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SPRINGER’S ODD DEGREE EXTENSION THEOREM FOR

QUADRATIC FORMS OVER SEMILOCAL RINGS

PHILIPPE GILLE AND ERHARD NEHER

Abstract: A fundamental result of Springer says that a quadratic form
over a field of characteristic 6= 2 is isotropic if it is so after an odd degree
extension. In this paper we generalize Springer’s theorem as follows. Let R
be a an arbitrary semilocal ring, let S be a finite R–algebra of odd degree,
which is étale or generated by one element, and let q be a nonsingular R–
quadratic form whose base ring extension qS is isotropic. We show that then
q is already isotropic.

Keywords: Quadratic forms, semilocal rings, Springer Odd Degree Exten-
sion Theorem.
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Introduction

A celebrated result of Springer [Sp] says that a quadratic form over a
field F of characteristic 6= 2 that becomes isotropic over an odd degree field
extension is already isotropic over F . The result was conjectured by Witt
and was also proven, but not published by E. Artin. An account of Springer’s
result is given in [Lam, VII, Thm. 2.7] or [Sch, II, Thm. 5.3]. It is proven
for arbitrary fields in [EKM, 18.5].

Springer’s Theorem has many important consequences, for example for
Witt groups. It is therefore not surprising that it has been generalized by
replacing odd degree extensions by more general field extensions, see for
example, [Ho1, Prop. 5.3], [Ho2, Cor. 4.2] or [Lag, Lem. 2.8], or by replacing
the base field F by more general rings. The main result of this paper goes
in the latter direction:

Odd Degree Extension Theorem. (Theorem 2.1) Let R be a semilocal
ring, M a finite projective R–module, q : M → R a nonsingular quadratic
form, and S a finite R–algebra of odd degree, which is étale or one-generated.
If the base ring extension qS is isotropic, then already q is isotropic.

Since the terminology regarding quadratic forms over rings is not stan-
dard, see the comparison in 1.2(a), let us explain what we mean with a
nonsingular quadratic form. Recall that the radical of (M, q) with polar
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form bq is rad(M, q) = {m ∈ M : q(m) = 0 = bq(m,M)}. We call q non-
singular , if rad((M, q)F ) = {0} for all R–fields F . An example of such a
form is a regular quadratic form, defined by the condition that its polar form
induces an isomorphism between M and its dual space. Nonsingular and
regular quadratic forms are the same in case 2 ∈ R× = {u ∈ R : uR = R},
the units of R, or in case the projective R–moduleM has constant even rank,
but not in general. For example, for u ∈ R× the quadratic form R → R,
x 7→ ux2 is always nonsingular, but regular only if 2 ∈ R×. We call a finite
projective R–algebra S of constant degree d one-generated if it is generated
by one element, equivalently, S ∼= R[X]/f for a monic polynomial of degree
d.

Special cases of the Odd Degree Extension Theorem have been proven
before; all of them assumed 2 ∈ R×, so that nonsingular = regular. Specif-
ically, it was proven by Panin and Rehmann [PR] under the assumption
that R is a noetherian local integral domain, which has an infinite residue
field, and that S is étale (necessarily one-generated in this case). It was
extended in [PP] by Panin-Pimenov to R a semi-local noetherian integral
domain whose residue fields are all infinite. It was stated in [Scu] for R
semilocal, 2 ∈ R×, with a proof that we could not understand.

For proving the Odd Degree Extension Theorem one can easily reduce to
M of constant rank r ≥ 2. The case r = 2 (Lemma 2.2) holds for any finite
R–algebra; our proof uses a consequence of Deligne’s trace homomorphism
for the flat cohomology of abelian affine group schemes (Lemma B.3). For
r ≥ 3 we follow an approach inspired by the paper [PR] of Panin and
Rehmann and first deal with one-generated algebras. A crucial step here
is proving that isotropic elements can be lifted from M ⊗R (S/Jac(R)S) to
M →R S (Corollary A.6). We obtain this as an application of Demazure’s
Conjugacy Theorem for reductive R–group schemes. We should point out,
that in this part we use the classical version (R a field, [EKM]) of the Odd
Degree Extension Theorem. Once the case of one-generated algebras has
been settled, the case of étale algebras easily follows by applying a recent
result of Bayer-Fluckiger, First and Parimals [BFP] on embeddings of finite
étale R–algebras into one-generated R–algebras.

Structure of the paper. Section 1 presents a review of nonsingular qua-
dratic forms and proves some results, needed for our proof of the Odd Degree
Extension Theorem in the first part of section 2. In the second part of that
section we prove some consequences of the theorem, well-known in case of
base fields. The paper closes with two appendices, A and B. Their results
are used in our proof of the Odd Degree Extension Theorem, but they are
of interest beyond that Theorem.

Basic notation. Throughout, R is a commutative associative unital ring.
We do not assume that 2 ∈ R×, unless this is explicitly stated so. Also,
modules, quadratic forms and algebras will be defined over R. We use
R-alg to denote the category of commutative associative unital R–algebras.
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Objects of R-alg are sometimes also referred to as R–rings. If M is an
R–module and S ∈ R-alg, we put MS =M ⊗R S.

We say an R–module M is finite projective if it is finitely generated
projective (= locally free of finite rank). A finite R–algebra is an alge-
bra S ∈ R-alg whose underlying R–module is finitely generated, but not
necessarily projective. A finite projective R–algebra is an R–ring S whose
underlying R–module is finite projective. The norm of such an R–algebra
S is denoted NS/R. A finite projective R–algebra S is called finite étale if it
is separable, see for example [Fo] or [Knu] for other equivalent definitions.
We call S ∈ R-alg an étale R–algebra of degree d ∈ N if S is a finite étale
algebra whose underlying R–module is projective of constant rank d.

1. Quadratic forms

This section starts with a review of known facts on bilinear and quadratic
forms over arbitrary rings, thereby also establishing our notation and termi-
nology, 1.1–1.3. We study quadratic forms over semilocal rings in the second
part of this section.

1.1. Quadratic and symmetric bilinear forms (terminology, basic
facts). (a) A (symmetric) bilinear module is a pair (M, b) consisting of a
finite projective R–module and a symmetric R–bilinear map b : M×M → R.
We will only consider symmetric bilinear forms, and hence simply speak of
bilinear modules. We use the symbol (M, b) ∼= (M ′, b′) to denote isometric
bilinear modules. When M is clear from the context or unimportant, we
will sometimes write b for (M, b). Given a bilinear module (M, b), its adjoint
is the R–linear map b∗ : M → M∗ = HomR(M,R), m 7→ b(m, ·). We call
(M, b) regular if b∗ is an isomorphism.

(b) A quadratic module is a pair (M, q) where M is a finite projective
R–module and q : M → R is an R–quadratic form. We use bq to denote
the polar form of q. We call q or (M, q) regular if bq is regular. As for
bilinear modules, (M, q) ∼= (M ′, q′) indicates isometric quadratic modules.
We sometimes write q instead of (M, q), if M is unimportant or clear from
the context.

(c) (Base change) Let S ∈ R-alg, and let (M, b) be an R–bilinear module.
There exists a unique S–bilinear form bS : MS ×MS → S satisfying bS(s1⊗
m1,m2 ⊗ s2) = s1b(m1,m2)s2 for mi ∈ M and si ∈ S. Given an R–
quadratic module (N, q), there exists a unique S–quadratic form qS : NS →
S satisfying qS(s ⊗ n) = s2q(n) for s ∈ S and n ∈ N . The polar of qS is
the base change of the polar of q. If (M, b) (or (N, q)) is regular, then so is
(MS , bS) (respectively (NS , qS)).

(d) (Tensor products) Let (Mi, bi), i = 1, 2, be bilinear modules. There
exists a unique symmetric bilinear form b1 ⊗ b2 on M1 ⊗R M2 satisfying
(b1 ⊗ b2)(m1 ⊗ m2,m

′
1 ⊗ m′

2) = b1(m1,m
′
1) b2(m2,m

′
2) for mi,m

′
i ∈ Mi.

Given an R–bilinear module (M, b) and an R–quadratic form (N, q), there
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exists a unique R–quadratic form b⊗ q : M ⊗R N → R satisfying

(b⊗ q) (m⊗ n) = b(m,m) q(n), and

bb⊗q(m⊗ n,m
′ ⊗ n′) = b(m,m′) bq(n, n

′)
(1.1.1)

for all m,m′ ∈M and n, n′ ∈ N , where bq is the polar form of q. It is called
the tensor product of (M, b) and (N, q), [Sa, Thm. 1]. The polar form of
b⊗ q is the tensor product of the symmetric bilinear forms b⊗ bq. If (M, b)
and (N, q) are regular, then so is (M, b) ⊗ (N, q). The tensor product is
compatible with base change: for S ∈ R-alg we have

(M, b)S ⊗S (N, q)S
∼
−→

(
(M, b) ⊗R (N, q)

)
S

with respect to m⊗ s1 ⊗ n⊗ s2 7→ m⊗m⊗ s1s2.

(e) Given a bilinear module (M, b), the orthogonal module of a submodule
U ⊂ M is U⊥ = {m ∈ M : b(m,U) = 0}. We call U totally isotropic if
U ⊂ U⊥. A submodule U of a quadratic module (M, q) is totally isotropic
if q(U) = 0, in which case U is also a totally isotropic submodule of (M, bq).
If (M, b) is a bilinear module and U ⊂M is a submodule such that (U, b|U )
is regular, then M = U ⊕ U⊥.

1.2. Nonsingular quadratic forms. Recall that the radical of a quadratic
module (M, q) is rad(M, q) = {m ∈ M : q(m) = 0 = bq(m,M)}. It is a
submodule of M and satisfies (rad(M, q))S ⊂ rad((M, q)S), S ∈ R-alg. We
call (M, q) or simply q nonsingular if rad((M, q)F ) = {0} for all fields F ∈
R-alg. A quadratic space is a quadratic module (M, q) with a nonsingular
q. We will use the following properties of nonsingular forms (for details see
the references in (a)).

(a) (Comparison of terminology) Our terminology of a regular bilinear
form or regular quadratic form follows [Knu] and [Sch] (except that in these
references “regular” and “nonsingular” are used interchangeably), but a
regular bilinear form as defined here is called “non singular” in [Ba] and
“nondegenerate” in [EKM]. A nonsingular quadratic form is called “non-
degenerate” in [Co1], “nondegenerate” in [EKM], “semiregular” in [Knu] in
case of odd rank, cf. (e), and “separable” in [Pe].

(b) A regular quadratic form is nonsingular, since rad((M, q)S) = 0 for a
regular form and any S ∈ R-alg by (c).

(c) If 2 ∈ R×, a nonsingular form is regular. Indeed, if 2 ∈ R×, then
rad(qS) = {m ∈MS : bqS(m,MS) = 0}, S ∈ R-alg, and so the adjoint of bq
is an isomorphism by Nakayama.

(d) If q is nonsingular, then so is qS for any S ∈ R-alg.

(e) Let (M, q) be a quadratic module withM of constant even rank. Then
q is nonsingular if and only if q is regular, cf. (h) below.

(f) A quadratic R–space (M, q) withM faithfully projective is primitive in
the sense that q(M) generates R as ideal. If R is semilocal, then q(m) ∈ R×

for some m ∈M (which is unimodular in the sense of 1.8).
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(g) Let (M, q) = (M1, q1) ⊥ (M2, q2) be a direct sum of quadratic modules.
If q is nonsingular, then so are q1 and q2. Conversely, if q1 is regular, then q
is nonsingular if and only if q2 is nonsingular. If q1 and q2 are nonsingular,
then q need not be nonsingular, see the example in 1.7.

(h) (1–dimensional forms) Let u ∈ R×. We define 〈u〉b : R × R → R,
(r1, r2) 7→ ur1r2 and 〈u〉q : R→ R, r 7→ ur2. Then 〈u〉b is a regular bilinear
form. The polar of the quadratic form 〈u〉q is 2〈u〉, whence 〈u〉q is regular if
and only if 2 ∈ R×, but 〈u〉q is always nonsingular. We abbreviate 〈u〉 = 〈u〉b
if the meaning of 〈u〉 is clear from the context.

If (M, b) and (N, q) are bilinear and quadratic modules respectively, then

〈1〉b ⊗ b ∼= b, 〈1〉b ⊗ q ∼= q

under the standard isomorphism R ⊗R M
∼
−→ M . However, b ⊗ 〈1〉q = bq,

where bq : M → R, m 7→ b(m,m), is the quadratic form associated with b.
Its polar is bqb = 2b.

(i) (Reduction to constant rank) Let R = R0×· · ·×Rn be a direct product
of rings. A quadratic module (M, q) over R uniquely decomposes as an
orthogonal sum

(1.2.1) (M, q) = (M0, q0) ⊥ · · · ⊥ (Mn, qn)

where each (Mi, qi) is a quadratic module over Ri. Conversely, given qua-
draticRi–modules (Mi, qi), the formula (1.2.1) defines a quadraticR–module.
The quadratic module (M, q) is regular (nonsingular) if and only if all qua-
dratic Ri–modules (Mi, qi) are regular (nonsingular respectively).

For arbitrary R, a finite projective R–moduleM gives rise to a decompo-
sition R = R0 × · · · ×Rn and hence to M =M0 × · · · ×Mn such that Mi is
a projective Ri–module of constant rank i. The discussion above then de-
scribes the reduction of quadratic modules to quadratic modules of constant
rank.

(j) (Witt cancellation) Let R be a semilocal ring, let q1, q2, q
′
1 and q′2 be

quadratic forms where q1 is regular and q2 is nonsingular and of positive
rank. If q1 ∼= q′1 and q1 ⊥ q2 ∼= q′1 ⊥ q

′
2, then q2

∼= q′2. Indeed, since the non-
singular form q2 is primitive by (f), this follows from [Kne, Kürzungssatz].
Witt cancellation with all forms qi and q′i being regular, is proven in [Ba,
III, (4.3)].

1.3. Metabolic and hyperbolic spaces. Let (U, b) be a bilinear module.
The metabolic space associated with (U, b) is the bilinear module M(U, b) =
(U ⊕ U∗, bM(U,b)) whose bilinear form bM(U,b) is defined by

bM(U,b)(u+ ϕ, v + ψ) = b(u, v) + ϕ(v) + ψ(u).

It is a regular bilinear form, justifying the terminology “space”. By defini-
tion, the hyperbolic bilinear space is Hb(U) = M(U, 0) where 0 is the null
form.
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Given a finite projective R–module U , the associated hyperbolic space
H(U) is the quadratic module (U∗ ⊕ U,hyp) with hyp(ϕ ⊕ u) = ϕ(u). The
polar form of the hyperbolic quadratic form hyp is the bilinear form bHb(U,0),
in particular, hyp is nonsingular. We call H(R) the hyperbolic plane.

We say a bilinear module (M, b) metabolic if there exists a bilinear module
(U, bU ) such that (M, b) ∼= M(U, bU ). The same terminology will be applied
to hyperbolic quadratic spaces. The following facts are for example proven
in [Ba, I, §3 and §4].

(a) Let (M, b) be a regular bilinear module and let U ⊂ M be a totally
isotropic complemented submodule. Then there exists a submodule V ⊂M
such that U ∩V = 0, (U ⊕V, b|U⊕V ) is metabolic and hence M = (U ⊕V ) ⊥
(U ⊕ V )⊥. If b(m1,m2) = b0(m1,m2) + b0(m2,m1) for some bilinear form
b0 : M ×M → R, one can choose V such that (U ⊕ V, bU⊕V ) is a hyperbolic
bilinear space

(b) (Characterization of metabolic spaces) A regular bilinear module (M, b)
is metabolic if and only if one of the following conditions holds:

(i) M contains a totally isotropic complemented submodule V with V =
V ⊥, a so-called Lagrangian,

(ii) M contains a totally isotropic and complemented submodule U sat-
isfying rankpM = 2 rankp U for all p ∈ Spec(R).

In this case (M, b) ∼= M(U) for U ∼= V ∗. In particular, M(U) is free when-
ever V is free, and any decomposition V = V1 ⊕ · · · ⊕ Vn gives rise to an
decomposition M(U) = M(U1) ⊥ · · · ⊥M(Un) with Ui

∼= V ∗
i .

To see that M is metabolic in case (ii), apply (a) to get M = (U ⊕ V ) ⊥
(U ⊕ V )⊥ where U ⊕ V is metabolic and rankp = 2 rankp U = rankpM ,

whence (U ⊕ V )⊥ = 0. The last claim follows from V ∗ = V ∗
1 ⊕ · · · ⊕ V

∗
n .

In the remainder of this section we consider quadratic spaces (M, q) over
R in two settings: (a) q is regular, and (b) R is semilocal. The results in case
(a) are proven in [Ba, §3 and §4]. Since our techniques in case (b) easily also
lead to proofs in the setting of (a), we prove (a) and (b) at the same time.
We first recall a folklore result about lifting of subspaces in the semilocal
setting. It is straightforward to prove or can be obtained by specializing the
Reduction Theorem [Knu, II, (4.6.1)].

1.4. Lemma. Let R be a semilocal ring, let M be a finite projective R–
module and let U ⊂ M be a complemented submodule. For a maximal
ideal m ⊳ R we put κ(m) = R/m, M(m) = M ⊗R κ(m) = M/mM , and
analogously for U(m). We further assume that r ∈ N+ and that for every
m ∈ Specmax(R) there exists an r–dimensional subspace W [m] ⊂ M(m)
with U(m) ∩W [m] = {0}.

Then there exists a free submodule W ⊂ M of rank r which satisfies
W (m) = W [m], U ∩W = {0} and which has the property that U ⊕W is
complemented in M .
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1.5. Proposition. Let (M, q) be a quadratic space over R, let U ⊂M be a
complemented totally isotropic submodule, and assume one of the following.

(a) q is regular, or
(b) R is semilocal.

Then there exists a totally isotropic submodule V ⊂ M such that U ∩ V =
{0}, (U ⊕ V, qU⊕V ) ∼= H(U) and hence M = (U ⊕ V )⊕ (U ⊕ V )⊥.

Proof. (I) (Intermediate step) Suppose there exists a submodule W ⊂ M
satisfying

U ∩W = {0}, and for which the canonical map

β : U
∼
−→W ∗, u 7→ (w 7→ bq(u,w))

(1.5.1)

is an isomorphism of R–modules. By [Ba, I, (1.7)], we can choose a not
necessarily symmetric bilinear form b0 satisfying b0(m,m) = q(m) for all
m ∈M . By (1.5.1), for every w ∈W there exists a unique uw ∈ U such that
bq(uw, w

′) = b0(w,w
′) holds for all w′ ∈W . Because of uniqueness of the uw,

the map U → W , w 7→ uw, is R–linear. Then V = {w − uw : w ∈W} ∼= W
is a totally isotropic submodule: since q(uw) = 0 we have

q(w − uw) = q(w)− bq(w, uw) = b0(w,w) − bq(uw, w) = 0.

Moreover, U ∩ V = 0 and the canonical map U
∼
−→ V ∗, u 7→ (v 7→ bq(u, v))

is an isomorphism. Hence (U ⊕ V, q|U⊕V ) ∼= H(U). Since H(U) is a regular
quadratic module, 1.1(e) applies and yields M = (U ⊕ V )⊕ (U ⊕ V )⊥.

In the remainder of the proof we will establish the existence of a submod-
ule W satisfying (1.5.1). We point out that (I) applies to the two cases (a)
and (b).

(II) (Case (a) in general and case (b) with R a field) Let U⊥ = {m ∈M :
bq(m,U) = 0}. We have a well-defined pairing

α : U ×M/(U⊥)→ R, (u, m̄) 7→ bq(u,m)

which is regular: if α(u, m̄) = bq(u,m) = 0 for all m ∈M , then u ∈ rad(bq).
Hence u = 0 in case (a), while in case (b) we get u ∈ rad(q) because
q(u) = 0, so that again u = 0 follows, using that rad(q) = 0 if R is a field.
Also, if α(U, m̄) = bq(U,m) = 0, then m ∈ U⊥, and therefore m̄ = 0 fol-

lows. We now get that α induces an isomorphism α∗ : U
∼
−→ (M/U⊥)∗. We

claim that there exists a submodule W ⊂ M such that M = U⊥ ⊕ W ,
and therefore can: W

∼
−→ M/U⊥ under the canonical map. The exis-

tence of W follows in case (a) from [Ba, I, (3.2)(a)], saying that U⊥ is
complemented in M . It is obvious in case (b) with R a field. Denot-

ing by can∗ : (M/U⊥)∗
∼
−→ W ∗ the dual of the isomorphism can, we have(

(can∗ ◦α∗)(u)
)
(w) = α∗(u)

(
can(w)

)
= α∗(u)(w̄) = bq(u,w) = (β(u)

)
(w),

i.e., W satisfies (1.5.1). Now (I) finishes the proof in case (a), and in case
(b) with R a field. Before we can deal with a semilocal R in case (b) we
make a further reduction.
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(III) (Reduction to constant rank) Since U is complemented, it is finitely
generated projective. By 1.1(i), we can therefore decompose R = R1×· · ·×
Rn and correspondingly

(M, q) = (M1, q1) ⊥ · · · ⊥ (Mn, qn), U = U1 × · · · × Un

such that each Ui ⊂ Mi is a complemented submodule of constant rank
and a totaly isotropic submodule of the Ri–quadratic space (Mi, qi). If
Vi ⊂ Mi, 1 ≤ i ≤ n, are submodules as in the claim of the lemma, then
= V1×· · ·×Vn satisfies the conditions for (M, q). Without loss of generality
we can therefore assume that U has constant rank, say rank r. It is then
free of rank r.

(IV) (Case (b) in general) By (III) we can assume that U is free of rank
r. Using the notation of Lemma 1.4, we know that qκ(m) is nonsingular
by 1.2(d). Thus, by (II), the lemma holds for κ(m). We can therefore
choose an r–dimensional subspace W [m] such that U(m) ∩W [m] = {0} and

U(m)
∼
−→W [m]∗ via bκ(m). By Lemma 1.4, the W [m] lift to a submoduleW

satisfying U ∩W = {0} and W (m) =W [m]. Moreover, the map U −→W ∗,
induced by bq, is an isomorphism by Nakayama, since it is an isomorphism
after passing to each κ(m). Again (I) finishes the proof. �

1.6. Corollary (Characterization of hyperbolic spaces). Let (M, q) be
a quadratic R–space and assume that q is regular or that R is semilocal.
Then the following are equivalent:

(i) (M, q) is hyperbolic;
(ii) M admits a direct summand U satisfying q(U) = 0 and 2 rankp U =

rankpM for all p ∈ Spec(R);

(iii) M admits a direct summand U satisfying q(U) = 0 and U = U⊥.

In this case (M, q) ∼= H(U).

Proof. (i) =⇒ (ii) being obvious because rankp U = rankp U
∗, let us assume

(ii) and prove (iii). By Proposition 1.5, there exists a submodule V ⊂ M
such that (U⊕V, q|U⊕V ) ∼= H(U) is hyperbolic andM = (U⊕V )⊕(U⊕V )⊥.
Since V ∼= U∗ as R–modules, rankp(U ⊕V ) = rankpM , whence U ⊕V =M

and U⊥ = U ⊕ (U⊥ ∩ V ) with U⊥ ∩ V ∼= {ϕ ∈ U∗ : ϕ(U) = 0} = {0}. The
proof of (iii) =⇒ (i) follows the same pattern. �

1.7. Corollary. Let (M, q) and (M ′, q′) be regular quadratic modules.

(a) [Ba, I, (4.7.i)] If (M, q) and (M ′, q′) are isometric, then the quadratic
module (M, q) ⊥ (M ′,−q′) is hyperbolic: (M, q) ⊥ (M ′,−q′) ∼= H(M).

(b) Conversely, if R is semilocal and if (M, q) ⊥ (M ′,−q′) ∼= H(M), then
(M, q) ∼= (M ′, q′).

Proof. (a) Let f : (M, q) → (M ′, q′) be an isometry. The quadratic form
q ⊥ (−q′) is regular. The diagonal submodule U = {

(
m, f(m)

)
: m ∈M} ⊂

M ⊕M ′ is complemented by {(m, 0) : m ∈ M} and satisfies 1.6(ii). Hence
(M, q) ⊥ (M ′,−q′) ∼= H(M).
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(b) By (a), (M, q) ⊥ (M,−q) ∼= H(M) ∼= (M, q) ⊥ (M ′,−q′). Hence
(M,−q) ∼= (M ′−q′) by Witt cancellation 1.2(j), which implies our claim. �

Corollary 1.7(a) is not true for nonsingular quadratic forms, even over
fields. For example, let (M, q) = (F, 〈u〉q) = (M ′, q′) with F a field of
characteristic 2 and u ∈ F×. Then (M, q) is nonsingular by 1.2(h), but
0 6= (1F , 1F ) ∈ rad(q ⊥ (−q)), so that q ⊥ (−q) is singular, hence in
particular not hyperbolic.

1.8. Unimodular and isotropic vectors. Let M be a finite projective
R–module. For x ∈ M and p ∈ Spec(R) we put x(p) = x ⊗R 1κ(p). Recall
that u ∈M is called unimodular if u satisfies one of the following equivalent
conditions, see e.g. [Lo, 0.3]:

(i) Ru is complemented and free of rank 1,
(ii) there exists ϕ ∈M∗ satisfying ϕ(u) = 1,
(iii) u(p) 6= 0 for all p ∈ Spec(R),
(iv) u(m) 6= 0 for all maximal m ∈ Spec(R).

Let (M, q) be a quadratic module. We call m ∈ M isotropic if m is
unimodular and q(m) = 0. We say (M, q) is isotropic if M contains an
isotropic vector. We note some useful facts.

(a) If m is a unimodular (isotropic) vector of (M, q), then m ⊗ 1S is a
unimodular (isotropic respectively) vector of (M, q)S for any S ∈ R-alg.

(b) Let R[X] the polynomial ring over R in the variable X and let (M, q)
be a quadratic module. For v = v(X) ∈ M ⊗R R[X] define the affine R–
scheme

Zv = {x ∈ Ga,R : v(x) = 0},

whose T–points, T ∈ R-alg, is the set Zv(T ) = {t ∈ T : v(t) = 0} where
v(t) ∈M ⊗R T is obtained by substituting t for X. Then

(1.8.1) Zv empty =⇒ v unimodular.

Indeed, if p ∈ Spec(R[X]), then v(p) = v(X ⊗ 1κ(p)) 6= 0 since otherwise
X ⊗ 1κ(p) ∈ Zv(κ(p)).

(c) Let (M, q) be a quadratic space over R and assume that q is regular
or that R is semilocal. By Proposition 1.5, any isotropic vector embeds into
a hyperbolic plane H = H(R) and (M, q) = H ⊥ (M1, q1). In particular,
rankpM ≥ 2 holds for every p ∈ Spec(R).

(d) LetM be a projective R–module of constant rank 2 and let q : M → R
be a nonsingular quadratic form. By 1.2(e), q is nonsingular if and only if q
is regular. Hence, by (c), we have the implication “ =⇒ ” of

(1.8.2) (M, q) isotropic ⇐⇒ (M, q) ∼= H(R).

Thus, in this case M is free of rank 2. The other direction in (1.8.2)
holds because in H(R) = R ⊕ R with the hyperbolic form hyp, given by
hyp(r1, r2) = r1r2, the vector (1, 0) is isotropic.
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2. Springer’s odd extension theorem

Let (M, q) be a quadratic module. To simplify notation, we will often
abbreviate q(x) = qS(x) for x ∈ MS if S is clear from the context. We will
also say that q is S–isotropic if qS is isotropic, cf. 1.8. We recall that a
quadratic space (M, q) is a quadratic module with a nonsingular q.

2.1. Theorem (Springer’s Theorem). Let R be a semilocal ring and let
(M, q) be a quadratic space. Let S be a finite R–algebra of odd degree, which
is étale or one-generated. If q is S–isotropic, then q is R–isotropic.

The proof of this theorem will be given in 2.5. Lemma 2.2 proves Springer’s
Theorem in the case of rankM = 2. It involves a much weaker condition
than R being semilocal or that S is one-generated or étale. By 1.2(e), a
quadratic form on such an R–module M is nonsingular if and only if it is
regular.

2.2. Lemma (Rank 2). Let S ∈ R-alg be a finite R–algebra of odd degree
and let (M, q) be a quadratic space of constant rank 2, representing a unit
in R. Then (M, q) is isotropic if and only if (M, q)S is isotropic.

Proof. It is clear that (M, q) isotropic =⇒ (M, q)S isotropic. Let us there-
fore assume that (M, q)S is isotropic. Since q is isotropic if and only if uq
is isotropic for some u ∈ R×, we may assume that q represents 1. It then
follows from [Knu, V, (2.2.1)] that there exists a quadratic étale R–algebra
A with norm nA such that (M, q) ∼= (A,nA) (in fact A is the even Clifford
algebra of (M, q)). Without loss of generality, let (M, q) = (A,nA). By
assumption, (A,nA)S is isotropic, equivalently, (nA)S = nAS

is hyperbolic.
Now recall [Knu, V, (2.2.4)]: a quadratic étale S–algebra has a hyperbolic
norm if and only if AS it is split, i.e., AS

∼= S × S as S–algebra. It follows
that AS is split. By [Knu, III, (4.1.2)], the automorphism group scheme of
the R–algebra A is the abelian constant group scheme Z/2Z. Since S has
odd degree, we are in the setting of the Example in B.4. Thus (A,nA) is
split, i.e., nA is isotropic. �

We recall (1.8.2): under the assumption of Lemma 2.2, (M, q) is isotropic
⇐⇒ (M, q) ∼= H(R). The assumption that (M, q) represent a unit is always
fulfilled if R is semilocal, see for example [Ba, Prop. I.3.4]. Our proof of
Springer’s Theorem also uses the following Lemma 2.3, a variation of [PR,
Prop. 1.1].

2.3. Lemma. Let k be a field, let (V, q) be an isotropic quadratic k–space of
dimension r ≥ 3, and let P = P (X) ∈ k[X] be a monic polynomial of degree
d ≥ 1. Then there exists v = v(X) ∈ V ⊗k k[X] satisfying the following
conditions:

(i) q(v(X)) ∈ k[X] is a polynomial of degree 2d − 2, which is divisible
by P ;

(ii) the k–scheme Zv(X) = {x ∈ Ga : v(x) = 0} is empty.
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In particular, v(X) is unimodular.

Proof. Since q is isotropic, (V, q) contains a hyperbolic plane H and (V, q) =
H ⊥ (W, q|W ) for (W, q|W ) = H

⊥, see 1.8(c) or [EKM, 7.13]. The quadratic
module (W, q|W ) contains w ∈ W with q(w) =: a ∈ k×. In view of our
claims, it is then no harm to replace V by H ⊕ ka. Thus q is given by
q(x, y, z) = xy + az2, which is nonsingular by 1.2(g) and 1.2(h) (but not
regular in characteristic 2).

By the Euclidean division algorithm there exist unique polynomials Q(X)
∈ k[X] of degree d − 2 and R(X) of degree ≤ d − 1 such that X2d−2 =
P (X)Q(X) + R(X). We define v(X) = (−a,R(X),Xd−1) ∈ V ⊗ k[X].
Then q(v(X)) = −aR(X)+aX2d−2 = aP (X)Q(X). Thus, the condition (i)
is fulfilled with q(v(X)) = aP (X)Q(X). Since the first component of v(X)
is −a, the condition (ii) is satisfied too. It implies unimodularity of v(X)
by (1.8.1). �

2.4. Consequences of Lemma 2.3. As motivation for step (III) in the
proof of Theorem 2.1 below, we discuss some consequences of Lemma 2.3.
Step (III) will be more technical, but uses the same ideas. Let us put

S = k[X]/(P ), θ = X + (P ) ∈ S.

Then S is one-generated with θ as primitive element. The element v(θ) ∈
(V ⊗k k[X]) ⊗k[X] S = V ⊗k S is unimodular since it is obtained from the

unimodular v(X) by base change, see 1.8(a), and it satisfies q
(
v(θ)

)
= 0 by

condition (i) of 2.3, i.e., v(θ) is an isotropic vector in V ⊗k S.
Again by condition (i) of 2.3, the exists u ∈ k× and Q(X) ∈ k[X] of

degree d− 2 such that q
(
v(X)

)
= uP (X)Q(X) ∈ k[X]. Let

T = k[X]/(Q), ϑ = X + (Q) ∈ T.

Then T is one-generated of degree d−2 with primitive element ϑ. The same
arguments showing that v(θ) is an isotropic vector proves that v(ϑ) ∈ V ⊗kT
is isotropic.

In step (III) of the proof of Theorem 2.1 we will know that V ⊗k S is
isotropic and use a refinement of the argument above to conclude that V ⊗kT
is isotropic, the point being that degT = degS − 2.

2.5. Proof of Theorem 2.1. (I) Reduction to M free of rank r ≥ 3. Let
R = R0 × · · · × Rn and (M, q) = (M0, q0) ⊥ · · · ⊥ (Mn, qn) be the rank
decomposition of (M, q) as in 1.1(i). Thus, Mi is a projective Ri–module
of rank i and each qi : Mi → Ri is a nonsingular quadratic form. The R–
algebra S decomposes correspondingly, S = S0 × · · · × Sn where each Si is
a finite Ri–algebra of degree d = degS. We have

M ⊗R S ∼= (M0 ⊗R0 S0)× · · · × (Mn ⊗Rn Sn)

with each Mi ⊗Ri Si being projective of rank i as Si–module. Since qM⊗RS

is isotropic, so is every qMi⊗Ri
Si . By 1.8(c), Mi⊗Ri Si = 0 for i = 0, 1. Since
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in both cases (S one-generated or S étale) the Ri–modules Si are faithfully
flat, we get M0 = 0 =M1 and R0 = 0 = R1.

In the decomposition R = R2 × · · · × Rn, each Ri is a semilocal ring.We
have already observed that (M, q)S is isotropic if and only if everyMi⊗Ri Si
is isotropic. Since the analogous fact holds for (M, q), it suffices to prove
that every (Mi, qi) is isotropic. Thus, without loss of generality, we can
assume that M has constant rank r ≥ 2. The case r = 2 has been dealt
with in Lemma 2.2. We can therefore assume that M has rank r ≥ 3. Since
R is semilocal, this implies that M is free of rank r.

(II) R = k is a field and S is one–generated. In this case S ∼= k[X]/P for
some monic P ∈ k[X]. Let P = P e1

1 · · ·P
en
n be the prime factor decomposi-

tion of P in k[X], and put Li = k[X]/Pi. Since d = dimk S =
∑

i ei[Li : k] is
odd, one of the [Li : k] is odd. Then L = Li ∈ S-alg and thus qL = (qS)⊗SL
is isotropic. Since L/k has odd degree, the classical Springer Odd Degree
Extension Theorem [EKM, Cor. 18.5] says that q is isotropic.

(III) R semilocal and S is one-generated. As before, let S = R[X]/(P )
where P ∈ R[X] is a monic polynomial opf degree d. We denote by κ1, . . . , κc
the residue fields of R. For each i, 1 ≤ i ≤ c, the κi–algebra Sκi = S ⊗R κi
is one-generated, namely Sκi = κi[X]/Pκi for Pκi = P ⊗R 1κi , and of odd
degree d. Since q is S–isotropic, it is also S⊗Rκi-isotropic. The case (II) then
shows that qκi is isotropic. Now Lemma 2.3 provides unimodular elements
vi(X) ∈ (M⊗Rκi)⊗κiκi[X] =M⊗Rκi[X] such that q(vi(X)) is the product
of a unit in κ×i and a monic polynomial of degree 2d − 2 which is divisible
by Pκi and has the property that the κi–scheme

Zvi = {x ∈ Ga,κi : vi(x) = 0} is empty.

Let θ = X + (P ) ∈ S and denote by θi its image in Sκi . Then vi(θi)
is obtained from the unimodular vi(X) by base change and is therefore
unimodular. It also satisfies q(vi(θi)) = 0 since q(vi(X)) is divisible by Pκi .
In other words, vi(θi) is an Sκi–isotropic vector.

According to Corollary A.6 of the appendix, the vi(θi)
′s ∈M⊗RSκi lift to

an isotropic v ∈M⊗RS. We decompose v = m0+m1θ+· · ·+md−1θ
d−1 where

the mj’s belong to M , and define v(X) = m0 +m1X + · · · +md−1X
d−1 ∈

M⊗RR[X]. By construction q(v(X)) ∈ P (X)R[X] is a polynomial of degree
≤ 2d−2. Since the specialization to each κi[X] is of degree 2d−2, it follows
that q(v(X)) is the product of a unit u ∈ R× and a monic polynomial of
degree 2d − 2. Summarizing, we have that q(v(X)) = uP (X)Q(X) with
Q(X) monic of degree d− 2 and u ∈ R×.

Since Zvi = {t ∈ Ga,κi : vi(t) = 0} is empty for each i, it follows that
Zv = {x ∈ Ga,R : v(x) = 0} is empty too. We define T = R[X]/Q(X). Then
w = v(X) modulo Q is an isotropic vector of MT . Thus, q is T -isotropic
with T one-generated of degree d − 2. We continue the induction until we
reach d− 2 = 1 and can conclude that M is isotropic.
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(IV) S is étale. According to [BFP, Prop. 7.3] there exists a finite étale
R–algebra T of odd degree such that S⊗R T is one-generated as R–algebra.
The paper [BFP] assumes throughout that 2 ∈ R×, but the proof of the
quoted proposition works for arbitrary R.

Since q is S-isotropic, it is a fortiori S ⊗R T -isotropic. Since S ⊗R T has
odd degree, the preceding case (III) shows that q is isotropic. �

As in the case of fields, see e.g. [Sch, II], Theorem 2.1 has a number of
consequences worth stating. First, by 1.8(c), Springer’s Theorem says: if
(M, q)S contains a hyperbolic plane H, then so does (M, q). Corollary 2.6
says that this is true for arbitrary hyperbolic spaces. We say a quadratic
module (M, q) contains a quadratic module (M1, q1) if there exists a comple-
mented submodule N ⊂ M such that (M1, q1) ∼= (N, q|N ). In this case, we
usually identify (M1, q1) = (N, q|N ). We recall that if (M1, q1) is regular,
e.g., a hyperbolic space, then (M, q) = (M1, q1) ⊥ (M1, q1)

⊥ by 1.1(e).

2.6. Corollary. Let R, S and (M, q) be as in Theorem 2.1. If (M, q)S
contains a hyperbolic space H(N ′) with N ′ projective of constant rank r,
then (M, q) contains a hyperbolic space H(N) with N projective of rank r.

Proof. Recall ([Knu, V, (1.1.1)]) that S is semilocal and that a projective
module of constant rank over a semilocal ring is free. We can of course
assume that r > 0 and that M has constant rank, cf. 1.2(i). It follows
that (M, q)S is isotropic. Hence, by Springer’s Theorem 2.1, the quadratic
module (M, q) contains an isotropic vector e. By 1.8(c) we then have a
decomposition (M, q) = H(Re) ⊥ (M1, q1) where (M1, q1) is a quadratic
space by 1.2(g). If (M1, q1) = 0, we are done. Otherwise, M1 has positive
rank. Also, H(Se) ⊥ (M1, q1)S = (M, q)S ∼= H(N ′) ⊥ H(N ′)⊥. Since N ′

is free, it decomposes as N ′ ∼= Re′ ⊕ N ′
1 where e′ is isotropic and N ′

1 is a
totally isotropic submodule N ′

1 of rank r − 1. Therefore

H(Se) ⊥ (M1, q1)S = (M, q)S ∼= H(Se′) ⊥ (H(N ′
1) ⊥ H(N ′)⊥).

Since H(Se) is regular and (M1, q1)S is nonsingular and of positive rank,
we can cancel H(Se) ∼= H(Se′) using 1.2(j). We find that the nonsingular
quadratic module (M1, q1) satisfies the assumption of the corollary with r
replaced by r − 1. We then continue by induction on r. �

2.7. Corollary. Let R, S and (M, q) be as in Theorem 2.1, let (M1, q1) be
a regular quadratic R–module such that (M1, q1)S is contained in (M, q)S .
Then (M1, q1) is contained in (M, q).

Proof. We apply the rank decomposition 1.2(i) to (M1, q1) and can then
without loss of generality assume that (M1, q1) has constant rank. Since
(M1, q1)S is regular, the nonsingular quadratic S–space (M, q)S decomposes,

(M, q)S ∼= (M1, q1)S ⊥ (M ′
2, q

′
2)

where (M ′
2, q

′
2) is a nonsingular S–space by 1.2(g). By Corollary 1.7, the

quadratic S–module qS ⊥ (−q1)S contains a hyperbolic S–space isometric
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to H(M1,S). Hence by Corollary 2.6, there exists a nonsingular quadratic
R–module (M2, q2) such that

q ⊥ (−q1) ∼= H(M1) ⊥ q2 ∼= q1 ⊥ (−q1) ⊥ q2.

Canceling −q1 by Witt cancellation 1.2(j), yields the result. �

For easier reference, we explicitly state the case (M1, q)S ∼= (M1, q1)S in
the following Corollary 2.8. The case (iii) is obtained by writing S/R as a
finite tower of odd one-generated (= simple) field extensions.

2.8. Corollary. Let R be a semilocal ring, let q and q′ be regular R–quadratic
forms, and let S ∈ R-alg be a finite R–algebra of odd degree which satisfies
one of the following conditions,

(i) S is a one-generated R–algebra, or
(ii) S is an étale R–algebra, or
(iii) R is a field and S/R is a field extension.

Then
qS ∼= q′S ⇐⇒ q ∼= q′.

In Corollary 2.9, Ŵq(R) and Wq(R) denote the Witt-Grothendieck ring
and Witt ring of regular quadratic R–modules respectively, as for example
defined in [Ba, I, §2, §4]. These are commutative associative rings without
a multiplicative identity if 2 /∈ R×. The proof of 2.9 is standard, using
Corollary 2.7.

2.9. Corollary. Let R be a semilocal ring and let S ∈ R-alg be a finite
R–algebra of odd degree, which is one-generated or étale. Then the maps

(2.9.1) Ŵq(R) −→ Ŵq(S) and Wq(R) −→Wq(S),

induced by [q] 7→ [qS ], are monomorphisms.

Corollary 2.9 was established in [Ba, V, Thm.6.9] for Frobenius exten-
sions, based on a detailed study of torsion in the kernels of the maps in
(2.9.1) and in this way avoiding Springer’s Theorem, which is not proven in
[Ba].

2.10. Set of values. By definition, the set of values D(q) of a quadratic
module (M, q) is

D(q) = q(M) ∩R×.

We will use the following elementary facts.

(a) The set of values is stable under base change: if S ∈ R-alg, then
D(q)⊗ 1S ⊂ D(qS).

(b) If q contains a hyperbolic plane, then D(q) = R×. Recall from 1.8(c)
that q contains a hyperbolic plane whenever (M, q) is an isotropic quadratic
space and R is semilocal or q is regular.

(c) (Direct products) Let R = R1 × R2 be a direct product. By 1.2(i),
the quadratic module (M, q) uniquely decomposes as (M, q) = (M1, q1) ×
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(M2, q2) where (Mi, qi), i = 1, 2, is a quadratic Ri–module, which is nonsin-
gular if (M, q) is so. We have D(q) = D(q1) × D(q2). An S ∈ R-alg which
is projective of rank d ∈ N+ uniquely decomposes as S = S1 × S2 where
each Si is a projective Ri–module of rank d. In view of 1.2(i), this shows
that the determination of D(q) can often be reduced to that of D(q) where
(M, q) has constant rank.

(d) Let (M, q) = (R, 〈u〉) with u ∈ R×. Then D(q) = uR×2. For any
S ∈ R-alg which is projective of odd rank d we have

(2.10.1) a⊗ 1S ∈ D(qS) ⇐⇒ a ∈ D(q).

By (a) we only need to prove “ =⇒ ”. We have D(qS) = (u⊗1S)S
×2, and if

a⊗ 1S = (u⊗ 1S)s
2 for some s ∈ S, then ad = NS/R(a⊗ 1S) = ud NS/R(s)

2.

Since ad ∈ aR×2 and ud ∈ uR×2, we get a ∈ uR×2 = D(q).

In the following Corollary 2.11 we will prove (2.10.1) for more general
nonsingular forms.

2.11. Corollary. Let R be a semilocal ring, let a ∈ R× and let (M, q) be a
quadratic space for which q′ = q ⊥ 〈−a〉 is nonsingular, cf. 1.2(g). Further-
more, let S ∈ R-alg be a finite R–algebra of odd degree which is étale or
one-generated. Then

(2.11.1) a⊗ 1S ∈ D(qS) ⇐⇒ a ∈ D(q).

This is a well-known result in case R is a field of characteristic 6= 2 and
S/R is an extension field, see for example [Lam, VII, Cor. 2.9]. In this case,
no assumption on q′ is necessary.

Proof. We will of course only prove “ =⇒ ”. By 2.10(c) and 2.10(d) we can
assume that M has constant rank ≥ 2. The assumption implies that q′S
contains an isotropic vector (x, 1) for some x ∈MS . Hence, by Theorem 2.1
for q′, we get that q′ is R–isotropic, i.e., there exists m ∈M and r ∈ R such
that (m, r) ∈M ⊕R is unimodular and satisfies q(m) = ar2. At this point,
two cases are clear:

(i) r = 0: Then m ∈ M is an isotropic vector of q. Hence, by 1.8(c),
(M, q) contains a hyperbolic plane and then we are done by 2.10(b).

(ii) r ∈ R×: Then a = q(r−1m) and we are again done.

In particular, (2.11.1) holds in case R is a field. For general R we will choose
an isotropic vector of q′ more carefully.

Let m ⊳ R be a maximal ideal of R with residue field κ = R/m, and put
S ⊗R κ = S/mS. We thus have extensions

S // S ⊗R κ

R

OO

// κ

OO

.

Since nonsingularity is inherited by extensions and since (S⊗Rκ)/κ has odd
degree and is étale or one-generated, the field case applies and yields the
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existence of mκ ∈M ⊗R κ satisfying qκ(mκ) = a⊗1κ. In this way we obtain
a family (vm)m∈Specmax(R) of isotropic vectors vm = (mκ, 1κ) ∈ (M ⊕ R)κ.
By Corollary A.6, we then get an isotropic element v = (x, r) ∈M ⊕R that
lifts the vm’s. In particular, rκ = 1κ for every residue field κ of R. This
implies r ∈ R×. So we are done by (ii) above. �

Appendix A. Lifting isotropic elements

The goal of this appendix is Corollary A.6, which gives a criterion for
lifting isotropic elements from localisations. We obtain this as a consequence
of a surjectivity result for localizations of quadrics (Proposition A.5), which
in turn is a special case of Demazure’s fundamental Conjugacy Theorem,
proven in [SGA3, XXVI] and re-stated below.

If C ∈ R-alg and m ⊳ R is a maximal ideal of R we abbreviate C/m :=
C/mC. We use the terms reductive (semisimple) group scheme and parabolic
subgroup scheme as defined in [SGA3, Tome III], but refer to a group scheme
over Spec(R) as an R–group scheme. We furthermore use the setting and
the results of [SGA3, XXVI.3] for schemes of parabolic subgroup schemes.

A.1.Theorem (Demazure’s Conjugacy Theorem). Let R be a semilocal
ring and let G be a reductive R-group scheme. Denote by Dyn(G) its Dynkin
R-scheme (which is finite étale) and by Of(Dyn(G)) the R-scheme of clopen
subsets of Dyn(G). Let t ∈ Of(Dyn(G))(R) be a type of parabolic subgroups
and denote by X = Par(G)t the R-scheme of parabolic subgroups of type t.
Then the following hold.

(a) G(R) acts transitively on X(R).

(b) If S is a finite R-algebra such that X(S) 6= ∅, the map

X(S) −→
∏

m∈Specmax(S)

X(S/m)

is onto.

Proof. (a) If X(R) = ∅, the statement is obvious. We can thus assume that
X(R) 6= ∅ and pick a point x ∈ X(R); this corresponds to an R-parabolic
subgroup P of G of type t. According to [SGA3, XXVI.4.3.5], G admits a
parabolic subgroup P′ opposite to P. Corollary 5.2. of loc. cit. then says in
particular that X(R) = G(R)/P(R). Thus G(R) acts transitively on X(R).

(b) Recall that S is semilocal, for example by [Knu, VI, (1.1.1)]. Our
assumption is that GS admits an S-parabolic subgroup scheme Q of type t.
As noted in (a), it admits an opposite parabolic S-subgroup Q′. According
to [SGA3, XXVI.5.2], the product radu(Q)(S) × radu(Q

′)(S) → X(S) is
surjective (here radu(.) denotes the unipotent radical). Applying this for
the semilocal ring S as well as for the semilocal ring S/m, m ∈ Specmax(R),
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shows that the horizontal maps in the commutative diagram below are sur-
jective:

radu(Q)(S)× radu(Q
′)(S) //

��

X(S)

��∏
m

radu(Q)(S/m)× radu(Q
′)(S/m) //

∏
m

X(S/m)

Since
∏

m
S/m ∼=

∏
m
S ⊗R (R/m) ∼= S ⊗R (R/Jac(R) ∼= S/Jac(R)S, where

Jac(R) denotes the Jacobson radical of R, the map S →
∏

m
S/m is onto. On

the other hand, the S–scheme radu(Q) (respectively radu(Q
′)) is isomorphic

to a vector S–group scheme [SGA3, XXVI.2.5], so that the left vertical map
is onto. Hence, by a simple diagram chase the right vertical map is onto
too. �

A.2. Corollary. We use the notation of A.1, except that R need not be
semilocal, but can be arbitrary. In particular, G is a reductive R–group
scheme and x, y are parabolic subgroups in X(R).

Then there exist f1, . . . , fn ∈ R satisfying f1 + · · · + fn = 1 and yRfi
∈

G(Rfi) . xRfi
for i = 1, .., n. In other words, x and y are locally G-conjugated

for the Zariski topology on R.

Proof. The group G is an R–group of type (RR) by [SGA3, XXII.5.1.3] and
the points x, y of X(R) are parabolic subgroups, hence subgroups of type
(R) by 5.2.3 of loc. cit.. It then follows from Theorem 5.3.9 of loc. cit. that
the strict transporter T, defined by

T(S) = {g ∈ G(S) : g · xS = yS} (S ∈ R-alg),

is a finitely presented affine R–scheme (among other properties). Since
T(Rm) 6= ∅ for any maximal m ∈ Spec(R) by A.1(a), the claim follows
from Lemma A.3 below. �

A.3. Lemma. Let R be arbitrary and let T be an R–scheme which is locally
of finite presentation. If T(Rm) 6= ∅ for all maximal m ∈ Spec(R), then
there exists a Zariski cover (f1, . . . , fn) of R for which T(Rfi) 6= ∅ for all i,
1 ≤ i ≤ n.

Proof. Fix a maximalm ∈ Spec(R). ThenRm = lim−→f 6∈m
Rf , hence Spec(R) =

lim←−f 6∈m
Spec(Rf ) and so T(Rm) = lim−→f 6∈m

T(Rf ), according to [St, Tag

01ZC]. It follows that there exists fm ∈ R \ m such that T(Rfm) 6= ∅.
The fm’s for m running over the maximal ideals of R generate R as ideal.
Hence, there exists finitely many maximal ideals m1, . . . ,mn such that R =
Rfm1 + · · ·+Rfmn . �

A.4. An important special case of Theorem A.1 and Corollary A.2 is that
of quadrics elaborated below. Let us explain some notation. We let (M, q)
be a quadratic space with M of constant rank n. The associated special
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orthogonal group scheme G = SO(q) is defined in [Co1, C.2.10]. It is a
semisimple R–group scheme of type A1 for n = 3, of type B(n−1)/2 for odd
n ≥ 5 and of type Dn/2 for even n ≥ 4. We use Bourbaki’s enumeration of
the corresponding Dynkin diagrams:

r

α1

. . . . . . >r r r r r r r r

α1 α2 αn−1
2

. . . . . . . . .
❍
❍

✟
✟

r r r r r r r r r r

r

r

α1 α2 αn
2
−1

αn
2

We also use the projective space P(M∨) with Grothendieck’s convention,
i.e., P(M∨)(S), S ∈ R-alg, corresponds to the direct summands D of MS

which are locally free of rank 1. The quadric Q defined by q = 0 consists
of those D in P(M∨)(S) with q(D) = 0. For D ∈ Q(R) we let P be the
R-subgroup scheme of G which stabilizes D. Finally, we remind the reader
of our abbreviation S/m = S/mS for S ∈ R-alg and m ∈ Specmax(R).

A.5. Proposition. We use the notation of A.4. Then the following hold.

(a) (i) P is a parabolic R–subgroup of G.
(ii) The orbit map G → P(M∨), g → g.[D], induces an isomor-

phism G/P
∼
−→ Q of R–schemes.

(iii) Q is G-isomorphic to Par(G)t1 where the type t1 is constant
and of value Dyn(G)(R) \ {α1}R with the enumeration of the
respective Dynkin diagrams displayed above.

(b) Let R be semilocal. Then
(i) G(R) acts transitively on Q(R), and
(ii) if S is a finite R-algebra such that Q(S) 6= ∅, then

(A.5.1) Q(S) −→
∏

m∈Specmax(R)

Q(S/m)

is onto.

Proof. We prove only the even rank case, the odd case being analogous.

(a) We observe that the claims hold over a field [Co2, Th. 3.9.(i)] and also
that they are local for the flat topology. According to [Co1, Lemma C.2.1]
or [Knu, IV, (3.2.1)], we may assume that (M, q) is the standard hyperbolic
quadratic R-form over R2n (n ≥ 2), defined by q(x1, . . . , xn, y1, . . . , yn) =
x1y1 + · · ·+ xnyn.

We first consider the case D = Rp where p = (1, 0, . . . , 0, 0, . . . , 0), and
denote by Pp the corresponding subgroup scheme. This permits us to as-
sume R = Z. Then Pp is an affine finitely presented Z-group scheme whose
algebraically closed fibers are smooth connected and of dimension 2n−2. By
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[AG, Lemma B.1], Pp is smooth. Since the geometric fibers of Pp are para-
bolic subgroups, Pp is parabolic too. The induced orbit map f : G/Pp → Q
is a monomorphism. The field case ensures that this is a fiberwise isomor-
phism. Since G/Pp is flat and of finite presentation, the fiberwise iso-
morphism criterion [EGA, IV4, 17.9.5] enables us to conclude that f is an
isomorphism. It follows that Q is homogeneous under G. Thus (i) and (ii)
hold for the special p.

Let us now deal with the general case. Since G-homogeneity is a local
property with respect to the flat topology, Q is homogeneous under G. The
case of a general D then follows from the observation that D is locally G-
conjugated to Rp in the Zariski topology by applying Corollary A.2 to Q.
This proves (i) and (ii) in general.

(iii) We first deal with the special p above. We have an isomorphism
G/P ∼= Q. On the other hand, according to [SGA3, XXVI.3.6], we have

a G-isomorphism G/P
∼
−→ Par(G)t(P), hence an G-isomorphism Q

∼
−→

Par(G)t(P). This isomorphism applies a point x ∈ Q(R) to the stabilizer
Gx, so is a canonical isomorphism. Here t(P) ∈ Of(Dyn(G))(R) is the type
of P. Checking that it is t1, reduces to the field case which is [Co2, Lemma
3.12].

For the general case, let S be a flat cover of R such that Q(S) 6= ∅.

We have an isomorphism QS
∼
−→ Par(G)t1 ,S which is canonical and GS-

equivariant. By faithfully flat descent, it descends to a G-equivariant iso-
morphism Q

∼
−→ Par(G)t1 .

(b) follows from Theorem A.1 applied to Q ∼= Par(G)t1 . �

A.6. Corollary. We assume that R is a semilocal ring. Let (M, q) be a
quadratic space of constant rank ≥ 3, let S be a finite R-algebra such that
qS is isotropic, and let (vm)m∈Specmax(R) be a family of isotropic elements
vm ∈ M ⊗R S/m. Then there exists an isotropic v ∈ M ⊗R S that lifts the
vm’s.

Proof. LetQ ⊂ P(M∨) be the projective quadric associated with q in Propo-
sition A.5. Our assumption is that Q(S) 6= ∅.

Each S/m–module (S/m).vm is a direct summand of M ⊗R S/m which is
free of rank one, so defines a point xm ∈ Q(S/m). Proposition A.5(b)(ii)
provides an element x ∈ Q(S) which lifts the xm’s. Since S is semilocal, x
is represented by an S-module D which is a direct summand of rank one
of M ⊗R S and satisfies q(D) = 0. We write D = Sv where v is an S–
unimodular element of M ⊗R S satisfying q(v) = 0. Since S× →

∏
m
(S/m)×

is onto, we can modify v by an unit of S to ensure that v lifts the vm’s. �

Appendix B. Trace for torsors

B.1. Weil restriction ([BLR, 7.6], [CGP, A.5], [DG, I, §1, 6.6]). Let S ∈
R-alg. Given an S–functor Y ′, the Weil restriction of Y ′ is the R–functor
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RS/R(Y
′) defined by

RS/R(Y
′)(A) = Y ′(A⊗R S), (A ∈ R-alg).

It is uniquely determined by the following universal property: for every
R–functor X there exists a bijection

(B.1.1) ξ = ξX,Y ′ : MorS-alg(XS , Y
′)

∼
−→ MorR-alg(X,RS/R(Y

′))

where XS is the S–functor obtained from X by base change, thus satisfying
XS(B) = X(RB) for B ∈ S-alg. Here and sometimes in the following
we write RB to denote the R–algebra obtained from the S–algebra B by
restriction of scalars. The bijection ξ is functorial in X and Y ′. It maps
g ∈ MorS-alg(XS , Y

′) to the composition

X(A)
X(inc1)
−−−−−→ X

(
R(A⊗R S)

) g(A⊗RS)
−−−−−−→ Y ′(A⊗R S)

where A ∈ R-alg and inc1 is the R–algebra homomorphism

inc1 = inc1,A : A −→ R(A⊗R S), a 7→ a⊗ 1S .

We consider two special cases of (B.1.1). First, for Y ′ = XS and g = IdXS

we get the morphism

j = jX = ξ(IdXS
) : X −→ RS/R(XS)

of R–functors, determined by jX(A) = X(inc1,A), A ∈ R-alg. Second,
putting X = RS/R(Y

′) in (B.1.1), there exists a unique morphism

q = qY ′ : RS/R(Y
′)S −→ Y ′

of S–functors satisfying ξ(qY ′) = IdRS/R(Y ′). For B ∈ S-alg we have

RS/R(Y
′)S(B) = RS/R(Y

′)(RB) = Y ′(RB ⊗R S) and so

qY ′(B) : Y ′(RB ⊗R S) −→ Y ′(B).

In fact, qY ′(B) = Y ′(mB) where mB is the S–algebra homomorphism

mB : (RB)⊗R S −→ B, b⊗ s 7→ bs

([CGP, A.5.7]). For Y ′ = XS we now have constructed morphisms

XS
jX,S
−−−→ RS/R(XS)S

qXS−−−→ XS

between S–functors. Untangling the constructions above, we find

(B.1.2) qXS
◦ jX,S = IdXS

because B
inc1,B
−−−−→ RB ⊗R S

mB−−→ B equals IdB.
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B.2. Cohomology and restriction. Let G be a flat R–group sheaf. We
denote by

H1(R,G) = H1
fppf(R,G)

the pointed set of isomorphism classes of G–torsors over Spec(R) in the flat
topology. Let S ∈ R-alg. The base change XS = X ×Spec(R) Spec(S) of a
G–torsor X is a GS–torsor, giving rise to the restriction map

res = resS/R,G : H1(R,G)→ H1(S,GS), [X] 7→ [XS ].

A homomorphism f : G → H of flat R–group sheaves induces a map in
cohomology

f∗ : H
1(R,G)→ H1(R,H), [X] 7→ [X ∧G H]

where X ∧G H = (X ×Spec(R) H)/G is the contracted product with respect
to the G–action on H via f . Contracted products are special cases of fppf
quotients and as such allow base change [GM, (4.30)]. Hence (X ∧G H)S
and XS ∧

GS HS are isomorphic HS–torsors, giving rise to a commutative
diagram

(B.2.1)

H1(R,G)
f∗ //

res
��

H1(R,H)

res
��

H1(S,GS)
fS,∗ // H1(S,HS)

of pointed sets. It is known that H = RS/R(GS) is again a flat R–group
sheaf if G is so and that the maps

j : G→ RS/R(GS) and q : RS/R(GS)S → GS

of B.1 are homomorphisms of R–group sheaves.
Hence, passing to cohomology, the maps in the diagram are well-defined:

(B.2.2)

H1(R,G)
j∗ //

resG
��

H1(R,RS/R(GS))

resR(GS )

��

i

uu❦ ❦

❦

❦

❦

❦

❦

H1(S,GS) H1(S,RS/R(GS)S)q∗
oo

We claim that (B.2.2) is a commutative diagram. Indeed, since q◦ jS = IdGS

by (B.1.2), this follows from commutativity of (B.2.1):

(B.2.3) resG = q∗ ◦ (jS)∗ ◦ resS/R,G = q∗ ◦ resRS/R(GS) ◦j∗ = i ◦j∗.

The map i = q∗ ◦ resRS/R(GS) is injective by [SGA3, XXIV.8.2].

In particular, assume that G is an abelian affine R–group scheme. Then so
areGS , RS/R(GS) and RS/R(GS)S . Moreover, the cohomology sets and maps
used in (B.2.2) are abelian groups and group homomorphisms respectively.
Since i is injective, we get from (B.2.3) that

(B.2.4) Ker(resG) = Ker(i ◦j∗) = Ker(j∗).
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B.3. Deligne trace homomorphism. Let S ∈ R-alg be locally free of
finite rank d ∈ N+, i.e., the R–module S is projective of constant rank d,
and let G be an abelian affine R–group scheme. We then have Deligne’s
trace homomorphism

(B.3.1) tr : RS/R(G)→ G, satisfying tr ◦ j = ×d,

where ×d : G → G is the group homomorphism given on T–points, T ∈
R-alg, by g 7→ gd [SGA43, XVII, 6.3.13–6.3.15]. It induces an endomorphism

(×d)∗ : H
1(R,G) −→ H1(R,G)

given by the analogous formula. Since (×d)∗ = tr∗ ◦ j∗ by (B.3.1), we obtain
from (B.2.4) that

(B.3.2) Ker(resS/R,G) = Ker(j∗) ⊂ Ker
(
(×d)∗

)
.

In particular, this implies the following.

B.4. Lemma. In the setting of B.3 assume that ×d : G → G is an iso-
morphism. Then the restriction homomorphism resS/R,G : H1

fppf(R,G) →

H1
fppf(S,G) is injective.

Example. Let G be the constant R–group scheme Z/2Z, which is the
automorphism group scheme of a quadratic étale R–algebra A, and let d be
odd. Then Lemma B.4 applies and in particular shows that A is split, i.e.,
A = R×R, if and only if AS is split.
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