belt are inventoried in this database.

Numerous asteroids sensitive to the Kozai-Lidov effect are
missing from the distribution of orbital elements of the current
Solar asteroid belt, influenced by giant planets such as Jupiter.
The Kirkwood gaps for instance, illustrate this effect. These fea-
tures motivate the construction of a synthetic asteroid belt for
our model, filling most of the gaps and mimicking the primor-
dial population of the belt (see Fig. 5).

The synthetic belts follow a Gaussian distribution fitting the
general trend of the current Solar belt. We use for the semi-major
axis a standard deviation of σa = 0.15〈aast〉, with the mean
semi-major axis 〈aast〉 left as a free parameter. For the inclina-
tions, we follow the Solar belt distribution with mean inclination
〈iast〉 = 0◦ and standard deviation σi = 30◦. The initial eccentric-
ities are not modeled since they are not relevant to our computa-
tion of the Kozai-Lidov effects. However Fig. 5 suggests that a
fitting model similar to what is done for the distribution of semi-
major axis could be easily achieved.

1 2 3 4 5

Semi-major axis (UA)

0

500

1000

1500

2000
solar

primordial

Fig. 5. Asteroid orbital parameter distributions inside the Solar asteroid
belt (blue) and our reconstructed primordial model belt (orange). Top:
asteroid semi-major axes distribution. Bottom: asteroid inclinations as a
function of the semi-major axes. In both panels, the Kirkwood gaps are
clearly visible in the Solar asteroid belt.

The number of these massive asteroids follows a power law
distribution as a function of their size, as observed in the Solar
System MPC-SAO-IAU (2019) (see Sect. 2.2. Their masses can
be retrieved by assuming that they are roughly spherical, with a
density ρast = 2 g cm−2.

This simple method allows us to construct a more generic
asteroid belt, although it is restricted to our knowledge of the
Solar system.

5.2. Simulations set-up

Following the asteroid distribution computed in the previous
section, we randomly draw a set of asteroid parameters (size Rast,
semi-major axis aast, inclination iast). We select the objects that
meet the following three criteria
1. Minimum size Rast > 50 km, large enough to trigger FRB-

like emissions via the Alfvén mechanism (Eq. (1))
2. Allow the triggering of Kozai-Lidov oscillations (see

Appendix C)
3. Can reach the Roche limit under the Kozai-Lidov effect

(Eq. (C.5)).
The last two criteria are always met under the octupolar regime.
Both quadrupolar and octupolar regimes are taken into account
in this calculation, as well as the GR effects.
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Fig. 6. Distribution of relative time differences ∆tKL of asteroids falling
into the Roche lobe of the central compact object due to Kozai-Lidov
oscillations (which can be directly interpreted as the FRB emission
periods), for the current Solar asteroid belt (green) and the primordial
belt, for an inclination of the outer companion plane ic = 5◦ (orange),
ic = 10◦ (green) and ic = 45◦ (blue), and initial asteroid number
Nast = 102. We consider a high mass Mc = 10 M� wide system with
ac = 10 AU and 〈aast〉 = 1 AU. The number of asteroid infalls increase
with the inclination of the system, as expected. Additionally, the relative
time differences ∆tKL increase with lower inclinations, except for the
Solar asteroid case. The present Solar asteroid belt has already under-
gone Kozai-Lidov effects during its lifetime, leading to a cleansing of its
asteroids that is potentially sensitive to Kozai-Lidov oscillations, which
explains its misleading behavior in this figure.

For the selected asteroids, we compute the Kozai-Lidov
timescales needed to reach the maximal eccentricity and the rel-
ative time delays between two consecutive asteroid infalls. The
distribution of these relative infall times can be directly com-
pared to FRB rates. To avoid statistical fluctuations due to the
Monte-Carlo drawing, we average our results over 104 simula-
tions.

5.3. Asteroid infall rates for a Solar-like belt

Figure 6 shows the distribution of the relative time delays ∆tKL
for asteroids falling onto the central neutron star, for a current
(green) and primordial Solar-like belt, and for companion incli-
nations ic = 5◦ (orange), ic = 10◦ (green) and ic = 45◦ (blue).
The central neutron star has mass MNS = 1.4 M� and the outer
companion Mc = 10 M�. The initial number of asteroids is set
to Nast = 102, following the power law spectra observed in the
Solar system belt for the most massive asteroids. We examine in
Fig. 6 the effect of the companion inclination ic on the relative
timescales and efficiency of the Kozai-Lidov effect, in the case
of a wide system with companion distance ac = 10 AU and mean
asteroid belt distance 〈aast〉 = 1 AU.

For this wide system, the infall rates span from days to thou-
sands of years, with a maximum around 〈∆tKL〉 ∼ 10−100 years,
depending on the inclination i2. More interestingly the efficiency
of the Kozai-Lidov process, the ratio of the number of falling
asteroids over the number of drawn asteroids, is greater for
inclined systems. More asteroids fall onto the central pulsar for
a more inclined asteroid belt, which is consistent with the Kozai-
Lidov process, since more asteroids will meet the Kozai-Lidov

criterion on the inclination iast & 40◦. Nevertheless, these sim-
ulations show that even for low to mildly inclined systems, the
efficiency remains around 20%.

The comparison between the current Solar belt (green) and
the primordial belts (blue or orange) shows that the lack of Kirk-
wood gaps induces a drastic increase of short time-scales in the
asteroid infall rate, and depending on the inclination, a factor
of a few to an order of magnitude more events in total (greater
efficiency).

Figure 7 displays, similarly to Fig. 6, the distribution of the
relative time delays ∆tKL for asteroids falling onto the central
neutron star, for various neutron star systems. The left panel
presents systems with low mass companions, such as DNS,
NSMS and NSWD for close and wide systems. The right panel
shows systems with high mass companions, namely NSBH and
NSMS. Wide and close systems can be distinguished through
their relative asteroid falling rates: wide systems induce higher
rates than close systems, for both low and high mass compan-
ions. NSWD systems appears to be much less efficient than any
other systems, this is due to the fact that the Kozai-Lidov time-
scale is a function of the mass of the companion (see Eqs. (15)
and (16)). An opposite result can be seen for high mass NSBH
systems, which are much more efficient and with shorter time-
scales than NSBH wide systems, as expected. Finally one can
notice that most of the systems (except NSWD systems), present
an efficiency above 50% in this Kozai-Lidov mechanisms.

5.4. Connection with FRB observations

The results of the simulations detailed in Sect. 5.3 show a high
consistency with the analytical estimates computed in Sects. 3
and 4.3. These simulations demonstrate that the application of
the Kozai-Lidov framework introduced in Sect. 3.1 to a mul-
tiplicity of small objects such as the ones found in the Solar
asteroid belt, remains consistent with the conclusions drawn in
Sect. 4.3. They validate that the various populations of binary
pulsar systems, such as DNS, NSMS, NSWD and NSBH, can
explain the dichotomy observed between repeating and non-
repeating FRBs.

The efficiency of the Kozai-Lidov process is illustrated on
Fig. 7, where the number of asteroid infalls compared to the
total number of asteroid simulated (Nast = 100 in Fig. 7), corre-
sponds to the efficiency of the Kozai-Lidov mechanism in driv-
ing asteroids down to the Roche limit (the factor εeff introduced
in Sect. 3.3, see also Sect. 5.2). It is clear that for most pulsar
binary systems this process is efficient with ratio largely above
50%, and even for NSWD systems which are the less efficient
systems, this ratio is around 20%. Consequently the Kozai-Lidov
process in pulsar binary systems is efficient in driving asteroids
down to the Roche limit from a Solar-like asteroid belt in our
model.

Another interesting result coming only from the simulations
concerns the distribution tails displayed in Fig. 7. One can see
that the Gaussian rates distributions (at a first approximation)
possess extended distribution tails. This result implies that for
some wide systems, with long time delays on average, events
could occur with shorter time delays at some point in the process.
This translates, in terms of FRB bursts, in the existence of some
observed non-repeating sources that can produce few repetition
bursts once in a while. One should note that these repetitions
would be highly irregular, and would not be sustained over time,
as they are statistically rare.

This spread in the time delays is also valid for close systems,
with short time delays, and associated with FRB repeaters. This
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Fig. 7. Same as Fig. 6, distribution of relative time differences ∆tKL of asteroids falling into the Roche lobe of the central compact object due to
Kozai-Lidov oscillations, for the different systems considered here. Left: low mass companions. Right: high mass companions. The initial number
of asteroids is Nast = 102 and the inclinations of the companions is ic = 30◦. Specific parameters for each configuration can be found in Table 2.

Table 2. Configuration parameters for the Monte-Carlo simulations pre-
sented in Sect. 5 and results in Fig. 7, for low and high mass systems,
and close and wide companion orbits.

Systems Mc [M�] ec ac [AU] 〈aast〉 [AU]

DNS (close) 1.4 0.01 0.1 0.02
DNS (wide) 1.4 0.7 30 1
NSMS (low, close) 1 0.6 5 0.1
NSMS (low, wide) 1 0.8 50 1
NSWD (close) 0.1 10−5 1 0.1
NSWD (wide) 0.1 0.01 30 1
NSBH (close) 10 0.1 0.1 0.02
NSBH (wide) 10 0.1 30 1
NSMS (high, close) 10 0.6 5 0.1
NSMS (high, wide) 10 0.8 50 1
NSBH (high) 100 0.7 30 1

numerical result is actually in agreement with observations since
a fraction of FRB sources are found bursting with irregular short
periods, ranging from days to month-time-scales. These bursts
would correspond to the left-hand tail of distributions such as
the one shown in Fig. 7 for close systems.

FRB121102 could be a good candidate for this tail scenario.
Activity periods have been reported for hour scale periods, day
scale periods and monthly periods (Table 2 in Scholz et al. 2016).
Such an erratic behavior could well be explained as a tail of
the asteroid falling rate distribution. This source also presents
substructure in the signal, with fainter pulses arriving at shorter
intervals (Zhang 2018). These could be explained by the frag-
mentation of asteroid during the disruption in the Roche lobe,
as mentioned in Sect. 2.4 or simply the presence of asteroids
clumping in the asteroid belt, as observed in the Solar system,
which is explained by asteroid collisions leading to subgroups
of asteroids close-by and with similar orbital paramaters, there-
fore leading to similar Kozai-Lidov time delays and so similar
infall rates.

The close systems presented in Fig. 7 illustrate the possibility
of having a population of short-lived repeaters, with day-scale
periods. These sources will appear less numerous than the wide

systems due to their short active timescale (see Fig. 3), which is
consistent with the low percentage of repeaters observed so far.

Finally the existence of short transient sources is predicted
with our model. From Fig. 3, it is possible to find sources with
very short lifetimes, below one year. These sources would com-
pletely deplete their asteroid belt over very brief infall rates,
resulting in a firework display of bursts. These close sources
are associated with recycled pulsars, with magnetic fields that
are too low to produce Jansky level bursts. These events should
hence be difficult to observe because of their brevity and their
low flux.

6. Conclusion and discussion

Fast radio bursts can be produced if asteroids pass close to the
Roche limit of a compact object with an electromagnetic wind
(Mottez & Zarka 2014; Mottez et al. 2020), or if they undergo
collisions with this object (Dai 2016; Smallwood et al. 2019).
The infall of asteroids from standard belts onto the central com-
pact object can be triggered by Kozai-Lidov oscillations, in the
presence of an outer black hole.

The asteroid dynamics described by our model is able
to reproduce the overall observed ratio of repeating to non-
repeating FRBs and motivates an explanation to unify the two
observed populations under one simple mechanism, already
evidenced in the Solar system. FRBs could be comfortably pro-
duced by a population of neutron star binary systems, in partic-
ular by NSWD, NSMS and DNS binaries. NSBH systems are
expected to have a lower contribution due to their lower popula-
tion rates. We find that mildly close systems (companion semi-
major axis ac ∼ 0.3−few AU) produce day/month scale repeaters
that live <10 yr, while wide systems (ac ∼ few−10s AU) are
steady sources, which will be observed as non-repeating.

We find that a comfortable fraction of a few percent
(<10%) of these binary systems in the Universe can account
for the observed non-repeating FRB rates. More remarkably,
our wide/close orbit dichotomy model predicts a ratio between
repeating and non-repeating sources of a few percent, which is
in good agreement with the observations.

Close systems with ac � 1 AU could also lead to beamed
radio signals, but such systems being often associated with recy-
cled pulsars with low magnetic fields, the FRB flux should be
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low. The signatures of such systems would be specific: a series of
mJy level pulses arriving over seconds to hours, and that would
never repeat again. Sub-Jansky radio bursts arriving with short
periods (� day) produced in a single shot could thus consti-
tute an electromagnetic counterpart to NSWD, DNS and NSMS
mergers. Such FRBs could also be a counterpart to NSBH merg-
ers as was already predicted in Kotera & Silk (2016).

Simulations presented in Sect. 5 numerically validate the
analytical conclusions drawn in Sect. 4. We find that our con-
clusions hold under more realistic conditions, for instance when
taking into account a realistic distribution of asteroid parameters
inside an asteroid belt. Finally, the simulations also show that
the asteroid belt structure combined with the induced dynamics
of specific pulsar systems can lead to a short time-scale tail (or
repetition tail) even for systems labeled as non-repeaters.

Three major predictions can be made from our scenario,
which can be tested in the coming years:
1. Most repeaters should stop repeating after tEKL < few 10s of

years, as their asteroid belts becomes depleted.
2. Some non-repeaters could occasionally repeat, if we hit the

short ∆tEKL tail of the FRB period distribution.
3. Series of sub-Jansky level short radio bursts could be

observed as electromagnetic counterparts of NSWD, DNS,
NSMS and NSBH mergers.

The present study can be applied to other close binary systems,
provided that the central object generates a magnetized wind. In
particular, pulsar systems with planets could contribute to this
scenario.

The recent observation of two intense radio bursts in coin-
cidence with X-ray flares (CHIME/FRB Collaboration 2020b;
Mereghetti et al. 2020), expected to originate from the mag-
netar SGR1935+2154, has shown some similarities with FRB
emissions. This observation, if attributed to an FRB-like signal,
would be the first FRB event observed in our Galaxy but also the
dimmest FRB ever observed, with 40 times less radiated energy.
Our model is not incompatible with this observation, assuming
that this magnetar is in a binary configuration (even with a very
far away companion). Some dynamical configurations, resulting
from Kozai-Lidov oscillations can result in the observation of a
double radio burst: (i) the observation of two consecutive (and
close-by) asteroids falling close to the Roche limit and radiating
via the Alfvén wing mechanism, (ii) the observation of a single
asteroid close to the Roche limit but observed twice thanks to
the turbulence of the beam, crossing twice the line-of-sight of
the observer, (iii) the fortuitous observation of the disruption of
an asteroid crossing the Roche limit and emitting multiple radio
beams in random directions, and crossing twice the line-of-sight
of the observer. However the production of the coincident X-ray
flares remains more challenging.

One possibility relies in the accretion of tidally disrupted
material from a single asteroid onto the magnetar.

A rough estimate can be made by assuming emission via dis-
ruption and Eddington accretion of an asteroid of size Rast ∼

100 km and mass Mast ∼ 8×1024 g (for a density ρast ∼ 2 g cm−3)
at the Roche limit dRoche and falling onto the central neutron
star of size RNS ∼ 10 km and mass MNS ∼ 1.4 M�. The
mass accretion rate can be estimated as Ṁast = εastMast/tfall,
where εast ∼ 0.1 is the fraction of asteroid material accreted
and tfall =

√
2dRoche/GMNS ∼ 1.5 h the infall time from the

Roche limit down to the neutron star. The Eddington lumi-
nosity is hence given by Ledd,ast = εeddṀastc2 ∼ 1036 erg s−1,
where εedd ∼ 10−5 represents the efficiency of the Edding-
ton process (expected to be much less efficient than for black
hole accretion). The corresponding isotropic equivalent energy is

Eiso,ast ∼ 1039 erg, close to the value inferred from observations
(Eiso,obs ∼ 1.4 × 1039 erg, Mereghetti et al. 2020). Finally, if the
emission results from thermal processes, the effective blackbody
temperature Teff,ast can be obtained through the Stefan-Boltzman
law, which enables the determination of the maximal photon
energy Eγ,ast = hν ∼ kBTeff ∼ 204 keV also close to the observa-
tions (Egamma,obs ∼ 20−200 keV, Mereghetti et al. 2020).

Alternatively the interactions of material from the plasma
with the Alfvén wings could also lead to high energy photon
emission, for instance following similar processes as suggested
by Beloborodov (2013).

Acknowledgements. We thank the anonymous referee for the thoughtful com-
ments which helped improve this paper. We also thank F. Antonini, A. Benoit-
Lévy, G. Boué, F. Daigne, R. Duque, I. Dvorkin, A. Lamberts, and P. Zarka for
very fruitful discussions. This work is supported by the APACHE grant (ANR-
16-CE31-0001) of the French Agence Nationale de la Recherche. This research
has made use of data provided by the IAU’s Minor Planet Center.

References
Ali-Haïmoud, Y., Kovetz, E. D., & Silk, J. 2016, Phys. Rev. D, 93, 043508
Andersen, B., Bandura, K., Bhardwaj, M., et al. 2019, ApJ, 885, L24
Antognini, J. M. O. 2015, MNRAS, 452, 3610
Belczyński, K., & Bulik, T. 1999, A&A, 346, 91
Beloborodov, A. M. 2013, ApJ, 762, 13
Blaes, O., Lee, M. H., & Socrates, A. 2002, ApJ, 578, 775
Brook, P. R., Karastergiou, A., Buchner, S., et al. 2014, ApJ, 780, L31
CHIME/FRB Collaboration (Amiri, M., et al.) 2019a, Nature, 566, 230
CHIME/FRB Collaboration (Amiri, M., et al.) 2019b, Nature, 566, 235
CHIME/FRB Collaboration (Amiri, M., et al.) 2020a, Nature, 582, 351
CHIME/FRB Collaboration (Andersen, B. C., et al.) 2020b, Nature, 587,

54
Cordes, J. M., & Shannon, R. M. 2008, ApJ, 682, 1152
Dai, Z. G., Wang, J. S., Wu, X. F., et al. 2016, ApJ, 829, 27
Delgrande, J. J., & Soanes, S. V. 1943, JRASC, 37, 187
Dominik, M., Belczynski, K., Fryer, C., et al. 2013, ApJ, 779, 72
Fabrycky, D., & Tremaine, S. 2007, ApJ, 669, 1298
Faucher-Giguère, C.-A., & Kaspi, V. M. 2006, ApJ, 643, 332
Fonseca, E., Andersen, B. C., Bhardwaj, M., et al. 2020, ApJ, 891, L6
Geng, J. J., & Huang, Y. F. 2015, ApJ, 809, 24
Gullón, M., Miralles, J. A., Viganò, D., & Pons, J. A. 2014, MNRAS, 443,

1891
Hansen, B. M. S., & Phinney, E. S. 1997, MNRAS, 291, 569
Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E., & Jordan, C. 2004, MNRAS,

353, 1311
Holman, M., Touma, J., & Tremaine, S. 1997, Nature, 386, 254
James, C. W. 2019, MNRAS, 486, 5934
Johnston, S., & Karastergiou, A. 2017, MNRAS, 467, 3493
Johnston, S., Manchester, R. N., Lyne, A. G., et al. 1992, ApJ, 387, L37
Jones, P. B. 2008, MNRAS, 386, 505
Kaspi, V. M., Johnston, S., Bell, J. F., et al. 1994, ApJ, 423, L43
Kaspi, V. M., Lyne, A. G., Manchester, R. N., et al. 2000, ApJ, 543, 321
Katz, B., Dong, S., & Malhotra, R. 2011, Phys. Rev. Lett., 107, 181101
Kotera, K., & Silk, J. 2016, ApJ, 823, L29
Kotera, K., Mottez, F., Voisin, G., et al. 2016, A&A, 592, A52
Kroupa, P. 2008, Lect. Notes Phys., 181
Kroupa, P., & Petr-Gotzens, M. G. 2011, A&A, 529, A92
Kruckow, M. U., Tauris, T. M., Langer, N., et al. 2018, MNRAS, 481, 1908
Lamberts, A., Garrison-Kimmel, S., Hopkins, P. F., et al. 2018, MNRAS, 480,

2704
Li, G., Naoz, S., Kocsis, B., & Loeb, A. 2014, ApJ, 785, 116
Lithwick, Y., & Naoz, S. 2011, ApJ, 742, 94
Liu, B., Muñoz, D. J., & Lai, D. 2015, MNRAS, 447, 747
Lorimer, D. R. 2008, Liv. Rev. Rel., 11, 8
Lu, C. X., & Naoz, S. 2019, MNRAS, 484, 1506
Lyne, A. G. 2005, in Binary Radio Pulsars, eds. F. A. Rasio, & I. H. Stairs, ASP

Conf. Ser., 328, 37
Madsen, E. C., Stairs, I. H., Kramer, M., et al. 2012, MNRAS, 425, 2378
Manchester, R. N., Lyne, A. G., Camilo, F., et al. 2000, in IAU Colloq.

177: Pulsar Astronomy - 2000 and Beyond, eds. M. Kramer, N. Wex, R.
Wielebinski, et al., ASP Conf. Ser., 202, 49

Menou, K., Perna, R., & Hernquist, L. 2001, ApJ, 559, 1032
Mereghetti, S., Savchenko, V., Ferrigno, C., et al. 2020, ApJ, 898, L29

A122, page 14 of 20

http://linker.aanda.org/10.1051/0004-6361/202038975/1
http://linker.aanda.org/10.1051/0004-6361/202038975/2
http://linker.aanda.org/10.1051/0004-6361/202038975/3
http://linker.aanda.org/10.1051/0004-6361/202038975/4
http://linker.aanda.org/10.1051/0004-6361/202038975/5
http://linker.aanda.org/10.1051/0004-6361/202038975/6
http://linker.aanda.org/10.1051/0004-6361/202038975/7
http://linker.aanda.org/10.1051/0004-6361/202038975/8
http://linker.aanda.org/10.1051/0004-6361/202038975/9
http://linker.aanda.org/10.1051/0004-6361/202038975/10
http://linker.aanda.org/10.1051/0004-6361/202038975/11
http://linker.aanda.org/10.1051/0004-6361/202038975/11
http://linker.aanda.org/10.1051/0004-6361/202038975/12
http://linker.aanda.org/10.1051/0004-6361/202038975/13
http://linker.aanda.org/10.1051/0004-6361/202038975/14
http://linker.aanda.org/10.1051/0004-6361/202038975/15
http://linker.aanda.org/10.1051/0004-6361/202038975/16
http://linker.aanda.org/10.1051/0004-6361/202038975/17
http://linker.aanda.org/10.1051/0004-6361/202038975/18
http://linker.aanda.org/10.1051/0004-6361/202038975/19
http://linker.aanda.org/10.1051/0004-6361/202038975/20
http://linker.aanda.org/10.1051/0004-6361/202038975/20
http://linker.aanda.org/10.1051/0004-6361/202038975/21
http://linker.aanda.org/10.1051/0004-6361/202038975/22
http://linker.aanda.org/10.1051/0004-6361/202038975/22
http://linker.aanda.org/10.1051/0004-6361/202038975/23
http://linker.aanda.org/10.1051/0004-6361/202038975/24
http://linker.aanda.org/10.1051/0004-6361/202038975/25
http://linker.aanda.org/10.1051/0004-6361/202038975/26
http://linker.aanda.org/10.1051/0004-6361/202038975/27
http://linker.aanda.org/10.1051/0004-6361/202038975/28
http://linker.aanda.org/10.1051/0004-6361/202038975/29
http://linker.aanda.org/10.1051/0004-6361/202038975/30
http://linker.aanda.org/10.1051/0004-6361/202038975/31
http://linker.aanda.org/10.1051/0004-6361/202038975/32
http://linker.aanda.org/10.1051/0004-6361/202038975/33
http://linker.aanda.org/10.1051/0004-6361/202038975/34
http://linker.aanda.org/10.1051/0004-6361/202038975/35
http://linker.aanda.org/10.1051/0004-6361/202038975/36
http://linker.aanda.org/10.1051/0004-6361/202038975/36
http://linker.aanda.org/10.1051/0004-6361/202038975/37
http://linker.aanda.org/10.1051/0004-6361/202038975/38
http://linker.aanda.org/10.1051/0004-6361/202038975/39
http://linker.aanda.org/10.1051/0004-6361/202038975/40
http://linker.aanda.org/10.1051/0004-6361/202038975/41
http://linker.aanda.org/10.1051/0004-6361/202038975/42
http://linker.aanda.org/10.1051/0004-6361/202038975/42
http://linker.aanda.org/10.1051/0004-6361/202038975/43
http://linker.aanda.org/10.1051/0004-6361/202038975/44
http://linker.aanda.org/10.1051/0004-6361/202038975/45
http://linker.aanda.org/10.1051/0004-6361/202038975/46


V. Decoene et al.: Fast radio burst repeaters produced via Kozai-Lidov feeding of neutron stars in binary systems

Michaely, E., & Perets, H. B. 2014, ApJ, 794, 122
Mishchenko, M. I., Travis, L. D., & Hovenier, J. W. 1999, J. Quant. Spectr. Rad.

Transf., 63, 131
Morbidelli, A., & Raymond, S. N. 2016, J. Geophys. Res.: Planets, 121,

1962
Mottez, F., & Heyvaerts, J. 2020, A&A, 644, A145
Mottez, F., & Zarka, P. 2014, A&A, 569, A86
Mottez, F., Bonazzola, S., & Heyvaerts, J. 2013a, A&A, 555, A125
Mottez, F., Bonazzola, S., & Heyvaerts, J. 2013b, A&A, 555, A126
Mottez, F., Zarka, P., & Voisin, G. 2020, A&A, 644, A145
MPC-SAO-IAU, 2019, Minor Planet Center Orbit Database
Naoz, S. 2016, Ann. Rev. Astron. Astrophys., 54, 441
Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. 2011, Nature,

473, 187
Nelemans, G., Yungelson, L. R., & Portegies Zwart, S. F. 2001, A&A, 375,

890
Peters, P. C. 1964, Phys. Rev., 136, B1224
Petroff, E., Barr, E. D., Jameson, A., et al. 2016, PASA, 33, e045
Petroff, E., Hessels, J. W. T., & Lorimer, D. R. 2019, A&ARv, 27, 4
Pfahl, E., Podsiadlowski, P., & Rappaport, S. 2005, ApJ, 628, 343
Platts, E., Weltman, A., Walters, A., et al. 2019, Phys. Rep., 821, 1
Portegies Zwart, S. F., & Verbunt, F. 1996, A&A, 309, 179
Portegies Zwart, S. F., & Van den Heuvel, E. P. 1999, New Astron., 4, 355
Portegies Zwart, S. F., & Yungelson, L. R. 1999, MNRAS, 309, 26
Postnov, K. A., & Yungelson, L. R. 2014, Liv. Rev. Rel., 17, 3

Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., & Kivelson,
M. G. 2004, Plasma Interaction of Io with its Plasma Torus (Fran
Bagenal, University of Colorado, BoulderTimothy E. Dowling, University
of Louisville, KentuckyWilliam B. McKinnon, Washington University, St
Louis)

Scholz, P. 2019, Early science from the CHIME/FRB Project
Scholz, P., Spitler, L. G., Hessels, J. W. T., et al. 2016, ApJ, 833, 177
Shannon, R., Cordes, J., Kramer, M., et al. 2008, A Search for Debris Disks

around Variable Pulsars (Spitzer Proposal)
Shannon, R. M., Cordes, J. M., Metcalfe, T. S., et al. 2013, ApJ, 766, 5
Shao, Y., & Li, X.-D. 2018, MNRAS, 477, L128
Shappee, B. J., & Thompson, T. A. 2013, ApJ, 766, 64
Sigurdsson, S., Richer, H. B., Hansen, B. M., Stairs, I. H., & Thorsett, S. E. 2003,

Science, 301, 193
Sipior, M. S., Zwart, S. P., & Nelemans, G. 2004, MNRAS, 354, L49
Smallwood, J. L., Martin, R. G., & Zhang, B. 2019, MNRAS, 485, 1367
Stephan, A. P., Naoz, S., & Zuckerman, B. 2017, ApJ, 844, L16
Tauris, T. M., Kramer, M., Freire, P. C. C., et al. 2017, ApJ, 846, 170
Toonen, S., Claeys, J. S. W., Mennekens, N., & Ruiter, A. J. 2014, A&A, 562,

A14
Toonen, S., Perets, H. B., Igoshev, A. P., Michaely, E., & Zenati, Y. 2018, A&A,

619, A53
Wolszczan, A., & Frail, D. A. 1992, Nature, 355, 145
Yu, Y.-B., & Huang, Y.-F. 2016, Res. Astron. Astrophys., 16, 75
Zhang, Y. G., et al. 2018, ApJ, 866, 149

A122, page 15 of 20

http://linker.aanda.org/10.1051/0004-6361/202038975/47
http://linker.aanda.org/10.1051/0004-6361/202038975/48
http://linker.aanda.org/10.1051/0004-6361/202038975/48
http://linker.aanda.org/10.1051/0004-6361/202038975/49
http://linker.aanda.org/10.1051/0004-6361/202038975/49
http://linker.aanda.org/10.1051/0004-6361/202038975/50
http://linker.aanda.org/10.1051/0004-6361/202038975/51
http://linker.aanda.org/10.1051/0004-6361/202038975/52
http://linker.aanda.org/10.1051/0004-6361/202038975/53
http://linker.aanda.org/10.1051/0004-6361/202038975/54
http://linker.aanda.org/10.1051/0004-6361/202038975/55
http://linker.aanda.org/10.1051/0004-6361/202038975/56
http://linker.aanda.org/10.1051/0004-6361/202038975/57
http://linker.aanda.org/10.1051/0004-6361/202038975/57
http://linker.aanda.org/10.1051/0004-6361/202038975/58
http://linker.aanda.org/10.1051/0004-6361/202038975/58
http://linker.aanda.org/10.1051/0004-6361/202038975/59
http://linker.aanda.org/10.1051/0004-6361/202038975/60
http://linker.aanda.org/10.1051/0004-6361/202038975/61
http://linker.aanda.org/10.1051/0004-6361/202038975/62
http://linker.aanda.org/10.1051/0004-6361/202038975/63
http://linker.aanda.org/10.1051/0004-6361/202038975/64
http://linker.aanda.org/10.1051/0004-6361/202038975/65
http://linker.aanda.org/10.1051/0004-6361/202038975/66
http://linker.aanda.org/10.1051/0004-6361/202038975/67
http://linker.aanda.org/10.1051/0004-6361/202038975/68
http://linker.aanda.org/10.1051/0004-6361/202038975/69
http://linker.aanda.org/10.1051/0004-6361/202038975/70
http://linker.aanda.org/10.1051/0004-6361/202038975/71
http://linker.aanda.org/10.1051/0004-6361/202038975/71
http://linker.aanda.org/10.1051/0004-6361/202038975/72
http://linker.aanda.org/10.1051/0004-6361/202038975/73
http://linker.aanda.org/10.1051/0004-6361/202038975/74
http://linker.aanda.org/10.1051/0004-6361/202038975/75
http://linker.aanda.org/10.1051/0004-6361/202038975/76
http://linker.aanda.org/10.1051/0004-6361/202038975/77
http://linker.aanda.org/10.1051/0004-6361/202038975/78
http://linker.aanda.org/10.1051/0004-6361/202038975/79
http://linker.aanda.org/10.1051/0004-6361/202038975/80
http://linker.aanda.org/10.1051/0004-6361/202038975/80
http://linker.aanda.org/10.1051/0004-6361/202038975/81
http://linker.aanda.org/10.1051/0004-6361/202038975/81
http://linker.aanda.org/10.1051/0004-6361/202038975/82
http://linker.aanda.org/10.1051/0004-6361/202038975/83
http://linker.aanda.org/10.1051/0004-6361/202038975/84


A&A 645, A122 (2021)

Appendix A: Three-body dynamics

In this appendix, we shortly review the key ingredients to
understand the three-body dynamics in the framework of the
Kozai-Lidov mechanisms. We detail how to obtain the vari-
ous Kozai-Lidov periods and time-scales for the quadrupolar
and octupolar regimes. The demonstration follows a standard
approach, shown by Antognini (2015), Lithwick & Naoz (2011),
Naoz (2016) and others.

We define the Delaunay variables in the framework of canon-
ical angle-action variables

l1 → L1 =
m0m1

m0 + m1

√
G(m0 + m1)a1 (A.1)

l2 → L2 =
m2(m0 + m1)
m0 + m1 + m2

√
G(m0 + m1 + m1)a2 (A.2)

g1 → G1 = L1 j1 (A.3)
g2 → G2 = L2 j2 (A.4)
h1 → H1 = G1 cos (i1) (A.5)
h2 → H2 = G2 cos (i2) (A.6)

with jk =

√
1 − e2

k . This set of variables preserves the canoni-
cal structure of the Hamiltonian description and allows to fully
describe the three-body system.

A.1. The quadrupolar regime and the Kozai-Lidov oscillations

The quadrupolar term from Eq. (7) is a constant of motion since
the energy is conserved at the quadrupole order. We can rewrite
the quadrupolar term as follows

Hquad = C2
[
(2 + 3e2

1)(1 − 3 cos2 itot)

− 15e2
1(1 − cos2 itot) cos 2g1

]
, (A.7)

which gives a reduced Hamiltonian H̃quad = Hquad/C2, also a
constant of motion. Furthermore we have

cos (itot) =
G2

tot −G2
1 −G2

2

2G1G2
, (A.8)

from the Al-Kashi theorem applied to the angular momenta. In
the test particle limit (where m1 → 0) Eq. (A.8) reduces to
Gtot ≈ G2+G1 cos (itot), and since Gtot and G2 are conserve quan-
tities, it comes that j1 cos (itot) is therefore conserved. Usually
the previous constant of motion is defined as

Θ = [ j1 cos (itot)]2, (A.9)

and called Kozai’s integral. Equation (A.9) represents the pro-
jection of the total orbital momentum along the z-axis: jz, and
allows to compute the transfer of inclination to eccentricities via√

1 − e2
1,min cos (itot,max) =

√
1 − e2

1,max cos (itot,min). (A.10)

So the reduced Hamiltionian can be rewritten as

H̃quad = j−2
1

[
(5 − 3 j21)( j21 − 3Θ)

− 15(1 − j21)( j21 − Θ) cos (2g1)
]
. (A.11)

Finally the reduce Hamiltonian is a function of H̃quad =
f [e1, cos (itot), g1], hence with three degrees of freedom but since

H̃quad and Θ are constant of motion the system is fully integrable
via the equations of motions.

From the canonical variable g1, we can write the standard
equation of motion

dg1

dt
=
∂Hquad

∂G1
=

C2

L1

∂H̃quad

∂ j1
(A.12)

=
6C2

L1
j−3
1

[
5(Θ − j41)(1 − cos (2g1) + 4 j41)

]
. (A.13)

And since j1 is related to G1 via L1 (constant of motion), we
have

d j1
dt

=
1
L1

∂Hquad

∂g1
=

C2

L1

∂H̃quad

∂g1
(A.14)

30C2

L1
j−2
1 (1 − j21)( j21 − Θ) sin (2g1). (A.15)

Finally, cos (itot) can be solved thanks to Eq. (A.14) injected
in Eq. (A.8), which provides a full set of integrable equations
to describe the full dynamics of the three-body system at the
quadrupole order.

Antognini (2015) has shown that thanks to the integrability
of the quadrupole order, the exact Kozai-Lidov period can be
derived.

tKL =

∮
dt =

∮
dt

d j1
d j1, (A.16)

over a full period. Hence from Eq. (A.14), Antognini (2015)
shows that the exact period can be written as

tKL =
L1

15C2

∫ jmax

jmin

(1 − j21)−1
[ 1 − Θ

j21

2

−

1
5
−

Θ

j21
+

4
5

CKL

1 − j21

 ]−1/2
, (A.17)

where

CKL = 1/12(2 − H̃quad − 6Θ), (A.18)

a constant of motion found by Lidov in 1962, discriminating
between libration regime (CKL < 0) and rotation regime (CKL >
0).

Finally, Antognini (2015) has shown that the exact period
of Eq. (A.17) differs from a factor of a few from the timescale
described in Eq. (12) (and obtained via tKL ∼ L1/(15C2)), in
dynamical regimes far from any resonances (see Fig. 1 from
Antognini 2015).

A.2. The octupolar regime and the Eccentric Kozai-Lidov
Mechanism

Even though the three-body system is not integrable at the
octupolar order, Antognini (2015) shows that nevertheless it is
possible to derive the exact period of the Eccentric Kozai-Lidov
mechanism.

In a first step Antognini (2015) follows the analysis of Katz
et al. (2011), where the authors introduce the eccentricity vector

e = e(cos Ωe sin ie, sin Ωe sin ie, cos ie), (A.19)

this vector is pointing towards the periapsis of the inner binary,
and allows one to describe the motion of the periapsis with time.
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Since Hquad is constant, from Eq. (A.18) it is possible to define
another constant of motion

Φquad = CKL +
1
2

Θ. (A.20)

We note that at the octupolar order, Θ and CKL are no longer
constants of motion. However, it is possible to assume that Θ and
CKL remain approximately constant over timescales of single KL
oscillations. This motivates the re-scaling of the times for the
analysis as τ = t/tKL,i=90◦ , hence averaging over KL cycles. Katz
et al. (2011) show that the evolution of Ωe and Θ are given by

dΩe

dτ
= Θ

(
6E(x) − 3K(x)

4K(x)

)
, (A.21)

dΘ

dτ
=
−15πε

64
√

10

√
Θ sin (Ωe)

K(x)
(4 − 11CKL

√
6 + 4CKL), (A.22)

where K(x) and E(x) are complete elliptic functions of the first
kind with x(CKL) = 3(1 −CKL)/(3 + 2CKL).

Another constant of motion found by Katz et al. (2011) is

χ = F(CKL) − ε cos (Ωe), (A.23)

which connects the dynamics of CKL with Ωe, and where

F(CKL) =
32
√

3
π

∫ 1

x(CKL)

K(η) − 2E(η)

(41η − 21)
√

2η + 3
dη. (A.24)

From Eq. (A.20), we can compute the evolution of CKL as

dCKL

dτ
= −

1
2

Θ, (A.25)

from which we can extract the period of the motion

τEKM =

∮
dτ =

∮
dCKL

ĊKL
. (A.26)

Now, by combining Eqs. (A.26) with (A.25) and thanks to
Eqs. (A.21) and (A.22), Antognini (2015) has shown that the
exact EKM period can be obtained as

τEKM =
256
√

10
15πε

∫ CKL,max

CKL,min

K(x)dCKL√
2(Φquad −CKL)(4 − 11CKL)

×

[(
1 −

χ − F(CKL)2

ε

)
(6 + 4CKL)

]−1/2

. (A.27)

Finally, Antognini (2015) extracts the EKM timescale (see
Eq. (13)) as a function of the correct ε dependency and shows
that it matches the EKM period (see Fig. 5 from Antognini
2015).

Appendix B: General relativity effects

General relativity (GR) effects, such as the periapsis precession
can prevent Kozai-Lidov oscillations by stopping the Kozai res-
onance (Holman et al. 1997). For the resonance to occur, the
Kozai-Lidov timescale must be shorter than the GR precession
timescale (Blaes et al. 2002)

tGR,inner

tKL
> 1, (B.1)

where the GR precession timescale is given by

tGR =
1
3

a1

c

[
a1c2

G(m0 + m1)

]3/2

(1 − e2
1), (B.2)
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Fig. B.1. GR effects in the quadrupolar regime: maximal eccentricity
reachable via Kozai-Lidov perturbations as a function of the inclina-
tion, for the classical computation (dotted line) and the general rela-
tivistic corrections (straight line). The GR corrections tends to reduce
the maximal eccentricity reachable.

following Fabrycky & Tremaine (2007), Blaes et al. (2002). In
the quadrupolar regime

tGR,inner

tKL
=

16
5

a3
2

a4
1

(1 − e2
2)3/2

1 − e2
1

(G
c

)2 (m0 + m1)3/2

m2
, (B.3)

∼ 1.6 × 105
( a2

10 AU

)3 ( a1

1 AU

)−4
, (B.4)

for circular orbits and, m0 = 1.4 M�, m1 = 10−11 M� and m2 =
10 M�. In the octupolar regime, combining Eq. (13), we found

tGR,inner

tEKL
=

128
√

10
15π
√
ε

tKL

tGR,inner
,

2048
√

10
75π
√
ε

a3
2

a4
1

(1 − e2
2)3/2

1 − e2
1

(G
c

)2 (m0 + m1)3/2

m2
(B.5)

∼ 1.7 × 103
(
ε

0.01

)−1/2 ( a2

10 AU

)3 ( a1

1 AU

)−4
, (B.6)

for elliptical orbits e1 = e2 = 0.1 and, m0 = 1.4 M�, m1 =
10−11 M� and m2 = 10 M�. For both regimes, the GR precession
effects are subdominant.

In the quadrupolar regime, the GR precession effects can
suppress high eccentricity excitation e1,max,KL for the inner orbit.
The ratio between the inner orbit GR precession timescale and
the Kozai-Lidov timescale can be rewritten as (Naoz 2016; Liu
et al. 2015)

tGR,inner

tKL
= ε−1

GR(1 − e2
1,max,GR), (B.7)

where

εGR =
3G(m0 + m2)2a3

2(1 − e2
2)3/2

a4
1c2m1

. (B.8)

The maximal eccentricity reachable e1,max,GR taking into account
GR effects satisfies the following equation

εGR

(
1
j
− 1

)
=

9
8

e2
1,max,GR

j2

[
j2 −

5
3

cos2 i
]
, (B.9)
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with j = (1 − e2
1,max,GR)1/2. For εGR � 1, this yields j ≈

(151/2/3) cos i = (151/2/5)(1 − e2
max,KL)1/4. Figure B.1 displays

both maximal eccentricities computed in the classical and gen-
eral relativistic frameworks. As demonstrated also in Liu et al.
(2015), GR effects on the maximum eccentricity reached will be
stronger for higher inclinations.

Appendix C: Quadrupolar treatment

In this section, we focus on the quadrupolar regime, where we
show that despite the dynamical differences between the two
regimes, quadrupolar effects can also be efficient in driving aster-
oids close to the pulsar and produce FRB-like emissions on
timescales compatible with the observed FRB rates. However
unlike the octupolar regime, the maximal eccentricity reachable
is bounded by the initial inclination of the asteroid (since no
flip occurs, the eccentricity does not increase to i = 90◦). This
difference implies that not all asteroids triggering Kozai-Lidov
oscillations are able to reach the Roche limit (closest position
to the central pulsar, hence required to produce the strongest
radio emissions). Therefore in the first part of this Appendix,
we derive a criterion to discriminate between asteroids poten-
tially able to produce radio emissions and those which are not.
From this criterion, we then compute the fraction of asteroids
inside a belt participating to the emissions. We also take into
account GR corrections, due to precession effects, on the max-
imal eccentricity reachable. And finally, we present the results
of the quadrupolar approach in this Kozai-Lidov induced FRB
emissions.

C.1. Roche limit crossing criteria

Under the influence of Kozai-Lidov oscillations, the eccenctric-
ity of the inner binary can reach values sufficiently high so that
its periastron crosses the Roche limit. This limit represents the
closest possible position for an object in orbit, beyond which it
be disrupted by tidal forces. The periastron of the elliptical orbit
of the inner binary is given by rperiastron

ast = aast(1−east). If the peri-
astron crosses the Roche limit (Eq. (3)), the following equation
is verified:

a1(1 − e1) = 2R1

(
m0

m1

)1/3

, (C.1)

where R1 and R2 are the inner binary object radius. Kozai-Lidov
oscillations can drive the inner binary orbit down to the Roche
limit if the following condition is fulfilled:

√
1 − 5/3 cos2 itot > 1 − 2

R1

a1

(
m0

m1

)1/3

. (C.2)

Namely, we require the maximal Kozai-Lidov eccentricity to be
larger than the required eccentricity for the periapsis to cross the
Roche limit. Any inner binary, with orbital parameters matching
the above equation, will be disrupted by tidal forces on a secular
timescale following the Kozai-Lidov timescales.

C.2. Fraction of asteroids crossing the Roche limit due to KL
oscillations

Assuming that the initial distribution of aast in the belt follows a
Normal distribution with mean 〈aast〉 and width σa = εast〈aast〉,
the mean distance between two consecutively falling asteroids

0 20 40 60 80

i2 (deg)

10−3

10−2

10−1

f(
i 2

)

classical

GR

Fig. C.1. Fraction of asteroids reaching the Roche limit via the
quadrupolar Kozai-Lidov effect in the classical calculation (blue) and
in the general relativity case (orange), as a function of the outer body
inclination i2. Its mass is set to m1 = 10 M�. The density of the asteroids
are set to ρast = 2 g cm−3 and their semi-major axes follow a Normal
law with mean semi-major axis 〈aast〉 = 1 AU and standard deviation
σa = 0.15 〈aast〉.

can be estimated statistically as 〈∆aast〉 ≈ σa/Nast,KL, with Nast,KL
the number of asteroids meeting the Kozai-Lidov criterion. One
can express Nast,KL = f (ic) Nast, with Nast the total number of
asteroids in the belt and f (ic) the fraction of asteroids meeting
the Kozai-Lidov criterion.

The fraction f (ic) of asteroids meeting the Kozai-Lidov cri-
terion depends on the inclination ic as

f (ic) =

∫ π/2

iast=0
N

σi
〈iast〉

∫ aast,KL

aast=0
N

σa
〈aast〉

(aast)daast diast, (C.3)

where Nσx
〈x〉(x) is the normal distribution function of mean 〈x〉

and variance σ2
x. The Kozai-Lidov maximum semi-major axis to

reach the Roche limit reads

aast,KL(ic) =
2Rast (MNS/Mast)1/3

1 −
[
1 − (5/3) cos2 (iast + ic)

]−1/2 . (C.4)

Figure C.1 presents the values of f (ic) in the classical deriva-
tion (blue). However, we will see in the next paragraph that in
our regime, General Relativity (GR) effects dominate and lead
to lower f (ic).

C.3. General Relativity corrections

As shown in Appendix B, the GR corrections tend to reduce
the maximal eccentricity reachable and therefore translates to a
lower fraction of asteroids capable of reaching the Roche limit.

The Kozai-Lidov oscillations in the GR regime can drive an
asteroid to disruption inside the Roche limit if the following con-
dition is fulfilled

aast,KL,GR(ic) = [2Rast(MNS/Mast)1/3]

× [1 −
√

1 − 16/25
√

(5/3) cos2(iast + ic)]−1. (C.5)

This maximum semi-major axis replaces aast,KL in Eq. (C.3),
leading to a reduction of f (ic) by a factor ∼3, as can be seen in
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Fig. C.2. Mean Kozai-Lidov time 〈tKL〉 (Eq. (12)) and relative time
delay 〈∆tKL〉 (Eq. (C.6)) as a function semi-major axis ac of the outer
perturbing body semi-major axis.

Fig. C.1. Numerically, including GR corrections, f (ic = 45◦) ∼
0.02, leading to Nast,KL = f (ic = 45◦)(Nast/1000) ∼ 20.

In this calculation, we have neglected the tidal and rotation
terms, which can also affect the maximum eccentricity reached
by the body. These terms are negligible compared to the GR term
in our model. We note that the quadrupole approximation leads
to a good analytical estimate of the orbital evolution, even when
the octupole effects are strong (Liu et al. 2015).

C.4. Results

Thanks to the framework detailed in Appendices C.2, B and C.1
we can compute the infall rates of asteroids in binary pulsar sys-
tems, in the quadrupolar regime of the Kozai-Lidov effect. The
mean relative Kozai-Lidov time between two consecutive aster-
oid disruptions can then be estimated as

〈∆tKL〉 ∼ 150 yr
[

f (ic)Nast

20

]−1
εast

0.15

(
〈aast〉

AU

)−3/2

×

( ac

100 AU

)3
(

Mc

10 M�

)−1 (
MNS

1.4 M�

)1/2

, (C.6)

where we have assumed ec = 0 for the numerical estimate. Here,
we have used the parameter values of typical NSBH/NSMS sys-
tems. The value of εast is chosen so as to fit the parameters of the
Solar belt (see Sect. 5).

The factor Nast,KL = f (ic)Nast corresponds to the number
of asteroids which experience the Kozai-Lidov effect. Higher
ic can boost the FRB rates estimated above by 1−2 orders of

magnitude, due to a larger f (ic). Larger Nast and higher ic would
also shorten 〈∆tKL〉, consequently increasing the event rates of
Sect. 4.

Figure C.2 displays the evolution of the Kozai-Lidov time
tKL and relative delay ∆tKL as a function of the outer perturbing
body semi major axis ac (here aBH). A clear distinction between
close and wide systems can be made based on the typical delay,
the first ones, present relative delay on day-scales while the other
ones have relative delay of several tens of years.

These analytical results are confirmed thanks to the simula-
tions detailed in Sect. 5, and here used only in the quadrupolar
regime. Figure C.3 shows the distribution of the relative time
delays for asteroids falling onto the central neutron star, in the
quadrupolar regime, for a current (green) and primordial Solar-
like belt for companion inclinations ic = 5◦ (orange) and ic = 45◦
(blue). The central neutron star has mass MNS = 1.4 M� and the
outer companion Mc = 10 M�. The initial number of asteroids
is set to Nast = 103. We examine the case of a wide system with
companion distance ac = 10 AU and mean asteroid belt distance
〈aast〉 = 1 AU (left panel).

For the wide system, the infall rates span days to millions
of years, with a maximum around 〈∆tKL〉 ∼ 10s−100s years,
depending on the inclination ic. For close systems, the rates are
of order day-scales.

The comparison between the current Solar belt and the pri-
mordial belt shows that the lack of Kirkwood gaps induces a
drastic increase of short time-scales in the asteroid infall rate,
and depending on the inclination, a factor of a few to an order
of magnitude more events in total. Larger inclinations ic lead
to shorter time-scales, and to higher event rates since the shift-
ing time-scales due to inclination ic is dominant over the 1/ f (ic)
effect. Systems with larger inclinations ic and with higher rates
(∆tKL ∼ 10 yr) will thus dominate in the sky.

Furthermore, one can notice the tail distribution at large
time-scales for the Solar belt in the right panel of Fig. C.3. It
results from the Kirkwood gaps, where groups of asteroids with
lower inclinations can reach the Roche limit due to the closer
position of the outer black hole 10 AU (rather than 100 AU in
the left panel). However, their lower inclinations result in larger
time-scales.

Figure C.4 shows a consistent result with Fig. C.3, a
low mass companion in a more close system induces short
timescales. The reduction of the Kozai-Lidov effect due to the
low mass companion is compensated with shorter distances in
that system, ending up with a similar result than in the left panel
of Fig. C.3 (high mass companion in close system). Finally the
result obtained for the quadrupolar treatment are fully consis-
tent with the octupolar approach, in the sense that the dichotomy
between repeaters and non-repeaters is explained thanks to the
populatin of systems involved in the Kozai-Lidov mechanism:
either close systems leading preferentially to repeater FRBs or
wide systems leading preferentially to non-repeater FRBs.
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Fig. C.3. Same as Figs. 6 and 7, distribution of relative time differences ∆tKL of falling asteroids in the Roche lobe of the central compact object
due to quadrupolar Kozai-Lidov oscillations, for the current Solar asteroid belt (green) and the primordial belt, for an inclination of the outer body
hole plane ic = 5◦ (orange) and ic = 45◦ (blue), and initial asteroid number Nast = 103. We consider a high mass Mc = 10 M� wide system (left)
with ac = 100 AU and 〈aast〉 = 1 AU, and a close system (right) with ac = 10 AU and 〈aast〉 = 1 AU.
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Fig. C.4. Same as Fig. C.3, but for a low mass Mc = 1 M� close system
ac = 2 AU and 〈aast〉 = 0.2 AU The initial asteroid number is Nast =
103.
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