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Q: camille.roux@univ-lille.fr

May 6, 2020

W e present DILS, an online statistical
analysis platform for conducting demo-
graphic inferences with linked selection

from population genomic data using an Approx-
imate Bayesian Computation framework. DILS
takes as input single-population or two-population
datasets and performs three types of analyses in
a hierarchical manner, identifying: 1) the best de-
mographic model to study the importance of gene
flow and population size change on the genetic
patterns of polymorphism and divergence, 2) the
best genomic model to determine whether the ef-
fective size Ne and migration rate N.m are het-
erogeneously distributed along the genome and 3)
loci in genomic regions most associated with bar-
riers to gene flow. Available via a web interface,
an objective of DILS is to facilitate collaborative re-
search in speciation genomics. Here, we show the
performance and limitations of DILS by using sim-
ulations, and finally apply the method to published
data on a divergence continuum composed by 28
pairs of Mytilus mussel populations/species.
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1 Introduction

Population genomic data along with efficient compu-
tational methods are becoming increasingly available,
paving the way to broad-scale application of model-
based inferences for understanding signatures of evo-
lutionary processes (Lohse, 2017). Neutral processes
such as divergence, gene flow and changes in popula-
tion size all shape patterns of genomic variation; and
so demographic models attempting to reconstruct the
past history of single populations or closely-related
species can also serve as null models in genome scans
for selection. Considering a single species, model-based
inferences are especially suitable in domesticated crops
for disentangling the effect of population size changes
from selection on agronomic traits (Gaut et al., 2018).
Two-population models allow to tackle issues on spe-
ciation genomics, where this approach provides di-
rect testing of distinct modes of speciation (Sousa and
Hey, 2013), with at the two extremes a model of al-
lopatric speciation that occurs in complete isolation
and a model where speciation is opposed by continuous
gene flow. This is critical to build-up a unifying pic-
ture of the genic view of speciation by quantifying the
reduction in gene exchange between lineages as a func-
tion of their molecular divergence (Roux et al., 2016;
Peñalba, Joseph, and Moritz, 2019); and identify in sil-
ico genomic regions harboring speciation genes, given
that their barrier effects can only be detected in the
presence of ongoing gene flow (Roux et al., 2013). At
a broader scale, model-based inferences can be applied
to community ecology to infer, for example, the as-
sembly history of trophically linked species (Bunnefeld
et al., 2018).
Various methods have been proposed to extract such

information from population genomic data. Site fre-
quency spectrum (SFS)-based methods compute or
approximate the likelihood of the allele frequency dis-
tribution from a demographic model using either the
diffusion approximation (Gutenkunst et al., 2009), the
moment closure (Jouganous et al., 2017) or the coa-
lescent (Excoffier et al., 2013). While these methods
are fast, they ignore linkage information which is in-
formative about past demography (Terhorst and Song,
2015). Therefore, other methods rely on the block-wise
SFS, i.e. the SFS of short non-recombining blocks of
sequences (Lohse, Harrison, and Barton, 2011). That
way the genealogical information contained within
each block is combined along the genome. Other multi-
locus methods can jointly infer recombination and
demography, therefore capturing longer range link-
age disequilibrium, but they are still restricted to sim-
ple demographic histories excluding migration (Ter-
horst, Kamm, and Song, 2017). Still, the flexibility
of simulation-based approximate Bayesian computa-
tion (ABC) enables including recombination within un-

linked blocks in multi-locus inference of complex (and
hopefully more realistic) evolutionary scenarios (Beau-
mont, Zhang, and Balding, 2002). Although more
computationally expensive, the analysis of thousands
of loci results in high-precision parameter estimation
for most demographic scenarios (Robinson et al., 2014;
Smith and Flaxman, 2020).
In this paper, we present an ABC framework (DILS)

building upon and extending current statistical ma-
chinery (Pudlo et al., 2015; Roux et al., 2016). Our
method is flexible both in terms of the evolutionary sce-
narios that can be accommodated (allowing changes
in population size over time, linked selection and im-
plementing various models of migration), and type of
data (SFSs and/or multi-locus sequences). A major
improvement compared to most existing methods is
decoupling the effect of linked selection and neutral
history by relaxing the assumption that all loci share
the same demography (see Sethuraman, Sousa, and
Hey, 2019; Sousa et al., 2013 and Lohse pers. comm.
for similar ideas). We model variation in the rate of
drift among loci to account for linked selection effects
due to background selection (i.e. purifying selection)
and adaptive sweeps in low-recombining and gene-
dense regions. And by explicitly modelling variation in
migration rates among loci in two-population models,
we can capture the effect of selection against migrants
at neutral markers linked to species barriers, and so
analyse further these candidate genomic regions for
reproductive isolation (Roux et al., 2013).
DILS offers an online platform for configuring demo-

graphic inferences based on genomic data of thousands
of loci, performing them and visualizing the returned
output. These advances are made possible by progress
in simulator performance (Hudson, 2002), reduction
in the number of simulations required to train predic-
tion algorithms (Pudlo et al., 2015) and development
of computer clusters and tools facilitating parallelism
(Köster and Rahmann, 2012). Following other user-
friendly ABC programs, DILS aims to ease the use of
high-performance tools for non-experts in methodology
(Cornuet et al., 2008; Cornuet et al., 2014). Impor-
tantly, as there is a limit to how much information can
be extracted from genomic data, DILS also implements
rigorous quality controls. Therefore, not only does
the user receive 1) the best-supported model among
those proposed (figure 1), 2) an estimate of the de-
mographic parameters describing this model and 3)
a locus-specific test to identify barriers to gene flow
(when relevant); the user will also get feedback on
whether the best model is relevant and to which extent
the estimates are able to reproduce the observed data.
A long-term aim of DILS is to facilitate collabora-

tive research in speciation genomics. The degree of
reproductive isolation appears to follow a quasi-shared
molecular clock among animals, depending on the level
of net genomic divergence between lineages (Roux et
al., 2016). However, for the same level of divergence,
two opposite situations coexist in the so-called grey
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zone of speciation with, on the one hand, semi-isolated
pairs capable of exchanging genetic material and, on
the other hand, pairs of species that are fully repro-
ductively isolated. Many hypotheses have been ad-
vanced to explain such a reproductive barrier contrast
within the same range of molecular divergence, includ-
ing differences related to life history traits (internal
versus external fertilization), ecology (marine versus
terrestrial organisms), reproductive systems (e.g. in
plants: self-incompatibility versus self-fertilization),
genome size and recombination landscape, functional
redundancies in genomes, etc... Speciation is such a
multi-factorial process that it seems impossible for a
single research group to study these different compo-
nents. Consequently, our aim is to include in DILS a
collaborative science option, allowing to feed in real
time the relationship between molecular divergence
and genetic isolation between lineages. Available as
a choice, the sharing of the inferences made in DILS,
associated with the expertise that users have about
their biological model, will contribute to a long-term
collaborative study aiming to better understand the
speciation process. This objective is illustrated here
with the analysis of 28 new pairs of mussel populations
whose transcriptomes were recently published, reveal-
ing ongoing gene flow for levels of divergence greater
than 2%.
In this study, we have four objectives: 1) providing a

flexible and powerful demographic inference method
with linked selection to analyse genome-scaled dataset
in single and two-population models; 2) presenting
a user-friendly web-platform that implements this ap-
proach and paves the way for collaborative science; 3)
testing the performance and limitations of the method
by using simulations; 4) and applying it to an empirical
dataset ofMytilus mussels.

2 Results

In the current version of DILS, evolutionary scenarios
can be investigated for sampling schemes involving
one or two populations. For both types of analysis,
the first step in DILS is to compare the demographic
models described in figure 1. With a single population,
DILS will examine the changes in size over time. With
two populations, such variations in population size are
also implemented, but DILS will additionally compare
alternative temporal patterns of introgression.
An innovative feature of DILS is to include linked

selection, either through the effect of background selec-
tion (and selective sweeps) that modulates the effective
population size along the genome, or through the effect
of selection against migrants that reduces locally the
effective introgression rate in genomic regions locked
to gene flow. Therefore, all demographic models exist
under two alternative genomic models regarding the
effective population size (homo-Ne versus hetero-Ne),
and, in models with migration, the introgression rate

(homo-N.m versus hetero-N.m), depending on whether
these parameters are homogeneous or heterogeneous
among loci.

2.1 Comparisons of demographic and
genomic models

In this section, we present DILS performance to com-
pare demo-genomic models involving one (section
2.1.1) or two (section 2.1.2) populations. These evalu-
ations were performed by analyzing pseudo-observed
datasets simulated under specified models, in order to
assess the efficacy of our approach to correctly support
the true model. In both analyses, a given demographic
model corresponds to the set of all its genomic sub-
models. All model comparisons are performed using
random forest algorithms (Pudlo et al., 2015; Fraimout
et al., 2017).

2.1.1 Single population models

For studies where a single population is sampled, three
demographic models are compared describing either i)
a Constant population size Necurrent, ii) recent demo-
graphic Expansion or iii) Contraction. Demographic
changes are assumed to be instantaneous, with a tran-
sition from Nepast to Necurrent occurring Tdem gener-
ations ago (figure 1-A).
For a given dataset, we first estimate the best-fitting

demographic model among those depicted in figure 1
by carrying out 10, 000 simulations under each genomic
alternative sub-model (homogeneous versus heteroge-
neous Ne). These simulations produce reference tables,
i.e., a set of simulated summary statistics used to train
a random forest algorithm to predict which of the pro-
posed models best explains observed data. Thus, in the
comparison Expansion versus Constant versus Contrac-
tion (algorithm 1), each model was simulated 10, 000
times under the homogeneous Ne model, and 10, 000
times under the heterogeneous Ne model.
To test the performance of DILS in model compar-

isons (among demographic models and among ge-
nomic models), we simulated 30, 000 pseudo-observed
datasets of 100 loci by using random combinations
of parameters. Throughout the manuscript, pseudo-
observed datasets are used to evaluate the performance
of the random forest and do not contribute to its train-
ing. These simulated datasets are equally distributed
between the demographic models (10, 000 for each
of the three Expansion/Constant/Contraction models)
and between the genomic models (5, 000 for each of
the two homo/hetero Ne alternative genomic models
for a given demographic model). Then, for each of
these pseudo-observed datasets, we apply step 1 and
step 2 of the algorithm 1 in order to obtain for each
model M, the proportion of pseudo-observed datasets
that is i) correctly and strongly captured by the random
forest approach, ii)falsely and strongly captured and
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Data: A single fasta containing all genes
sequenced in all individuals sampled in
the studied population

Result: Posterior probabilities for the best 1)
demographic and 2) genomic models

• Data cleaning:
forall genes i making the dataset do
.discard from the alignment of gene i the
individuals with too many Ns;
.discard gene i if there are not enough
retained individuals;
.discard gene i if it doesn’t contain enough
positions without an aligned null allele
carried out to build reference tables used to
train a random forest, or from which a small
proportion will be sub-sampled in a
rejection/regression algorithm based on the
Euclidean distance with the observed data.
Then a second type of simulations produces
pseudo-observed datasetitN;
end

• Reference simulations to train the
random-forest: 10, 000 multilocus datasets
under each combination of [demographic
models] x [genomic models];

• Model comparisons:
Random Forest (RF) comparisons of:
step 1. Expansion [homo + hetero] versus
Constant [homo + hetero] versus Contraction
[homo + hetero];
step 2. best demographic model supported in the
previous step with homogeneous Ne versus
heterogeneous Ne;

Algorithm 1: Single-population hierarchical model
comparisons

SI AM

IM SC

Past

Past
T

sp
lit

T
A

M
T

S
C

A

B

Constant

Past

Expansion Contraction

T
de

m

N.m

Necurrent 

Nepast

Necurrent 

Nepast

Figure 1: Demographic models currently imple-
mented in DILS

A: compared single-population models. Demographic
changes occurring Tdem generations ago are mod-
eled backwards in time by sudden transitions from
Necurrent to Nepast, either for expansions or contrac-
tions.
B: compared two-population models. The Strict Iso-
lation (SI) and Ancient Migration (AM) models are
characterized by an absence of ongoing migration.
Conversely, the Isolation with Migration (IM) and Sec-
ondary Contact (SC) models describe two populations
that are currently connected by introgression events
at rate N.m. The two-population models shown here
are of constant size, but DILS optionally incorporates
alternative versions of the same four models where ef-
fective size can change independently in both daughter
populations between the present time and Tsplit.

iii) ambiguous, i.e, associated to an insufficiently high
posterior probability (figure 2).
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Figure 2: Performance of DILS for hierarchical com-
parison of single-population models

The required data is a single fasta file containing the
sequences obtained for different genes, in different
individuals. DILS will first perform a comparison of
the three demographic models (Expansion versus Con-
stant versus Contraction). In a second step, DILS will
compare two genomic models (homogeneous versus
heterogeneous genomic distribution ofNe) for the best
supported demographic model.
The pie charts designate for each model the propor-
tion of simulations performed under the corresponding
model that is strongly and correctly captured (correct:
blue), strongly and incorrectly captured (wrong: yel-
low) and without strong statistical support for any of
the studied models (ambiguous: purple).
The performance of DILS for each comparison was
based on 10, 000 pseudo-observed datasets for each
of the Expansion/Constant/Contraction demographic
models. Each of these 10,000 simulated datasets are
evenly distributed between the two genomic models,
homo and hetero Ne. The parameters used for the
simulated datasets are randomly drawn from uniform
laws, with Ne in [1-1,000,000] individuals and Tdem
in [1-2,000,000] generations.
Each simulated dataset consists of 100 loci of length
1, 000 nucleotides.

For a given dataset, the model comparison will pro-
vide two pieces of information: i) What is the best
model among all those arbitrarily proposed in the anal-
ysis? ii) With which posterior probability is the best
model supported? It is from the latter probability that
we determine whether an inference is strong or am-
biguous. For this we use a probability threshold be-
yond which an inference is considered strong. This
threshold is determined recursively on the basis of the
false positive rate which decreases monotonically by
increasing the value of the threshold. From datasets
randomly simulated under different models, we estab-
lish a threshold value such that the false positive rate is
less than or equal to 1%. With this approach, the false-
positive rate remains consistently low, but the relative
proportions of true positives versus ambiguous cases

vary according to the power of the ABC to discrimi-
nate among an arbitrary set of models. Thus, among
the 30, 000 pseudo-observed datasets simulated under
the Expansion, Constant and Contraction models, if
a threshold is applied that keeps the error rate below
1%, the proportions that are correctly supported by our
approach are 86%, 89% and 99% respectively, while
the proportions that are ambiguous are 13%, 10% and
0.2% (figure 2).
The second step of the hierarchical comparison,

which classifies models with genomic variation in ef-
fective size (hetero) or without variation (homo), is
evaluated using the same procedure as step 1 (figure
2). For this purpose, the proportion of ambiguous, cor-
rect and false inferences are measured among 5, 000
pseudo-observed datasets simulated for each of the 6
combinations [demographic models] x [genomic mod-
els]. For the Expansion and Constant demographic
models, the correct recapture rates of homo and het-
ero Ne genomic models range from 75% (Expansion
+ hetero Ne; 24% of ambiguity) to 86% (Constant +
homo Ne; 13% of ambiguity). Finally, while recovering
the Contraction demographic model is a very robust
analysis with 99% of inferences that are both correct
and associated with a high posterior probability, it is
more complicated to distinguish "Contraction + homo
Ne" from "Contraction + hetero Ne". About 41% of the
pseudo-observed datasets simulated in the "Contrac-
tion + homo Ne" model are correctly captured by the
random forest, and only 26% for the "Contraction +
hetero Ne" model. The occurrence of a recent bottle-
neck tends to reduce the genomic variance of Ne to
levels that generate apparent homogeneity.

2.1.2 Two population models

The two-population models are grouped into two su-
permodels: with current isolation (Strict Isolation +
Ancient Migration; see figure 1) and ongoing migra-
tion (Isolation Migration + Secondary Contact). The
first step of the hierarchical comparisons performed by
DILS therefore aims to determine which supermodel
best explains the data observed in the two sampled
populations (see algorithm 2 and figure 3). This is
achieved by labeling as "isolation" all reference simula-
tions performed under the two SI models (with homo-
Ne or hetero-Ne) and the four AM models (homo-Ne
or hetero-Ne, and homo-N.m or hetero-N.m). All other
models are labeled as "migration" supermodel.
To test the power of DILS to correctly recapture

an isolation or migration model, the same simulation-
based evaluation as in section 2.1.1 is performed here.
We evaluated the performance of DILS for 60, 000
pseudo-observed datasets simulated under the "isola-
tion" supermodel (10, 000 for each combination of [SI;
AM], [homo-Ne; hetero-Ne] and [homo-N.m; hetero-
N.m] for the AM model only) and 80, 000 under the
"migration" supermodel (10, 000 for each combination
of [IM; SC], [homo-Ne; hetero-Ne] and [homo-N.m;
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hetero-N.m]). As shown in figure 3, 95% of the datasets
simulated under the supermodel "isolation" with ran-
dom combinations of parameters from large priors are
correctly recaptured by the random forest approach
with a high probability (4% ambiguity and 1% error if
we apply a posterior probability threshold of 0.84; table
S1)). Similarly, 98% of the pseudo observed datasets
under the "migration" supermodel are strongly recap-
tured (with 1% of ambiguity and 1% of error for a
threshold of 0.665). Models with migration are glob-
ally more efficiently recaptured by DILS, relying on a
lower threshold probability to be robustly supported.

Data: A single fasta containing all genes
sequenced in all individuals sampled in
the two studied populations

Result: Posterior probabilities for 1) ongoing
migration, 2) [SI, AM] (in case of
current isolation) or [IM, SC] (in case
of ongoing migration), 3) Ne and N.m
(in case of ongoing migration)

• data cleaning:
forall genes i do
forall population/species j do

.discard from the alignment of gene i the
individuals with too many Ns;
.discard gene i if there are not enough
retained individuals in population j;
.discard gene i if it doesn’t contain
enough positions without an aligned null
allele N;

end
end

• Reference simulations to train the
random-forest: 20, 000 multilocus datasets
under each combination of [demographic
models] x [genomic models];

• Model comparisons:;
Random Forest (RF) comparisons of:;
step 1. isolation ([all SI + all AM]) versus
migration ([all IM + all SC]);
step 2. if isolation then [all SI] versus [all AM]
else [all IM] versus [all SC];
step 3. if isolation then [homo-Ne SI + homo-Ne
AM] versus [hetero-Ne SI + hetero-Ne AM] else
[homo-Ne IM + homo-Ne SC] versus [hetero-Ne
IM + hetero-Ne SC];
step 4. if migration then [homo-N.m IM +
homo-N.m SC] versus [hetero-N.m IM +
hetero-N.m SC];

Algorithm 2: Two-population hierarchical model
comparisons

The second step of the hierarchical model compar-
isons is to classify the demographic models described
in figure 1-B, within the supermodel that was best sup-
ported in the previous step (figure 3-B).

Figure 3: Performance of DILS for hierarchical com-
parison of two-population models

Two-population analyses are performed in three steps
1. Testing the general demographic models "Current
isolation" versus "Ongoing migration" (panel A)
2 Testing the demographic sub-models (panel A):

2.a if the best model is ’current isolation’, then
DILS tests SI versus AM

2.b if the best model is ’ongoing migration’, then
DILS tests IM versus SC
3. Testing the genomic models for variation of:

3.a effective population size, Ne (panel B)
3.b migration rate, N.m (panel C)

The letters ’o’ and ’e’ in panels B and C indicate sim-
ulations performed under genomic homogeneity and
heterogeneity models, respectively
The pie charts designate for each model the propor-
tion of simulations performed under the corresponding
model that is strongly and correctly captured (correct:
blue), strongly and incorrectly captured (wrong: yel-
low) and without strong statistical support for any of
the studied models (ambiguous: purple).

The results of the performance analyses first show
that a pseudo-observed dataset simulated under an SI
model (homo-Ne and hetero-Ne) is very unlikely to be
strongly supported in an SI versus AM comparison. Out
of 20, 000 simulations, only 1% are correctly recaptured
by DILS (98% ambiguity and 1% error for a threshold
of 0.845). The AM model is more robustly supported
than SI (56%), but the 10, 000 inferences made under
each of the AM sub-models lead to weak support (43%
ambiguity, 1% error for a threshold of 0.705).
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On the contrary, the two models making the "mi-
gration" supermodel (IM and SC) are more efficiently
distinguished by DILS. The 40, 000 pseudo-observed
datasets randomly simulated under the IM model are
captured at 79% with a high probability in the IM
versus SC comparison (20% ambiguity, 1% error for
a threshold of 0.885). Similarly, 70% of the 40, 000
pseudo-observed datasets from the SC model are cor-
rectly recaptured by DILS (29% ambiguity, 1% error
for a threshold of 0.915).
We then evaluate DILS performance for discriminat-

ing among alternative models of genomic distribution
for the Ne (figure 3-B; table S2) and N.m (figure 3-C).
Concerning the effective population size, DILS sys-

tematically recaptures the homogeneous model more
easily than the heterogeneous model for each of the
four demographic models tested. Themost complicated
model to recapture is the genomic heterogeneity of Ne
in an SC model (≈ 64% true positives), while homo-Ne
under an SI model is the most straightforward.
Concerning the genomic model of introgression, the

main parameter determining the quality of inference
is the relative duration of gene flow versus speciation
time Tsplit (figure 1). This leads to a higher robustness
for the IM model (probabilities of correctly support-
ing homo-N.m and hetero-N.m of ≈ 86% and ≈ 76%
respectively) compared to the SC model (≈ 71% and
≈ 60%).

2.1.3 Detection of barriers to gene flow

One additional purpose of DILS is to identify genomic
regions which are associated to a local reduction in
the introgression rate N.m. This analysis will only be
carried out by DILS if the observed dataset is better
explained by 1) a demographic model with ongoing mi-
gration (IM or SC) and 2) a genomic model with gene
flow heterogeneity (hetero-N.m). To achieve this pur-
pose, DILS will infer the parameters under the model
that best explains the data. Then, for each gene, DILS
performs a comparison between two models that differ
only for the parameter N.m: 1) the migration model
corresponds to the whole set of parameters estimated
under the best supported model; 2) the isolationmodel
corresponds to the previous model whose N.m has been
set to zero, because a barrier gene impedes gene flow
locally along the chromosome. Therefore, such a gene
should be supported by the isolation model if the bar-
rier effect is strong. This approach therefore seeks to
approximate a continuous variable, N.m, by a dichoto-
mous choice of model: region with a local-isolation
versus local-migration.
In order to evaluate the performance of DILS, the

locus-specific model comparison was applied for locus
simulated under an IM model with different values
of N.m in [0, 1] (figure 4). A value of zero means no
exchange during the divergence process from one pop-
ulation to another. A value of 1 means that there is
one immigrant individual on average every genera-

tion. We simulated genes 10, 000 times for different
combinations of N.m and Tsplit under an IM model.
Then, for each simulated dataset, we applied the locus-
specific model comparison to finally record for each
locus which model is the best between local-migration
and local-isolation. Ideally, we aim that DILS consid-
ers 100% of the simulations with N.m = 0 as local-
isolation, and 100% of the simulations with N.m = 1
as local-migration. Values of N.m greater than 1 were
not explored because the comparison between "high
migration" and "very high migration" is not relevant
here.
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Figure 4: Detection of barriers to gene flow
x-axis : 11 explored values of the locus-specific N.m
migration rate under an IM model.
y-axis : proportion of simulations supported by DILS
as being linked to a barrier to gene flow.
The colors designate five different divergence times of
the IM model (Tsplit, figure 1). The unit time is in Ne
generations where Ne is the number of haploid indi-
viduals making up the population. If Ne = 100, 000
individuals, then Tsplit = 5 means a divergence time
of 500, 000 generations under the IM model. If Ne is
the number of diploids, then Tsplit must be multiplied
by two to find the same relationship.
Each combination of Tsplit and N.m was independently
simulated 10, 000 times and analyzed by DILS to get
the proportion of model-assignation for a given combi-
nation of parameters.
The estimated points are connected by dotted lines for
visibility.

As shown in figure 4, in the case of two populations
of 100, 000 individuals separated only 5, 000 genera-
tions ago (Tsplit = 0.05), DILS will support gene flow
for ≈ 50% of the genes that have a N.m migration
equals to zero (figure 4). For N.m = 1, the proportion
of genes inferred as local-isolation is of similar mag-
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nitude, indicating that DILS is not at all designed to
detect barriers to gene flow in the genomes of popula-
tions that have separated very recently. Our recommen-
dation, therefore, is to disregard the results of DILS if
the studied populations are extremely recent. However,
as soon as barrier regions have enough time to differen-
tiate (Tsplit ≥ 0.5; figure 4), then ≈ 100% of loci with
N.m = 0 are correctly inferred as local-isolation, and
only few loci with N.m = 1 are incorrectly supported
by the model of local-isolation. The performance of
DILS therefore depends directly on the true history of
the studied populations/species, not on the amount of
data. The ideal case for identifying which genes in the
genome are linked to barriers occurs when the patterns
of polymorphism and divergence at such genes differ
greatly from the rest of the genomic background (fig-
ure 4). An ideal demographic scenario for identifying
barriers with DILS would be :

1. a divergence that is old enough to allow the neu-
tral regions linked to barriers to have at least one
position with two variants that are differentially
fixed between the two populations/species.

2. a migration rate in the genomic background high
enough to counteract the effect of differentiation
in non-barrier regions.

2.2 Parameter estimates

In this section, we describe performance tests for esti-
mating the parameters of different demographic mod-
els. The same procedure was applied for single and two-
population models: first, simulating pseudo-observed
datasets (10, 000 for the three single-population mod-
els, 2, 000 for the 14 two-population models) and then
ABC estimation of the parameters to test DILS abil-
ity to recapture the parameter values used. We only
detail here the results obtained for the demographic
parameters, i.e., those describing the mean effective
population size (Necurrent and Nepast), time of split
(Tsplit), the date for the cessation of gene flow (TAM ),
the age of the secondary contact (TSC) and the migra-
tion rates (N.m).

2.2.1 Single-population models

The current effective population size is by far the pa-
rameter that is most accurately recaptured, especially
in a constant and homogeneous model with a mean-
squared error (MSE) close to zero (MSE≈ 0.005; figure
5-A; table S2).
The introduction of a recent demographic change

reduces the quality of inferences for Necurrent, more
for the expansion model than for the contraction model.
The inference of ancestral size conducted for 4 x

10, 000 pseudo-observed datasets shows globally a
low error rate on the raw values of Nepast with a
MSEmax ≈ 0.09 (table S2). Errors depend very closely

on the relative values between Necurrent and Nepast
(figure 5-B).
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Figure 5: Parameter estimation for single-
population models

10, 000 pseudo-observed datasets are simulated by tak-
ing random parameter values (x-axis) under the 6
models. These parameters are estimated using DILS
(y-axis). The lines represent the loess regressions be-
tween exact and estimated parameter values for each
of the six models. The fields represent the 99% confi-
dence interval and the dotted line represents x = y.
Estimation of the effective size of the current popula-
tion Necurrent (A), of the ancestral population Nepast
(B) and the time of demographic changes Tdem (C).
Nepast and Tdem are both expressed here in Necurrent
individuals.

Hence, while the estimate of a Nepast is reliable
for a change in size by a factor of 10, it becomes less
accurate as the contrast with Necurrent is increasingly
sharp.
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Figure 6: Parameter estimation for two-population models
2, 000 pseudo-observed datasets are simulated by taking random parameter values under the 14 models and
analyzed using the same procedure as to produce the figure 5, but for
the effective size of the current population Necurrent (A), the ancestral population size Nepast (B), the time of
split Tsplit (C, in generations), the times of demographic transitions TAM and TSC (D) and the migration rate
N.m (E).

In a similar manner, the quality of inferences of the
age of demographic change Tdem is highly dependent
on its relative value with Necurrent (figure 5-C). Any
change more recent than 0.1Necurrent generations ago
will be dated with poor precision. Conversely, the age
of events older than 0.1Necurrent appears more accu-
rately recaptured by our ABC approach.

2.2.2 Two-population models

To estimate the accuracy of DILS in recapturing model
parameters, we followed the same procedure based on
the analysis of simulated datasets as in the previous
paragraph. Note that the two-population models com-
prise two additional parameters that affect patterns of
divergence: the time of split (Tsplit) and the migration
rate (N.m).
The error rate in the estimation of the parameter

Necurrent is of the same order of magnitude as in mod-
els with a single population (figure 6-A; table S3). How-
ever, the imprecision increases with ongoing migration
and tends to underestimate Necurrent. Estimates of
Necurrent are thus more accurate for the SI model,
than for the AM model, and the worst for IM and/or
SC. This negative effect of ongoing migration on the
accuracy of parameter estimation is more pronounced
for the ancestral population size Nepast (figure 6-B).
Hence, the ongoing migration implemented in the IM
and SC models will lead to the overestimation of very

lowNepast values and underestimation of largeNepast
values.
The precision of the estimate of Tsplit for a given

model is of the same order of magnitude as for the
ancestral size, with the exception of an accentuated
imprecision of Tsplit in the IM model when the migra-
tion is homogeneous along the genome (figure 6-C;
table S3).
The AM and SC models both have an additional pa-

rameter describing the time of the demographic tran-
sition between two periods (with and without migra-
tion). In the AM model, TAM describes the number of
generations during which the two current populations
remain genetically isolated after a period of ancestral
migration. Conversely, in the SC model, TSC describes
the number of generations where the two current popu-
lations are connected by gene flow during a secondary
contact occurring after a past period of isolation. For
the AM model, TAM is better estimated than Tsplit
unlike TSC under the SC model (figure 6-D; table S3).
Finally, the performance of DILS to estimate the mi-

gration rate N.m (expressed in number of individuals
immigrating per generation) is reported on the figure
6-E. The poor estimation accuracy for N.m contrasts
sharply with the reliable inferences obtained when
comparing the ’ongoing migration’ versus ’current iso-
lation’ supermodels (paragraph 2.1.2). Indeed, it is
straightforward to discriminate between these two cat-
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egories of supermodels while an accurate estimate of
the migration rate is more challenging to obtain (fig-
ure 6-E). We were unable to reach a reliable measure
of N.m for the AM model. More accurate inferences
are obtained for both the IM and SC models. Hence,
accuracy is reported to increase for genomic models
where N.m is homogeneous (table S3).

2.3 Illustration of DILS with RNA-seq
data from 28 pairs of Mytilus popu-
lations

We now illustrate the potential of DILS to contribute
to the study of speciation among 8 populations of a
complex of four Mytilus mussels species (figure 7-A;
Bierne et al., 2003; Popovic et al., 2019). The rela-
tionship between molecular divergence and genetic
isolation was established over 28 pairs of Mytilus pop-
ulations using DILS. The aim was to identify which
pairs of populations, characterized by different levels
of molecular divergence (net synonymous divergence
between 0.003% and 6.705%), are inferred to be cur-
rently connected by ongoing gene flow (figure 7-B).
This large scale analysis within the same genus was
made possible by the use of a large RNA-seq dataset
recently published by Popovic et al., 2019 in 44 indi-
viduals of Mytilus from 8 populations (one M. edulis,
five M. galloprovincialis, one M. planulatus and one M.
trossulus; figure 7-A).
Out of 28 pairs ofMytilus populations that have been

tested for ongoing gene flow, 9 pairs receive support
for models with current isolation, while models with
migration suggest a better fit to the patterns of poly-
morphism and divergence observed in the remaining
19 pairs (figure 7-B). Within the group composed of
M. galloprovincialis and M. planulatus, the 15 possible
pairs are characterized by levels of divergence ranging
from ≈ 0.003% (Crique - Herceq) to ≈ 0.673% (Primel
- Spring). All of them are supported by models with
ongoing gene flow. Our ABC analysis provides support
for gene flow for a single interspecific pair with high
divergence level ≈ 6% (Darling - Lighthouse). This
pair is the only one to be genetically connected by mi-
gration among the 8 pairs in our analysis that have a
level of net synonymous divergence higher than 2%,
most probably due to gene flow between West Atlantic
trossulus populations and edulis ones. Such gene flow
also contrasts with an analysis realized for 61 pairs of
animal species that had been studied without a priori
on their speciation history, and for which a threshold of
≈ 2% had emerged above which all interspecific pairs
were currently isolated (figure 7-B; Roux et al., 2016).

3 Discussion

Our statistical analysis platform, DILS, goes beyond
simple summary statistics by explicitly testing evolu-
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Figure 7: Application of DILS to a Mytilus RNA-Seq
dataset

A: Transcriptomes were obtained from Popovic et al.,
2019 from 44 individuals sampled from 4 labelled
species (throughout 8 localities), providing 28 possible
pairs of Mytilus localities analysed to test for a genetic
connection through migration events (SRP218536;
https://cutt.ly/ErrDuwj). A median number of
1, 407 coding genes was used to perform demographic
inferences after filtering the data (min = 144 genes;
max = 2, 899 genes; depending on the pair of Mytilus
considered).
B: The x-axis shows the net divergence measured at
the synonymous positions of the sequenced genes.
The y-axis shows the probability provided by DILS of
models with ongoing migration (IM + SC).
Grey dots correspond to the 61 pairs of
populations/semi-isolated species/species stud-
ied in Roux et al., 2016. The coloured dots correspond
to the 28 pairs of newly analyzed Mytilus. The colours
refer to the labelled species from which the partners
of each designated pair originate.

tionary scenarios in a model-based inference frame-
work. This approach is especially time-wise in spe-
ciation genomics as comparative studies of closely-
related species are accumulating (e.g. in butterflies:
Cong, Zhang, and Grishin, 2019; Edelman et al., 2019;
Martin et al., 2019; in birds: Peñalba, Joseph, and
Moritz, 2019; in fishes: Malinsky et al., 2018; in plants:
Stankowski et al., 2019); and so there is a strong de-
mand for efficient and powerful inference tools. Ap-
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plied to genomic data (SFSs and/or multi-locus se-
quences), DILS will first identify the best demographic
model to test for changes in effective size andmigration
rate over time, then it will identify the best genomic
model to test for genome-wide heterogeneity in these
parameters, and finally it will identify loci most associ-
ated with genomic regions locked to gene flow.

3.1 Performances of DILS

For single-population models, DILS is highly efficient
at distinguishing the three demographic models (Ex-
pansion versus Constant versus Contraction). It fairly
discriminates among the two genomic models (homo-
Ne versus hetero-Ne) for the Expansion and Constant
models, but has too much ambiguity to distinguish
them in a Contraction model. Current population sizes
(Necurrent) are accurately estimated under all three
demographic models, as well as the time of size change
(Tdem) provided that it is not too recent. However, the
past population size (Nepast) is increasingly overesti-
mated in an expansion model (respectively, underesti-
mated in a contraction model) when the contrast with
Necurrent is increasingly sharp.
We also found that in two-population models, DILS

very accurately discriminates between the two super-
models classically tested in speciation ("current isola-
tion" versus "ongoing migration"), and it discriminates
reasonably well among models with ongoing migration
(IM versus SC), but quite poorly among models without
(SI versus AM). Within each demographic model, the
two Ne-genomic models are fairly discernible; and the
same is true for the two N.m-genomic models (homo-
N.m versus hetero-N.m) in scenarios of ongoing migra-
tion. Parameters are reasonably well estimated in all
models (i.e. population sizes Necurrent and Nepast,
and times Tdem, TAM and TSC); except for the mi-
gration rate (N.m). It is poorly estimated in ongoing
migration models, and cannot be evaluated at all when
migration happened in the past (AM).
Therefore it is critical for users to be aware of the lim-

its of DILS; especially when it does accurately discrim-
inate among models and estimate parameter values,
and when it does not. For example, the best scenarios
for identifying barriers to gene flow is when the genetic
signal for these genes strongly contrasts with the rest of
the genome, i.e. when speciation time is long enough
to build-up divergence at barrier regions, and migra-
tion rate is high enough to homogenize the genomic
background between species. In general, DILS fails to
make accurate inferences when divergence or changes
in population size have occurred very recently.

3.2 Collaborative research

DILS was designed with the objective to facilitate col-
laborative research in speciation. One major question
in the field is to understand how fast reproductive
isolation builds-up with divergence between lineages,

and so how fast introgression decreases along a con-
tinuum of molecular divergence. This relationship has
been investigated in 61 pairs of animals (Roux et al.
2016) only providing a partial picture. Here, we ex-
tended this work by analyzing genomic data of 28
species/populations of Mytilus mussels. Within this
specific clade, we found a pattern of non-linear de-
crease of migration probability with the neutral molec-
ular divergence, similar to what was observed in Roux
et al. (2016). However, we also documented ongoing
migration between two highly divergent mussel species,
hence pushing the grey zone of speciation threshold
beyond 2% of net synonymous divergence, maybe due
to the outstanding life history traits of mussels (i.e.
broadcast spawning, high-dispersal larvae, large effec-
tive population sizes and living in a highly connected
marine environment).
DILS offers the possibility for the users to partici-

pate to this enterprise, and record on the web-platform
where their biological model falls within this global
speciation picture. Such a global picture of transition
from gene flow to no gene flow is necessary for the
central problem of species delineation (Hey and Pinho,
2012). Although a universal criterion for delineating
species seems impossible, as exemplified by the mussel
dataset, the idea of defining a grey zone by taxonomic
system is promising (Galtier, 2019). Thus, our collabo-
rative approach option included in DILS will allow in
the future to establish a relationship between molecu-
lar divergence and genetic isolation for different taxa,
i.e. vertebrates, terrestrial plants, algae, etc ..., and
thus will provide delimitation rules by system.

3.3 Non-detailed features

The raw data can be easily visualized with DILS as a
site frequency spectrum and summary statistics across
loci. DILS produces comprehensive results for each
inference step: (1) the global model comparison to
estimate the best demo-genomic model; (2) the locus-
specific model comparison to identify barrier loci; and
(3) the estimation of parameter values for the best
model. To help users interpreting these results, DILS
produces a series of goodness-of-fit tests to the data.
These tests are performed by simulating under the best
model each population genetic statistic calculated in
section 4.1.1 (genomic mean and variance of π, θ, FST ,
etc.), as well as for each bin of the SFS (or jSFS for
two-population models). In addition to an individual
test for each summary statistic, a test is also performed
from statistics transformed by a PCA following Cornuet
et al., 2008; Cornuet et al., 2014. DILS also provides
values for each locus of: 1) each summary statistic; 2)
the approximated recombination rate calculated based
on the four-gamete rule (Galtier et al., 2017; Hudson
and Kaplan, 1985); and 3) the posterior probability
of being genetically linked to a barrier to gene flow
(for two-population models only). These results are
outputted as interactive graphics on the web-platform.
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Our method is implemented in a user-friendly web-
platform allowing the configuration of the ABC anal-
ysis via a graphical interface, its execution and the
visualization of the results. Detailed information for
how to use DILS is provided in the manual. The re-
leased version of DILS is currently hosted by the French
Institute of Bioinformatics (XXX). To ensure full re-
producibility and portability on any server, DILS is
packaged in a singularity container freely available at
https://github.com/popgenomics/DILS_web. The
complete analysis of a dataset (model comparison +
parameter estimates + locus-specific tests + goodness-
of-fit tests) on the host server takes 4h30 on average.

3.4 Prospects for the future

With the improvement of computational methods, it is
now possible to simulate entire chromosomes under the
full ancestral process of coalescence and recombination
(Kelleher, Etheridge, and McVean, 2016). Combining
this type of coalescent simulators with haplotype-based
statistics in our ABC framework would be very promis-
ing to improve estimates of the timing and extent of
gene-flow after secondary contact (Harris and Nielsen,
2013). The architecture of DILS has been designed to
easily add simulators other than ms and its modified
versions (Hudson, 2002). Thus, it would be readily
achievable to use forward-in-time simulations includ-
ing direct selection (Haller and Messer, 2019), and
therefore making inferences for any selective scheme
while taking into account the demographic history of
the sample, without changing the pipeline upstream
or downstream of the simulator.

4 Materials and methods

4.1 ABC

4.1.1 Summary statistics

Since ABC is a category of inferential method based on
the comparison between statistics summarizing simu-
lated and observed datasets, we first describe here the
statistics computed in our framework.
We assume that users are interested in carrying out

inferences from multilocus datasets. For single popula-
tion models, DILS calculates for each locus: i) the pair-
wise nucleotide diversity (π) (Tajima, 1983); ii)Watter-
son’s θ (Watterson, 1975) and iii) Tajima’s D (Tajima,
1989). In addition to these three statistics, the site-
frequency spectrum (SFS; Fischer, 1930; Wright, 1931;
Wright, 1938) is also used to summarize the data, i.e,
the number of single-nucleotide polymorphism (SNP)
where the derived allele is present in [2, ..., nseq − 1]
copies in the studied population/species, where nseq
represents the number of copies sampled for a given lo-
cus. If the SFS is folded by the absence of an outgroup,
then the SFS will be described by the number of SNPs

where the minor allele is present in [2, ..., nseq/2− 1]
copies. Finally, for single population models, multi-
locus inferences are based on 6 multilocus summary
statistics which are the means and standard deviations
of π, θ and Tajima’s D, to which we add [nseq − 2] in-
dividual statistics corresponding to the SFSs summed
over all loci. In absence of an outgroup, the SFS will
be represented by [nseq/2− 2] individual statistics.
For models with two populations/species, π, θ and

Tajima’s D statistics are also calculated for each of the
two samples. These are supplemented with statistics
approximating the joint SFS (jSFS; Ramos-Onsins et
al., 2004): 1) the fraction of sites showing a fixed dif-
ference between the populations/species (Sf), 2) the
fraction of sites showing an exclusive polymorphism to
a given population/species (SxA and SxB) and 3) the
fraction of sites with a polymorphism shared between
the population/species (Ss). Statistics describing the
divergence between the two populations/species are
also calculated, including the raw (Dxy; Nei, 1987) and
the net (Da; Nei and Li, 1979) divergence between
the population/species, and their relative genetic dif-
ferentiation measured by FST (Wright, 1943). Finally,
all bins in the jSFS (except singletons) can optionally
be used as an additional vector of summary statistics.
If the jSFS is unfolded, then this vector has a length
of [(nseqA+1) * (nseqB+1) - 4] available statistics
(minus 4 to remove the two bins corresponding to sin-
gletons and the two bins corresponding to the fixation
of the derived or ancestral allele in both samples), and
a length of [(nseqA+1/2 * nseqB+1/2 - 3] if the jSFS
is folded. The use of the jSFS as a vector of summary
statistics is an option that the user can switch on or off,
to avoid cases where the jSFS is composed by a large
number of bins.

4.1.2 Simulations

In the current version of DILS, all simulations are per-
formed using the msnsam coalescent simulator (Hud-
son, 2002; Ross-Ibarra et al., 2008). Each simulated
multilocus dataset takes properties from the observed
datasets (same number of genes, lengths and sample
size). Since the summary statistics used to perform the
ABC inferences are averages and standard deviations
measured over all the surveyed genes, then for model
comparisons and parameter estimations we randomly
subsample 1, 000 genes if more loci are present in the
total dataset. The purpose of this subsampling is to
avoid unnecessarily long simulation times because the
values of statistics for a given locus will not impact the
used summary statistics over 1, 000 loci.
If an outgroup is specified by the user, then it will

be used for each locus (or contig, or gene) to correct
its mutation rate µi to µ̂.divi

d̂iv
where µ̂ is the neutral

mutation rate assumed by the user, divi is the raw di-
vergence between the focal population/species and
the outgroup measured at a given locus i, and d̂iv is
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the average raw divergence between the focal popula-
tion/species and the outgroup measured over all loci.
The other implication of using an outgroup will be to
orientate the mutations and consequently to unfold
the jSFS. Finally, the loci are assumed to be genetically
independent, and a ρ̂

θ̂
ratio value has to be specified by

the user where ρ̂ is the average population recombina-
tion rate 4.Ne.r (r in number of recombination events
per generation and per nucleotide).

4.1.3 Model comparisons

Here, when used alone, the term model means a given
combination between a demographic and a genomic
model. All comparisons are performed by using the
abcrf function of the eponymous R package (Pudlo et
al., 2015). The comparison is a two-step process.
First, grow the random forest with the abcrf func-

tion. This requires one reference table per model for
the training. The reference table of each model is pro-
duced by 10, 000multilocus simulations whose parame-
ters correspond to random combinations sampled from
priors. They are composed of one row per multilocus
simulation and one column for each summary statistic
described in section 4.1.1. When categories of models
are compared following the hierarchical approaches
(figures 2 and 3), the reference tables of the different
models in the same category are merged together. For
instance, in the comparison between Current isolation
and Ongoing migration (figure 3), 60, 000 multilocus
simulations are used for the training of the super-model
Current isolation, and 80, 000 multilocus simulations
for the training of Ongoing migration. Each forest is
made up of 1, 000 grown decision trees regardless of
the comparison made throughout the hierarchical ap-
proach.
The last step is the prediction of the best model

among those proposed by passing the observed data
through the trained random forest.
DILS reports the model supported by the largest

number of decision trees in the random forest and its
associated posterior probability.

4.1.4 Parameter estimates

Two strategies are applied simultaneously to estimate
the parameters describing the best-supported model
among those compared:
1) a joint estimation of the set of parameters using

a rejection/regression method (Csilléry, François, and
Blum, 2012). Estimation is based on the 5, 000 multilo-
cus simulations producing the statistics closest to the
observed dataset among 1, 000, 000 simulations. We
then correct for imperfect matches between observed
and retained values of statistics. The parameter val-
ues of the selected simulations are weighted by their
Euclidean distance and corrected according to a non-
linear regression method using a neural network. 10

trained neural networks with 10 hidden networks are
used in the regression.
2) an individual estimation of each parameter by con-

structing a random forest of 1, 000 trees per parameter
(Raynal et al., 2019).

The results from both approaches are returned to the
user. There is no evidence to further support a method
over the other in terms of estimation accuracy. Within
the framework of the models currently compared in
DILS, both approaches produce similar estimates when
tested on pseudo-observed datasets. However, joint
parameter estimation has the advantages of including
parameter co-variations as well as providing a prob-
ability density. This is achieved at a computational
cost that is ≈ 100 times greater regarding the number
of multilocus simulations, since 10, 000 are required
for a parameter estimation using random forest versus
1, 000, 000 when using the rejection/regression algo-
rithm.

4.1.5 Locus-specific model comparison

To identify barriers to gene flow among a set of se-
quenced DNA fragments (genes for instance), we adopt
the same procedure as in Ciona intestinalis (Roux et al.,
2013) and Mytilus (Roux et al., 2014) but by replac-
ing the neural network with a random forest to divide
the computational cost by 100. This step is performed
by DILS only if 1) observed data better fits models
with ongoing migration (IM or SC; figure 1) and 2)
genomic models of N.m. variation explain the data
better than homogeneous models. We first estimate
the parameters of the best model from the multilocus
dataset. Based on this estimation, two models are com-
pared at each locus: 1) local-migration: the multilocus
estimated model with the non-zero migration rate esti-
mated over the whole genome. 2) local-isolation: the
multilocus estimated model with a migration rate set
to zero. A random forest of 1, 000 trees is then trained
to recognize combinations of summary statistics spe-
cific to each of the two evaluated models. This forest
allows to return for each sequenced DNA fragment the
locus-specific model that best explains the statistics
observed, and its posterior probability.

4.2 Pseudo-observed datasets

In this study we distinguish two types of simulations.
Simulations carried out to build reference tables used
to train a random forest, or from which a small pro-
portion will be sub-sampled in a rejection/regression
algorithm based on the Euclidean distance with the
observed data. Then a second type of simulations pro-
duces pseudo-observed datasets. These are not used
for training, but to evaluate the inferential power of
the ABC approach, and test whether it can recapture
the parameters used to simulate the pseudo-observed
datasets. To assess the reliability of model comparisons
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and parameter estimates, for single and two popula-
tion models, we simulate pseudo-observed datasets
consisting of 100 loci, of length equal to 1, 000 nu-
cleotides, sampled from 10 diploid individuals in each
population/species and a mutation rate of 5.10−8 muta-
tions/nucleotide/generation. These datasets are simu-
lated according to demographic histories using random
combinations of parameters from the priors.

4.3 Analysis of the Mytilus dataset

We downloaded the raw RNA-seq data deposited to
the NCBI sequence read archive (BioProject ID: PR-
JNA560413; https://cutt.ly/OtQN1Y0) by Popovic et
al., 2019. The raw data consist in a total of ≈ 145Gb
from the sequenced transcriptomes of 47 mussel indi-
viduals. Three individuals from the M. californianus
species were removed as they do not belong to the
M. edulis complex. The reference transcriptome used
for the mapping is made up of 16, 151 CDS, for a total
length of ≈ 23Mb. The reference was indexed using
bowtie2 (version 2.2.6 Langmead and Salzberg, 2012).
For each individual, reads were aligned to the refer-
ence with bowtie2, and cleaned using samtools with
a mapping quality threshold of 20 (version 1.3.1; Li
et al., 2009). Individual genotypes were called using
reads2snp (Tsagkogeorga, Cahais, and Galtier, 2012)
at positions covered by at least 8 reads. We then ran
DILS for each of the 28 possible pairs of localities by
tolerating up to 20% of missing data, rejecting genes
with less that 100 codons without a missing data, and
by keeping 6 copies per genes within each popula-
tion/species. Simulations were conducted by exploring
uniform priors for effective population sizes between
0 and 500, 000 diploid individuals, times of different
demographic events (split, secondary contact, arrest
of migration) between 0 and 1, 750, 000 generations.
Presentation of the results were carried out with R
(Wickham et al., 2019; Chang et al., 2019; Sievert,
2018; R Core Team, 2020).
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Supplementary Table 1: Performance of DILS model comparisons

comparison target correct ambiguous wrong threshold

Single-population models

Expansion versus Constant versus Contraction Expansion 0.8627 0.1275 0.0098 0.919
Constant 0.891 0.099 0.01 0.856

Contraction 0.9937 0.0024 0.0039 0.501
Expansion homo-Ne versus hetero-Ne homo-Ne 0.8248 0.1652 0.01 0.83

hetero-Ne 0.7492 0.2408 0.01 0.92
Constant homo-Ne versus hetero-Ne homo-Ne 0.8562 0.134 0.0098 0.835

hetero-Ne 0.8336 0.1564 0.01 0.89
Contraction homo-Ne versus hetero-Ne homo-Ne 0.4074 0.5828 0.0098 0.906

hetero-Ne 0.2634 0.7266 0.01 0.901

Two-populations models

migration versus isolation migration 0.97922 0.01078 0.01 0.665
isolation 0.95053 0.03968 0.00978 0.84

SI versus AM SI 0.01465 0.9754 0.00995 0.845
AM 0.81482 0.18518 0 0.705

IM versus SC IM 0.791 0.19908 0.00992 0.885
SC 0.69958 0.29042 0.01 0.915

SI homo-Ne versus SI hetero-Ne homo-Ne 0.9688 0.0213 0.0099 0.8
hetero-Ne 0.8173 0.1741 0.0086 0.96

AM homo-Ne versus AM hetero-Ne homo-Ne 0.95495 0.0355 0.00955 0.82
hetero-Ne 0.8156 0.17445 0.00995 0.95

IM homo-Ne versus IM hetero-Ne homo-Ne 0.7006 0.29005 0.00935 0.855
hetero-Ne 0.6469 0.3433 0.0098 0.93

SC homo-Ne versus SC hetero-Ne homo-Ne 0.7063 0.284 0.0097 0.85
hetero-Ne 0.64645 0.34445 0.0091 0.925

IM homo-N.m versus IM hetero-N.m homo-N.m 0.85915 0.13105 0.0098 0.845
hetero-N.m 0.759 0.23265 0.00835 0.95

SC homo-N.m versus SC hetero-N.m homo-N.m 0.7144 0.27585 0.00975 0.855
hetero-N.m 0.59875 0.39165 0.0096 0.915

For each model, 10, 000 sets of pseudo-observed data were analysed. These datasets were simulated by taking
random combinations of parameters from large prior distributions. The table reports for each model comparison
the proportions among these simulations that lead to correct, ambiguous or wrong inferences according to a

threshold set to keep the rate of wrong inferences below 1%.
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Supplementary Table 2: Mean-squared error in parameter estimations for single-population models

demographic
model

genomic
model
Ne

Ne
(current)

Ne
(past) α β Tdem

Constant homo 0.00523
hetero 0.01178 0.39888 0.92462

Expansion homo 0.2009 0.00922 0.74168
hetero 0.20754 0.01369 0.46283 0.94578 0.74924

Contraction homo 0.12258 0.08716 0.88229
hetero 0.12563 0.09423 0.52025 0.95338 0.90631

Estimation errors are calculated on N = 10, 000 simulated datasets for each model, by using random combination
of parameter values. The reported values are measured as follows

1

N ∗ variance(θi)

N∑
i=1

(θ̂i − θi)
2,

where θ̂i and θi represent the estimated and the true parameter values respectively

Supplementary Table 3: Mean-squared error in parameter estimations for two-population models

demographic
model

genomic
model
N.m

genomic
model
Ne

Ne
(current)

Ne
(past) Tsplit TAM TSC N.m

number
of

barriers
α β

AM homo homo 0.02114 0.09633 0.08024 0.02503 1.01278

hetero 0.02832 0.10649 0.09502 0.02797 1.0092 0.39736 0.96193

hetero homo 0.02134 0.09238 0.08401 0.04687 1.02054 1.01096

hetero 0.03793 0.21534 0.22518 0.07039 1.00063 0.94219 0.46799 0.97759

IM homo homo 0.08547 0.30056 0.60409 0.37401

hetero 0.09235 0.35789 0.62885 0.40637 0.452 0.97489

hetero homo 0.05707 0.31596 0.27658 0.6166 0.52701

hetero 0.07003 0.29829 0.27734 0.65794 0.55112 0.55623 0.97603

SC homo homo 0.08764 0.23384 0.19008 0.33885 0.50572

hetero 0.09052 0.26734 0.21924 0.35622 0.50668 0.46972 0.9829

hetero homo 0.07016 0.25806 0.14854 0.30055 0.78375 0.49972

hetero 0.07937 0.26373 0.15774 0.32815 0.77411 0.5055 0.49075 0.9738

SI homo 0.0183 0.04164 0.01158

hetero 0.02918 0.05768 0.01458 0.38479 0.95003

Estimation errors are calculated on N = 2, 000 simulated datasets for each model, by using random combination of parameter values. The
reported values are measured as follows

1

N ∗ variance(θi)

N∑
i=1

(θ̂i − θi)
2,

where θ̂i and θi represent the estimated and the true parameter values respectively
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