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2LISSI, Université Paris-Est Creteil
3Muséum National d’Histoire Naturelle, Structure et Instabilité des Génomes, UMR7196, Paris
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Abstract

Genetically modified genomes are often used today in many areas of fundamental
and applied research. In many studies, coding or non-coding regions are modified on
purpose in order to change protein sequences or gene expression levels. Modifying
one or several nucleotides in a genome can also lead to unexpected changes in
the epigenetic regulation of genes. When designing a synthetic genome with many
mutations, it would thus be very informative to be able to predict the effect of these
mutations on chromatin. We develop here a deep learning approach that quantifies
the effect of every possible single mutation on nucleosome positions on the full S.
cerevisiae genome. This type of annotation track can be used when designing a
modified S. cerevisiae genome. We further highlight how this track can provide new
insights on the sequence dependent mechanisms that drive nucleosomes’ positions
in vivo.

Keywords— deep learning, genomics, S. cerevisiae, mutation, synthetic biology, nucleosome,

DNA motifs

Introduction

The first genetically modified organisms were created in the seventies, shortly after Cohen

et al developed the DNA recombination technology (Cohen et al. 1973). This has been the

foundation of biotechnology which is now a flourishing domain both in fundamental research

and industrial applications (Russo 2003). The recent development of game changing tech-

nologies such as CRISPR and DNA oligonucleotide de novo synthesis now open the way to
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major genome re-writing projects (Ostrov et al. 2019). A first paradigmatic example of this

effort, the S. cerevisiae 2.0 (Sc 2.0) project (Richardson et al. 2017) will soon deliver the first

example of a complete synthetic eukaryotic genome. Several projects are now starting with

the aim to design more synthetic genomes (Ostrov et al. 2019) that could reach even the scale

of the human genome. In the field of genomic engineering, the first step is to design the DNA

sequence of interest, either resulting from very few edits of the wild type sequence, or from a

more extensive genome re-writing, or even from the introduction of DNA sequences coming

from a different organism. When introduced in the cell, this sequence will be interpreted by

the cellular machinery and the resulting activity can be unpredictable. To date, there is no

way to know whether the nucleosomes will assemble and position themselves on the DNA as

expected, whether they will be modified or not by enzymes, or whether the chromatin will fold

in space in an appropriate way. Since experimentally testing a huge quantity of trial sequences

is cumbersome, if not unfeasible, computational tools are a good alternative to optimize the

design of synthetic sequences so that they can fold into a functional chromatin in vivo. While

this is a complex problem to deal with, the solution could come from the recent uptake of deep

neural networks.

In parallel to the evolution of experimental genome editing techniques, the explosion of

the amount of data available together with algorithmic advances and the use of graphical

processing units (GPUs) (Shi et al. 2016) enabled the development of deep neural networks in

many different contexts. This led to several breakthroughs in domains such as computer vision

(Long et al. 2015; Krizhevsky et al. 2012; Girshick et al. 2014), speech recognition (Hannun et

al. 2014) and machine translation (Wu et al. 2016). As a data driven domain, genomics followed

the trend and pioneering studies (Alipanahi et al. 2015; Zhou and Troyanskaya 2015) have

demonstrated the efficiency of deep neural networks to annotate the genome with functional

marks directly by interpreting the DNA sequence. The application of deep neural networks

to genomics is growing at a high pace and it can now be considered as a state of the art

computational approach to predict genomics annotations (Kelley, Snoek, et al. 2016; Umarov

and Solovyev 2017; Min et al. 2016; Eraslan et al. 2019; Quang et al. 2014; Kim et al. 2016;

Zou et al. 2019; Jones et al. 2017; Kelley, Reshef, et al. 2018). One of the advantages of deep

neural networks is their ability to predict a learned annotation on a variation of the genome,

i.e. to predict the effect of mutations.

In this work, we report the use of deep learning to estimate the effect on nucleosome po-

sitions of changing each single nucleotide of the S. cerevisiae genome into another nucleotide.
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The nucleosome positioning in S. cerevisiae has been extensively studied in the past by MNase-

seq. This protocol relies on the enzymatic digestion of the linker DNA between nucleosomes

and the sequencing of the protected DNA (Krietenstein et al. 2016; AL Hughes and Rando

2015; Z Zhang et al. 2011). Several studies pointed towards a close link between gene regula-

tion and nucleosome positions (Tsankov et al. 2010; AL Hughes, Jin, et al. 2012). The role of

the DNA sequence in the nucleosome positioning process has been a long standing debate. To

assess this question, a pioneering study (Segal et al. 2006) showed evidence for the existence of

motifs negatively correlated with nucleosome positions (Anderson and Widom 2001; Iyer and

Struhl 1995; Raisner et al. 2005). Kaplan et al. (Kaplan et al. 2009) developed a statistical

method to predict the nucleosome density from the DNA sequence, emphasizing the preferen-

tial positioning of nucleosomes on specific DNA statistical motifs. Numerous computational

methods - reviewed by Teif (Teif 2015) - were developed afterwards to predict the positions

of nucleosomes from the DNA sequence. Recently, deep neural networks were also applied to

discriminate between 147 bp long sequences bound by a nucleosome and 147 bp long sequences

without any nucleosomes (Di Gangi et al. 2018; J Zhang et al. 2018).

Building on these previous works, we use here convolutional neural networks (CNNs) to

predict the experimental nucleosome density (i.e. the results of the MNase protocol) for

every position on the S. cerevisiae genome from the raw DNA sequence. The model repro-

duces well the characteristic nucleosome depletion around transcription start sites (TSS) as

well as the typical periodic nucleosomal pattern on gene bodies. We then use the model

as an in silico model of the yeast machinery to predict the effect of every single mutation

along the genome. In doing so we assign to every nucleotide a score representing its im-

portance regarding the nucleosome positioning process. This genomic track is accessible at

https://github.com/etirouthier/NucleosomeDensity/Results nucleosome/mutasome scerevisiae.bw

and can be used freely by others, when designing genetically modified yeast, to anticipate the

effect of induced mutations on nucleosome positioning. We also use this track to analyze the

DNA motifs that present a high mutation score, corresponding to motifs that are important

for nucleosome positioning.
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Results

Quality of the prediction

The first goal of this study is to accurately predict the nucleosome density directly from the

DNA sequence. We use a CNN model whose input is defined by a one-hot-encoded DNA

sequence of a given length L and whose output is the nucleosome local density associated with

the nucleotide found in center of the input sequence. Several approaches aiming at extracting

nucleosome positions from the nucleosome density have been proposed (e.g. K Chen et al.

2013; W Chen et al. 2014) but our goal here is to predict the experimental output, that is

the continuous nucleosome density, rather than the nucleosome positions that can be inferred

from this experimental density. We present in this section a quantitative evaluation of the

prediction quality.

A typical experimental result such as the one of Hughes et al. (AL Hughes, Jin, et al.

2012), exhibits a locally periodic signal, with depleted regions preferentially found in inter-

genic regions (Fig.1A, red signal). We train a CNN (refer to Methods for details) using the

experimental nucleosome density of all chromosomes but the Chr16, which is kept aside as a

test set. A length L = 2000bp of the input sequence was chosen and all sequences of length

L obtained with a 1 bp sliding window on each chromosomes are used for training (Chr1 to

Chr13) , validation (Chr14 and Chr15) and test (Chr16). The prediction on Chromosome 16

matches the experimental density, both in genic and inter-genic regions (Fig.1A, blue signal).

A quantitative comparison between the two signals on the whole chromosome is displayed on

Fig.1B. Our method reaches a Pearson’s correlation of 0.68 between prediction and experiment,

a value comparable with the results obtained by state of the art CNN-based-methods on

other tracks annotating the human genome, such as DNase sensitivity or histone modifications

(Kelley, Reshef, et al. 2018).

To investigate the generalisability of our results, we trained four CNNs models indepen-

dently on four experimental replicates from a different data-set (Kaplan et al. 2009). The

Pearson’s correlation between predictions (0.85± 0.05) is in the same range as the correlation

between experimental replicates (0.87 ± 0.07). These values are constantly higher than the

correlation between predictions and experiments (0.58 ± 0.05) which is itself lower that the

correlation of 0.68 we obtained with the Hughes et al. data-set above (AL Hughes, Jin, et al.

2012) (Fig.1C). An important control is that the performance obtained by comparing the pre-

dicted density with the experimental density coming from the dataset used for training the
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model is not significantly higher than the performance obtained by comparing the predicted

density with the experimental densities from datasets which were not used for training (i.e.

correlation between rep1 pred, as defined on Fig.1C, and rep1 is comparable to the correlation

of rep1 pred with the three other experimental densities). The model thus filters a large part

of the replicates variability, which indicates a good generalisability of the results.

Training a network is a non deterministic process. We trained four networks on the same

dataset and looked at the variability in predictions. We found that this variability can vary

locally and is correlated with the experimental variability observed between replicates (Sup-

plemental Fig S1). This indicates that using CNN could also be valuable to find regions of

higher or lower confidence in experimental data.

To further investigate the generalisability of our models, we trained independently CNNs on

experimental densities obtained under different experimental conditions (Kaplan et al. 2009).

Those conditions are the growth medium (YPD, YPEtOH, YPGal) and the presence or ab-

sence of a formaldehyde cross-linking step in the experimental protocol. For each condition

several technical replicates are available. All the model-predicted densities do not correlate

significantly better with the experimental densities that were obtained with the same growth

medium as compared to the density that used to train the model. This points towards an

overall similar nucleosome positioning in these different growth conditions (Fig.1D). We next

focus on regions surrounding the GAL1-10 promoters which are known to exhibit a different

nucleosome occupancy profile in YPD vs YPGal (Supplemental Fig S2). Our prediction cap-

tures the nucleosome depletion at these gene promoters in YPGal (highlighted in light blue

on Fig S2) but fails to reproduce the strong positioning of specific nucleosomes neighboring

these promoters in YPD (highlighted in light grey on Fig S2). The model thus learns some of

the the growth medium specific patterns at locations where the nucleosome density changes

significantly between experimental protocols.

The models trained on experimental results including or lacking a cross-linking step pro-

duce quite different predictions when applied on the Chromosome 16 sequence. The models

that were trained with an experimental density lacking a cross-linking step are predicting

densities that correlate on average better (0.59) with experimental densities obtained with no

cross-linking step than with experimental densities obtained using a cross-linking step (0.49).

Similarly, predicted densities obtained with a model trained on cross-linked data correlate on

average better with experimental densities obtained with with cross-link (0.45 vs 0.39). The

globally lower correlation values obtained using experiments that include a cross-linking step

5



show that this step generates modifications in the experimental nucleosome density that can-

not be predicted from the sequence alone. This suggests that this step can alter the nucleosome

profile in a non-reproducible way.

For the sake of comparison of our CNN based method with previously proposed CNN

based method for predicting nucleosome positions from DNA sequences, we used two previously

proposed networks (J Zhang et al. 2018; Di Gangi et al. 2018) to predict the nucleosome density

over the entire Chromosome 16. We found a correlation between prediction and experiment of

0.43 and O.40 to be compared with 0.68 obtained with our model trained and tested on Hughes

et al. (AL Hughes, Jin, et al. 2012) dataset. The lower performance of previously published

methods for this task is expected since both methodologies were designed as classifiers which

discriminates between fragments of DNA containing a nucleosome and fragments of DNA

devoid of nucleosomes, whereas our method is designed to predict directly the nucleosome

density over a whole chromosome. All methods nevertheless reproduce accurately inter-genic

nucleosome depleted regions but our method reproduce with more accuracy the locally periodic

density observed between depleted regions (see Supplemental Fig S3).

Studying the effect of input length L on the predicted nucleosome

phasing at TSS

While specific DNA binding proteins usually recognize short DNA motifs, nucleosomes are

positioned by a combination of several others mechanisms, including DNA local flexibility and

shape, as well as the presence of neighboring nucleosomes (Tsankov et al. 2010; AL Hughes,

Jin, et al. 2012; Z Zhang et al. 2011; Riposo and Mozziconacci 2012; Mavrich et al. 2008). The

length L of the input sequence in our model is thus an important parameter that can change

the performance of the CNN. We display on figure 2 a comparison between the predicted and

experimental metagene profiles (i.e nucleosome density averaged over TSS regions) for different

input lengths (L = 151, 501, 1001 and 2001bp). The experimental nucleosome density exhibits

a characteristic pattern when averaged over TSS regions: a region with a low density, known

as the nucleosome depleted region (NDR), precedes the TSS position. Further nucleosomes are

regularly spaced with a periodicity of 167 bp on the gene body (Riposo and Mozziconacci 2012;

Mavrich et al. 2008). This pattern reflects the molecular mechanisms at work in nucleosome

positioning. Nucleosomes are excluded from regions preceding TSS, which are enriched with

RNA polymerase. These regions act as barriers around which nucleosomes tend to stack upon

each other, either due to thermal noise (Mavrich et al. 2008), or to chromatin remodelers
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Figure 1. Evaluation of the predicted nucleosome density. (A) Comparison between experimental
(red) and predicted (blue) nucleosome densities in a region of the Chromosome 16. Genes are shown in
blue on top of the two tracks. Data from AL Hughes, Jin, et al. 2012. (B) Density plot of the predicted
nucleosome density in function of the experimental nucleosome density. The correlation between the two
signals is 0.68. The distributions of the values of these two tracks on Chromosome 16 are also shown
by side. (C) Cross-correlation between nucleosome densities on Chromosome 16 for 4 technical replicates
(data from Kaplan et al. 2009) and 4 predictions obtained with models trained on each of the 4 replicates
(e.g. rep1 pred is obtained with a model trained the rep1 nucleosome density). (D) Cross-correlation
between nucleosome densities for 13 experiments and 13 predictions with models trained on each of the 13
experimental densities (experimental densities are on the horizontal-axis, predicted densities on the vertical-
axis). The 13 experiments were carried out using different growth medium (namely YPD, YPEtOH and
YPGal). Two different cross-linking conditions were used (cross-linking of nucleosomes on DNA prior to
MNase digestion: CL or no cross-link: NOCL).

Lieleg et al. 2015 and local attraction between nucleosome faces (Riposo and Mozziconacci

2012). How accurately this characteristic pattern is reproduced by the model is hereafter used

as a qualitative measure.

The CNN model is able to identify and predict the NDR for all values of the input length

L. This result is expected since short DNA motifs such as poly(A) motifs are known to ex-

clude nucleosomes from these regions. However the prediction of the periodical pattern has

a strong dependence on the input length L. For L = 151bp (which corresponds to a single

nucleosome) the model is not able to recover the periodical pattern (Fig.2A), the correlation

between the predicted and the experimental metagene profiles is nevertheless high, it reaches
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0.9 (Supplemental Fig S4). For L = 501bp (approximately 3 nucleosomes) a periodical pat-

tern starts to appear and the first nucleosome after the TSS is well positioned (Fig.2B), this

improvement can be quantified by the correlation between metagene profiles which increases

to 0.93. For L = 1001bp (6 nucleosomes) the periodical pattern improves and the first three

nucleosomes after the TSS are well positioned (Fig.2C), the correlation between the metagene

profiles reaches 0.95. The best prediction quality is obtained for L = 2001bp, which corre-

sponds to 12 nucleosomes, the typical size of longer genes. For this particular length of the

input, the characteristic nucleosome pattern in TSS regions is well reproduced by our net-

work (Fig.2D), the correlation between the metagene profiles is accordingly increased to 0.97.

Further increasing the input length does not change the performances significantly, while it

penalizes the training process due an increasing need for computational memory. The global

correlation between experimental and predicted densities over the whole chromosome increases

from 0.63 to 0.68 (Supplemental Fig S7) when the input length L increases.

A B C D

Figure 2. Influence of the input length L on the pattern of the predicted nucleosome density
in TSS region. Average predicted (blue) and experimental (red) nucleosome density in TSS regions. The
predicted nucleosome density is here obtained with CNN models trained with different values of L ((A) :
151 bp, (B) : 501 bp, (C) : 1001 bp, (D) : 2001 bp). The other hyperparameters of the network are the
same. Nucleosomes positions (in red for the experimental and blue for the predicted densities) are sketched
below the curves. +1 and -1 refer to the first nucleosomes before and after the NDR.

Genome transfection of K.lactis in S.cerevisiae

Hughes et al. (AL Hughes, Jin, et al. 2012) transfected pieces of the K.lactis genome into

S.cerevisiae and measured the nucleosomal density with MNase-seq in order to compare

the nucleosome positioning mechanisms in different species. Following their idea, we try to

predict the nucleosome density in a different yeast species to further assess the generality

of the model. The model trained on S.cerevisiae is first used to predict the nucleosome

density on Chromosome F of K.lactis. Results are presented on Fig.3 where the predicted

density averaged over TSS is compared with two different experimental densities: (Fig.3A)
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the nucleosome density on the Chromosome F of k.lactis, (Fig.3B) the nucleosome density

on the Chromosome F of K.lactis transfected in S.cerevisiae. The CNN is able to capture

accurately the NDR in K.lactis while being trained on S.cerevisiae. We conclude that DNA

sequence motifs that determine NDR are similar between those two species. If we consider now

the periodical pattern on the gene body, we can see that the prediction on K.lactis displays

a periodical pattern but the value of the period, called nucleosomal repeat length (NRL), is

the same as in S.cerevisiae (167 bp) whereas it should be 176 bp, as observed in K.lactis.

The predicted density is indeed similar to the experimental nucleosome density obtained on

the transfected K.lactis sequences in S.cerevisiae. Our model is able to predict the behavior

of the cell machinery of S.cerevisiae for the task of positioning nucleosomes on an exogenous

genome.

Having carefully characterized the behavior of our model across replicates, experimental

conditions and DNA sequences from different species, we now wish to use it to predict the

effect of single mutations on the nucleosome positions.

Figure 3. Predictions on the K.lactis genome compared with experiments. The prediction of
the model, trained on S.cerevisiae and applied on the Chromosome F of K.lactis , is compared with the
experimental data obtained by Hughes et al. (AL Hughes, Jin, et al. 2012). The signal around every TSS
is aligned with respect to the first nucleosome downstream the TSS and averaged. (A) Endogenous context
(Chr F of K.lactis in K.lactis) (B) Transfected context (Chr F of K.lactis in S.cerevisiae).

Predicting the effect of single mutations

With our model in hand it is now possible to predict the nucleosome positions resulting from

a mutation in the genome. The rationale behind this is that the more important a nucleotide

is regarding nucleosome positioning, the more the effect of a mutation of this nucleotide will

modify the predicted nucleosome density. In order to find positions on the genome associated
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with such modifications we generate all the possible single mutations along the genome and

assign to every position a mutation score. This mutation score represents the Z-normalized

distance between the nucleosome density predicted with and without mutation. Training

several CNNs by letting aside each time different chromosomes, we computed the mutation

score across the whole genome (see Methods for details).

A typical example of the mutation score along a region of Chromosome 16 with represen-

tative peaks at specific positions is outlined in Fig.4A. Those peaks often coincide with NDR,

represented as red dotted lines in Fig.4A. Aligned and averaged around every NDR start,

the mutation score displays a peak centered on the NDR (Fig.4B). This result highlights the

fundamental role of the NDR in nucleosome positioning.

The distribution of the mutation score (Fig.4C) exhibit a narrow peak with over 90% of

the values falling between -1 and 1 standard deviations, to be compared with 68% expected

for a normal distribution. The distribution also features a long tail towards positive values

corresponding to mutations having a strong impact on nucleosome positioning. We focus in

the following on mutations with a score above 5, representing 0.6% of the genome.

To investigate the existence of DNA motifs for nucleosome positioning (Segal et al. 2006),

we analyse the motifs found at these high mutation score positions. We collect all 15-bp

sequences surrounding a nucleotide with a high mutation score and extract from them over-

represented motifs (see Methods). Those motifs can be separated into two groups. The first

group corresponds to poly(A) and the second group corresponds to poly(CG) (Fig. 4C).

The first group, poly(A), has previously been shown to be over-represented in NDR and

to have a role in nucleosome exclusion from these regions (Raisner et al. 2005; Anderson and

Widom 2001; Segal and Widom 2009; Suter et al. 2000). This effect has been proposed to

be in part due to the natural stiffness of the poly(A) stretches (Iyer and Struhl 1995) and is

enhanced and modulated by active nucleosome remodeling (Z Zhang et al. 2011; Boer and

TR Hughes 2014). An important player in this process is the Remodeling the Structure of

Chromatin Complex (RSC) which has been shown in vitro to clear promoters by removing

nucleosomes from poly(A) sequences (Krietenstein et al. 2016).

The second group, poly(CG) also correspond to the binding sequence of a submit of the

RSC (RSC3, Badis et al. 2008). These sequences are found preferentially ∼ 100 bp upstream

of TSS (see Supplemental Fig S5). Mutation of the RSC3 protein has been shown to result in

an increase in nucleosome occupancy at NDR which contained a poly(CG) motif, suggesting

that these sequences can as well exclude nucleosomes (Badis et al. 2008).
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The role of ploy(A) and poly(CG) have previously been described only in NDR upstream

TSS and our findings are in line with these previous results. Indeed, only a fraction of those

core motifs occurrences result in a significantly high mutation score (21% for poly(A), 13%

for poly(T) and 29% for poly(CG) Fig.4D). These sites are enriched in NDR: when the motifs

are present within gene bodies, their predicted impact on nucleosome positions is weaker.

We next ask whether all NDR have poly(A) or poly(CG) motifs and find that almost 60%

of the NDR harbor at least one of these motifs (Fig.4E). ∼ 40% of the NDR harbors motifs

coming from one group only but the two groups are not mutually exclusive, since ∼ 20% of

the NDR harbor motifs coming from both kind, i.e. one poly(A) and one poly(CG) (Fig. 4E

). We next investigate the relative position of these motifs relative to the TSS. Poly(A) and

poly (CG) motifs are typically located 120 and 140 bp upstream of the TSS (Supplemental Fig

S5 ). When both sites are present within a NDR, the poly(A) is on averaged moved further

away from the TSS (160 bp). The position of the start site of the NDR does not depend on

the group of motifs present: the NDR always starts on average 75 bp upstream of the TSS

(Supplemental Fig S5 ).

To investigate more quantitatively the effect of disrupting these motifs within the NDR we

compute the averaged predicted nucleosome density in a 200 bp region centered on all motif

instances within NDR with and without mutations in the motif. A mutation of a nucleotide

in either a poly(A) or poly(CG) motif results in an increase of the nucleosome density in

the vicinity of the mutation (Fig. 4F). A similar effect is seen for the complementary motifs

poly(T) and poly(GC). This effect does not depend on the fact that one or two different

motifs are found within a NDR. We conclude that, in agreement with previously reported

experimental results, these two motifs are involved in the depletion of nucleosome. Using this

methodology we do not find any motifs that would position nucleosomes by attracting them ,

i.e. motifs for which a mutation would locally reduce the nucleosome density.

Predicting the effect of multiple mutations

When designing synthetic genomes, one often needs to make several mutations in a given

region. We therefore set out to investigate qualitatively the effect of having two or more

mutations on the prediction of the nucleosome occupancy. We chose for illustration purposes

a region of Chromosome 16 displaying two high mutation score positions in an inter-genic

region (Fig.5A, top). The two sites, numbered 1 and 2, fall into two NDR that flank a well

positioned nucleosome. We computed the variation in predicted nucleosome occupancy that
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Figure 4. Effect of single mutations on the nucleosome density. (A) The mutation score on a
region of Chromosome 16. NDR are shown with red dotted lines. (B) The average of the mutation score
aligned on all NDR starts. On average the mutation score is peaking in the NDR, showing the major role
of those regions in the nucleosome positioning process. (C) The distribution of the mutation score, as well
as the 3 motifs enriched in the DNA sequences found in peaks with high mutation scores. (D) Proportion
of poly(A),poly(T), and poly(CG) motifs in the genome that correspond with a high mutation score. (E)
Proportion of four groups of NDR: NDR containing only poly(A/T) motifs (referred to as A-T), containing
only poly(CG) like motifs (CG), containing both poly(A) and poly(CG) like motifs (A-T-CG) and NDR
harboring none of these motifs. (F) Effect of a mutation in the poly(A/T) and poly(CG) motifs found in
NDR on the nucleosome density in A-T and CG NDR respectively (top), and in A-T-CG NDR (bottom).

resulted in mutating each one of the sites, or mutating both sites. Mutation of site 1 results

in a partial loss of the corresponding NDR. Nucleosome occupancy decreases at nucleosomal

peaks in the vicinity of the mutation (indicated with dotted lines on Fig.5A) and increases in

linker regions. Mutation of site 2 induces an wider opening of the corresponding NDR as well

as a sliding of the two neighboring nucleosomes away from the NDR. When mutating both

sites, this results in a non-trivial combination of the two variations leading to an overall higher

perturbation of the nucleosomal occupancy than for one mutation alone.

We then set out to quantify the average effect of having two mutations at high scoring mu-

tation sites. We reasoned that the combination of two mutations may depend on the distance

between these mutations. Based on the auto-correlation of the mutation score (Fig.5B), we

defined three different types of co-mutations: the first one for mutations that are closer than 5

bp corresponds to mutations in the same motif, the second one for mutations which are found

between 5 and 90 bp away corresponds to mutations within a cluster of motifs, the third one

corresponds to mutations which are found between 90 and 500 bp. Note that by construction
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of our network, mutations which are found at a distance greater than two input sequence

length (here 4000 bp) will be independent so that the mutation score for the two mutations

will be the sum of mutation score for each mutation taken independently. In order to evaluate

the effect of two mutations and compare this effect with the effect of single mutations, we

selected 1000 loci with high (> 5) mutation scores on each chromosome and computed their

average mutation score (Fig.5C, light grey). For all these mutations, we investigated the effect

of high scoring mutations that were found within 5 bp (Short) by computing their average

non-standardized mutation score (Fig.5C, grey). We then compared these two values with

the average non standardized score obtained by mutating both the primary and secondary

mutations (Fig.5C, red). We used here non-standardized scores which are always positive and

additive by construction whereas standardized scores are not. This procedure was repeated

for mutations found between 5 and 90 bp away (red Medium) as well as for mutations found

between 90 and 500 bp away (red Long). We conclude that the effect of having two mutations

of high mutation score within a region can be on average approximated by the sum of the

effect of each mutation taken independently and that this effect does not depend on the dis-

tance between mutations. The sum of the mutation score of each mutation and the mutation

score associated to their simultaneous mutations are strongly correlated (0.75 for short- , 0.70

for medium- and 0.80 for long-distance co-mutations, Fig.S6A,B,C). As a recommendation for

genome design, we thus advice changing as few as possible nucleotides with high mutation

scores.

When repeating a similar analysis for low mutation score nucleotides (score < 1) (Fig.5D),

we also found that mutating two nucleotides with low mutation score impacts on average the

nucleosome occupancy in the proportions one would expect by adding the mutation scores

for each mutation. The sum of the non-standardized mutation score of each mutations and

the mutation score of the co-mutations are also strongly correlated (0.73 for short- , 0.82 for

medium- and 0.97 for long-distance co-mutations, Fig.S6D,E,F). On average, mutating two

such nucleotides leads to a standardized mutation score of 1, still much below the highest

scores that can be obtained by changing some specific nucleotides with high mutation scores.

Nevertheless, when adding more and more mutations within the same region, the mutation

score can reach values as high as 15, i.e. scores obtained when mutating two high score

nucleotides (Fig.5E). As a guideline for design, our analysis shows that on average 20 low

score mutations have a similar effect as compared to one high score mutation.

These figures can serve as a baseline to evaluate the effect of a specific sequence design on
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nucleosome positions, but in the case of a massive editing of many nucleotides, we recommend

running a full prediction of nucleosome occupancy on the designed sequence in order to check

for the potentially unwanted effects on nucleosome positioning.
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Figure 5. Effect of mutating multiple nucleotides. (A) Illustration of the effect of two mutations
on nucleosome occupancy on a locus of Chromosome 16. (top) mutation score over the region. (blue)
predicted nucleosome occupancy for the wild type sequence. (light grey and grey) Local variation of the
prediction obtained when mutating position 1 or 2 respectively. (red) Local variation of the prediction
obtained when mutating both positions. Nucleosome occupancy peaks are highlighted with dashed lines.
(B) Auto-correlation of the mutation score (semi-log-10 plot). Three different regimes can be identified,
separated by dashed lines. (C) Average non-standardized mutation score obtained by mutating 16000
randomly sampled single nucleotides presenting a high mutation score (> 5, light grey), by mutating one
by one all nucleotides that are found closer than 500 bp to these mutations (grey) and by mutating all
pairs of nucleotides that are closer than 500 bp (red). Mutation scores are separated in 3 categories based
on the distance between the two mutated nucleotides: less than 5 bp (Short), between 5 bp and 90 bp
(Medium) and between 90 bp and 500bp (Long). (D) Same as (C) but for nucleotides with a low mutation
score (< 1). (E) Evolution of the mutation score with the number of mutations with a low mutation score.
All mutations considered here - taken individually - have a score smaller than 1. The solid line represents
the average mutation score, the width of the line represents the standard deviation of the distribution of
mutation scores.

Discussion

In this study we used deep learning to generate a genomic track that leverages MNase-seq

experimental results in order to predict the potential changes of nucleosome positioning re-

sulting from mutating any bp in the S.cerevisiae genome. A similar procedure can in principle

be done for any genomic track. The benefits of this track are two fold. Firstly, it can gives

some guidelines to create a synthetic genome without modifying nucleosome positions in an

unwanted manner. Secondly the results can be used to better understand how nucleosomes
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are positioned by the underlying DNA sequence.

The study of the predicted nucleosome phasing at TSS as a function of the input length of

the network gives us more precise information. A network whose inputs are too short is able

to capture the position of the NDR whereas is it not able to capture the periodicity in the

pattern of nucleosome positions away from the NDR (Fig.3). This observation leads to two

conclusions : NDR are hard coded by DNA motifs whereas the DNA sequence wrapped around

nucleosomes is not sufficient to precisely set their positions. In a cross species context, in which

the network is trained in S. cerevisiae and the predictions are made on K.lactis genome, the

periodicity is wrongly predicted to be the one of S. cerevisiae whereas the NDR are well pre-

dicted. These observations reveal the importance of the conserved DNA motifs residing in

the NDR in the process of nucleosome exclusion upstream of the TSS. Studying the influence

of single mutations all along the genome allows us to confirm this mechanism and to point

out these specific motifs. Poly(A) and poly(CG) are, in agreement with earlier experimental

studies (Raisner et al. 2005; Anderson and Widom 2001; Suter et al. 2000; Badis et al. 2008;

Krietenstein et al. 2016), shown to be the core motifs preventing nucleosomes from binding in

the NDR. While our study confirms the role of these core motifs, it also outlines that not all of

these motifs in the genome are important for nucleosome positioning. We also show that other

positions along the genome can play a role in this process. A general guideline for designing a

synthetic yeast genome would be to preserve nucleotides that present a high mutation score.

For a quantitative anticipation of effects of mutation, the mutation score track is available at

https://github.com/etirouthier/NucleosomeDensity/Results nucleosome/mutasome scerevisiae.bw.

Of course, the procedure used here in yeast for nucleosome positioning can be extended

to other genomic tracks and other species. While we have validated here the high potential

of this approach by studying how the DNA sequence drives nucleosome positioning in yeast,

we anticipate that it will be very valuable tool to study nucleosome positioning rules in more

complex organisms and ultimately in human. This would for instance empowers the community

to ask whether some mutations frequently associated with diseases have a predominant role

in positioning nucleosomes. Several issues will need to be solved to achieve this aim. The

first is mappability, since many genomic regions are repetitive, the nucleosome density can

not be measured on these sequences and this needs to be explicitly taken into account during

training. The second is the size of the genome. The human genome is more than 200 times

longer than the yeast genome. This has two impacts. The first is the coverage of the MNase

experiment. The best coverage achieved for human cells is about 30 reads per nucleosome
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whereas it is usually 10 times higher in a standard yeast experiment (Valouev et al. 2011 vs

Kaplan et al. 2009). Last but not least, nucleosome spacing in human depends both on the cell

type considered as well as on the location on the genome. The nucleosomal spacing is 167 bp

in yeast, and the nucleosomal density shows only minor changes in different growth conditions

(Fig S2). In human the spacing can change along the genome as well as in different cell

types, taking values ranging from 178 to 205 bp (Valouev et al. 2011). We expect that these

issues can be solved by using more sophisticated network architectures as well as increasing

the computing power and that future developments in deep learning algorithms will become

a game changing technology for genome writing.

Methods

Data accession and preprocessing

We use the reference genome sacCer3 of Saccharomyces cerevisiae, available at:

http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/.

MNase-Seq experimental results are available with accession numbers GSM552910 and

GSE13622 (kaplan et al. (Kaplan et al. 2009)). Data for klyuverii Lactis used in the present

study has been obtained from Tsankov et al. (Tsankov et al. 2010) and is available through

accession number GSE21960. The experimental averaged nucleosome density in the TSS

regions was obtained from the study of Hughes et al. (AL Hughes, Jin, et al. 2012) and is

available using accession number GSM953761.

To obtain the nucleosome density from single end reads, we take the beginning of each

read and add one count for each bp in a region of 100 bp in the direction of the read. We

then truncate the obtained nucleosome density to a threshold - the 99 th percentile of the

distribution of density scores - and divide the density by the threshold. This finally yields a

density signal comprised between zero and one. We prepare input sequences of 151, 301, 501,

1001, 1501, 2001 bp for every positions in the genome except for Chromosome 16 to define

the training (Chromosome 1 to 13) and validation (Chromosome 14 and 15) sets. We thus

generate 10 613 042 input sequences among which those corresponding a nucleosomal density

equal to zeros are excluded (as they correspond to non-uniquely mappable sequences). Each

input sequence is then labeled with the nucleosome density value found at its central position.
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Model Architecture and training

We implement the CNN using the Keras (Chollet et al. 2015) library and Tensorflow (Martin

Abadi et al. 2015) as back-end. A RTX 2080 Ti GPU is used to improve training speed. We

use the adaptive moment estimation algorithm (Adam) to compute adaptive learning rates for

each parameter and a batch size of 512.

Our CNN architecture (see Fig.6A) consists of three convolutional layers with respectively

64, 16 and 8 kernels of shape (3×1×4), (8×1×64) and (80×1×16). The stride is equal to 1.

Our model takes inputs of shape (L, 1, 4), the last dimension representing the four nucleotides.

The first and second layer kernels identify 20 bp long motives which will play a role in

the local affinity of the DNA sequence for nucleosomes. It is known for instance that poly(A)

will disfavor nucleosome formation while a ∼ 10bp periodic enrichment of AA/TT/TA di-

nucleotides that oscillate in phase with each other and out of phase with GC di-nucleotides

will increase the affinity of the sequence for nucleosomes (Segal et al. 2006). The third layer

is designed to capture long range information (coming from several nucleosomes) in order to

grasp the nucleosome stacking one against another (Riposo and Mozziconacci 2012).

The ReLU function is applied to the outputs of convolutional layers which are then entered

into a max-pooling layer with pooling size (2 × 1). After each max-pooling layer batch-

normalization is applied as well as a dropout with a ratio of 0.2. Finally, the output of

the last layer is flattened and connected to the output layer containing one neuron through

a single perceptron and using a linear activation function to make predictions. We tested

several other architectures before choosing the one described above and a full recapitulation

of hyper-parameters values which were tested is presented in Supplemental TableS1.

The loss function combines the Pearson’s correlation (corr) between the prediction and the

target and the mean absolute error (MAE) between them (loss = MAE(ŷ, y) + 1− corr(ŷ, y),

with ŷ being the model prediction and y the target). The rationale for using this combined

loss function is that we get a faster convergence and better final values both for the MAE and

the correlation than using only one of them as a loss function (see Supplemental Fig S7).

An early stopping procedure is applied during training to prevent models from overfitting.

The loss function is calculated on the validation set at every epoch to evaluate the generalis-

ability of the model. The training procedure is stopped if the validation loss does not decrease

at all for 5 epochs and the model parameters are set back to their best performing value. The

training procedure usually lasts 15 to 20 epochs.
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A

B

Figure 6. CNN architecture and mutation score computation. (A) The model is trained to
predict the nucleosome density at the center position of a 2001 bp long DNA sequence. It contains three
convolutional layers with maxpooling, batch-normalization and dropout. The final convolutional layer
output is flattened and fed to a single output neuron. (B) We test all the possible mutations at the
position indicated in blue, here a T, and predict the nucleosome density around this position with and
without mutations. The mutation score is the Z-normalized sum of the distance between the wild type
density and all the mutated type. The loss function used to train the network is used to compute the
distance.

TSS alignment

For figure 2, genes positions of the studied species are download from the Ensembl fungi

browser (ftp://ftp.ensemblgenomes.org/pub/fungi/release-46/gff3/saccharomyces_cerevisiae/

Saccharomyces_cerevisiae.R64-1-1.46.gff3.gz). The alignment on the TSS is simply

made by taking a window of [−500, 1000] bp around every TSS and by averaging the signal.

Figure 3 displays the average nucleosome density in TSS region realigned on the first

nucleosome downstream the TSS as previously performed by Hughes et al. (AL Hughes, Jin,

et al. 2012).
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NDR determination

The NDR positions are defined as in Tsankov et al. (Tsankov et al. 2010). Briefly, the signal

is firstly modified by setting to zero all the position with a value lower than 40% of the mean

value, so that DNA linkers appear as a series of zeros. NDRs are then defined as the first

linkers longer than 60 bp upstream of each TSS. If no sufficiently long linker is found closer

than 1000 bp away from the TSS, the first zero is set as the beginning of the NDR.

Mutation score

To assign a mutation score to every position on the genome we use the methodology displayed

on Fig.6B. All the three possible mutations at a given position (highlighted in blue) are per-

formed. The wild type and the three mutated genomes are used to predict the the nucleosome

density. Predictions are made on the complete range in which the mutation can affect the

model i.e. ±1000bp around the mutated position. Then - using the training loss function -

we compute the distance between the wild type local density and all the three mutated type

local densities. By summing these three distances we assign a score to the mutated position.

This score is then Z-normalized within each chromosome to give the mutation score. This

score reflects how the nucleosome density was perturbed by the mutation at the chosen posi-

tion. Knowing that the nucleosome positions are not directly encoded in the underlying DNA

sequence, we take long range perturbations into account using this methodology.

For the track presented along with the manuscript, the mutation score on Chromosome

N is the average of three mutation scores obtained with three models independently trained

on all the chromosomes with the exclusion of Chromosome N . While only a small fraction

of the training set is sufficient to reach the maximum of accuracy (Supplemental Fig S8), we

chose to use all sequences for training to improve the reproducibility of the mutation scores.

We finally obtain a robust mutation score, as two independently computed scores reach a

correlation of 0.88 (Supplemental Fig S9). In this regard, it is good practise to train several

models independently and to use the average of the prediction scores to assess the effect of a

mutation.

Motif analysis

We make the assumption that a nucleotide assigned a high mutation score belongs to a motif

that plays a role in the nucleosome positioning process. Every nucleotide assigned with a
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mutation score greater than 5 is considered to be the center of a 15-bp important motif. All

those loci are collected (64610 loci) and aggregated when they intersect (23585 loci). We then

use MEME (Bailey et al. 2015) to extract significant motif logos from those loci. We used the

following options:

meme -oc outdir -nmotifs 10 -dna sacCer3peakseq.fa

MEME is commonly used to extract binding sites logos from the DNA windows underly-

ing peaks of ChIP-seq data, we use it to extract meaningful logos from the DNA windows

containing nucleotides with high mutation scores.

Software availability

The mutation score track is available at GitHub (https://github.com/etirouthier/NucleosomeDensity/Results

nucleosome/mutasome scerevisiae.bw) and as Supplemental Code. All of the code necessary to

reproduce the results is accessible at GitHub (https://github.com/etirouthier/NucleosomeDensity.git)

and as Supplemental Code

Acknowledgements

We wish to thank Ayman Bin Kamruddin and Thomas Haschka for comments on the manuscript

and Jean Baptiste Boule and Jean Baptiste Morlot for discussions. We also thank Michel

Quaggetto for technical support. This work was supported by the IUF and the ANR-15-

CE11-0023

Competing interest statement

The authors declare no competing interests.

References

Alipanahi B, Delong A, Weirauch MT, and Frey BJ. 2015. Predicting the sequence

specificities of DNA-and RNA-binding proteins by deep learning. Nature biotech-

nology. 33: 831.

20



Anderson J and Widom J. 2001. Poly (dA-dT) promoter elements increase the equilib-

rium accessibility of nucleosomal DNA target sites. Molecular and cellular biology.

21: 3830–3839.

Badis G et al. 2008. A Library of Yeast Transcription Factor Motifs Reveals a Widespread

Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters. Molecular

Cell. 32: 878–887.

Bailey TL, Johnson J, Grant CE, and Noble WS. 2015. The MEME suite. Nucleic

acids research. 43: W39–W49.

Boer CG de and Hughes TR. 2014. Poly-dA: dT tracts form an in vivo nucleosomal

turnstile. PloS one. 9: e110479.

Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, and Li W. 2013.

DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing.

Genome research. 23: 341–351.

Chen W, Liu Y, Zhu S, Green CD, Wei G, and Han JDJ. 2014. Improved nucleosome-

positioning algorithm iNPS for accurate nucleosome positioning from sequencing

data. Nature communications. 5: 4909.

Chollet F et al. 2015. Keras. https://keras.io.

Cohen SN, Chang AC, Boyer HW, and Helling RB. 1973. Construction of biologically

functional bacterial plasmids in vitro. Proceedings of the National Academy of

Sciences. 70: 3240–3244.

Di Gangi M, Bosco GL, and Rizzo R. 2018. Deep learning architectures for prediction

of nucleosome positioning from sequences data. BMC bioinformatics. 19: 418.

Eraslan G et al. 2019. Deep learning: new computational modelling techniques for

genomics. Nature Reviews Genetics. 1.

Girshick R, Donahue J, Darrell T, and Malik J 2014. Rich feature hierarchies for

accurate object detection and semantic segmentation. In: Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 580–587.

21

https://keras.io


Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh

S, Sengupta S, Coates A, et al. 2014. Deep speech: Scaling up end-to-end speech

recognition. arXiv preprint arXiv:1412.5567.

Hughes AL, Jin Y, Rando OJ, and Struhl K. 2012. A functional evolutionary ap-

proach to identify determinants of nucleosome positioning: a unifying model for

establishing the genome-wide pattern. Molecular cell. 48: 5–15.

Hughes AL and Rando OJ. 2015. Comparative genomics reveals Chd1 as a determinant

of nucleosome spacing in vivo. G3: Genes, Genomes, Genetics. g3–115.

Iyer V and Struhl K. 1995. Poly (dA: dT), a ubiquitous promoter element that stimu-

lates transcription via its intrinsic DNA structure. The EMBO journal. 14: 2570–

2579.

Jones W, Alasoo K, Fishman D, and Parts L. 2017. Computational biology: deep

learning. Emerging Topics in Life Sciences. 1: 257–274.

Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust

EM, Hughes TR, Lieb JD, Widom J, et al. 2009. The DNA-encoded nucleosome

organization of a eukaryotic genome. Nature. 458: 362.

Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY, and Snoek J. 2018.

Sequential regulatory activity prediction across chromosomes with convolutional

neural networks. Genome research. 28: 739–750.

Kelley DR, Snoek J, and Rinn JL. 2016. Basset: learning the regulatory code of the

accessible genome with deep convolutional neural networks. Genome research. 26:

990–999.

Kim SG, Theera-Ampornpunt N, Fang CH, Harwani M, Grama A, and Chaterji S.

2016. Opening up the blackbox: an interpretable deep neural network-based clas-

sifier for cell-type specific enhancer predictions. BMC systems biology. 10: 54.

Krietenstein N et al. 2016. Genomic nucleosome organization reconstituted with pure

proteins. Cell. 167: 709–721.

22



Krizhevsky A, Sutskever I, and Hinton GE 2012. Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing sys-

tems, pp. 1097–1105.

Lieleg C, Ketterer P, Nuebler J, Ludwigsen J, Gerland U, Dietz H, Mueller-Planitz F,

and Korber P. 2015. Nucleosome spacing generated by ISWI and CHD1 remodelers

is constant regardless of nucleosome density. Molecular and cellular biology. 35:

1588–1605.

Long J, Shelhamer E, and Darrell T 2015. Fully convolutional networks for seman-

tic segmentation. In: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 3431–3440.

Martin Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. Software available from tensorflow.org.

Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert

I, and Pugh BF. 2008. A barrier nucleosome model for statistical positioning of

nucleosomes throughout the yeast genome. Genome research.

Min X, Chen N, Chen T, and Jiang R 2016. DeepEnhancer: Predicting enhancers by

convolutional neural networks. In: Bioinformatics and Biomedicine (BIBM), 2016

IEEE International Conference on. IEEE, pp. 637–644.

Ostrov N, Beal J, Ellis T, Gordon DB, Karas BJ, Lee HH, Lenaghan SC, Schloss JA,

Stracquadanio G, Trefzer A, et al. 2019. Technological challenges and milestones

for writing genomes. Science. 366: 310–312.

Quang D, Chen Y, and Xie X. 2014. DANN: a deep learning approach for annotating

the pathogenicity of genetic variants. Bioinformatics. 31: 761–763.

Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ,

and Madhani HD. 2005. Histone variant H2A. Z marks the 5 ends of both active

and inactive genes in euchromatin. Cell. 123: 233–248.

Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE,

Lee D, Huang CLV, Chandrasegaran S, Cai Y, et al. 2017. Design of a synthetic

yeast genome. Science. 355: 1040–1044.

23



Riposo J and Mozziconacci J. 2012. Nucleosome positioning and nucleosome stacking:

two faces of the same coin. Molecular BioSystems. 8: 1172–1178.

Russo E. 2003. Learning how to manipulate DNA’s double helix has fuelled job growth

in biotechnology during the past 50 years. Nature. 421: 456–457.

Segal E et al. 2006. A genomic code for nucleosome positioning. Nature. 442: 772.

Segal E and Widom J. 2009. Poly (dA: dT) tracts: major determinants of nucleosome

organization. Current opinion in structural biology. 19: 65–71.

Shi S, Wang Q, Xu P, and Chu X 2016. Benchmarking state-of-the-art deep learning

software tools. In: 2016 7th International Conference on Cloud Computing and Big

Data (CCBD). IEEE, pp. 99–104.

Suter B, Schnappauf G, and Thoma F. 2000. Poly(dA·dT) sequences exist as rigid

DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Re-

search. 28: 4083–4089.

Teif VB. 2015. Nucleosome positioning: resources and tools online. Briefings in bioin-

formatics. 17: 745–757.

Tsankov AM, Thompson DA, Socha A, Regev A, and Rando OJ. 2010. The role

of nucleosome positioning in the evolution of gene regulation. PLoS biology. 8:

e1000414.

Umarov RK and Solovyev VV. 2017. Recognition of prokaryotic and eukaryotic pro-

moters using convolutional deep learning neural networks. PloS one. 12: e0171410.

Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, and Sidow A. 2011. Deter-

minants of nucleosome organization in primary human cells. Nature. 474: 516–

520.

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao

Q, Macherey K, et al. 2016. Google’s neural machine translation system: Bridging

the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Zhang J, Peng W, and Wang L. 2018. LeNup: learning nucleosome positioning from

DNA sequences with improved convolutional neural networks. Bioinformatics. 34:

1705–1712.

24



Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, and Pugh BF. 2011. A packing

mechanism for nucleosome organization reconstituted across a eukaryotic genome.

Science. 332: 977–980.

Zhou J and Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep

learning–based sequence model. Nature methods. 12: 931.

Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, and Telenti A. 2019. A primer

on deep learning in genomics. Nature genetics. 51: 12–18.

25


